51
|
Rueda AD, Salvador-Martínez I, Sospedra-Arrufat I, Alcaina-Caro A, Fernández-Miñán A, Burgos-Ruiz AM, Cases I, Mohedano A, Tena JJ, Heyn H, Lopez-Rios J, Nusspaumer G. The cellular landscape of the endochondral bone during the transition to extrauterine life. Immunol Cell Biol 2024; 102:131-148. [PMID: 38184783 DOI: 10.1111/imcb.12718] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2023] [Revised: 12/09/2023] [Accepted: 12/12/2023] [Indexed: 01/08/2024]
Abstract
The cellular complexity of the endochondral bone underlies its essential and pleiotropic roles during organismal life. While the adult bone has received significant attention, we still lack a deep understanding of the perinatal bone cellulome. Here, we have profiled the full composition of the murine endochondral bone at the single-cell level during the transition from fetal to newborn life and in comparison with the adult tissue, with particular emphasis on the mesenchymal compartment. The perinatal bone contains different fibroblastic clusters with blastema-like characteristics in organizing and supporting skeletogenesis, angiogenesis and hematopoiesis. Our data also suggest dynamic inter- and intra-compartment interactions, as well as a bone marrow milieu that seems prone to anti-inflammation, which we hypothesize is necessary to ensure the proper program of lymphopoiesis and the establishment of central and peripheral tolerance in early life. Our study provides an integrative roadmap for the future design of genetic and cellular functional assays to validate cellular interactions and lineage relationships within the perinatal bone.
Collapse
Affiliation(s)
- Alejandro Díaz Rueda
- Centro Andaluz de Biología del Desarrollo (CABD), CSIC-Universidad Pablo de Olavide-Junta de Andalucía, Seville, Spain
| | - Irepan Salvador-Martínez
- CNAG-CRG, Centre for Genomic Regulation (CRG), Barcelona Institute of Science and Technology (BIST), Barcelona, Spain
| | - Ismael Sospedra-Arrufat
- Centro Andaluz de Biología del Desarrollo (CABD), CSIC-Universidad Pablo de Olavide-Junta de Andalucía, Seville, Spain
| | - Ana Alcaina-Caro
- Centro Andaluz de Biología del Desarrollo (CABD), CSIC-Universidad Pablo de Olavide-Junta de Andalucía, Seville, Spain
| | - Ana Fernández-Miñán
- Centro Andaluz de Biología del Desarrollo (CABD), CSIC-Universidad Pablo de Olavide-Junta de Andalucía, Seville, Spain
| | - Ana M Burgos-Ruiz
- Centro Andaluz de Biología del Desarrollo (CABD), CSIC-Universidad Pablo de Olavide-Junta de Andalucía, Seville, Spain
| | - Ildefonso Cases
- Centro Andaluz de Biología del Desarrollo (CABD), CSIC-Universidad Pablo de Olavide-Junta de Andalucía, Seville, Spain
| | - Alberto Mohedano
- Intensive Care Unit, Severo Ochoa University Hospital Leganés, Madrid, Spain
| | - Juan J Tena
- Centro Andaluz de Biología del Desarrollo (CABD), CSIC-Universidad Pablo de Olavide-Junta de Andalucía, Seville, Spain
| | - Holger Heyn
- CNAG-CRG, Centre for Genomic Regulation (CRG), Barcelona Institute of Science and Technology (BIST), Barcelona, Spain
| | - Javier Lopez-Rios
- Centro Andaluz de Biología del Desarrollo (CABD), CSIC-Universidad Pablo de Olavide-Junta de Andalucía, Seville, Spain
- Universidad Loyola Andalucía, School of Health Sciences, Dos Hermanas, Seville, Spain
| | - Gretel Nusspaumer
- Centro Andaluz de Biología del Desarrollo (CABD), CSIC-Universidad Pablo de Olavide-Junta de Andalucía, Seville, Spain
| |
Collapse
|
52
|
He X, Cui Y, Li T, Luo L, Zeng Z, Ma Y, Chen Y. PU.1 alleviates the inhibitory effects of cigarette smoke on endothelial progenitor cell function and lung-homing through Wnt/β-catenin and CXCL12/CXCR4 pathways. Tob Induc Dis 2024; 22:TID-22-27. [PMID: 38274000 PMCID: PMC10809061 DOI: 10.18332/tid/174661] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2022] [Revised: 02/18/2023] [Accepted: 10/30/2023] [Indexed: 01/27/2024] Open
Abstract
INTRODUCTION Endothelial progenitor cells (EPCs) dysfunction is involved in the pathogenesis of chronic obstructive pulmonary disease (COPD). The transcription factor PU.1 is essential for the maintenance of stem/progenitor cell homeostasis. However, the role of PU.1 in COPD and its effects on EPC function and lung-homing, remain unclear. This study aimed to explore the protective activity of PU.1 and the underlying mechanisms in a cigarette smoke extract (CSE)-induced emphysema mouse model. METHODS C57BL/6 mice were treated with CSE to establish a murine emphysema model and injected with overexpressed PU.1 or negative control adeno-associated virus. Morphometry of lung slides, lung function, and apoptosis of lung tissues were evaluated. Immunofluorescence co-localization was used to analyze EPCs homing into the lung. Flow cytometry was performed to detect EPC count in lung tissues and bone marrow (BM). The angiogenic ability of BM-derived EPCs cultured in vitro was examined by tube formation assay. We determined the expression levels of PU.1, β-catenin, C-X-C motif ligand 12 (CXCL12), C-X-C motif receptor 4 (CXCR4), stem cell antigen-1 (Sca-1), and stemness genes. RESULTS CSE exposure significantly reduced the expression of PU.1 in mouse lung tissues, BM, and BM-derived EPCs. PU.1 overexpression attenuated CSE-induced emphysematous changes, lung function decline, and apoptosis. In emphysematous mice, PU.1 overexpression markedly reversed the decreased proportion of EPCs in BM and promoted the lung-homing of EPCs. The impaired angiogenic ability of BM-derived EPCs induced by CSE could be restored by the overexpression of PU.1. In addition, PU.1 upregulation evidently reversed the decreased expression of β-catenin, CXCL12, CXCR4, Scal-1, and stemness genes in mouse lung tissues, BM, and BM-derived EPCs after CSE exposure. CONCLUSIONS PU.1 alleviates the inhibitory effects of CSE on EPC function and lung-homing via activating the canonical Wnt/β-catenin pathway and CXCL12/CXCR4 axis. While further research is needed, our research may indicate a potential therapeutic target for COPD patients.
Collapse
Affiliation(s)
- Xue He
- Department of Thoracic Surgery, The Second Xiangya Hospital, Central South University, Changsha, China
- Department of Pulmonary and Critical Care Medicine, The Second Xiangya Hospital, Central South University, Changsha, China
- Research Unit of Respiratory Disease, Central South University, Changsha, China
- Diagnosis and Treatment Center of Respiratory Disease, Central South University, Changsha, China
| | - Yanan Cui
- Department of Pulmonary and Critical Care Medicine, The Second Xiangya Hospital, Central South University, Changsha, China
- Research Unit of Respiratory Disease, Central South University, Changsha, China
- Diagnosis and Treatment Center of Respiratory Disease, Central South University, Changsha, China
- Department of Pulmonary and Critical Care Medicine, Center of Respiratory Medicine, China-Japan Friendship Hospital, Beijing, China
| | - Tiao Li
- Department of Pulmonary and Critical Care Medicine, The Second Xiangya Hospital, Central South University, Changsha, China
- Research Unit of Respiratory Disease, Central South University, Changsha, China
- Diagnosis and Treatment Center of Respiratory Disease, Central South University, Changsha, China
| | - Lijuan Luo
- Department of Pulmonary and Critical Care Medicine, The Second Xiangya Hospital, Central South University, Changsha, China
- Research Unit of Respiratory Disease, Central South University, Changsha, China
- Diagnosis and Treatment Center of Respiratory Disease, Central South University, Changsha, China
| | - Zihang Zeng
- Department of Pulmonary and Critical Care Medicine, The Second Xiangya Hospital, Central South University, Changsha, China
- Research Unit of Respiratory Disease, Central South University, Changsha, China
- Diagnosis and Treatment Center of Respiratory Disease, Central South University, Changsha, China
| | - Yiming Ma
- Department of Pulmonary and Critical Care Medicine, The Second Xiangya Hospital, Central South University, Changsha, China
- Research Unit of Respiratory Disease, Central South University, Changsha, China
- Diagnosis and Treatment Center of Respiratory Disease, Central South University, Changsha, China
| | - Yan Chen
- Department of Pulmonary and Critical Care Medicine, The Second Xiangya Hospital, Central South University, Changsha, China
- Research Unit of Respiratory Disease, Central South University, Changsha, China
- Diagnosis and Treatment Center of Respiratory Disease, Central South University, Changsha, China
| |
Collapse
|
53
|
Huang F, Wei G, Wang H, Zhang Y, Lan W, Xie Y, Wu G. Fibroblasts inhibit osteogenesis by regulating nuclear-cytoplasmic shuttling of YAP in mesenchymal stem cells and secreting DKK1. Biol Res 2024; 57:4. [PMID: 38245803 PMCID: PMC10799393 DOI: 10.1186/s40659-023-00481-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2023] [Accepted: 12/04/2023] [Indexed: 01/22/2024] Open
Abstract
BACKGROUND Fibrous scars frequently form at the sites of bone nonunion when attempts to repair bone fractures have failed. However, the detailed mechanism by which fibroblasts, which are the main components of fibrous scars, impede osteogenesis remains largely unknown. RESULTS In this study, we found that fibroblasts compete with osteogenesis in both human bone nonunion tissues and BMP2-induced ectopic osteogenesis in a mouse model. Fibroblasts could inhibit the osteoblastic differentiation of mesenchymal stem cells (MSCs) via direct and indirect cell competition. During this process, fibroblasts modulated the nuclear-cytoplasmic shuttling of YAP in MSCs. Knocking down YAP could inhibit osteoblast differentiation of MSCs, while overexpression of nuclear-localized YAP-5SA could reverse the inhibition of osteoblast differentiation of MSCs caused by fibroblasts. Furthermore, fibroblasts secreted DKK1, which further inhibited the formation of calcium nodules during the late stage of osteogenesis but did not affect the early stage of osteogenesis. Thus, fibroblasts could inhibit osteogenesis by regulating YAP localization in MSCs and secreting DKK1. CONCLUSIONS Our research revealed that fibroblasts could modulate the nuclear-cytoplasmic shuttling of YAP in MSCs, thereby inhibiting their osteoblast differentiation. Fibroblasts could also secrete DKK1, which inhibited calcium nodule formation at the late stage of osteogenesis.
