51
|
Psilocybin exerts distinct effects on resting state networks associated with serotonin and dopamine in mice. Neuroimage 2020; 225:117456. [PMID: 33069863 DOI: 10.1016/j.neuroimage.2020.117456] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2019] [Revised: 09/11/2020] [Accepted: 10/09/2020] [Indexed: 02/06/2023] Open
Abstract
Hallucinogenic agents have been proposed as potent antidepressants; this includes the serotonin (5-HT) receptor 2A agonist psilocybin. In human subjects, psilocybin alters functional connectivity (FC) within the default-mode network (DMN), a constellation of inter-connected regions that displays altered FC in depressive disorders. In this study, we investigated the effects of psilocybin on FC across the entire brain with a view to investigate underlying mechanisms. Psilocybin effects were investigated in lightly-anaesthetized mice using resting-state fMRI. Dual-regression analysis identified reduced FC within the ventral striatum in psilocybin- relative to vehicle-treated mice. Refinement of the analysis using spatial references derived from both gene expression maps and viral tracer projection fields revealed two distinct effects of psilocybin: it increased FC between 5-HT-associated networks and cortical areas, including elements of the murine DMN, thalamus, and midbrain; it decreased FC within dopamine (DA)-associated striatal networks. These results suggest that interactions between 5-HT- and DA-regulated neural networks contribute to the neural and therefore psychological effects of psilocybin. Furthermore, they highlight how information on molecular expression patterns and structural connectivity can assist in the interpretation of pharmaco-fMRI findings.
Collapse
|
52
|
Hsu LM, Wang S, Ranadive P, Ban W, Chao THH, Song S, Cerri DH, Walton LR, Broadwater MA, Lee SH, Shen D, Shih YYI. Automatic Skull Stripping of Rat and Mouse Brain MRI Data Using U-Net. Front Neurosci 2020; 14:568614. [PMID: 33117118 PMCID: PMC7575753 DOI: 10.3389/fnins.2020.568614] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2020] [Accepted: 08/13/2020] [Indexed: 11/13/2022] Open
Abstract
Accurate removal of magnetic resonance imaging (MRI) signal outside the brain, a.k.a., skull stripping, is a key step in the brain image pre-processing pipelines. In rodents, this is mostly achieved by manually editing a brain mask, which is time-consuming and operator dependent. Automating this step is particularly challenging in rodents as compared to humans, because of differences in brain/scalp tissue geometry, image resolution with respect to brain-scalp distance, and tissue contrast around the skull. In this study, we proposed a deep-learning-based framework, U-Net, to automatically identify the rodent brain boundaries in MR images. The U-Net method is robust against inter-subject variability and eliminates operator dependence. To benchmark the efficiency of this method, we trained and validated our model using both in-house collected and publicly available datasets. In comparison to current state-of-the-art methods, our approach achieved superior averaged Dice similarity coefficient to ground truth T2-weighted rapid acquisition with relaxation enhancement and T2∗-weighted echo planar imaging data in both rats and mice (all p < 0.05), demonstrating robust performance of our approach across various MRI protocols.
Collapse
Affiliation(s)
- Li-Ming Hsu
- Center for Animal Magnetic Resonance Imaging, The University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
- Biomedical Research Imaging Center, The University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
- Department of Neurology, The University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
- Department of Radiology, The University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
| | - Shuai Wang
- Biomedical Research Imaging Center, The University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
- Department of Radiology, The University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
| | - Paridhi Ranadive
- Center for Animal Magnetic Resonance Imaging, The University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
| | - Woomi Ban
- Center for Animal Magnetic Resonance Imaging, The University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
- Biomedical Research Imaging Center, The University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
| | - Tzu-Hao Harry Chao
- Center for Animal Magnetic Resonance Imaging, The University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
- Biomedical Research Imaging Center, The University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
- Department of Neurology, The University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
| | - Sheng Song
- Center for Animal Magnetic Resonance Imaging, The University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
- Biomedical Research Imaging Center, The University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
- Department of Neurology, The University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
| | - Domenic Hayden Cerri
- Center for Animal Magnetic Resonance Imaging, The University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
- Biomedical Research Imaging Center, The University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
- Department of Neurology, The University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
| | - Lindsay R. Walton
- Center for Animal Magnetic Resonance Imaging, The University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
- Biomedical Research Imaging Center, The University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
- Department of Neurology, The University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
| | - Margaret A. Broadwater
- Center for Animal Magnetic Resonance Imaging, The University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
- Biomedical Research Imaging Center, The University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
- Department of Neurology, The University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
| | - Sung-Ho Lee
- Center for Animal Magnetic Resonance Imaging, The University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
- Biomedical Research Imaging Center, The University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
- Department of Neurology, The University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
| | - Dinggang Shen
- Biomedical Research Imaging Center, The University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
- Department of Radiology, The University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
- Department of Brain and Cognitive Engineering, Korea University, Seoul, South Korea
| | - Yen-Yu Ian Shih
- Center for Animal Magnetic Resonance Imaging, The University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
- Biomedical Research Imaging Center, The University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
- Department of Neurology, The University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
| |
Collapse
|
53
|
Zahrai A, Vahid-Ansari F, Daigle M, Albert PR. Fluoxetine-induced recovery of serotonin and norepinephrine projections in a mouse model of post-stroke depression. Transl Psychiatry 2020; 10:334. [PMID: 32999279 PMCID: PMC7527452 DOI: 10.1038/s41398-020-01008-9] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/13/2020] [Revised: 08/21/2020] [Accepted: 09/03/2020] [Indexed: 12/12/2022] Open
Abstract
Chronic treatment with fluoxetine (FLX) is required for its antidepressant effects, but the role of serotonin (5-HT) axonal plasticity in FLX action is unknown. To address this, we examined mice with a stroke in the left medial prefrontal cortex (mPFC) resulting in persistent anxiety-like and depression-like behaviors and memory deficits as a model of post-stroke depression. Chronic treatment with FLX (but not exercise) completely reversed the behavioral phenotype and partially reversed changes in FosB-labeled cells in the mPFC, nucleus accumbens, septum, hippocampus, basolateral amygdala (BLA), and dorsal raphe. In these regions, 5-HT or norepinephrine (NE) innervation was quantified by staining for 5-HT or NE transporters, respectively. 5-HT synapses and synaptic triads were identified as synaptophysin-stained sites on 5-HT axons located proximal to gephyrin-stained or PSD95-stained spines. A week after stroke, 5-HT innervation was greatly reduced at the stroke site (left cingulate gyrus (CG) of the mPFC) and the left BLA. Chronically, 5-HT and NE innervation was reduced at the left CG, nucleus accumbens, and BLA, with no changes in other regions. In these areas, pre-synaptic and post-synaptic 5-HT synapses and triads to inhibitory (gephyrin+) sites were reduced, while 5-HT contacts at excitatory (PSD95+) sites were reduced in the CG and prelimbic mPFC. Chronic FLX, but not exercise, reversed these reductions in 5-HT innervation but incompletely restored NE projections. Changes in 5-HT innervation were verified using YFP staining in mice expressing YFP-tagged channelrhodopsin in 5-HT neurons. Thus, FLX-induced 5-HT axonal neuroplasticity of forebrain projections may help mediate recovery from brain injury.
