51
|
Lokka E, Lintukorpi L, Cisneros-Montalvo S, Mäkelä JA, Tyystjärvi S, Ojasalo V, Gerke H, Toppari J, Rantakari P, Salmi M. Generation, localization and functions of macrophages during the development of testis. Nat Commun 2020; 11:4375. [PMID: 32873797 PMCID: PMC7463013 DOI: 10.1038/s41467-020-18206-0] [Citation(s) in RCA: 42] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2019] [Accepted: 08/09/2020] [Indexed: 01/01/2023] Open
Abstract
In the testis, interstitial macrophages are thought to be derived from the yolk sac during fetal development, and later replaced by bone marrow-derived macrophages. By contrast, the peritubular macrophages have been reported to emerge first in the postnatal testis and solely represent descendants of bone marrow-derived monocytes. Here, we define new monocyte and macrophage types in the fetal and postnatal testis using high-dimensional single-cell analyses. Our results show that interstitial macrophages have a dominant contribution from fetal liver-derived precursors, while peritubular macrophages are generated already at birth from embryonic precursors. We find that bone marrow-derived monocytes do not substantially contribute to the replenishment of the testicular macrophage pool even after systemic macrophage depletion. The presence of macrophages prenatally, but not postnatally, is necessary for normal spermatogenesis. Our multifaceted data thus challenge the current paradigms in testicular macrophage biology by delineating their differentiation, homeostasis and functions.
Collapse
Affiliation(s)
- Emmi Lokka
- Institute of Biomedicine, University of Turku, Turku, FI-20520, Finland.,Turku Bioscience Centre, University of Turku and Åbo Akademi University, Turku, FIN-20520, Finland.,MediCity Research Laboratory, University of Turku, Turku, FI-20520, Finland
| | - Laura Lintukorpi
- Institute of Biomedicine, University of Turku, Turku, FI-20520, Finland.,Turku Bioscience Centre, University of Turku and Åbo Akademi University, Turku, FIN-20520, Finland
| | | | - Juho-Antti Mäkelä
- Institute of Biomedicine, University of Turku, Turku, FI-20520, Finland
| | - Sofia Tyystjärvi
- Institute of Biomedicine, University of Turku, Turku, FI-20520, Finland.,Turku Bioscience Centre, University of Turku and Åbo Akademi University, Turku, FIN-20520, Finland
| | - Venla Ojasalo
- Institute of Biomedicine, University of Turku, Turku, FI-20520, Finland.,Turku Bioscience Centre, University of Turku and Åbo Akademi University, Turku, FIN-20520, Finland
| | - Heidi Gerke
- Institute of Biomedicine, University of Turku, Turku, FI-20520, Finland.,Turku Bioscience Centre, University of Turku and Åbo Akademi University, Turku, FIN-20520, Finland
| | - Jorma Toppari
- Institute of Biomedicine, University of Turku, Turku, FI-20520, Finland.,Department of Pediatrics, Turku University Hospital, Turku, FI-20520, Finland
| | - Pia Rantakari
- Institute of Biomedicine, University of Turku, Turku, FI-20520, Finland. .,Turku Bioscience Centre, University of Turku and Åbo Akademi University, Turku, FIN-20520, Finland.
| | - Marko Salmi
- Institute of Biomedicine, University of Turku, Turku, FI-20520, Finland. .,MediCity Research Laboratory, University of Turku, Turku, FI-20520, Finland.
| |
Collapse
|
52
|
Wilson GJ, Fukuoka A, Love SR, Kim J, Pingen M, Hayes AJ, Graham GJ. Chemokine receptors coordinately regulate macrophage dynamics and mammary gland development. Development 2020; 147:dev187815. [PMID: 32467242 PMCID: PMC7328164 DOI: 10.1242/dev.187815] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2019] [Accepted: 05/20/2020] [Indexed: 12/22/2022]
Abstract
Macrophages are key regulators of developmental processes, including those involved in mammary gland development. We have previously demonstrated that the atypical chemokine receptor ACKR2 contributes to the control of ductal epithelial branching in the developing mammary gland by regulating macrophage dynamics. ACKR2 is a chemokine-scavenging receptor that mediates its effects through collaboration with inflammatory chemokine receptors (iCCRs). Here, we reveal reciprocal regulation of branching morphogenesis in the mammary gland, whereby stromal ACKR2 modulates levels of the shared ligand CCL7 to control the movement of a key population of CCR1-expressing macrophages to the ductal epithelium. In addition, oestrogen, which is essential for ductal elongation during puberty, upregulates CCR1 expression on macrophages. The age at which girls develop breasts is decreasing, which raises the risk of diseases including breast cancer. This study presents a previously unknown mechanism controlling the rate of mammary gland development during puberty and highlights potential therapeutic targets.