Collapse
Affiliation(s)
- Fei Huang
- Central Laboratory, First Affiliated Hospital, Fujian Medical University, Fuzhou, 350005, Fujian, China
| | - Guozhen Wei
- Department of Orthopaedics, The First Affiliated Hospital, Fujian Medical University, No. 20, Chazhong Road, Taijiang District, Fuzhou, 350005, Fujian, China
- Department of Orthopaedics, Binhai Campus of the First Affiliated Hospital, National Regional Medical Center, Fujian Medical University, Fuzhou, 350212, Fujian, China
| | - Hai Wang
- Department of Orthopaedics, The First Affiliated Hospital, Fujian Medical University, No. 20, Chazhong Road, Taijiang District, Fuzhou, 350005, Fujian, China
- Department of Orthopaedics, Binhai Campus of the First Affiliated Hospital, National Regional Medical Center, Fujian Medical University, Fuzhou, 350212, Fujian, China
| | - Ying Zhang
- Central Laboratory, First Affiliated Hospital, Fujian Medical University, Fuzhou, 350005, Fujian, China
| | - Wenbin Lan
- Department of Orthopaedics, The First Affiliated Hospital, Fujian Medical University, No. 20, Chazhong Road, Taijiang District, Fuzhou, 350005, Fujian, China
- Department of Orthopaedics, Binhai Campus of the First Affiliated Hospital, National Regional Medical Center, Fujian Medical University, Fuzhou, 350212, Fujian, China
| | - Yun Xie
- Department of Orthopaedics, The First Affiliated Hospital, Fujian Medical University, No. 20, Chazhong Road, Taijiang District, Fuzhou, 350005, Fujian, China.
- Department of Orthopaedics, Binhai Campus of the First Affiliated Hospital, National Regional Medical Center, Fujian Medical University, Fuzhou, 350212, Fujian, China.
| | - Gui Wu
- Department of Orthopaedics, The First Affiliated Hospital, Fujian Medical University, No. 20, Chazhong Road, Taijiang District, Fuzhou, 350005, Fujian, China.
- Department of Orthopaedics, Binhai Campus of the First Affiliated Hospital, National Regional Medical Center, Fujian Medical University, Fuzhou, 350212, Fujian, China.
| |
Collapse
|
54
|
Ko FC, Xie R, Willis B, Herdman ZG, Dulion BA, Lee H, Oh CD, Chen D, Sumner DR. Cells transiently expressing periostin are required for intramedullary intramembranous bone regeneration. Bone 2024; 178:116934. [PMID: 37839663 PMCID: PMC10841632 DOI: 10.1016/j.bone.2023.116934] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/10/2023] [Revised: 09/29/2023] [Accepted: 10/10/2023] [Indexed: 10/17/2023]
Abstract
Intramembranous bone regeneration plays an important role in fixation of intramedullary implants used in joint replacement and dental implants used in tooth replacement. Despite widespread recognition of the importance of intramembranous bone regeneration in these clinical procedures, the underlying mechanisms have not been well explored. A previous study that examined transcriptomic profiles of regenerating bone from the marrow space showed that increased periostin gene expression preceded increases in several osteogenic genes. We therefore sought to determine the role of cells transiently expressing periostin in intramedullary intramembranous bone regeneration. We used a genetic mouse model that allows tamoxifen-inducible fluorescent labeling of periostin expressing cells. These mice underwent ablation of the bone marrow cavity through surgical disruption, a well-established intramembranous bone regeneration model. We found that in intact bones, fluorescently labeled cells were largely restricted to the periosteal surface of cortical bone and were absent in bone marrow. However, following surgical disruption of the bone marrow cavity, cells transiently expressing periostin were found within the regenerating tissue of the bone marrow compartment even though the cortical bone remained intact. The source of these cells is likely heterogenous, including cells occupying the periosteal surface as well as pericytes and endothelial cells within the marrow cavity. We also found that diphtheria toxin-mediated depletion of cells transiently expressing periostin at the time of surgery impaired intramembranous bone regeneration in mice. These data suggest a critical role of periostin expressing cells in intramedullary intramembranous bone regeneration and may lead to novel therapeutic interventions to accelerate or enhance implant fixation.
Collapse
Affiliation(s)
- Frank C Ko
- Department of Anatomy & Cell Biology, Rush University Medical Center, Chicago, IL, 60612, USA; Department of Orthopedic Surgery, Rush University Medical Center, Chicago, IL 60612, USA.
| | - Rong Xie
- Department of Orthopedic Surgery, Rush University Medical Center, Chicago, IL 60612, USA
| | - Brandon Willis
- UC Davis Mouse Biology Program, University of California, Davis, Davis, CA 95616, USA
| | - Zoe G Herdman
- Department of Anatomy & Cell Biology, Rush University Medical Center, Chicago, IL, 60612, USA
| | - Bryan A Dulion
- Department of Anatomy & Cell Biology, Rush University Medical Center, Chicago, IL, 60612, USA
| | - Hoomin Lee
- Department of Anatomy & Cell Biology, Rush University Medical Center, Chicago, IL, 60612, USA
| | - Chun-do Oh
- Department of Orthopedic Surgery, Rush University Medical Center, Chicago, IL 60612, USA
| | - Di Chen
- Research Center for Computer-aided Drug Discovery, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, China
| | - D Rick Sumner
- Department of Anatomy & Cell Biology, Rush University Medical Center, Chicago, IL, 60612, USA; Department of Orthopedic Surgery, Rush University Medical Center, Chicago, IL 60612, USA
| |
Collapse
|
55
|
Xie R, Pal V, Yu Y, Lu X, Gao M, Liang S, Huang M, Peng W, Ozbolat IT. A comprehensive review on 3D tissue models: Biofabrication technologies and preclinical applications. Biomaterials 2024; 304:122408. [PMID: 38041911 PMCID: PMC10843844 DOI: 10.1016/j.biomaterials.2023.122408] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2023] [Revised: 11/09/2023] [Accepted: 11/22/2023] [Indexed: 12/04/2023]
Abstract
The limitations of traditional two-dimensional (2D) cultures and animal testing, when it comes to precisely foreseeing the toxicity and clinical effectiveness of potential drug candidates, have resulted in a notable increase in the rate of failure during the process of drug discovery and development. Three-dimensional (3D) in-vitro models have arisen as substitute platforms with the capacity to accurately depict in-vivo conditions and increasing the predictivity of clinical effects and toxicity of drug candidates. It has been found that 3D models can accurately represent complex tissue structure of human body and can be used for a wide range of disease modeling purposes. Recently, substantial progress in biomedicine, materials and engineering have been made to fabricate various 3D in-vitro models, which have been exhibited better disease progression predictivity and drug effects than convention models, suggesting a promising direction in pharmaceutics. This comprehensive review highlights the recent developments in 3D in-vitro tissue models for preclinical applications including drug screening and disease modeling targeting multiple organs and tissues, like liver, bone, gastrointestinal tract, kidney, heart, brain, and cartilage. We discuss current strategies for fabricating 3D models for specific organs with their strengths and pitfalls. We expand future considerations for establishing a physiologically-relevant microenvironment for growing 3D models and also provide readers with a perspective on intellectual property, industry, and regulatory landscape.
Collapse
Affiliation(s)
- Renjian Xie
- Key Laboratory of Biomaterials and Biofabrication for Tissue Engineering in Jiangxi Province, Gannan Medical University, Ganzhou, JX, 341000, China; Key Laboratory of Prevention and Treatment of Cardiovascular and Cerebrovascular Diseases, Ministry of Education, Gannan Medical University, Ganzhou, JX, China
| | - Vaibhav Pal
- Department of Chemistry, Pennsylvania State University, University Park, PA, USA; The Huck Institutes of the Life Sciences, Pennsylvania State University, University Park, PA, USA
| | - Yanrong Yu
- School of Pharmaceutics, Nanchang University, Nanchang, JX, 330006, China
| | - Xiaolu Lu
- Key Laboratory of Biomaterials and Biofabrication for Tissue Engineering in Jiangxi Province, Gannan Medical University, Ganzhou, JX, 341000, China; Key Laboratory of Prevention and Treatment of Cardiovascular and Cerebrovascular Diseases, Ministry of Education, Gannan Medical University, Ganzhou, JX, China
| | - Mengwei Gao
- School of Pharmaceutics, Nanchang University, Nanchang, JX, 330006, China
| | - Shijie Liang
- School of Pharmaceutics, Nanchang University, Nanchang, JX, 330006, China
| | - Miao Huang
- Key Laboratory of Biomaterials and Biofabrication for Tissue Engineering in Jiangxi Province, Gannan Medical University, Ganzhou, JX, 341000, China; Key Laboratory of Prevention and Treatment of Cardiovascular and Cerebrovascular Diseases, Ministry of Education, Gannan Medical University, Ganzhou, JX, China
| | - Weijie Peng
- Key Laboratory of Biomaterials and Biofabrication for Tissue Engineering in Jiangxi Province, Gannan Medical University, Ganzhou, JX, 341000, China; Key Laboratory of Prevention and Treatment of Cardiovascular and Cerebrovascular Diseases, Ministry of Education, Gannan Medical University, Ganzhou, JX, China; School of Pharmaceutics, Nanchang University, Nanchang, JX, 330006, China.