Collapse
Affiliation(s)
- Amin Zahrai
- grid.412687.e0000 0000 9606 5108Ottawa Hospital Research Institute (Neuroscience), UOttawa Brain and Mind Research Institute, 451 Smyth Road, Ottawa, ON K1H-8M5 Canada
| | - Faranak Vahid-Ansari
- grid.412687.e0000 0000 9606 5108Ottawa Hospital Research Institute (Neuroscience), UOttawa Brain and Mind Research Institute, 451 Smyth Road, Ottawa, ON K1H-8M5 Canada
| | - Mireille Daigle
- grid.412687.e0000 0000 9606 5108Ottawa Hospital Research Institute (Neuroscience), UOttawa Brain and Mind Research Institute, 451 Smyth Road, Ottawa, ON K1H-8M5 Canada
| | - Paul R. Albert
- grid.412687.e0000 0000 9606 5108Ottawa Hospital Research Institute (Neuroscience), UOttawa Brain and Mind Research Institute, 451 Smyth Road, Ottawa, ON K1H-8M5 Canada
| |
Collapse
|
54
|
Király B, Balázsfi D, Horváth I, Solari N, Sviatkó K, Lengyel K, Birtalan E, Babos M, Bagaméry G, Máthé D, Szigeti K, Hangya B. In vivo localization of chronically implanted electrodes and optic fibers in mice. Nat Commun 2020; 11:4686. [PMID: 32943633 PMCID: PMC7499215 DOI: 10.1038/s41467-020-18472-y] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2019] [Accepted: 08/24/2020] [Indexed: 12/20/2022] Open
Abstract
Electrophysiology provides a direct readout of neuronal activity at a temporal precision only limited by the sampling rate. However, interrogating deep brain structures, implanting multiple targets or aiming at unusual angles still poses significant challenges for operators, and errors are only discovered by post-hoc histological reconstruction. Here, we propose a method combining the high-resolution information about bone landmarks provided by micro-CT scanning with the soft tissue contrast of the MRI, which allowed us to precisely localize electrodes and optic fibers in mice in vivo. This enables arbitrating the success of implantation directly after surgery with a precision comparable to gold standard histology. Adjustment of the recording depth with micro-drives or early termination of unsuccessful experiments saves many working hours, and fast 3-dimensional feedback helps surgeons avoid systematic errors. Increased aiming precision enables more precise targeting of small or deep brain nuclei and multiple targeting of specific cortical or hippocampal layers.
Collapse
Affiliation(s)
- Bálint Király
- Lendület Laboratory of Systems Neuroscience, Institute of Experimental Medicine, Budapest, Hungary
- Department of Biophysics and Radiation Biology, Semmelweis University, Budapest, Hungary
- Department of Biological Physics, Eötvös Loránd University, Budapest, Hungary
| | - Diána Balázsfi
- Lendület Laboratory of Systems Neuroscience, Institute of Experimental Medicine, Budapest, Hungary
| | - Ildikó Horváth
- Department of Biophysics and Radiation Biology, Semmelweis University, Budapest, Hungary
| | - Nicola Solari
- Lendület Laboratory of Systems Neuroscience, Institute of Experimental Medicine, Budapest, Hungary
| | - Katalin Sviatkó
- Lendület Laboratory of Systems Neuroscience, Institute of Experimental Medicine, Budapest, Hungary
- János Szentágothai Doctoral School of Neurosciences, Semmelweis University, Budapest, Hungary
| | - Katalin Lengyel
- Lendület Laboratory of Systems Neuroscience, Institute of Experimental Medicine, Budapest, Hungary
| | - Eszter Birtalan
- Lendület Laboratory of Systems Neuroscience, Institute of Experimental Medicine, Budapest, Hungary
| | - Magor Babos
- Mediso Medical Imaging Systems Ltd., Budapest, Hungary
| | | | - Domokos Máthé
- Department of Biophysics and Radiation Biology, Semmelweis University, Budapest, Hungary
- CROmed Translational Research Centers, Budapest, Hungary
| | - Krisztián Szigeti
- Department of Biophysics and Radiation Biology, Semmelweis University, Budapest, Hungary
| | - Balázs Hangya
- Lendület Laboratory of Systems Neuroscience, Institute of Experimental Medicine, Budapest, Hungary.
| |
Collapse
|
55
|
Psychological mechanisms and functions of 5-HT and SSRIs in potential therapeutic change: Lessons from the serotonergic modulation of action selection, learning, affect, and social cognition. Neurosci Biobehav Rev 2020; 119:138-167. [PMID: 32931805 DOI: 10.1016/j.neubiorev.2020.09.001] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2020] [Revised: 08/31/2020] [Accepted: 09/03/2020] [Indexed: 12/14/2022]
Abstract
Uncertainty regarding which psychological mechanisms are fundamental in mediating SSRI treatment outcomes and wide-ranging variability in their efficacy has raised more questions than it has solved. Since subjective mood states are an abstract scientific construct, only available through self-report in humans, and likely involving input from multiple top-down and bottom-up signals, it has been difficult to model at what level SSRIs interact with this process. Converging translational evidence indicates a role for serotonin in modulating context-dependent parameters of action selection, affect, and social cognition; and concurrently supporting learning mechanisms, which promote adaptability and behavioural flexibility. We examine the theoretical basis, ecological validity, and interaction of these constructs and how they may or may not exert a clinical benefit. Specifically, we bridge crucial gaps between disparate lines of research, particularly findings from animal models and human clinical trials, which often seem to present irreconcilable differences. In determining how SSRIs exert their effects, our approach examines the endogenous functions of 5-HT neurons, how 5-HT manipulations affect behaviour in different contexts, and how their therapeutic effects may be exerted in humans - which may illuminate issues of translational models, hierarchical mechanisms, idiographic variables, and social cognition.