Collapse
MESH Headings
- Animals
- Chemokine CCL3/deficiency
- Chemokine CCL3/genetics
- Chemokine CCL3/metabolism
- Chemokine CCL5/deficiency
- Chemokine CCL5/genetics
- Chemokine CCL5/metabolism
- Epithelium/metabolism
- Estradiol/pharmacology
- Female
- Lectins, C-Type/metabolism
- Macrophages/cytology
- Macrophages/metabolism
- Mammary Glands, Animal/growth & development
- Mammary Glands, Animal/metabolism
- Mannose Receptor
- Mannose-Binding Lectins/metabolism
- Mice
- Mice, Inbred C57BL
- Mice, Knockout
- Morphogenesis
- Receptors, CCR1/deficiency
- Receptors, CCR1/genetics
- Receptors, CCR1/metabolism
- Receptors, Cell Surface/metabolism
- Receptors, Chemokine/deficiency
- Receptors, Chemokine/genetics
- Receptors, Chemokine/metabolism
- Up-Regulation/drug effects
Collapse
Affiliation(s)
- Gillian J Wilson
- Chemokine Research Group, Institute of Infection, Immunity and Inflammation, University of Glasgow, 120 University Place, Glasgow G12 8TA, UK
| | - Ayumi Fukuoka
- Chemokine Research Group, Institute of Infection, Immunity and Inflammation, University of Glasgow, 120 University Place, Glasgow G12 8TA, UK
| | - Samantha R Love
- Chemokine Research Group, Institute of Infection, Immunity and Inflammation, University of Glasgow, 120 University Place, Glasgow G12 8TA, UK
| | - Jiwon Kim
- Chemokine Research Group, Institute of Infection, Immunity and Inflammation, University of Glasgow, 120 University Place, Glasgow G12 8TA, UK
- Department of Physiology, University of Toronto, Medical Sciences Building, 1 King's College Circle, Toronto, ON M5S 1A8, Canada
| | - Marieke Pingen
- Chemokine Research Group, Institute of Infection, Immunity and Inflammation, University of Glasgow, 120 University Place, Glasgow G12 8TA, UK
| | - Alan J Hayes
- Chemokine Research Group, Institute of Infection, Immunity and Inflammation, University of Glasgow, 120 University Place, Glasgow G12 8TA, UK
| | - Gerard J Graham
- Chemokine Research Group, Institute of Infection, Immunity and Inflammation, University of Glasgow, 120 University Place, Glasgow G12 8TA, UK
| |
Collapse
|
53
|
Gong C, Yu X, You B, Wu Y, Wang R, Han L, Wang Y, Gao S, Yuan Y. Macrophage-cancer hybrid membrane-coated nanoparticles for targeting lung metastasis in breast cancer therapy. J Nanobiotechnology 2020; 18:92. [PMID: 32546174 PMCID: PMC7298843 DOI: 10.1186/s12951-020-00649-8] [Citation(s) in RCA: 109] [Impact Index Per Article: 21.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2020] [Accepted: 06/11/2020] [Indexed: 12/27/2022] Open
Abstract
Cell membrane- covered drug-delivery nanoplatforms have been garnering attention because of their enhanced bio-interfacing capabilities that originate from source cells. In this top-down technique, nanoparticles (NPs) are covered by various membrane coatings, including membranes from specialized cells or hybrid membranes that combine the capacities of different types of cell membranes. Here, hybrid membrane-coated doxorubicin (Dox)-loaded poly(lactic-co-glycolic acid) (PLGA) NPs (DPLGA@[RAW-4T1] NPs) were fabricated by fusing membrane components derived from RAW264.7(RAW) and 4T1 cells (4T1). These NPs were used to treat lung metastases originating from breast cancer. This study indicates that the coupling of NPs with a hybrid membrane derived from macrophage and cancer cells has several advantages, such as the tendency to accumulate at sites of inflammation, ability to target specific metastasis, homogenous tumor targeting abilities in vitro, and markedly enhanced multi-target capability in a lung metastasis model in vivo. The DPLGA@[RAW-4T1] NPs exhibited excellent chemotherapeutic potential with approximately 88.9% anti-metastasis efficacy following treatment of breast cancer-derived lung metastases. These NPs were robust and displayed the multi-targeting abilities of hybrid membranes. This study provides a promising biomimetic nanoplatform for effective treatment of breast cancer metastasis.