| | - Ibrahim T Ozbolat
- The Huck Institutes of the Life Sciences, Pennsylvania State University, University Park, PA, USA; Engineering Science and Mechanics Department, Penn State University, University Park, PA, USA; Department of Biomedical Engineering, Pennsylvania State University, University Park, PA, USA; Materials Research Institute, Pennsylvania State University, University Park, PA, USA; Department of Neurosurgery, Pennsylvania State College of Medicine, Hershey, PA, USA; Penn State Cancer Institute, Penn State University, Hershey, PA, 17033, USA; Department of Medical Oncology, Cukurova University, Adana, 01130, Turkey; Biotechnology Research and Application Center, Cukurova University, Adana, 01130, Turkey.
| |
Collapse
|
56
|
Qiu M, Tulufu N, Tang G, Ye W, Qi J, Deng L, Li C. Black Phosphorus Accelerates Bone Regeneration Based on Immunoregulation. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2304824. [PMID: 37953457 PMCID: PMC10767454 DOI: 10.1002/advs.202304824] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/16/2023] [Revised: 09/25/2023] [Indexed: 11/14/2023]
Abstract
A fundamental understanding of inflammation and tissue healing suggests that the precise regulation of the inflammatory phase, both in terms of location and timing, is crucial for bone regeneration. However, achieving the activation of early inflammation without causing chronic inflammation while facilitating quick inflammation regression to promote bone regeneration continues to pose challenges. This study reveals that black phosphorus (BP) accelerates bone regeneration by building an osteogenic immunological microenvironment. BP amplifies the acute pro-inflammatory response and promotes the secretion of anti-inflammatory factors to accelerate inflammation regression and tissue regeneration. Mechanistically, BP creates an osteoimmune-friendly microenvironment by stimulating macrophages to express interleukin 33 (IL-33), amplifying the inflammatory response at an early stage, and promoting the regression of inflammation. In addition, BP-mediated IL-33 expression directly promotes osteogenic differentiation of bone marrow mesenchymal stem cells (BMSCs), which further facilitates bone repair. To the knowledge, this is the first study to reveal the immunomodulatory potential of BP in bone regeneration through the regulation of both early-stage inflammatory responses and later-stage inflammation resolution, along with the associated molecular mechanisms. This discovery serves as a foundation for the clinical use of BP and is an efficient approach for managing the immune microenvironment during bone regeneration.
Collapse
Affiliation(s)
- Minglong Qiu
- Department of OrthopaedicsShanghai Key Laboratory for Prevention and Treatment of Bone and Joint DiseasesShanghai Institute of Traumatology and OrthopaedicsRuijin HospitalShanghai Jiao Tong University School of Medicine197 Ruijin 2nd RoadShanghai200025P. R. China
| | - Nijiati Tulufu
- Department of OrthopaedicsShanghai Key Laboratory for Prevention and Treatment of Bone and Joint DiseasesShanghai Institute of Traumatology and OrthopaedicsRuijin HospitalShanghai Jiao Tong University School of Medicine197 Ruijin 2nd RoadShanghai200025P. R. China
| | - Guoqing Tang
- Kunshan Hospital of Traditional Chinese MedicineAffiliated Hospital of Yangzhou University388 Zuchongzhi RoadKunshan CityJiangsu Province215300P. R. China
| | - Wenkai Ye
- Department of OrthopaedicsShanghai Key Laboratory for Prevention and Treatment of Bone and Joint DiseasesShanghai Institute of Traumatology and OrthopaedicsRuijin HospitalShanghai Jiao Tong University School of Medicine197 Ruijin 2nd RoadShanghai200025P. R. China
| | - Jin Qi
- Department of OrthopaedicsShanghai Key Laboratory for Prevention and Treatment of Bone and Joint DiseasesShanghai Institute of Traumatology and OrthopaedicsRuijin HospitalShanghai Jiao Tong University School of Medicine197 Ruijin 2nd RoadShanghai200025P. R. China
| | - Lianfu Deng
- Department of OrthopaedicsShanghai Key Laboratory for Prevention and Treatment of Bone and Joint DiseasesShanghai Institute of Traumatology and OrthopaedicsRuijin HospitalShanghai Jiao Tong University School of Medicine197 Ruijin 2nd RoadShanghai200025P. R. China
| | - Changwei Li
- Department of OrthopaedicsShanghai Key Laboratory for Prevention and Treatment of Bone and Joint DiseasesShanghai Institute of Traumatology and OrthopaedicsRuijin HospitalShanghai Jiao Tong University School of Medicine197 Ruijin 2nd RoadShanghai200025P. R. China
| |
Collapse
|
57
|
Li J, Liu B, Wu H, Zhang S, Liang Z, Guo S, Jiang H, Song Y, Lei X, Gao Y, Cheng P, Li D, Wang J, Liu Y, Wang D, Zhan N, Xu J, Wang L, Xiao G, Yang L, Pei G. Sensory nerves directly promote osteoclastogenesis by secreting peptidyl-prolyl cis-trans isomerase D (Cyp40). Bone Res 2023; 11:64. [PMID: 38097598 PMCID: PMC10721806 DOI: 10.1038/s41413-023-00300-w] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2023] [Revised: 09/13/2023] [Accepted: 10/30/2023] [Indexed: 12/17/2023] Open
Abstract
Given afferent functions, sensory nerves have recently been found to exert efferent effects and directly alter organ physiology. Additionally, several studies have highlighted the indirect but crucial role of sensory nerves in the regulation of the physiological function of osteoclasts. Nonetheless, evidence regarding the direct sensory nerve efferent influence on osteoclasts is lacking. In the current study, we found that high levels of efferent signals were transported directly from the sensory nerves into osteoclasts. Furthermore, sensory hypersensitivity significantly increased osteoclastic bone resorption, and sensory neurons (SNs) directly promoted osteoclastogenesis in an in vitro coculture system. Moreover, we screened a novel neuropeptide, Cyp40, using an isobaric tag for relative and absolute quantitation (iTRAQ). We observed that Cyp40 is the efferent signal from sensory nerves, and it plays a critical role in osteoclastogenesis via the aryl hydrocarbon receptor (AhR)-Ras/Raf-p-Erk-NFATc1 pathway. These findings revealed a novel mechanism regarding the influence of sensory nerves on bone regulation, i.e., a direct promoting effect on osteoclastogenesis by the secretion of Cyp40. Therefore, inhibiting Cyp40 could serve as a strategy to improve bone quality in osteoporosis and promote bone repair after bone injury.
Collapse
Affiliation(s)
- Junqin Li
- Southern University of Science and Technology Hospital, No. 6019 Liuxian Street, Xili Avenue, Nanshan District, Shenzhen, 518055, China
- Department of Orthopaedics, Xijing Hospital, Air Force Medical University, Xi'an, 710032, China
| | - Bin Liu
- Department of Orthopedics, General Hospital of Northern Theater Command, No. 83, Wenhua Road, Shenhe District, Shenyang, 110016, China
| | - Hao Wu
- Department of Orthopaedics, Xijing Hospital, Air Force Medical University, Xi'an, 710032, China
- Department of Orthopaedics, Tangdu Hospital, Fourth Military Medical University, 710038, Xi'an, PR China
| | - Shuaishuai Zhang
- Department of Orthopaedics, Xijing Hospital, Air Force Medical University, Xi'an, 710032, China
| | - Zhuowen Liang
- Department of Orthopaedics, Xijing Hospital, Air Force Medical University, Xi'an, 710032, China
| | - Shuo Guo
- Department of Orthopaedics, Xijing Hospital, Air Force Medical University, Xi'an, 710032, China
- Department of Biomedical Engineering, Fourth Military Medical University, 710032, Xi'an, PR China
| | - Huijie Jiang
- Lingtong Rehabilitation and Recuperation Center, Xi'an, 710600, China
| | - Yue Song
- Department of Orthopaedics, Xijing Hospital, Air Force Medical University, Xi'an, 710032, China
- Department of Orthopedics, The Fourth Medical Center, Chinese PLA General Hospital, 100048, Beijing, PR China
| | - Xing Lei
- Department of Orthopedics, Linyi People's Hospital, LinYi, 276000, China
| | - Yi Gao
- Southern University of Science and Technology Hospital, No. 6019 Liuxian Street, Xili Avenue, Nanshan District, Shenzhen, 518055, China
| | - Pengzhen Cheng
- Department of Orthopaedics, Xijing Hospital, Air Force Medical University, Xi'an, 710032, China
| | - Donglin Li
- Department of Orthopaedics, Xijing Hospital, Air Force Medical University, Xi'an, 710032, China
| | - Jimeng Wang
- Department of Orthopedics, 81 Army Hospital of the People's Liberation Army, Zhangjiakou, 075000, China
| | - Yang Liu
- Department of Anaesthesiology and Perioperative Medicine, Xijing Hospital, Fourth Military Medical University, Xi'an, 710032, China
| | - Di Wang
- Department of Orthopaedics, Xijing Hospital, Air Force Medical University, Xi'an, 710032, China
| | - Nazhi Zhan
- School of Medicine, Southern University of Science and Technology, Shenzhen, 518055, China
| | - Jing Xu
- Southern University of Science and Technology Hospital, No. 6019 Liuxian Street, Xili Avenue, Nanshan District, Shenzhen, 518055, China
| | - Lin Wang
- Southern University of Science and Technology Hospital, No. 6019 Liuxian Street, Xili Avenue, Nanshan District, Shenzhen, 518055, China
| | - Guozhi Xiao
- School of Medicine, Southern University of Science and Technology, Shenzhen, 518055, China
| | - Liu Yang
- Department of Orthopaedics, Xijing Hospital, Air Force Medical University, Xi'an, 710032, China.
| | - GuoXian Pei
- Southern University of Science and Technology Hospital, No. 6019 Liuxian Street, Xili Avenue, Nanshan District, Shenzhen, 518055, China.