Collapse
|
56
|
Serotonergic innervation of the auditory midbrain: dorsal raphe subregions differentially project to the auditory midbrain in male and female mice. Brain Struct Funct 2020; 225:1855-1871. [DOI: 10.1007/s00429-020-02098-3] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2019] [Accepted: 06/06/2020] [Indexed: 01/12/2023]
|
57
|
Chen Y, Sobczak F, Pais-Roldán P, Schwarz C, Koretsky AP, Yu X. Mapping the Brain-Wide Network Effects by Optogenetic Activation of the Corpus Callosum. Cereb Cortex 2020; 30:5885-5898. [PMID: 32556241 DOI: 10.1093/cercor/bhaa164] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2020] [Revised: 05/25/2020] [Accepted: 05/25/2020] [Indexed: 12/18/2022] Open
Abstract
Optogenetically driven manipulation of circuit-specific activity enables causality studies, but its global brain-wide effect is rarely reported. Here, we applied simultaneous functional magnetic resonance imaging (fMRI) and calcium recording with optogenetic activation of the corpus callosum (CC) connecting barrel cortices (BC). Robust positive BOLD was detected in the ipsilateral BC due to antidromic activity, spreading to the ipsilateral motor cortex (MC), and posterior thalamus (PO). In the orthodromic target, positive BOLD was reliably evoked by 2 Hz light pulses, whereas 40 Hz light pulses led to reduced calcium, indicative of CC-mediated inhibition. This presumed optogenetic CC-mediated inhibition was further elucidated by pairing light pulses with whisker stimulation at varied interstimulus intervals. Whisker-induced positive BOLD and calcium signals were reduced at intervals of 50/100 ms. The calcium-amplitude-modulation-based correlation with whole-brain fMRI signal revealed that the inhibitory effects spread to contralateral BC, ipsilateral MC, and PO. This work raises the need for fMRI to elucidate the brain-wide network activation in response to optogenetic stimulation.
Collapse
Affiliation(s)
- Yi Chen
- Research Group of Translational Neuroimaging and Neural Control, High-field Magnetic Resonance, Max Planck Institute for Biological Cybernetics, Tübingen, Baden-Württemberg 72076, Germany.,Graduate Training Centre of Neuroscience, University of Tübingen, Tübingen, Baden-Württemberg 72074, Germany
| | - Filip Sobczak
- Research Group of Translational Neuroimaging and Neural Control, High-field Magnetic Resonance, Max Planck Institute for Biological Cybernetics, Tübingen, Baden-Württemberg 72076, Germany.,Graduate Training Centre of Neuroscience, University of Tübingen, Tübingen, Baden-Württemberg 72074, Germany
| | - Patricia Pais-Roldán
- Research Group of Translational Neuroimaging and Neural Control, High-field Magnetic Resonance, Max Planck Institute for Biological Cybernetics, Tübingen, Baden-Württemberg 72076, Germany.,Graduate Training Centre of Neuroscience, University of Tübingen, Tübingen, Baden-Württemberg 72074, Germany
| | - Cornelius Schwarz
- Werner Reichardt Center for Integrative Neuroscience, Tübingen, Baden-Württemberg 72076, Germany
| | - Alan P Koretsky
- Laboratory of Functional and Molecular Imaging, National Institute of Neurological Disorders and Stroke, Bethesda, MD 20892, USA
| | - Xin Yu
- Research Group of Translational Neuroimaging and Neural Control, High-field Magnetic Resonance, Max Planck Institute for Biological Cybernetics, Tübingen, Baden-Württemberg 72076, Germany.,Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital and Harvard Medical School, Charlestown, MA 02129, USA
| |
Collapse
|
58
|
Babicola L, Pietrosanto M, Ielpo D, D'Addario SL, Cabib S, Ventura R, Ferlazzo F, Helmer-Citterich M, Andolina D, Lo Iacono L. RISC RNA sequencing in the Dorsal Raphè reveals microRNAs regulatory activities associated with behavioral and functional adaptations to chronic stress. Brain Res 2020; 1736:146763. [DOI: 10.1016/j.brainres.2020.146763] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2019] [Revised: 03/03/2020] [Accepted: 03/08/2020] [Indexed: 01/06/2023]
|
59
|
Reimann HM, Niendorf T. The (Un)Conscious Mouse as a Model for Human Brain Functions: Key Principles of Anesthesia and Their Impact on Translational Neuroimaging. Front Syst Neurosci 2020; 14:8. [PMID: 32508601 PMCID: PMC7248373 DOI: 10.3389/fnsys.2020.00008] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2019] [Accepted: 01/27/2020] [Indexed: 12/11/2022] Open
Abstract
In recent years, technical and procedural advances have brought functional magnetic resonance imaging (fMRI) to the field of murine neuroscience. Due to its unique capacity to measure functional activity non-invasively, across the entire brain, fMRI allows for the direct comparison of large-scale murine and human brain functions. This opens an avenue for bidirectional translational strategies to address fundamental questions ranging from neurological disorders to the nature of consciousness. The key challenges of murine fMRI are: (1) to generate and maintain functional brain states that approximate those of calm and relaxed human volunteers, while (2) preserving neurovascular coupling and physiological baseline conditions. Low-dose anesthetic protocols are commonly applied in murine functional brain studies to prevent stress and facilitate a calm and relaxed condition among animals. Yet, current mono-anesthesia has been shown to impair neural transmission and hemodynamic integrity. By linking the current state of murine electrophysiology, Ca2+ imaging and fMRI of anesthetic effects to findings from human studies, this systematic review proposes general principles to design, apply and monitor anesthetic protocols in a more sophisticated way. The further development of balanced multimodal anesthesia, combining two or more drugs with complementary modes of action helps to shape and maintain specific brain states and relevant aspects of murine physiology. Functional connectivity and its dynamic repertoire as assessed by fMRI can be used to make inferences about cortical states and provide additional information about whole-brain functional dynamics. Based on this, a simple and comprehensive functional neurosignature pattern can be determined for use in defining brain states and anesthetic depth in rest and in response to stimuli. Such a signature can be evaluated and shared between labs to indicate the brain state of a mouse during experiments, an important step toward translating findings across species.