Collapse
Affiliation(s)
- Chunai Gong
- Department of Pharmacy, Shanghai Ninth People's Hospital, Shanghai JiaoTong University School of Medicine, Shanghai, 201999, China
| | - Xiaoyan Yu
- Department of Pharmacy, Shanghai Ninth People's Hospital, Shanghai JiaoTong University School of Medicine, Shanghai, 201999, China
| | - Benming You
- Department of Pharmaceutics, Changhai Hospital, Second Military Medical University, Shanghai, 200433, China
| | - Yan Wu
- Department of Pharmacy, Shanghai Ninth People's Hospital, Shanghai JiaoTong University School of Medicine, Shanghai, 201999, China
| | - Rong Wang
- Department of Pharmacy, Shanghai Ninth People's Hospital, Shanghai JiaoTong University School of Medicine, Shanghai, 201999, China
| | - Lu Han
- Department of Pharmacy, Shanghai Ninth People's Hospital, Shanghai JiaoTong University School of Medicine, Shanghai, 201999, China
| | - Yujie Wang
- Department of Pharmacy, Shanghai Ninth People's Hospital, Shanghai JiaoTong University School of Medicine, Shanghai, 201999, China
| | - Shen Gao
- Department of Pharmaceutics, Changhai Hospital, Second Military Medical University, Shanghai, 200433, China.
| | - Yongfang Yuan
- Department of Pharmacy, Shanghai Ninth People's Hospital, Shanghai JiaoTong University School of Medicine, Shanghai, 201999, China.
| |
Collapse
|
54
|
Jokela H, Lokka E, Kiviranta M, Tyystjärvi S, Gerke H, Elima K, Salmi M, Rantakari P. Fetal-derived macrophages persist and sequentially maturate in ovaries after birth in mice. Eur J Immunol 2020; 50:1500-1514. [PMID: 32459864 DOI: 10.1002/eji.202048531] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2020] [Revised: 03/19/2020] [Accepted: 05/25/2020] [Indexed: 12/18/2022]
Abstract
Macrophages, which are highly diverse in different tissues, play a complex and vital role in tissue development, homeostasis, and inflammation. The origin and heterogeneity of tissue-resident monocytes and macrophages in ovaries remains unknown. Here we identify three tissue-resident monocyte populations and five macrophage populations in the adult ovaries using high-dimensional single cell mass cytometry. Ontogenic analyses using cell fate mapping models and cell depletion experiments revealed the infiltration of ovaries by both yolk sac and fetal liver-derived macrophages already during the embryonic development. Moreover, we found that both embryonic and bone marrow-derived macrophages contribute to the distinct ovarian macrophage subpopulations in the adults. These assays also showed that fetal-derived MHC II-negative macrophages differentiate postnatally in the maturing ovary to MHC II-positive cells. Our analyses further unraveled that the developmentally distinct macrophage types share overlapping distribution and scavenging function in the ovaries under homeostatic conditions. In conclusion, we report here the first comprehensive analyses of ovarian monocytes and macrophages. In addition, we show that the mechanisms controlling monocyte immigration, the phenotype of different pools of interstitial macrophages, and the interconversion capacity of fetal-derived macrophages in ovaries are remarkably different from those seen in other tissue niches.