- Department of Orthopaedics, Xijing Hospital, Air Force Medical University, Xi'an, 710032, China.
- School of Medicine, Southern University of Science and Technology, Shenzhen, 518055, China.
| |
Collapse
|
58
|
Yao L, Lu J, Zhong L, Wei Y, Gui T, Wang L, Ahn J, Boerckel JD, Rux D, Mundy C, Qin L, Pacifici M. Activin A marks a novel progenitor cell population during fracture healing and reveals a therapeutic strategy. eLife 2023; 12:e89822. [PMID: 38079220 PMCID: PMC10783872 DOI: 10.7554/elife.89822] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2023] [Accepted: 12/08/2023] [Indexed: 12/18/2023] Open
Abstract
Insufficient bone fracture repair represents a major clinical and societal burden and novel strategies are needed to address it. Our data reveal that the transforming growth factor-β superfamily member Activin A became very abundant during mouse and human bone fracture healing but was minimally detectable in intact bones. Single-cell RNA-sequencing revealed that the Activin A-encoding gene Inhba was highly expressed in a unique, highly proliferative progenitor cell (PPC) population with a myofibroblast character that quickly emerged after fracture and represented the center of a developmental trajectory bifurcation producing cartilage and bone cells within callus. Systemic administration of neutralizing Activin A antibody inhibited bone healing. In contrast, a single recombinant Activin A implantation at fracture site in young and aged mice boosted: PPC numbers; phosphorylated SMAD2 signaling levels; and bone repair and mechanical properties in endochondral and intramembranous healing models. Activin A directly stimulated myofibroblastic differentiation, chondrogenesis and osteogenesis in periosteal mesenchymal progenitor culture. Our data identify a distinct population of Activin A-expressing PPCs central to fracture healing and establish Activin A as a potential new therapeutic tool.
Collapse
Affiliation(s)
- Lutian Yao
- Translational Research Program in Pediatric Orthopaedics, Division of Orthopaedic Surgery, Children’s Hospital of PhiladelphiaPhiladelphiaUnited States
- Department of Orthopaedics, The First Hospital of China Medical UniversityShenyangChina
| | - Jiawei Lu
- Department of Orthopaedic Surgery, Perelman School of Medicine, University of PennsylvaniaPhiladelphiaUnited States
| | - Leilei Zhong
- Department of Orthopaedic Surgery, Perelman School of Medicine, University of PennsylvaniaPhiladelphiaUnited States
| | - Yulong Wei
- Department of Orthopaedic Surgery, Perelman School of Medicine, University of PennsylvaniaPhiladelphiaUnited States
| | - Tao Gui
- Department of Orthopaedic Surgery, Perelman School of Medicine, University of PennsylvaniaPhiladelphiaUnited States
| | - Luqiang Wang
- Department of Orthopaedic Surgery, Perelman School of Medicine, University of PennsylvaniaPhiladelphiaUnited States
| | - Jaimo Ahn
- Department of Orthopaedic Surgery, Michigan Medicine, University of MichiganAnn ArborUnited States
| | - Joel D Boerckel
- Department of Orthopaedic Surgery, Perelman School of Medicine, University of PennsylvaniaPhiladelphiaUnited States
| | - Danielle Rux
- Translational Research Program in Pediatric Orthopaedics, Division of Orthopaedic Surgery, Children’s Hospital of PhiladelphiaPhiladelphiaUnited States
| | - Christina Mundy
- Translational Research Program in Pediatric Orthopaedics, Division of Orthopaedic Surgery, Children’s Hospital of PhiladelphiaPhiladelphiaUnited States
| | - Ling Qin
- Department of Orthopaedic Surgery, Perelman School of Medicine, University of PennsylvaniaPhiladelphiaUnited States
| | - Maurizio Pacifici
- Translational Research Program in Pediatric Orthopaedics, Division of Orthopaedic Surgery, Children’s Hospital of PhiladelphiaPhiladelphiaUnited States
| |
Collapse
|
59
|
Matsushita Y, Noguchi A, Ono W, Ono N. Multi-omics analysis in developmental bone biology. JAPANESE DENTAL SCIENCE REVIEW 2023; 59:412-420. [PMID: 38022387 PMCID: PMC10665596 DOI: 10.1016/j.jdsr.2023.10.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2023] [Revised: 10/23/2023] [Accepted: 10/31/2023] [Indexed: 12/01/2023] Open
Abstract
Single-cell omics and multi-omics have revolutionized our understanding of molecular and cellular biological processes at a single-cell level. In bone biology, the combination of single-cell RNA-sequencing analyses and in vivo lineage-tracing approaches has successfully identified multi-cellular diversity and dynamics of skeletal cells. This established a new concept that bone growth and regeneration are regulated by concerted actions of multiple types of skeletal stem cells, which reside in spatiotemporally distinct niches. One important subtype is endosteal stem cells that are particularly abundant in young bone marrow. The discovery of this new skeletal stem cell type has been facilitated by single-cell multi-omics, which simultaneously measures gene expression and chromatin accessibility. Using single-cell omics, it is now possible to computationally predict the immediate future state of individual cells and their differentiation potential. In vivo validation using histological approaches is the key to interpret the computational prediction. The emerging spatial omics, such as spatial transcriptomics and epigenomics, have major advantage in retaining the location of individual cells within highly complex tissue architecture. Spatial omics can be integrated with other omics to further obtain in-depth insights. Single-cell multi-omics are now becoming an essential tool to unravel intricate multicellular dynamics and intercellular interactions of skeletal cells.
Collapse
Affiliation(s)
- Yuki Matsushita
- Department of Cell Biology, Nagasaki University Graduate School of Biomedical Sciences, Nagasaki 852-8588, Japan
| | - Azumi Noguchi
- Department of Cell Biology, Nagasaki University Graduate School of Biomedical Sciences, Nagasaki 852-8588, Japan
| | - Wanida Ono
- University of Texas Health Science Center at Houston School of Dentistry, Houston, TX 77054, USA
| | - Noriaki Ono
- University of Texas Health Science Center at Houston School of Dentistry, Houston, TX 77054, USA
| |
Collapse
|
60
|
Guo W, Hoque J, Garcia CJG, Spiller KV, Leinroth AP, Puviindran V, Potnis CK, Gunn KA, Newman H, Ishikawa K, Fujimoto TN, Neill DW, Delahoussaye AM, Williams NT, Kirsch DG, Hilton MJ, Varghese S, Taniguchi CM, Wu C. Radiation-induced bone loss in mice is ameliorated by inhibition of HIF-2α in skeletal progenitor cells. Sci Transl Med 2023; 15:eabo5217. [PMID: 38019933 PMCID: PMC10804914 DOI: 10.1126/scitranslmed.abo5217] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2022] [Accepted: 10/16/2023] [Indexed: 12/01/2023]
Abstract
Radiotherapy remains a common treatment modality for cancer despite skeletal complications. However, there are currently no effective treatments for radiation-induced bone loss, and the consequences of radiotherapy on skeletal progenitor cell (SPC) survival and function remain unclear. After radiation, leptin receptor-expressing cells, which include a population of SPCs, become localized to hypoxic regions of the bone and stabilize the transcription factor hypoxia-inducible factor-2α (HIF-2α), thus suggesting a role for HIF-2α in the skeletal response to radiation. Here, we conditionally knocked out HIF-2α in leptin receptor-expressing cells and their descendants in mice. Radiation therapy in littermate control mice reduced bone mass; however, HIF-2α conditional knockout mice maintained bone mass comparable to nonirradiated control animals. HIF-2α negatively regulated the number of SPCs, bone formation, and bone mineralization. To test whether blocking HIF-2α pharmacologically could reduce bone loss during radiation, we administered a selective HIF-2α inhibitor called PT2399 (a structural analog of which was recently FDA-approved) to wild-type mice before radiation exposure. Pharmacological inhibition of HIF-2α was sufficient to prevent radiation-induced bone loss in a single-limb irradiation mouse model. Given that ~90% of patients who receive a HIF-2α inhibitor develop anemia because of off-target effects, we developed a bone-targeting nanocarrier formulation to deliver the HIF-2α inhibitor to mouse bone, to increase on-target efficacy and reduce off-target toxicities. Nanocarrier-loaded PT2399 prevented radiation-induced bone loss in mice while reducing drug accumulation in the kidney. Targeted inhibition of HIF-2α may represent a therapeutic approach for protecting bone during radiation therapy.