Collapse
Affiliation(s)
- Henning M. Reimann
- Berlin Ultrahigh Field Facility (B.U.F.F.), Max-Delbrück Center for Molecular Medicine, Helmholtz Association of German Research Centers (HZ), Berlin, Germany
| | - Thoralf Niendorf
- Berlin Ultrahigh Field Facility (B.U.F.F.), Max-Delbrück Center for Molecular Medicine, Helmholtz Association of German Research Centers (HZ), Berlin, Germany
- Experimental and Clinical Research Center, A Joint Cooperation Between the Charité Medical Faculty and the Max-Delbrück Center for Molecular Medicine, Berlin, Germany
| |
Collapse
|
60
|
Snider SB, Hsu J, Darby RR, Cooke D, Fischer D, Cohen AL, Grafman JH, Fox MD. Cortical lesions causing loss of consciousness are anticorrelated with the dorsal brainstem. Hum Brain Mapp 2020. [DOI: 10.1002/hbm.24892#.xho8mgjbvfa.twitter] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Affiliation(s)
- Samuel B. Snider
- Departments of Neurology, Massachusetts General Hospital and Brigham and Women's HospitalHarvard Medical School Boston Massachusetts
| | - Joey Hsu
- Berenson‐Allen Center for Noninvasive Brain Stimulation and Division of Cognitive Neurology, Department of NeurologyBeth Israel Deaconess Medical Center Boston Massachusetts
| | - R. Ryan Darby
- Department of NeurologyVanderbilt University Medical Center Nashville Tennessee
| | - Danielle Cooke
- Berenson‐Allen Center for Noninvasive Brain Stimulation and Division of Cognitive Neurology, Department of NeurologyBeth Israel Deaconess Medical Center Boston Massachusetts
| | - David Fischer
- Departments of Neurology, Massachusetts General Hospital and Brigham and Women's HospitalHarvard Medical School Boston Massachusetts
| | - Alexander L. Cohen
- Berenson‐Allen Center for Noninvasive Brain Stimulation and Division of Cognitive Neurology, Department of NeurologyBeth Israel Deaconess Medical Center Boston Massachusetts
- Department of NeurologyBoston Children's Hospital, Harvard Medical School Boston Massachusetts
| | - Jordan H. Grafman
- Rehabilitation Institute of Chicago Chicago Illinois
- Department of Physical Medicine and Rehabilitation, Neurology, Cognitive Neurology and Alzheimer's Center, Department of Psychiatry, Feinberg School of Medicine and Department of Psychology, Weinberg College of Arts and SciencesNorthwestern University Chicago Illinois
| | - Michael D. Fox
- Berenson‐Allen Center for Noninvasive Brain Stimulation and Division of Cognitive Neurology, Department of NeurologyBeth Israel Deaconess Medical Center Boston Massachusetts
- Department of Neurology, Massachusetts General HospitalHarvard Medical School Boston Massachusetts
- Athinoula A. Martinos Center for Biomedical Imaging Charlestown Massachusetts
| |
Collapse
|
61
|
Azimi Z, Barzan R, Spoida K, Surdin T, Wollenweber P, Mark MD, Herlitze S, Jancke D. Separable gain control of ongoing and evoked activity in the visual cortex by serotonergic input. eLife 2020; 9:e53552. [PMID: 32252889 PMCID: PMC7138610 DOI: 10.7554/elife.53552] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2019] [Accepted: 03/04/2020] [Indexed: 01/25/2023] Open
Abstract
Controlling gain of cortical activity is essential to modulate weights between internal ongoing communication and external sensory drive. Here, we show that serotonergic input has separable suppressive effects on the gain of ongoing and evoked visual activity. We combined optogenetic stimulation of the dorsal raphe nucleus (DRN) with wide-field calcium imaging, extracellular recordings, and iontophoresis of serotonin (5-HT) receptor antagonists in the mouse visual cortex. 5-HT1A receptors promote divisive suppression of spontaneous activity, while 5-HT2A receptors act divisively on visual response gain and largely account for normalization of population responses over a range of visual contrasts in awake and anesthetized states. Thus, 5-HT input provides balanced but distinct suppressive effects on ongoing and evoked activity components across neuronal populations. Imbalanced 5-HT1A/2A activation, either through receptor-specific drug intake, genetically predisposed irregular 5-HT receptor density, or change in sensory bombardment may enhance internal broadcasts and reduce sensory drive and vice versa.
Collapse
Affiliation(s)
- Zohre Azimi
- Optical Imaging Group, Institut für Neuroinformatik, Ruhr University BochumBochumGermany
- International Graduate School of Neuroscience (IGSN), Ruhr University BochumBochumGermany
| | - Ruxandra Barzan
- Optical Imaging Group, Institut für Neuroinformatik, Ruhr University BochumBochumGermany
- International Graduate School of Neuroscience (IGSN), Ruhr University BochumBochumGermany
| | - Katharina Spoida
- Department of General Zoology and Neurobiology, Ruhr University BochumBochumGermany
| | - Tatjana Surdin
- Department of General Zoology and Neurobiology, Ruhr University BochumBochumGermany
| | - Patric Wollenweber
- Department of General Zoology and Neurobiology, Ruhr University BochumBochumGermany
| | - Melanie D Mark
- Department of General Zoology and Neurobiology, Ruhr University BochumBochumGermany
| | - Stefan Herlitze
- Department of General Zoology and Neurobiology, Ruhr University BochumBochumGermany
| | - Dirk Jancke
- Optical Imaging Group, Institut für Neuroinformatik, Ruhr University BochumBochumGermany
- International Graduate School of Neuroscience (IGSN), Ruhr University BochumBochumGermany
| |
Collapse
|
62
|
Sakurai K, Shintani T, Jomura N, Matsuda T, Sumiyoshi A, Hisatsune T. Hyper BOLD Activation in Dorsal Raphe Nucleus of APP/PS1 Alzheimer's Disease Mouse during Reward-Oriented Drinking Test under Thirsty Conditions. Sci Rep 2020; 10:3915. [PMID: 32127559 PMCID: PMC7054396 DOI: 10.1038/s41598-020-60894-7] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2019] [Accepted: 02/18/2020] [Indexed: 02/08/2023] Open
Abstract
Alzheimer's disease (AD), a neurodegenerative disease, causes behavioural abnormalities such as disinhibition, impulsivity, and hyperphagia. Preclinical studies using AD model mice have investigated these phenotypes by measuring brain activity in awake, behaving mice. In this study, we monitored the behavioural alterations of impulsivity and hyperphagia in middle-aged AD model mice. As a behavioural readout, we trained the mice to accept a water-reward under thirsty conditions. To analyse brain activity, we developed a measure for licking behaviour combined with visualisation of whole brain activity using awake fMRI. In a water-reward learning task, the AD model mice showed significant hyperactivity of the dorsal raphe nucleus in thirsty conditions. In summary, we successfully visualised altered brain activity in AD model mice during reward-oriented behaviour for the first time using awake fMRI. This may help in understanding the causes of behavioural alterations in AD patients.