Collapse
Affiliation(s)
- Heli Jokela
- Institute of Biomedicine, University of Turku, Turku, Finland.,Turku Bioscience Centre, University of Turku and Åbo Akademi University, Turku, Finland
| | - Emmi Lokka
- Institute of Biomedicine, University of Turku, Turku, Finland.,MediCity Research Laboratory, University of Turku, Turku, Finland.,Turku Bioscience Centre, University of Turku and Åbo Akademi University, Turku, Finland
| | | | | | - Heidi Gerke
- Institute of Biomedicine, University of Turku, Turku, Finland.,Turku Bioscience Centre, University of Turku and Åbo Akademi University, Turku, Finland
| | - Kati Elima
- Institute of Biomedicine, University of Turku, Turku, Finland.,MediCity Research Laboratory, University of Turku, Turku, Finland
| | - Marko Salmi
- Institute of Biomedicine, University of Turku, Turku, Finland.,MediCity Research Laboratory, University of Turku, Turku, Finland
| | - Pia Rantakari
- Institute of Biomedicine, University of Turku, Turku, Finland.,Turku Bioscience Centre, University of Turku and Åbo Akademi University, Turku, Finland
| |
Collapse
|
55
|
Hillers-Ziemer LE, Arendt LM. Weighing the Risk: effects of Obesity on the Mammary Gland and Breast Cancer Risk. J Mammary Gland Biol Neoplasia 2020; 25:115-131. [PMID: 32519090 PMCID: PMC7933979 DOI: 10.1007/s10911-020-09452-5] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/16/2020] [Revised: 06/02/2020] [Accepted: 06/03/2020] [Indexed: 12/17/2022] Open
Abstract
Obesity is a preventable risk factor for breast cancer following menopause. Regardless of menopausal status, obese women who develop breast cancer have a worsened prognosis. Breast tissue is comprised of mammary epithelial cells organized into ducts and lobules and surrounded by adipose-rich connective tissue. Studies utilizing multiple in vivo models of obesity as well as human breast tissue have contributed to our understanding of how obesity alters mammary tissue. Localized changes in mammary epithelial cell populations, elevated secretion of adipokines and angiogenic mediators, inflammation within mammary adipose tissue, and remodeling of the extracellular matrix may result in an environment conducive to breast cancer growth. Despite these significant alterations caused by obesity within breast tissue, studies have suggested that some, but not all, obesity-induced changes may be mitigated with weight loss. Here, we review our current understanding regarding the impact of obesity on the breast microenvironment, how obesity-induced changes may contribute to breast tumor progression, and the impact of weight loss on the breast microenvironment.
Collapse
Affiliation(s)
- Lauren E Hillers-Ziemer
- Program in Cellular and Molecular Biology, University of Wisconsin-Madison, 1525 Linden Drive, Madison, WI, 53706, USA
| | - Lisa M Arendt
- Program in Cellular and Molecular Biology, University of Wisconsin-Madison, 1525 Linden Drive, Madison, WI, 53706, USA.
- Department of Comparative Biosciences, School of Veterinary Medicine, University of Wisconsin-Madison, 2015 Linden Drive, Madison, WI, 53706, USA.
| |
Collapse
|
56
|
Wang Y, Chaffee TS, LaRue RS, Huggins DN, Witschen PM, Ibrahim AM, Nelson AC, Machado HL, Schwertfeger KL. Tissue-resident macrophages promote extracellular matrix homeostasis in the mammary gland stroma of nulliparous mice. eLife 2020; 9:e57438. [PMID: 32479261 PMCID: PMC7297528 DOI: 10.7554/elife.57438] [Citation(s) in RCA: 51] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2020] [Accepted: 05/31/2020] [Indexed: 12/12/2022] Open
Abstract
Tissue-resident macrophages in the mammary gland are found in close association with epithelial structures and within the adipose stroma, and are important for mammary gland development and tissue homeostasis. Macrophages have been linked to ductal development in the virgin mammary gland, but less is known regarding the effects of macrophages on the adipose stroma. Using transcriptional profiling and single-cell RNA sequencing approaches, we identify a distinct resident stromal macrophage subpopulation within the mouse nulliparous mammary gland that is characterized by the expression of Lyve-1, a receptor for the extracellular matrix (ECM) component hyaluronan. This subpopulation is enriched in genes associated with ECM remodeling and is specifically associated with hyaluronan-rich regions within the adipose stroma and fibrous capsule of the virgin mammary gland. Furthermore, macrophage depletion leads to enhanced accumulation of hyaluronan-associated ECM in the adipose-associated stroma, indicating that resident macrophages are important for maintaining homeostasis within the nulliparous mammary gland stroma.