Collapse
Affiliation(s)
- Wendi Guo
- Department of Orthopaedic Surgery, Duke University School of Medicine; Durham, NC 27705, USA
- Department of Pharmacology & Cancer Biology, Duke University School of Medicine; Durham, NC 27705, USA
| | - Jiaul Hoque
- Department of Orthopaedic Surgery, Duke University School of Medicine; Durham, NC 27705, USA
| | - Carolina J. Garcia Garcia
- UTHealth Graduate School of Biomedical Sciences, The University of Texas MD Anderson Cancer Center; Houston, TX 77030, USA
- Department of Experimental Radiation Oncology, The University of Texas MD Anderson Cancer Center; Houston, TX 77030, USA
| | - Kassandra V. Spiller
- Department of Orthopaedic Surgery, Duke University School of Medicine; Durham, NC 27705, USA
- Department of Surgery, Duke University School of Medicine, Durham, NC 27705, USA
| | - Abigail P. Leinroth
- Department of Orthopaedic Surgery, Duke University School of Medicine; Durham, NC 27705, USA
- Regeneron Pharmaceuticals, Tarrytown, NY 10591, USA
| | - Vijitha Puviindran
- Department of Orthopaedic Surgery, Duke University School of Medicine; Durham, NC 27705, USA
| | - Cahil K. Potnis
- Department of Orthopaedic Surgery, Duke University School of Medicine; Durham, NC 27705, USA
| | - Kiana A. Gunn
- Department of Orthopaedic Surgery, Duke University School of Medicine; Durham, NC 27705, USA
- Department of Pharmacology & Cancer Biology, Duke University School of Medicine; Durham, NC 27705, USA
| | - Hunter Newman
- Department of Orthopaedic Surgery, Duke University School of Medicine; Durham, NC 27705, USA
- Department of Mechanical Engineering and Materials Science, Duke University; Durham, NC 27705, USA
| | - Koji Ishikawa
- Department of Orthopaedic Surgery, Duke University School of Medicine; Durham, NC 27705, USA
- Department of Orthopaedic Surgery, Showa University School of Medicine, Tokyo, 142-8666, JP
| | - Tara N. Fujimoto
- Department of Experimental Radiation Oncology, The University of Texas MD Anderson Cancer Center; Houston, TX 77030, USA
| | - Denae W. Neill
- Department of Radiation Physics, The University of Texas MD Anderson Cancer Center; Houston, TX 77030, USA
| | - Abagail M. Delahoussaye
- Department of Experimental Radiation Oncology, The University of Texas MD Anderson Cancer Center; Houston, TX 77030, USA
| | - Nerissa T. Williams
- Department of Radiation Oncology, Duke University School of Medicine; Durham, NC 27705, USA
| | - David G. Kirsch
- Department of Pharmacology & Cancer Biology, Duke University School of Medicine; Durham, NC 27705, USA
- Department of Radiation Oncology, Duke University School of Medicine; Durham, NC 27705, USA
- Department of Biomedical Biophysics, University of Toronto, Toronto, ON, M5S 1A8, CA
- Department of Radiation Oncology, University of Toronto, Toronto, ON, M5T 1O5, CA
- Princess Margarat Cancer Centre, University Health Network, Toronto, ON, M5G 2C1, CA
| | - Matthew J. Hilton
- Department of Orthopaedic Surgery, Duke University School of Medicine; Durham, NC 27705, USA
- Department of Cell Biology, Duke University School of Medicine; Durham, NC 27705, USA
| | - Shyni Varghese
- Department of Orthopaedic Surgery, Duke University School of Medicine; Durham, NC 27705, USA
- Department of Mechanical Engineering and Materials Science, Duke University; Durham, NC 27705, USA
- Department of Biomedical Engineering, Duke University School of Medicine; Durham, NC 27705, USA
| | - Cullen M. Taniguchi
- Department of Experimental Radiation Oncology, The University of Texas MD Anderson Cancer Center; Houston, TX 77030, USA
- Department of GI Radiation Oncology, The University of Texas MD Anderson Cancer Center; Houston, TX 77030, USA
| | - Colleen Wu
- Department of Orthopaedic Surgery, Duke University School of Medicine; Durham, NC 27705, USA
- Department of Pharmacology & Cancer Biology, Duke University School of Medicine; Durham, NC 27705, USA
- Department of Radiation Oncology, University of Toronto, Toronto, ON, M5T 1O5, CA
| |
Collapse
|
61
|
Zhang L, Guan Q, Wang Z, Feng J, Zou J, Gao B. Consequences of Aging on Bone. Aging Dis 2023; 15:2417-2452. [PMID: 38029404 PMCID: PMC11567267 DOI: 10.14336/ad.2023.1115] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2023] [Accepted: 11/16/2023] [Indexed: 12/01/2023] Open
Abstract
With the aging of the global population, the incidence of musculoskeletal diseases has been increasing, seriously affecting people's health. As people age, the microenvironment within skeleton favors bone resorption and inhibits bone formation, accompanied by bone marrow fat accumulation and multiple cellular senescence. Specifically, skeletal stem/stromal cells (SSCs) during aging tend to undergo adipogenesis rather than osteogenesis. Meanwhile, osteoblasts, as well as osteocytes, showed increased apoptosis, decreased quantity, and multiple functional limitations including impaired mechanical sensing, intercellular modulation, and exosome secretion. Also, the bone resorption function of macrophage-lineage cells (including osteoclasts and preosteoclasts) was significantly enhanced, as well as impaired vascularization and innervation. In this study, we systematically reviewed the effect of aging on bone and the within microenvironment (including skeletal cells as well as their intracellular structure variations, vascular structures, innervation, marrow fat distribution, and lymphatic system) caused by aging, and mechanisms of osteoimmune regulation of the bone environment in the aging state, and the causal relationship with multiple musculoskeletal diseases in addition with their potential therapeutic strategy.
Collapse
Affiliation(s)
- Lingli Zhang
- College of Athletic Performance, Shanghai University of Sport, Shanghai, China
| | - Qiao Guan
- School of Exercise and Health, Shanghai University of Sport, Shanghai, China
| | - Zhikun Wang
- School of Exercise and Health, Shanghai University of Sport, Shanghai, China
| | - Jie Feng
- School of Exercise and Health, Shanghai University of Sport, Shanghai, China
| | - Jun Zou
- School of Exercise and Health, Shanghai University of Sport, Shanghai, China
| | - Bo Gao
- Department of Orthopedic Surgery, Xijing Hospital, Air Force Medical University, Xi’an, China
| |
Collapse
|
62
|
Nookaew I, Xiong J, Onal M, Bustamante-Gomez C, Wanchai V, Fu Q, Kim HN, Almeida M, O’Brien CA. A framework for defining mesenchymal cell types associated with murine periosteal and endosteal bone. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.11.17.567528. [PMID: 38014179 PMCID: PMC10680810 DOI: 10.1101/2023.11.17.567528] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/29/2023]
Abstract
Single-cell RNA sequencing has led to numerous novel designations for mesenchymal cell types associated with bone. Consequently, there are now multiple designations for what appear to be the same cell type. In addition, existing datasets contain relatively small numbers of mature osteoblasts and osteocytes and there has been no comparison of periosteal bone cells to those at the endosteum and trabecular bone. The main goals of this study were to increase the amount of single cell RNA sequence data for osteoblasts and osteocytes, to compare cells from the periosteum to those inside bone, and to clarify the major categories of cell types associated with murine bone. To do this, we created an atlas of murine bone-associated cells by harmonizing published datasets with in-house data from cells targeted by Osx1-Cre and Dmp1-Cre driver strains. Cells from periosteal bone were analyzed separately from those isolated from the endosteum and trabecular bone. Over 100,000 mesenchymal cells were mapped to reveal 11 major clusters designated fibro-1, fibro-2, chondrocytes, articular chondrocytes, tenocytes, adipo-CAR, osteo-CAR, pre-osteoblasts, osteoblasts, osteocytes, and osteo-X, the latter defined in part by Postn expression. Osteo-X, osteo-CAR, and pre-osteoblasts were closely associated with osteoblasts at the trabecular bone surface. Wnt16 was expressed in multiple cell types from the periosteum but not in any cells from endocortical or cancellous bone. Fibro-2 cells, which express markers of skeletal stem cells, localized to the periosteum but not trabecular bone in adult mice. Suppressing bone remodeling eliminated osteoblasts and altered gene expression in pre-osteoblasts but did not change the abundance or location of osteo-X or osteo-CAR cells. These results provide a framework for identifying bone cell types in murine single cell RNA sequencing datasets and suggest that osteoblast progenitors reside near the surface of remodeling bone.
Collapse
Affiliation(s)
- Intawat Nookaew
- Center for Musculoskeletal Disease Research, the University of Arkansas for Medical Sciences, Little Rock, Arkansas, United States of America
- Department of Biomedical Informatics, the University of Arkansas for Medical Sciences, Little Rock, Arkansas, United States of America
| | - Jinhu Xiong
- Center for Musculoskeletal Disease Research, the University of Arkansas for Medical Sciences, Little Rock, Arkansas, United States of America
- Department of Orthopaedic Surgery, the University of Arkansas for Medical Sciences, Little Rock, Arkansas, United States of America
| | - Melda Onal
- Center for Musculoskeletal Disease Research, the University of Arkansas for Medical Sciences, Little Rock, Arkansas, United States of America
- Department of Physiology and Cell Biology, the University of Arkansas for Medical Sciences, Little Rock, Arkansas, United States of America
| | - Cecile Bustamante-Gomez
- Center for Musculoskeletal Disease Research, the University of Arkansas for Medical Sciences, Little Rock, Arkansas, United States of America
- Division of Endocrinology, the University of Arkansas for Medical Sciences, Little Rock, Arkansas, United States of America
| | - Visanu Wanchai
- Department of Biomedical Informatics, the University of Arkansas for Medical Sciences, Little Rock, Arkansas, United States of America
| | - Qiang Fu
- Center for Musculoskeletal Disease Research, the University of Arkansas for Medical Sciences, Little Rock, Arkansas, United States of America
- Division of Endocrinology, the University of Arkansas for Medical Sciences, Little Rock, Arkansas, United States of America
| | - Ha-Neui Kim
- Center for Musculoskeletal Disease Research, the University of Arkansas for Medical Sciences, Little Rock, Arkansas, United States of America
- Division of Endocrinology, the University of Arkansas for Medical Sciences, Little Rock, Arkansas, United States of America
| | - Maria Almeida
- Center for Musculoskeletal Disease Research, the University of Arkansas for Medical Sciences, Little Rock, Arkansas, United States of America
- Department of Orthopaedic Surgery, the University of Arkansas for Medical Sciences, Little Rock, Arkansas, United States of America
- Division of Endocrinology, the University of Arkansas for Medical Sciences, Little Rock, Arkansas, United States of America
| | - Charles A. O’Brien
- Center for Musculoskeletal Disease Research, the University of Arkansas for Medical Sciences, Little Rock, Arkansas, United States of America
- Department of Orthopaedic Surgery, the University of Arkansas for Medical Sciences, Little Rock, Arkansas, United States of America
- Division of Endocrinology, the University of Arkansas for Medical Sciences, Little Rock, Arkansas, United States of America
- Central Arkansas Veterans Healthcare System, Little Rock, Arkansas, United States of America
| |
Collapse
|
63
|
Liu X, Zhang P, Gu Y, Guo Q, Liu Y. Type H vessels: functions in bone development and diseases. Front Cell Dev Biol 2023; 11:1236545. [PMID: 38033859 PMCID: PMC10687371 DOI: 10.3389/fcell.2023.1236545] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2023] [Accepted: 10/30/2023] [Indexed: 12/02/2023] Open
Abstract
Type H vessels are specialized blood vessels found in the bone marrow that are closely associated with osteogenic activity. They are characterized by high expression of endomucin and CD31. Type H vessels form in the cancellous bone area during long bone development to provide adequate nutritional support for cells near the growth plate. They also influence the proliferation and differentiation of osteoprogenitors and osteoclasts in a paracrine manner, thereby creating a suitable microenvironment to facilitate new bone formation. Because of the close relationship between type H vessels and osteogenic activity, it has been found that type H vessels play a role in the physiological and pathological processes of bone diseases such as fracture healing, osteoporosis, osteoarthritis, osteonecrosis, and tumor bone metastasis. Moreover, experimental treatments targeting type H vessels can improve the outcomes of these diseases. Here, we reviewed the molecular mechanisms related to type H vessels and their associated osteogenic activities, which are helpful in further understanding the role of type H vessels in bone metabolism and will provide a theoretical basis and ideas for comprehending bone diseases from the vascular perspective.