Collapse
Affiliation(s)
- Keisuke Sakurai
- Department of Integrated Biosciences, Graduate School of Frontier Sciences, The University of Tokyo, Kashiwa, Japan
| | - Teppei Shintani
- Department of Integrated Biosciences, Graduate School of Frontier Sciences, The University of Tokyo, Kashiwa, Japan
| | - Naohiro Jomura
- Department of Integrated Biosciences, Graduate School of Frontier Sciences, The University of Tokyo, Kashiwa, Japan
| | - Takeshi Matsuda
- Department of Integrated Biosciences, Graduate School of Frontier Sciences, The University of Tokyo, Kashiwa, Japan
| | - Akira Sumiyoshi
- National Institute of Radiological Sciences, National Institutes for Quantum and Radiological Science and Technology, Chiba, Chiba, 263-8555, Japan
| | - Tatsuhiro Hisatsune
- Department of Integrated Biosciences, Graduate School of Frontier Sciences, The University of Tokyo, Kashiwa, Japan.
| |
Collapse
|
63
|
Tsurugizawa T, Tamada K, Ono N, Karakawa S, Kodama Y, Debacker C, Hata J, Okano H, Kitamura A, Zalesky A, Takumi T. Awake functional MRI detects neural circuit dysfunction in a mouse model of autism. SCIENCE ADVANCES 2020; 6:eaav4520. [PMID: 32076634 PMCID: PMC7002125 DOI: 10.1126/sciadv.aav4520] [Citation(s) in RCA: 48] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/17/2018] [Accepted: 11/22/2019] [Indexed: 05/05/2023]
Abstract
MRI has potential as a translational approach from rodents to humans. However, given that mouse functional MRI (fMRI) uses anesthetics for suppression of motion, it has been difficult to directly compare the result of fMRI in "unconsciousness" disease model mice with that in "consciousness" patients. We develop awake fMRI to investigate brain function in 15q dup mice, a copy number variation model of autism. Compared to wild-type mice, we find that 15q dup is associated with whole-brain functional hypoconnectivity and diminished fMRI responses to odors of stranger mice. Ex vivo diffusion MRI reveals widespread anomalies in white matter ultrastructure in 15q dup mice, suggesting a putative anatomical substrate for these functional hypoconnectivity. We show that d-cycloserine (DCS) treatment partially normalizes these anormalies in the frontal cortex of 15q dup mice and rescues some social behaviors. Our results demonstrate the utility of awake rodent fMRI and provide a rationale for further investigation of DCS therapy.
Collapse
Affiliation(s)
- Tomokazu Tsurugizawa
- NeuroSpin, Commissariat à l’Energie Atomique et aux Energies Alternatives, CEA Saclay, Gif-sur-Yvette 91191, France
- Corresponding author. (T.Ts.); (T.Ta.)
| | - Kota Tamada
- RIKEN Brain Science Institute, Wako, Saitama 351-0198, Japan
| | - Nobukazu Ono
- Institute for Innovation, Ajinomoto Co. Inc., Kawasaki 210-8681, Japan
| | - Sachise Karakawa
- Institute for Innovation, Ajinomoto Co. Inc., Kawasaki 210-8681, Japan
| | - Yuko Kodama
- Institute for Innovation, Ajinomoto Co. Inc., Kawasaki 210-8681, Japan
| | - Clement Debacker
- NeuroSpin, Commissariat à l’Energie Atomique et aux Energies Alternatives, CEA Saclay, Gif-sur-Yvette 91191, France
| | - Junichi Hata
- RIKEN Brain Science Institute, Wako, Saitama 351-0198, Japan
- Department of Physiology, Keio University School of Medicine, Shinjuku, Tokyo 160-8585, Japan
| | - Hideyuki Okano
- RIKEN Brain Science Institute, Wako, Saitama 351-0198, Japan
- Department of Physiology, Keio University School of Medicine, Shinjuku, Tokyo 160-8585, Japan
| | - Akihiko Kitamura
- Institute for Innovation, Ajinomoto Co. Inc., Kawasaki 210-8681, Japan
| | - Andrew Zalesky
- Melbourne Neuropsychiatry Centre and Department of Biomedical Engineering, University of Melbourne, Victoria 3010, Australia
| | - Toru Takumi
- RIKEN Brain Science Institute, Wako, Saitama 351-0198, Japan
- Department of Physiology and Cell Biology, Kobe University School of Medicine, Chuo, Kobe 650-0017, Japan
- Corresponding author. (T.Ts.); (T.Ta.)
| |
Collapse
|
64
|
Mandino F, Cerri DH, Garin CM, Straathof M, van Tilborg GAF, Chakravarty MM, Dhenain M, Dijkhuizen RM, Gozzi A, Hess A, Keilholz SD, Lerch JP, Shih YYI, Grandjean J. Animal Functional Magnetic Resonance Imaging: Trends and Path Toward Standardization. Front Neuroinform 2020; 13:78. [PMID: 32038217 PMCID: PMC6987455 DOI: 10.3389/fninf.2019.00078] [Citation(s) in RCA: 68] [Impact Index Per Article: 13.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2019] [Accepted: 12/19/2019] [Indexed: 12/21/2022] Open
Abstract
Animal whole-brain functional magnetic resonance imaging (fMRI) provides a non-invasive window into brain activity. A collection of associated methods aims to replicate observations made in humans and to identify the mechanisms underlying the distributed neuronal activity in the healthy and disordered brain. Animal fMRI studies have developed rapidly over the past years, fueled by the development of resting-state fMRI connectivity and genetically encoded neuromodulatory tools. Yet, comparisons between sites remain hampered by lack of standardization. Recently, we highlighted that mouse resting-state functional connectivity converges across centers, although large discrepancies in sensitivity and specificity remained. Here, we explore past and present trends within the animal fMRI community and highlight critical aspects in study design, data acquisition, and post-processing operations, that may affect the results and influence the comparability between studies. We also suggest practices aimed to promote the adoption of standards within the community and improve between-lab reproducibility. The implementation of standardized animal neuroimaging protocols will facilitate animal population imaging efforts as well as meta-analysis and replication studies, the gold standards in evidence-based science.