Collapse
Affiliation(s)
- Ying Wang
- Department of Laboratory Medicine and Pathology, University of MinnesotaMinneapolisUnited States
| | - Thomas S Chaffee
- Department of Laboratory Medicine and Pathology, University of MinnesotaMinneapolisUnited States
| | - Rebecca S LaRue
- University of Minnesota Supercomputing Institute, University of MinnesotaMinneapolisUnited States
| | - Danielle N Huggins
- Department of Laboratory Medicine and Pathology, University of MinnesotaMinneapolisUnited States
| | - Patrice M Witschen
- Comparative and Molecular Biosciences Graduate Program, University of MinnesotaMinneapolisUnited States
| | - Ayman M Ibrahim
- Department of Biochemistry and Molecular Biology, Tulane Cancer Center, Tulane School of MedicineNew OrleansUnited States
- Department of Zoology, Faculty of Science, Cairo UniversityGizaEgypt
| | - Andrew C Nelson
- Department of Laboratory Medicine and Pathology, University of MinnesotaMinneapolisUnited States
- Masonic Cancer Center, University of MinnesotaMinneapolisUnited States
| | - Heather L Machado
- Department of Biochemistry and Molecular Biology, Tulane Cancer Center, Tulane School of MedicineNew OrleansUnited States
| | - Kathryn L Schwertfeger
- Department of Laboratory Medicine and Pathology, University of MinnesotaMinneapolisUnited States
- Masonic Cancer Center, University of MinnesotaMinneapolisUnited States
- Center for Immunology, University of MinnesotaMinneapolisUnited States
| |
Collapse
|
57
|
Dawson CA, Pal B, Vaillant F, Gandolfo LC, Liu Z, Bleriot C, Ginhoux F, Smyth GK, Lindeman GJ, Mueller SN, Rios AC, Visvader JE. Tissue-resident ductal macrophages survey the mammary epithelium and facilitate tissue remodelling. Nat Cell Biol 2020; 22:546-558. [PMID: 32341550 DOI: 10.1038/s41556-020-0505-0] [Citation(s) in RCA: 112] [Impact Index Per Article: 22.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2019] [Accepted: 03/06/2020] [Indexed: 01/08/2023]
Abstract
Macrophages are diverse immune cells that reside in all tissues. Although macrophages have been implicated in mammary-gland function, their diversity has not been fully addressed. By exploiting high-resolution three-dimensional imaging and flow cytometry, we identified a unique population of tissue-resident ductal macrophages that form a contiguous network between the luminal and basal layers of the epithelial tree throughout postnatal development. Ductal macrophages are long lived and constantly survey the epithelium through dendrite movement, revealed via advanced intravital imaging. Although initially originating from embryonic precursors, ductal macrophages derive from circulating monocytes as they expand during puberty. Moreover, they undergo proliferation in pregnancy to maintain complete coverage of the epithelium in lactation, when they are poised to phagocytose milk-producing cells post-lactation and facilitate remodelling. Interestingly, ductal macrophages strongly resemble mammary tumour macrophages and form a network that pervades the tumour. Thus, the mammary epithelium programs specialized resident macrophages in both physiological and tumorigenic contexts.