Collapse
Affiliation(s)
- Xiaonan Liu
- Department of Orthopedics, Shanghai Sixth People’s Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Department of Colorectal and Anal Surgery, Zhongshan City People’s Hospital, Zhongshan, Guangdong, China
| | - Peilin Zhang
- Department of Orthopedics, Shanghai Sixth People’s Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yuan Gu
- Department of Orthopedics, Shanghai Sixth People’s Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Qiaoyue Guo
- Endocrinology Research Center, Department of Endocrinology, Xiangya Hospital of Central South University, Changsha, Hunan, China
| | - Yonggan Liu
- Department of Colorectal and Anal Surgery, Zhongshan City People’s Hospital, Zhongshan, Guangdong, China
| |
Collapse
|
64
|
Xiao X, Juan C, Drennon T, Uytingco CR, Vishlaghi N, Sokolowskei D, Xu L, Levi B, Sammarco MC, Tower RJ. Spatial transcriptomic interrogation of the murine bone marrow signaling landscape. Bone Res 2023; 11:59. [PMID: 37926705 PMCID: PMC10625929 DOI: 10.1038/s41413-023-00298-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2023] [Revised: 09/19/2023] [Accepted: 09/28/2023] [Indexed: 11/07/2023] Open
Abstract
Self-renewal and differentiation of skeletal stem and progenitor cells (SSPCs) are tightly regulated processes, with SSPC dysregulation leading to progressive bone disease. While the application of single-cell RNA sequencing (scRNAseq) to the bone field has led to major advancements in our understanding of SSPC heterogeneity, stem cells are tightly regulated by their neighboring cells which comprise the bone marrow niche. However, unbiased interrogation of these cells at the transcriptional level within their native niche environment has been challenging. Here, we combined spatial transcriptomics and scRNAseq using a predictive modeling pipeline derived from multiple deconvolution packages in adult mouse femurs to provide an endogenous, in vivo context of SSPCs within the niche. This combined approach localized SSPC subtypes to specific regions of the bone and identified cellular components and signaling networks utilized within the niche. Furthermore, the use of spatial transcriptomics allowed us to identify spatially restricted activation of metabolic and major morphogenetic signaling gradients derived from the vasculature and bone surfaces that establish microdomains within the marrow cavity. Overall, we demonstrate, for the first time, the feasibility of applying spatial transcriptomics to fully mineralized tissue and present a combined spatial and single-cell transcriptomic approach to define the cellular components of the stem cell niche, identify cell‒cell communication, and ultimately gain a comprehensive understanding of local and global SSPC regulatory networks within calcified tissue.
Collapse
Affiliation(s)
- Xue Xiao
- Quantitative Biomedical Research Center, Peter O'Donnell Jr. School of Public Health, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Conan Juan
- Department of Surgery, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Tingsheng Drennon
- Department of Cell Biology & Applications, 10x Genomics, Pleasanton, CA, USA
| | - Cedric R Uytingco
- Department of Cell Biology & Applications, 10x Genomics, Pleasanton, CA, USA
| | - Neda Vishlaghi
- Department of Surgery, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Dimitri Sokolowskei
- Department of Surgery, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Lin Xu
- Quantitative Biomedical Research Center, Peter O'Donnell Jr. School of Public Health, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Benjamin Levi
- Department of Surgery, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Mimi C Sammarco
- Department of Surgery, Tulane School of Medicine, New Orleans, LA, USA
| | - Robert J Tower
- Department of Surgery, University of Texas Southwestern Medical Center, Dallas, TX, USA.
| |
Collapse
|
65
|
Hirakawa H, Gao L, Tavakol DN, Vunjak-Novakovic G, Ding L. Cellular plasticity of the bone marrow niche promotes hematopoietic stem cell regeneration. Nat Genet 2023; 55:1941-1952. [PMID: 37857934 DOI: 10.1038/s41588-023-01528-2] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2022] [Accepted: 09/14/2023] [Indexed: 10/21/2023]
Abstract
Hematopoietic stem cells (HSCs) regenerate after myeloablation, a procedure that adversely disrupts the bone marrow and drives leptin receptor-expressing cells, a key niche component, to differentiate extensively into adipocytes. Regeneration of the bone marrow niche is associated with the resolution of adipocytes, but the mechanisms remain poorly understood. Using Plin1-creER knock-in mice, we followed the fate of adipocytes in the regenerating niche in vivo. We found that bone marrow adipocytes were highly dynamic and dedifferentiated to leptin receptor-expressing cells during regeneration after myeloablation. Bone marrow adipocytes could give rise to osteolineage cells after skeletal injury. The cellular fate of steady-state bone marrow adipocytes was also plastic. Deletion of adipose triglyceride lipase (Atgl) from bone marrow stromal cells, including adipocytes, obstructed adipocyte dedifferentiation and led to severely compromised regeneration of HSCs as well as impaired B lymphopoiesis after myeloablation, but not in the steady state. Thus, the regeneration of HSCs and their niche depends on the cellular plasticity of bone marrow adipocytes.
Collapse
Affiliation(s)
- Hiroyuki Hirakawa
- Columbia Stem Cell Initiative, New York, NY, USA
- Department of Rehabilitation and Regenerative Medicine, Department of Microbiology and Immunology, Columbia University Irving Medical Center, New York, NY, USA
| | - Longfei Gao
- Columbia Stem Cell Initiative, New York, NY, USA
- Department of Rehabilitation and Regenerative Medicine, Department of Microbiology and Immunology, Columbia University Irving Medical Center, New York, NY, USA
| | - Daniel Naveed Tavakol
- Columbia Stem Cell Initiative, New York, NY, USA
- Department of Biomedical Engineering, Columbia University, New York, NY, USA
| | - Gordana Vunjak-Novakovic
- Columbia Stem Cell Initiative, New York, NY, USA
- Department of Biomedical Engineering, Columbia University, New York, NY, USA
- Department of Medicine, Columbia University, New York, NY, USA
| | - Lei Ding
- Columbia Stem Cell Initiative, New York, NY, USA.
- Department of Rehabilitation and Regenerative Medicine, Department of Microbiology and Immunology, Columbia University Irving Medical Center, New York, NY, USA.
| |
Collapse
|
66
|
Li B, Li J, Li B, Ouchi T, Li L, Li Y, Zhao Z. A single-cell transcriptomic atlas characterizes age-related changes of murine cranial stem cell niches. Aging Cell 2023; 22:e13980. [PMID: 37681346 PMCID: PMC10652347 DOI: 10.1111/acel.13980] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2023] [Revised: 08/21/2023] [Accepted: 08/21/2023] [Indexed: 09/09/2023] Open
Abstract
The craniofacial bones provide structural support for the skull and accommodate the vulnerable brain tissue with a protective cavity. The bone tissue undergoes constant turnover, which relies on skeletal stem cells (SSCs) and/or mesenchymal stem cells (MSCs) and their niches. SSCs/MSCs and their perivascular niche within the bone marrow are well characterized in long bones. As for cranial bones, besides bone marrow, the suture mesenchyme has been identified as a unique niche for SSCs/MSCs of craniofacial bones. However, a comprehensive study of the two different cranial stem cell niches at single-cell resolution is still lacking. In addition, during the progression of aging, age-associated changes in cranial stem cell niches and resident cells remain uncovered. In this study, we investigated age-related changes in cranial stem cell niches via single-cell RNA sequencing (scRNA-seq). The transcriptomic profiles and cellular compositions have been delineated, indicating alterations of the cranial bone marrow microenvironment influenced by inflammaging. Moreover, we identified a senescent mesenchymal cell subcluster and several age-related immune cell subclusters by reclustering and pseudotime trajectory analysis, which might be closely linked to inflammaging. Finally, differentially expressed genes (DEGs) and cell-cell communications were analyzed during aging, revealing potential regulatory factors. Overall, this work highlights the age-related changes in cranial stem cell niches, which deepens the current understanding of cranial bone and suture biology and may provide therapeutic targets for antiaging and regenerative medicine.