Collapse
Affiliation(s)
- Francesca Mandino
- Singapore Bioimaging Consortium, Agency for Science, Technology and Research, Singapore, Singapore
- Faculty of Biology, Medicine and Health, The University of Manchester, Manchester, United Kingdom
| | - Domenic H. Cerri
- Center for Animal MRI, Department of Neurology, Biomedical Research Imaging Center, The University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
| | - Clement M. Garin
- Direction de la Recherche Fondamentale, MIRCen, Institut de Biologie François Jacob, Commissariat à l’Énergie Atomique et aux Énergies Alternatives, Fontenay-aux-Roses, France
- Neurodegenerative Diseases Laboratory, Centre National de la Recherche Scientifique, UMR 9199, Université Paris-Sud, Université Paris-Saclay, Fontenay-aux-Roses, France
| | - Milou Straathof
- Biomedical MR Imaging and Spectroscopy Group, Center for Image Sciences, University Medical Center Utrecht, Utrecht University, Utrecht, Netherlands
| | - Geralda A. F. van Tilborg
- Biomedical MR Imaging and Spectroscopy Group, Center for Image Sciences, University Medical Center Utrecht, Utrecht University, Utrecht, Netherlands
| | - M. Mallar Chakravarty
- Department of Psychiatry, Douglas Mental Health University Institute, McGill University, Montreal, QC, Canada
- Department of Biological and Biomedical Engineering, Douglas Mental Health University Institute, McGill University, Montreal, QC, Canada
| | - Marc Dhenain
- Direction de la Recherche Fondamentale, MIRCen, Institut de Biologie François Jacob, Commissariat à l’Énergie Atomique et aux Énergies Alternatives, Fontenay-aux-Roses, France
- Neurodegenerative Diseases Laboratory, Centre National de la Recherche Scientifique, UMR 9199, Université Paris-Sud, Université Paris-Saclay, Fontenay-aux-Roses, France
| | - Rick M. Dijkhuizen
- Biomedical MR Imaging and Spectroscopy Group, Center for Image Sciences, University Medical Center Utrecht, Utrecht University, Utrecht, Netherlands
| | - Alessandro Gozzi
- Functional Neuroimaging Laboratory, Istituto Italiano di Tecnologia, Centre for Neuroscience and Cognitive Systems @ UNITN, Rovereto, Italy
| | - Andreas Hess
- Institute of Experimental and Clinical Pharmacology and Toxicology, Friedrich–Alexander University Erlangen–Nürnberg, Erlangen, Germany
| | - Shella D. Keilholz
- Department of Biomedical Engineering, Georgia Tech, Emory University, Atlanta, GA, United States
| | - Jason P. Lerch
- Hospital for Sick Children, Department of Medical Biophysics, University of Toronto, Toronto, ON, Canada
- Wellcome Centre for Integrative NeuroImaging, University of Oxford, Oxford, United Kingdom
| | - Yen-Yu Ian Shih
- Center for Animal MRI, Department of Neurology, Biomedical Research Imaging Center, The University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
| | - Joanes Grandjean
- Singapore Bioimaging Consortium, Agency for Science, Technology and Research, Singapore, Singapore
- Department of Radiology and Nuclear Medicine, Donders Institute for Brain, Cognition, and Behaviour, Donders Institute, Radboud University Medical Center, Nijmegen, Netherlands
| |
Collapse
|
65
|
Prakash N, Stark CJ, Keisler MN, Luo L, Der-Avakian A, Dulcis D. Serotonergic Plasticity in the Dorsal Raphe Nucleus Characterizes Susceptibility and Resilience to Anhedonia. J Neurosci 2020; 40:569-584. [PMID: 31792153 PMCID: PMC6961996 DOI: 10.1523/jneurosci.1802-19.2019] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2019] [Revised: 10/04/2019] [Accepted: 11/06/2019] [Indexed: 02/06/2023] Open
Abstract
Chronic stress induces anhedonia in susceptible but not resilient individuals, a phenomenon observed in humans as well as animal models, but the molecular mechanisms underlying susceptibility and resilience are not well understood. We hypothesized that the serotonergic system, which is implicated in stress, reward, and antidepressant therapy, may play a role. We found that plasticity of the serotonergic system contributes to the differential vulnerability to stress displayed by susceptible and resilient animals. Stress-induced anhedonia was assessed in adult male rats using social defeat and intracranial self-stimulation, while changes in serotonergic phenotype were investigated using immunohistochemistry and in situ hybridization. Susceptible, but not resilient, rats displayed an increased number of neurons expressing the biosynthetic enzyme for serotonin, tryptophan-hydroxylase-2 (TPH2), in the ventral subnucleus of the dorsal raphe nucleus (DRv). Further, a decrease in the number of DRv glutamatergic (VGLUT3+) neurons was observed in all stressed rats. This neurotransmitter plasticity is activity-dependent, as was revealed by chemogenetic manipulation of the central amygdala, a stress-sensitive nucleus that forms a major input to the DR. Activation of amygdalar corticotropin-releasing hormone (CRH)+ neurons abolished the increase in DRv TPH2+ neurons and ameliorated stress-induced anhedonia in susceptible rats. These findings show that activation of amygdalar CRH+ neurons induces resilience, and suppresses the gain of serotonergic phenotype in the DRv that is characteristic of susceptible rats. This molecular signature of vulnerability to stress-induced anhedonia and the active nature of resilience could be targeted to develop new treatments for stress-related disorders like depression.SIGNIFICANCE STATEMENT Depression and other mental disorders can be induced by chronic or traumatic stressors. However, some individuals are resilient and do not develop depression in response to chronic stress. A complete picture of the molecular differences between susceptible and resilient individuals is necessary to understand how plasticity of limbic circuits is associated with the pathophysiology of stress-related disorders. Using a rodent model, our study identifies a novel molecular marker of susceptibility to stress-induced anhedonia, a core symptom of depression, and a means to modulate it. These findings will guide further investigation into cellular and circuit mechanisms of resilience, and the development of new treatments for depression.
Collapse
Affiliation(s)
- Nandkishore Prakash
- Department of Psychiatry, University of California San Diego, La Jolla, California 92093
| | - Christiana J Stark
- Department of Psychiatry, University of California San Diego, La Jolla, California 92093
| | - Maria N Keisler
- Department of Psychiatry, University of California San Diego, La Jolla, California 92093
| | - Lily Luo
- Department of Psychiatry, University of California San Diego, La Jolla, California 92093
| | - Andre Der-Avakian
- Department of Psychiatry, University of California San Diego, La Jolla, California 92093
| | - Davide Dulcis
- Department of Psychiatry, University of California San Diego, La Jolla, California 92093
| |
Collapse
|
66
|
Snider SB, Hsu J, Darby RR, Cooke D, Fischer D, Cohen AL, Grafman JH, Fox MD. Cortical lesions causing loss of consciousness are anticorrelated with the dorsal brainstem. Hum Brain Mapp 2020; 41:1520-1531. [PMID: 31904898 PMCID: PMC7268053 DOI: 10.1002/hbm.24892] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2019] [Revised: 11/11/2019] [Accepted: 11/27/2019] [Indexed: 01/01/2023] Open
Abstract
Brain lesions can provide unique insight into the neuroanatomical substrate of human consciousness. For example, brainstem lesions causing coma map to a specific region of the tegmentum. Whether specific lesion locations outside the brainstem are associated with loss of consciousness (LOC) remains unclear. Here, we investigate the topography of cortical lesions causing prolonged LOC (N = 16), transient LOC (N = 91), or no LOC (N = 64). Using standard voxel lesion symptom mapping, no focus of brain damage was associated with LOC. Next, we computed the network of brain regions functionally connected to each lesion location using a large normative connectome dataset (N = 1,000). This technique, termed lesion network mapping, can test whether lesions causing LOC map to a connected brain circuit rather than one brain region. Connectivity between cortical lesion locations and an a priori coma-specific region of brainstem tegmentum was an independent predictor of LOC (B = 1.2, p = .004). Connectivity to the dorsal brainstem was the only predictor of LOC in a whole-brain voxel-wise analysis. This relationship was driven by anticorrelation (negative correlation) between lesion locations and the dorsal brainstem. The map of regions anticorrelated to the dorsal brainstem thus defines a distributed brain circuit that, when damaged, is most likely to cause LOC. This circuit showed a slight posterior predominance and had peaks in the bilateral claustrum. Our results suggest that cortical lesions causing LOC map to a connected brain circuit, linking cortical lesions that disrupt consciousness to brainstem sites that maintain arousal.