Collapse
Affiliation(s)
- Caleb A Dawson
- Cancer Biology and Stem Cells Division, The Walter and Eliza Hall Institute of Medical Research, Parkville, Victoria, Australia.,Department of Medical Biology, The University of Melbourne, Parkville, Victoria, Australia
| | - Bhupinder Pal
- Cancer Biology and Stem Cells Division, The Walter and Eliza Hall Institute of Medical Research, Parkville, Victoria, Australia.,Department of Medical Biology, The University of Melbourne, Parkville, Victoria, Australia
| | - François Vaillant
- Cancer Biology and Stem Cells Division, The Walter and Eliza Hall Institute of Medical Research, Parkville, Victoria, Australia.,Department of Medical Biology, The University of Melbourne, Parkville, Victoria, Australia
| | - Luke C Gandolfo
- Bioinformatics Division, The Walter and Eliza Hall Institute of Medical Research, Parkville, Victoria, Australia.,School of Mathematics and Statistics, The University of Melbourne, Parkville, Victoria, Australia
| | - Zhaoyuan Liu
- Shanghai Institute of Immunology, Department of Immunology and Microbiology, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Camille Bleriot
- Singapore Immunology Network, Agency for Science, Technology and Research (A*STAR), Singapore, Singapore
| | - Florent Ginhoux
- Shanghai Institute of Immunology, Department of Immunology and Microbiology, Shanghai Jiao Tong University School of Medicine, Shanghai, China.,Singapore Immunology Network, Agency for Science, Technology and Research (A*STAR), Singapore, Singapore
| | - Gordon K Smyth
- Bioinformatics Division, The Walter and Eliza Hall Institute of Medical Research, Parkville, Victoria, Australia.,School of Mathematics and Statistics, The University of Melbourne, Parkville, Victoria, Australia
| | - Geoffrey J Lindeman
- Cancer Biology and Stem Cells Division, The Walter and Eliza Hall Institute of Medical Research, Parkville, Victoria, Australia.,Department of Medicine, The University of Melbourne, Parkville, Victoria, Australia.,Parkville Familial Cancer Centre and Department of Medical Oncology, The Royal Melbourne Hospital and Peter MacCallum Cancer Centre, Parkville, Victoria, Australia
| | - Scott N Mueller
- Department of Microbiology and Immunology, The University of Melbourne, at the Peter Doherty Institute for Infection and Immunity, Melbourne, Victoria, Australia.,The Australian Research Council Centre of Excellence in Advanced Molecular Imaging, Melbourne, Victoria, Australia
| | - Anne C Rios
- Cancer Biology and Stem Cells Division, The Walter and Eliza Hall Institute of Medical Research, Parkville, Victoria, Australia.,Department of Medical Biology, The University of Melbourne, Parkville, Victoria, Australia
| | - Jane E Visvader
- Cancer Biology and Stem Cells Division, The Walter and Eliza Hall Institute of Medical Research, Parkville, Victoria, Australia. .,Department of Medical Biology, The University of Melbourne, Parkville, Victoria, Australia.
| |
Collapse
|
58
|
Tissue-resident macrophages can be generated de novo in adult human skin from resident progenitor cells during substance P-mediated neurogenic inflammation ex vivo. PLoS One 2020; 15:e0227817. [PMID: 31971954 PMCID: PMC6977738 DOI: 10.1371/journal.pone.0227817] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2019] [Accepted: 12/30/2019] [Indexed: 12/11/2022] Open
Abstract
Besides monocyte (MO)-derived macrophages (MACs), self-renewing tissue-resident macrophages (trMACs) maintain the intracutaneous MAC pool in murine skin. Here, we have asked whether the same phenomenon occurs in human skin using organ-cultured, full-thickness skin detached from blood circulation and bone marrow. Skin stimulation ex vivo with the neuropeptide substance P (SP), mimicking neurogenic skin inflammation, significantly increased the number of CD68+MACs in the papillary dermis without altering intracutaneous MAC proliferation or apoptosis. Since intraluminal CD14+MOs were undetectable in the non-perfused dermal vasculature, new MACs must have differentiated from resident intracutaneous progenitor cells in human skin. Interestingly, CD68+MACs were often seen in direct cell-cell-contact with cells expressing both, the hematopoietic stem cell marker CD34 and SP receptor (neurokinin-1 receptor [NK1R]). These cell-cell contacts and CD34+cell proliferation were up-regulated in SP-treated skin samples. Collectively, our study provides the first evidence that resident MAC progenitors, from which mature MACs can rapidly differentiate within the tissue, do exist in normal adult human skin. That these NK1R+trMAC-progenitor cells quickly respond to a key stress-associated neuroinflammatory stimulus suggests that this may satisfy increased local MAC demand under conditions of wounding/stress.