Collapse
Affiliation(s)
- Bo Li
- State Key Laboratory of Oral Diseases, National Center for Stomatology, National Clinical Research Center for Oral Diseases, Department of Orthodontics, West China Hospital of StomatologySichuan UniversitySichuanChengduChina
| | - Jingya Li
- State Key Laboratory of Oral Diseases, National Center for Stomatology, National Clinical Research Center for Oral Diseases, Department of Head and Neck Oncology, West China Hospital of StomatologySichuan UniversitySichuanChengduChina
| | - Bingzhi Li
- State Key Laboratory of Oral Diseases, National Center for Stomatology, National Clinical Research Center for Oral Diseases, Department of Head and Neck Oncology, West China Hospital of StomatologySichuan UniversitySichuanChengduChina
| | | | - Longjiang Li
- State Key Laboratory of Oral Diseases, National Center for Stomatology, National Clinical Research Center for Oral Diseases, Department of Head and Neck Oncology, West China Hospital of StomatologySichuan UniversitySichuanChengduChina
| | - Yu Li
- State Key Laboratory of Oral Diseases, National Center for Stomatology, National Clinical Research Center for Oral Diseases, Department of Orthodontics, West China Hospital of StomatologySichuan UniversitySichuanChengduChina
| | - Zhihe Zhao
- State Key Laboratory of Oral Diseases, National Center for Stomatology, National Clinical Research Center for Oral Diseases, Department of Orthodontics, West China Hospital of StomatologySichuan UniversitySichuanChengduChina
| |
Collapse
|
67
|
Vimalraj S, Saravanan S. Tooth-derived stem cells integrated biomaterials for bone and dental tissue engineering. Cell Tissue Res 2023; 394:245-255. [PMID: 37548764 DOI: 10.1007/s00441-023-03815-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2023] [Accepted: 07/12/2023] [Indexed: 08/08/2023]
Abstract
Recent years have seen the emergence of tissue engineering strategies as a means to overcome some of the limits of conventional medical treatment. A biomaterial with tailored physio-chemical characteristics is used in this sophisticated method to transport stem cells and growth factors/bioactive substances, or to attract local endogenous cells, enabling new tissue formation. Biomaterials might serve as a biomimetic structure inspired by the natural milieu, assisting the cells in establishing their natural relationships. Such a method would benefit from having ready access to an abundant reservoir of stem cells with strong tissue regeneration capacity, in addition to using biological compatible material to promote new tissue creation. Teeth may have a plethora of self-renewing, multipotent mesenchymal stem cell (MSC) populations. Recent advancements and promising directions for cell transplantation and homing techniques using dental MSCs for tissue regeneration are discussed in this review paper. Overall, this research paints a picture of the present landscape of new approaches to using tooth-derived MSCs in conjunction with biomaterials and bioactive substances for tissue regeneration.
Collapse
Affiliation(s)
- Selvaraj Vimalraj
- Department of Prosthodontics, Saveetha Dental College and Hospital, Saveetha Institute of Medical and Technical Sciences (SIMATS), Saveetha University, Chennai, 600 077, Tamil Nadu, India.
| | - Sekaran Saravanan
- Department of Prosthodontics, Saveetha Dental College and Hospital, Saveetha Institute of Medical and Technical Sciences (SIMATS), Saveetha University, Chennai, 600 077, Tamil Nadu, India
| |
Collapse
|
68
|
Atria PJ, Castillo AB. Skeletal adaptation to mechanical cues during homeostasis and repair: the niche, cells, and molecular signaling. Front Physiol 2023; 14:1233920. [PMID: 37916223 PMCID: PMC10616261 DOI: 10.3389/fphys.2023.1233920] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2023] [Accepted: 10/02/2023] [Indexed: 11/03/2023] Open
Abstract
Bones constantly change and adapt to physical stress throughout a person's life. Mechanical signals are important regulators of bone remodeling and repair by activating skeletal stem and progenitor cells (SSPCs) to proliferate and differentiate into bone-forming osteoblasts using molecular signaling mechanisms not yet fully understood. SSPCs reside in a dynamic specialized microenvironment called the niche, where external signals integrate to influence cell maintenance, behavior and fate determination. The nature of the niche in bone, including its cellular and extracellular makeup and regulatory molecular signals, is not completely understood. The mechanisms by which the niche, with all of its components and complexity, is modulated by mechanical signals during homeostasis and repair are virtually unknown. This review summarizes the current view of the cells and signals involved in mechanical adaptation of bone during homeostasis and repair, with an emphasis on identifying novel targets for the prevention and treatment of age-related bone loss and hard-to-heal fractures.
Collapse
Affiliation(s)
- Pablo J. Atria
- Department of Orthopedic Surgery, New York University Grossman School of Medicine, New York, NY, United States
| | - Alesha B. Castillo
- Department of Orthopedic Surgery, New York University Grossman School of Medicine, New York, NY, United States
- Department of Biomedical Engineering, New York University Tandon School of Engineering, New York, NY, United States
| |
Collapse
|
69
|
Tseng KC, Crump JG. Craniofacial developmental biology in the single-cell era. Development 2023; 150:dev202077. [PMID: 37812056 PMCID: PMC10617621 DOI: 10.1242/dev.202077] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/10/2023]
Abstract
The evolution of a unique craniofacial complex in vertebrates made possible new ways of breathing, eating, communicating and sensing the environment. The head and face develop through interactions of all three germ layers, the endoderm, ectoderm and mesoderm, as well as the so-called fourth germ layer, the cranial neural crest. Over a century of experimental embryology and genetics have revealed an incredible diversity of cell types derived from each germ layer, signaling pathways and genes that coordinate craniofacial development, and how changes to these underlie human disease and vertebrate evolution. Yet for many diseases and congenital anomalies, we have an incomplete picture of the causative genomic changes, in particular how alterations to the non-coding genome might affect craniofacial gene expression. Emerging genomics and single-cell technologies provide an opportunity to obtain a more holistic view of the genes and gene regulatory elements orchestrating craniofacial development across vertebrates. These single-cell studies generate novel hypotheses that can be experimentally validated in vivo. In this Review, we highlight recent advances in single-cell studies of diverse craniofacial structures, as well as potential pitfalls and the need for extensive in vivo validation. We discuss how these studies inform the developmental sources and regulation of head structures, bringing new insights into the etiology of structural birth anomalies that affect the vertebrate head.
Collapse
Affiliation(s)
- Kuo-Chang Tseng
- Department of Stem Cell Biology and Regenerative Medicine, Keck School of Medicine of University of Southern California, Los Angeles, CA 90033, USA
| | - J. Gage Crump
- Department of Stem Cell Biology and Regenerative Medicine, Keck School of Medicine of University of Southern California, Los Angeles, CA 90033, USA
| |
Collapse
|
70
|
Doolittle ML, Khosla S, Saul D. Single-Cell Integration of BMD GWAS Results Prioritize Candidate Genes Influencing Age-Related Bone Loss. JBMR Plus 2023; 7:e10795. [PMID: 37808401 PMCID: PMC10556272 DOI: 10.1002/jbm4.10795] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/11/2023] [Revised: 05/17/2023] [Accepted: 06/19/2023] [Indexed: 10/10/2023] Open
Abstract
The regulation of bone mineral density (BMD) is highly influenced by genetics and age. Although genome-wide association studies (GWAS) for BMD have uncovered many genes through their proximity to associated variants (variant nearest-neighbor [VNN] genes), the cell-specific mechanisms of each VNN gene remain unclear. This is primarily due to the inability to prioritize these genes by cell type and age-related expression. Using age-related transcriptomics, we found that the expression of many VNN genes was upregulated in the bone and marrow from aged mice. Candidate genes from GWAS were investigated using single-cell RNA-sequencing (scRNA-seq) datasets to enrich for cell-specific expression signatures. VNN candidate genes are highly enriched in osteo-lineage cells, osteocytes, hypertrophic chondrocytes, and Lepr+ mesenchymal stem cells. These data were used to generate a "blueprint" for Cre-loxp mouse line selection for functional validation of candidate genes and further investigation of their role in BMD maintenance throughout aging. In VNN-gene-enriched cells, Sparc, encoding the extracellular matrix (ECM) protein osteonectin, was robustly expressed. This, along with expression of numerous other ECM genes, indicates that many VNN genes likely have roles in ECM deposition by osteoblasts. Overall, we provide data supporting streamlined translation of GWAS candidate genes to potential novel therapeutic targets for the treatment of osteoporosis. © 2023 The Authors. JBMR Plus published by Wiley Periodicals LLC on behalf of American Society for Bone and Mineral Research.
Collapse
Affiliation(s)
- Madison L. Doolittle
- Division of EndocrinologyMayo ClinicRochesterMinnesotaUSA
- Robert and Arlene Kogod Center on AgingMayo ClinicRochesterMinnesotaUSA
| | - Sundeep Khosla
- Division of EndocrinologyMayo ClinicRochesterMinnesotaUSA
- Robert and Arlene Kogod Center on AgingMayo ClinicRochesterMinnesotaUSA
| | - Dominik Saul
- Division of EndocrinologyMayo ClinicRochesterMinnesotaUSA
- Robert and Arlene Kogod Center on AgingMayo ClinicRochesterMinnesotaUSA
- Department for Trauma and Reconstructive SurgeryBG Clinic, University of TuebingenTuebingenGermany
| |
Collapse
|
71
|
Hao RC, Li ZL, Wang FY, Tang J, Li PL, Yin BF, Li XT, Han MY, Mao N, Liu B, Ding L, Zhu H. Single-cell transcriptomic analysis identifies a highly replicating Cd168 + skeletal stem/progenitor cell population in mouse long bones. J Genet Genomics 2023; 50:702-712. [PMID: 37075860 DOI: 10.1016/j.jgg.2023.04.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2023] [Revised: 04/08/2023] [Accepted: 04/09/2023] [Indexed: 04/21/2023]
Abstract
Skeletal stem/progenitor cells (SSPCs) are tissue-specific stem/progenitor cells localized within skeletons and contribute to bone development, homeostasis, and regeneration. However, the heterogeneity of SSPC populations in mouse long bones and their respective regenerative capacity remain to be further clarified. In this study, we perform integrated analysis using single-cell RNA sequencing (scRNA-seq) datasets of mouse hindlimb buds, postnatal long bones, and fractured long bones. Our analyses reveal the heterogeneity of osteochondrogenic lineage cells and recapitulate the developmental trajectories during mouse long bone growth. In addition, we identify a novel Cd168+ SSPC population with highly replicating capacity and osteochondrogenic potential in embryonic and postnatal long bones. Moreover, the Cd168+ SSPCs can contribute to newly formed skeletal tissues during fracture healing. Furthermore, the results of multicolor immunofluorescence show that Cd168+ SSPCs reside in the superficial zone of articular cartilage as well as in growth plates of postnatal mouse long bones. In summary, we identify a novel Cd168+ SSPC population with regenerative potential in mouse long bones, which adds to the knowledge of the tissue-specific stem cells in skeletons.