Collapse
Affiliation(s)
- Samuel B Snider
- Departments of Neurology, Massachusetts General Hospital and Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts
| | - Joey Hsu
- Berenson-Allen Center for Noninvasive Brain Stimulation and Division of Cognitive Neurology, Department of Neurology, Beth Israel Deaconess Medical Center, Boston, Massachusetts
| | - R Ryan Darby
- Department of Neurology, Vanderbilt University Medical Center, Nashville, Tennessee
| | - Danielle Cooke
- Berenson-Allen Center for Noninvasive Brain Stimulation and Division of Cognitive Neurology, Department of Neurology, Beth Israel Deaconess Medical Center, Boston, Massachusetts
| | - David Fischer
- Departments of Neurology, Massachusetts General Hospital and Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts
| | - Alexander L Cohen
- Berenson-Allen Center for Noninvasive Brain Stimulation and Division of Cognitive Neurology, Department of Neurology, Beth Israel Deaconess Medical Center, Boston, Massachusetts.,Department of Neurology, Boston Children's Hospital, Harvard Medical School, Boston, Massachusetts
| | - Jordan H Grafman
- Rehabilitation Institute of Chicago, Chicago, Illinois.,Department of Physical Medicine and Rehabilitation, Neurology, Cognitive Neurology and Alzheimer's Center, Department of Psychiatry, Feinberg School of Medicine and Department of Psychology, Weinberg College of Arts and Sciences, Northwestern University, Chicago, Illinois
| | - Michael D Fox
- Berenson-Allen Center for Noninvasive Brain Stimulation and Division of Cognitive Neurology, Department of Neurology, Beth Israel Deaconess Medical Center, Boston, Massachusetts.,Department of Neurology, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts.,Athinoula A. Martinos Center for Biomedical Imaging, Charlestown, Massachusetts
| |
Collapse
|
67
|
van den Brink RL, Pfeffer T, Donner TH. Brainstem Modulation of Large-Scale Intrinsic Cortical Activity Correlations. Front Hum Neurosci 2019; 13:340. [PMID: 31649516 PMCID: PMC6794422 DOI: 10.3389/fnhum.2019.00340] [Citation(s) in RCA: 53] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2019] [Accepted: 09/17/2019] [Indexed: 12/22/2022] Open
Abstract
Brain activity fluctuates continuously, even in the absence of changes in sensory input or motor output. These intrinsic activity fluctuations are correlated across brain regions and are spatially organized in macroscale networks. Variations in the strength, topography, and topology of correlated activity occur over time, and unfold upon a backbone of long-range anatomical connections. Subcortical neuromodulatory systems send widespread ascending projections to the cortex, and are thus ideally situated to shape the temporal and spatial structure of intrinsic correlations. These systems are also the targets of the pharmacological treatment of major neurological and psychiatric disorders, such as Parkinson's disease, depression, and schizophrenia. Here, we review recent work that has investigated how neuromodulatory systems shape correlations of intrinsic fluctuations of large-scale cortical activity. We discuss studies in the human, monkey, and rodent brain, with a focus on non-invasive recordings of human brain activity. We provide a structured but selective overview of this work and distil a number of emerging principles. Future efforts to chart the effect of specific neuromodulators and, in particular, specific receptors, on intrinsic correlations may help identify shared or antagonistic principles between different neuromodulatory systems. Such principles can inform models of healthy brain function and may provide an important reference for understanding altered cortical dynamics that are evident in neurological and psychiatric disorders, potentially paving the way for mechanistically inspired biomarkers and individualized treatments of these disorders.
Collapse
Affiliation(s)
- R. L. van den Brink
- Department of Neurophysiology and Pathophysiology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - T. Pfeffer
- Department of Neurophysiology and Pathophysiology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - T. H. Donner
- Department of Neurophysiology and Pathophysiology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
- Department of Psychology, University of Amsterdam, Amsterdam, Netherlands
- Amsterdam Center for Brain and Cognition, Institute for Interdisciplinary Studies, Amsterdam, Netherlands
| |
Collapse
|
68
|
Sargin D, Jeoung HS, Goodfellow NM, Lambe EK. Serotonin Regulation of the Prefrontal Cortex: Cognitive Relevance and the Impact of Developmental Perturbation. ACS Chem Neurosci 2019; 10:3078-3093. [PMID: 31259523 DOI: 10.1021/acschemneuro.9b00073] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
The prefrontal cortex is essential for both executive function and emotional regulation. The interrelationships among these behavioral domains are increasingly recognized, as well as their sensitivity to serotonin (5-hydroxytryptamine, 5-HT). Prefrontal cortex receives serotonergic inputs from the dorsal and median raphe nuclei and is modulated by multiple subtypes of 5-HT receptor across its layers and cell types. Extremes of serotonergic modulation alter mood regulation in vulnerable individuals, yet the impact of serotonin under more typical physiological parameters remains unclear. In this regard, new tools are permitting a closer examination of the behavioral impact of the serotonin system. Optogenetic and chemogenetic manipulations of dorsal raphe 5-HT neurons reveal that serotonin has a greater impact on executive function than previously appreciated. Domains that appear sensitive to fluctuations in 5-HT neuronal excitability include patience and cognitive flexibility. This work is broadly consistent with ex vivo research investigating how 5-HT regulates prefrontal cortex and its output projections. A growing literature suggests 5-HT modulation of these prefrontal circuits is unexpectedly flexible to alteration during development by genetic, behavioral, environmental or pharmacological manipulations, with lasting repercussions for cognition and emotional regulation. Here, we review the cellular and circuit mechanisms of prefrontal serotonergic modulation, investigate recent research into the cognitive consequences of the serotonergic system, and probe the lasting consequences of developmental perturbations. Understanding both the complexity of the prefrontal serotonin system and its sensitivity during development are essential to learn more about the vulnerabilities of this system in mood and anxiety disorders and the underappreciated cognitive consequences of these disorders and their treatment.