Collapse
|
59
|
Hitchcock JR, Hughes K, Harris OB, Watson CJ. Dynamic architectural interplay between leucocytes and mammary epithelial cells. FEBS J 2019; 287:250-266. [PMID: 31691481 PMCID: PMC7003847 DOI: 10.1111/febs.15126] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2019] [Revised: 08/19/2019] [Accepted: 11/04/2019] [Indexed: 12/21/2022]
Abstract
The adult mammary gland undergoes dynamic changes during puberty and the postnatal developmental cycle. The mammary epithelium is composed of a bilayer of outer basal, or myoepithelial, cells and inner luminal cells, the latter lineage giving rise to the milk-producing alveolar cells during pregnancy. These luminal alveolar cells undergo Stat3-mediated programmed cell death following the cessation of lactation. It is established that immune cells in the microenvironment of the gland have a role to play both in the ductal outgrowth during puberty and in the removal of dead cells and remodelling of the stroma during the process of postlactational regression. However, most studies have focussed on the role of the stromal immune cell compartment or have quantified immune cell populations in tissue extracts. Our recent development of protocols for deep imaging of the mammary gland in three dimensions (3D) has enabled the architectural relationship between immune cells and the epithelium to be examined in detail, and we have discovered a surprisingly dynamic relationship between the basal epithelium and leucocytes. Furthermore, we have observed morphological changes in the myoepithelial cells, as involution progresses, which were not revealed by previous work in 2D tissue sections and whole tissue. This dynamic architecture suggests a role for myoepithelial cells in the orderly progression of involution. We conclude that deep imaging of mammary gland and other tissues is essential for analysing complex interactions between cellular compartments.
Collapse
|
60
|
Stewart TA, Hughes K, Hume DA, Davis FM. Developmental Stage-Specific Distribution of Macrophages in Mouse Mammary Gland. Front Cell Dev Biol 2019; 7:250. [PMID: 31709255 PMCID: PMC6821639 DOI: 10.3389/fcell.2019.00250] [Citation(s) in RCA: 48] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2019] [Accepted: 10/09/2019] [Indexed: 12/13/2022] Open
Abstract
Mammary gland development begins in the embryo and continues throughout the reproductive life of female mammals. Tissue macrophages (Mϕs), dependent on signals from the Mϕ colony stimulating factor 1 receptor (CSF1R), have been shown to regulate the generation, regression and regeneration of this organ, which is central for mammalian offspring survival. However, the distribution of Mϕs in the pre- and post-natal mammary gland, as it undergoes distinct phases of development and regression, is unknown or has been inferred from immunostaining of thin tissue sections. Here, we used optical tissue clearing and 3-dimensional imaging of mammary tissue obtained from Csf1r-EGFP mice. Whilst tissue Mϕs were observed at all developmental phases, their abundance, morphology, localization and association with luminal and basal epithelial cells exhibited stage-specific differences. Furthermore, sexual dimorphism was observed at E14.5, when the male mammary bud is severed from the overlying epidermis. These findings provide new insights into the localization and possible functions of heterogeneous tissue Mϕ populations in mammogenesis.
Collapse
Affiliation(s)
- Teneale A. Stewart
- Faculty of Medicine, Mater Research Institute-The University of Queensland, Brisbane, QLD, Australia
- Translational Research Institute, Brisbane, QLD, Australia
| | - Katherine Hughes
- Department of Veterinary Medicine, University of Cambridge, Cambridge, United Kingdom
| | - David A. Hume
- Faculty of Medicine, Mater Research Institute-The University of Queensland, Brisbane, QLD, Australia
- Translational Research Institute, Brisbane, QLD, Australia
| | - Felicity M. Davis
- Faculty of Medicine, Mater Research Institute-The University of Queensland, Brisbane, QLD, Australia
- Translational Research Institute, Brisbane, QLD, Australia
| |
Collapse
|
61
|
Hansen M, von Lindern M, van den Akker E, Varga E. Human‐induced pluripotent stem cell‐derived blood products: state of the art and future directions. FEBS Lett 2019; 593:3288-3303. [DOI: 10.1002/1873-3468.13599] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2019] [Revised: 08/13/2019] [Accepted: 08/14/2019] [Indexed: 12/24/2022]
Affiliation(s)
- Marten Hansen