Collapse
Affiliation(s)
- Derya Sargin
- Department of Physiology, University of Toronto, Toronto, ON M5S 1A8, Canada
- Department of Physiology and Pharmacology, University of Calgary, Calgary AB T2N 1N4, Canada
| | - Ha-Seul Jeoung
- Department of Physiology, University of Toronto, Toronto, ON M5S 1A8, Canada
| | | | - Evelyn K. Lambe
- Department of Physiology, University of Toronto, Toronto, ON M5S 1A8, Canada
- Department of OBGYN, University of Toronto, Toronto, ON M5G 1E2, Canada
- Department of Psychiatry, University of Toronto, Toronto, ON M5T 1R8, Canada
| |
Collapse
|
69
|
Grosenick L, Shi TC, Gunning FM, Dubin MJ, Downar J, Liston C. Functional and Optogenetic Approaches to Discovering Stable Subtype-Specific Circuit Mechanisms in Depression. BIOLOGICAL PSYCHIATRY. COGNITIVE NEUROSCIENCE AND NEUROIMAGING 2019; 4:554-566. [PMID: 31176387 PMCID: PMC6788795 DOI: 10.1016/j.bpsc.2019.04.013] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/29/2018] [Revised: 04/29/2019] [Accepted: 04/29/2019] [Indexed: 12/18/2022]
Abstract
BACKGROUND Previously, we identified four depression subtypes defined by distinct functional connectivity alterations in depression-related brain networks, which in turn predicted clinical symptoms and treatment response. Optogenetic functional magnetic resonance imaging offers a promising approach for testing how dysfunction in specific circuits gives rise to subtype-specific, depression-related behaviors. However, this approach assumes that there are robust, reproducible correlations between functional connectivity and depressive symptoms-an assumption that was not extensively tested in previous work. METHODS First, we comprehensively reevaluated the stability of canonical correlations between functional connectivity and symptoms (N = 220 subjects) using optimized approaches for large-scale statistical hypothesis testing, and we validated methods for improving estimation of latent variables driving brain-behavior correlations. Having confirmed this necessary condition, we reviewed recent advances in optogenetic functional magnetic resonance imaging and illustrated one approach to formulating hypotheses regarding latent subtype-specific circuit mechanisms and testing them in animal models. RESULTS Correlations between connectivity features and clinical symptoms were robustly significant, and canonical correlation analysis solutions tested repeatedly on held-out data generalized. However, they were sensitive to data quality, preprocessing, and clinical heterogeneity, which can reduce effect sizes. Generalization could be markedly improved by adding L2 regularization, which decreased estimator variance, increased canonical correlations in left-out data, and stabilized feature selection. These improvements were useful for identifying candidate circuits for optogenetic interrogation in animal models. CONCLUSIONS Multiview, latent-variable approaches such as canonical correlation analysis offer a conceptually useful framework for discovering stable patient subtypes by synthesizing multiple clinical and functional measures. Optogenetic functional magnetic resonance imaging holds promise for testing hypotheses regarding latent, subtype-specific mechanisms driving depressive symptoms and behaviors.
Collapse
Affiliation(s)
- Logan Grosenick
- Feil Family Brain and Mind Research Institute and Department of Psychiatry, Weill Cornell Medicine, New York, New York; Department of Statistics, Columbia University, New York, New York; Simons Foundation, New York, New York
| | - Tracey C Shi
- Feil Family Brain and Mind Research Institute and Department of Psychiatry, Weill Cornell Medicine, New York, New York
| | - Faith M Gunning
- Feil Family Brain and Mind Research Institute and Department of Psychiatry, Weill Cornell Medicine, New York, New York
| | - Marc J Dubin
- Feil Family Brain and Mind Research Institute and Department of Psychiatry, Weill Cornell Medicine, New York, New York
| | - Jonathan Downar
- Department of Psychiatry, Toronto Western Hospital, Toronto, Ontario, Canada
| | - Conor Liston
- Feil Family Brain and Mind Research Institute and Department of Psychiatry, Weill Cornell Medicine, New York, New York.
| |
Collapse
|
70
|
Song SY, Li YH, Bao CY, Li Y, Yin PC, Hong J, Li WL, Shi Y, Zhang LC. Stereotaxic Coordinates and Morphological Characterization of a Unique Nucleus (CSF-Contacting Nucleus) in Rat. Front Neuroanat 2019; 13:47. [PMID: 31143102 PMCID: PMC6520827 DOI: 10.3389/fnana.2019.00047] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2019] [Accepted: 04/16/2019] [Indexed: 12/16/2022] Open
Abstract
A unique nucleus, the cerebrospinal fluid (CSF)-contacting nucleus, has recently been recognized in the brain parenchyma. The outstanding feature of this nucleus is that the neural somas are located in the parenchyma, but their processes stretch into the CSF, implying that it may be a key structure bridging the nervous and body fluids-regulating systems and may play a pivotal role in modulating physiological activities. However, the true biological significance of this nucleus needs to be uncovered. The morphology of a nucleus is one of the most important parameters for neuroscience studies. For this reason, a common experimental animal, Sprague-Dawley (SD) rats, was chosen. The position, adjacent structures, neuronal distribution, size, three-dimensional reconstruction, and core coordinates of the CSF-contacting nucleus in SD rats of different weights (90–400 g) were illustrated for the first time. Furthermore, the formulas for calculating the core coordinates of the CSF-contacting nucleus in rats of different weights were revealed. Finally, the possible biological functions uncovered by past research are reviewed in this paper. This study provides an indispensable methodology and a significant reference for researchers interested in this unique nucleus.
Collapse
Affiliation(s)
- Si-Yuan Song
- Jiangsu Province Key Laboratory of Anesthesiology, Xuzhou Medical University, Xuzhou, China
| | - Yue-Hao Li
- Jiangsu Province Key Laboratory of Anesthesiology, Xuzhou Medical University, Xuzhou, China
| | - Cheng-Yi Bao
- Jiangsu Province Key Laboratory of Anesthesiology, Xuzhou Medical University, Xuzhou, China
| | - Ying Li
- Jiangsu Province Key Laboratory of Anesthesiology, Xuzhou Medical University, Xuzhou, China
| | - Peng-Cheng Yin
- Jiangsu Province Key Laboratory of Anesthesiology, Xuzhou Medical University, Xuzhou, China
| | - Jia Hong
- Jiangsu Province Key Laboratory of Anesthesiology, Xuzhou Medical University, Xuzhou, China
| | - Wan-Lin Li
- Jiangsu Province Key Laboratory of Anesthesiology, Xuzhou Medical University, Xuzhou, China
| | - Yuan Shi
- Jiangsu Province Key Laboratory of Anesthesiology, Xuzhou Medical University, Xuzhou, China
| | - Li-Cai Zhang
- Jiangsu Province Key Laboratory of Anesthesiology, Xuzhou Medical University, Xuzhou, China
| |
Collapse
|