- Department of Hematopoiesis, Sanquin Research, and Landsteiner Laboratory Academic Medical Center University of Amsterdam The Netherlands
| | - Marieke von Lindern
- Department of Hematopoiesis, Sanquin Research, and Landsteiner Laboratory Academic Medical Center University of Amsterdam The Netherlands
| | - Emile van den Akker
- Department of Hematopoiesis, Sanquin Research, and Landsteiner Laboratory Academic Medical Center University of Amsterdam The Netherlands
| | - Eszter Varga
- Department of Hematopoiesis, Sanquin Research, and Landsteiner Laboratory Academic Medical Center University of Amsterdam The Netherlands
| |
Collapse
|
62
|
Kado T, Nawaz A, Takikawa A, Usui I, Tobe K. Linkage of CD8 + T cell exhaustion with high-fat diet-induced tumourigenesis. Sci Rep 2019; 9:12284. [PMID: 31439906 PMCID: PMC6706391 DOI: 10.1038/s41598-019-48678-0] [Citation(s) in RCA: 49] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2019] [Accepted: 08/09/2019] [Indexed: 12/25/2022] Open
Abstract
Obesity increases the risk of cancer. Increased levels of hormones (such as oestrogen, insulin, insulin-like growth factor, and leptin), free fatty acid-induced production of reactive oxygen species, an altered intestinal microbiome and chronic inflammation are known to be associated with an increased cancer risk in obese subjects. However, the mechanism underlying the connection between obesity and cancer development remains elusive. Here, we show that a high-fat diet (HFD) promotes tumour initiation/progression and induces a phenotypic switch from PD-1− CD8+non-exhausted T cells to PD-1+ CD8+exhausted T cells in a murine breast cancer model. While PD-1− CD8+non-exhausted T cells predominated in the mammary glands of normal diet (ND)-fed mice, PD-1+ CD8+exhausted T cells accumulated in the developing tumours of HFD-fed mice. Gene expression profiles indicated that PD-1+ CD8+ T cells expressed higher levels of the tumour-trophic gene Opn and lower levels of the cytotoxic genes Ifng and Gzmb than did PD-1− CD8+ T cells. Our study provides a possible mechanistic linkage between obesity and cancer.
Collapse
Affiliation(s)
- Tomonobu Kado
- First Department of Internal Medicine, Graduate School of Medicine and Pharmaceutical Science, University of Toyama, Toyama, 930-0194, Japan
| | - Allah Nawaz
- First Department of Internal Medicine, Graduate School of Medicine and Pharmaceutical Science, University of Toyama, Toyama, 930-0194, Japan
| | - Akiko Takikawa
- First Department of Internal Medicine, Graduate School of Medicine and Pharmaceutical Science, University of Toyama, Toyama, 930-0194, Japan
| | - Isao Usui
- First Department of Internal Medicine, Graduate School of Medicine and Pharmaceutical Science, University of Toyama, Toyama, 930-0194, Japan.,Department of Endocrinology and Metabolism, Dokkyo Medical University, Tochigi, 321-0293, Japan
| | - Kazuyuki Tobe
- First Department of Internal Medicine, Graduate School of Medicine and Pharmaceutical Science, University of Toyama, Toyama, 930-0194, Japan.
| |
Collapse
|
63
|
Myllymäki SM, Mikkola ML. Inductive signals in branching morphogenesis - lessons from mammary and salivary glands. Curr Opin Cell Biol 2019; 61:72-78. [PMID: 31387017 DOI: 10.1016/j.ceb.2019.07.001] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2019] [Revised: 06/28/2019] [Accepted: 07/02/2019] [Indexed: 12/30/2022]
Abstract
Branching morphogenesis is a fundamental developmental program that generates large epithelial surfaces in a limited three-dimensional space. It is regulated by inductive tissue interactions whose effects are mediated by soluble signaling molecules, and cell-cell and cell-extracellular matrix interactions. Here, we will review recent studies on inductive signaling interactions governing branching morphogenesis in light of phenotypes of mouse mutants and ex vivo organ culture studies with emphasis on developing mammary and salivary glands. We will highlight advances in understanding how cell fate decisions are intimately linked with branching morphogenesis. We will also discuss novel insights into the molecular control of cellular mechanisms driving the formation of these arborized ductal structures and reflect upon how distinct spatial patterns are generated.
Collapse
Affiliation(s)
- Satu-Marja Myllymäki
- Developmental Biology Program, Institute of Biotechnology, HiLIFE, P.O.B. 56, University of Helsinki, 00014 Helsinki, Finland.
| | - Marja L Mikkola
- Developmental Biology Program, Institute of Biotechnology, HiLIFE, P.O.B. 56, University of Helsinki, 00014 Helsinki, Finland.
| |
Collapse
|