Collapse
Affiliation(s)
- Rui-Cong Hao
- Basic Medical College of Anhui Medical University, Hefei, Anhui 230032, China; Beijing Institute of Radiation Medicine, Beijing 100850, China
| | - Zhi-Ling Li
- Beijing Institute of Radiation Medicine, Beijing 100850, China
| | - Fei-Yan Wang
- Basic Medical College of Anhui Medical University, Hefei, Anhui 230032, China; Beijing Institute of Radiation Medicine, Beijing 100850, China
| | - Jie Tang
- Beijing Institute of Radiation Medicine, Beijing 100850, China
| | - Pei-Lin Li
- Beijing Institute of Radiation Medicine, Beijing 100850, China
| | - Bo-Feng Yin
- Beijing Institute of Radiation Medicine, Beijing 100850, China
| | - Xiao-Tong Li
- Beijing Institute of Radiation Medicine, Beijing 100850, China
| | - Meng-Yue Han
- Basic Medical College of Anhui Medical University, Hefei, Anhui 230032, China; Beijing Institute of Radiation Medicine, Beijing 100850, China
| | - Ning Mao
- Beijing Institute of Basic Medical Sciences, Beijing 100850, China
| | - Bing Liu
- State Key Laboratory of Experimental Hematology, Department of Hematology, Fifth Medical Center of Chinese PLA General Hospital, Beijing 100071, China
| | - Li Ding
- Basic Medical College of Anhui Medical University, Hefei, Anhui 230032, China; Air Force Medical Center, PLA, Beijing 100142, China.
| | - Heng Zhu
- Basic Medical College of Anhui Medical University, Hefei, Anhui 230032, China; Beijing Institute of Radiation Medicine, Beijing 100850, China.
| |
Collapse
|
72
|
Michalski MN, Williams BO. The Past, Present, and Future of Genetically Engineered Mouse Models for Skeletal Biology. Biomolecules 2023; 13:1311. [PMID: 37759711 PMCID: PMC10526739 DOI: 10.3390/biom13091311] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Revised: 08/25/2023] [Accepted: 08/25/2023] [Indexed: 09/29/2023] Open
Abstract
The ability to create genetically engineered mouse models (GEMMs) has exponentially increased our understanding of many areas of biology. Musculoskeletal biology is no exception. In this review, we will first discuss the historical development of GEMMs and how these developments have influenced musculoskeletal disease research. This review will also update our 2008 review that appeared in BONEKey, a journal that is no longer readily available online. We will first review the historical development of GEMMs in general, followed by a particular emphasis on the ability to perform tissue-specific (conditional) knockouts focusing on musculoskeletal tissues. We will then discuss how the development of CRISPR/Cas-based technologies during the last decade has revolutionized the generation of GEMMs.
Collapse
Affiliation(s)
- Megan N. Michalski
- Department of Cell Biology, Van Andel Institute, Grand Rapids, MI 49503, USA;
| | - Bart O. Williams
- Department of Cell Biology, Van Andel Institute, Grand Rapids, MI 49503, USA;
- Core Technologies and Services, Van Andel Institute, Grand Rapids, MI 49503, USA
| |
Collapse
|
73
|
Ge C, Li Y, Wu F, Ma P, Franceschi RT. Synthetic peptides activating discoidin domain receptor 2 and collagen-binding integrins cooperate to stimulate osteoblast differentiation of skeletal progenitor cells. Acta Biomater 2023; 166:109-118. [PMID: 37245640 PMCID: PMC10617013 DOI: 10.1016/j.actbio.2023.05.039] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2022] [Revised: 05/16/2023] [Accepted: 05/22/2023] [Indexed: 05/30/2023]
Abstract
Skeletal progenitor: collagen interactions are critical for bone development and regeneration. Both collagen-binding integrins and discoidin domain receptors (DDR1 and DDR2) function as collagen receptors in bone. Each receptor is activated by a distinct collagen sequence; GFOGER for integrins and GVMGFO for DDRs. Specific triple helical peptides containing each of these binding domains were evaluated for ability to stimulate DDR2 and integrin signaling and osteoblast differentiation. GVMGFO peptide stimulated DDR2 Y740 phosphorylation and osteoblast differentiation as measured by induction of osteoblast marker mRNAs and mineralization without affecting integrin activity. In contrast, GFOGER peptide stimulated focal adhesion kinase (FAK) Y397 phosphorylation, an early measure of integrin activation, and to a lesser extent osteoblast differentiation without affecting DDR2-P. Significantly, the combination of both peptides cooperatively enhanced both DDR2 and FAK signaling and osteoblast differentiation, a response that was blocked in Ddr2-deficient cells. These studies suggest that the development of scaffolds containing DDR and integrin-activating peptides may provide a new route for promoting bone regeneration. STATEMENT OF SIGNIFICANCE: A method for stimulating osteoblast differentiation of skeletal progenitor cells is described that uses culture surfaces coated with a collagen-derived triple-helical peptide to selectively activate discoidin domain receptors. When this peptide is combined with an integrin-activating peptide, synergistic stimulation of differentiation is seen. This approach of combining collagen-derived peptides to stimulate the two main collagen receptors in bone (DDR2 and collagen-binding integrins) provides a route for developing a new class of tissue engineering scaffolds for bone regeneration.
Collapse
Affiliation(s)
- Chunxi Ge
- Department of Periodontics and Oral Medicine, University of Michigan School of Dentistry, 1011 N. University Avenue, Ann Arbor, MI 48109-1078, USA
| | - Yiming Li
- Department of Biologic and Materials Sciences and Prosthodontics, University of Michigan School of Dentistry, 1011 N. University Avenue, Ann Arbor, MI 48109-1078, USA
| | - Fashuai Wu
- Department of Periodontics and Oral Medicine, University of Michigan School of Dentistry, 1011 N. University Avenue, Ann Arbor, MI 48109-1078, USA; Department of Orthopaedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Peter Ma
- Department of Biologic and Materials Sciences and Prosthodontics, University of Michigan School of Dentistry, 1011 N. University Avenue, Ann Arbor, MI 48109-1078, USA
| | - Renny T Franceschi
- Department of Periodontics and Oral Medicine, University of Michigan School of Dentistry, 1011 N. University Avenue, Ann Arbor, MI 48109-1078, USA.
| |
Collapse
|
74
|
Yanli Z, Jiayao M, Chunqing Z, Yuting Z, Zhiyan Z, Yulin Z, Minghan L, Longquan S, Dehong Y, Wenjuan Y. MY-1-Loaded Nano-Hydroxyapatite Accelerated Bone Regeneration by Increasing Type III Collagen Deposition in Early-Stage ECM via a Hsp47-Dependent Mechanism. Adv Healthc Mater 2023; 12:e2300332. [PMID: 36999955 DOI: 10.1002/adhm.202300332] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Revised: 03/13/2023] [Indexed: 04/01/2023]
Abstract
The extracellular matrix (ECM) plays a crucial part in regulating stem cell function through its distinctive mechanical and chemical effect. Therefore, it is worth studying how to activate the driving force of osteoblast cells by dynamic changing of ECM and accelerate the bone regeneration. In this research, a novel peptide MY-1 is designed and synthesized. To achieve its sustained releasing, the nano-hydroxyapatite (nHA) is chosen as the carrier of MY-1 by mixed adsorption. The results reveal that the sustainable releasing of MY-1 regulates the synthesis and secretion of ECM from rat bone marrow mesenchymal stem cells (rBMSCs), which promotes the cell migration and osteogenic differentiation in the early stage of bone regeneration. Further analyses demonstrate that MY-1 increases the expression and nuclear translocation of β-catenin, and then upregulates the level of heat shock protein 47 (Hsp47), thereby accelerating the synthesis and secretion of type III collagen (Col III) at the early stage. Finally, the promoted rapid transformation of Col III to Col I at late stage benefits the bone regeneration. Hence, this study can provide a theoretical basis for the local application of MY-1 in bone regeneration.
Collapse
Affiliation(s)
- Zhang Yanli
- Department of Stomatology, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, P. R. China
| | - Mo Jiayao
- Department of Stomatology, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, P. R. China
| | - Zheng Chunqing
- Department of Stomatology, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, P. R. China
| | - Zeng Yuting
- Department of Stomatology, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, P. R. China
| | - Zhou Zhiyan
- Department of Stomatology, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, P. R. China
| | - Zhang Yulin
- Department of Stomatology, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, P. R. China
| | - Li Minghan
- Department of Orthopedics - Spinal Surgery, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, P. R. China
| | - Shao Longquan
- Department of Stomatology, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, P. R. China
| | - Yang Dehong
- Department of Orthopedics - Spinal Surgery, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, P. R. China
| | - Yan Wenjuan
- Department of Stomatology, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, P. R. China
| |
Collapse
|
75
|
Doolittle ML, Saul D, Kaur J, Rowsey JL, Vos SJ, Pavelko KD, Farr JN, Monroe DG, Khosla S. Multiparametric senescent cell phenotyping reveals targets of senolytic therapy in the aged murine skeleton. Nat Commun 2023; 14:4587. [PMID: 37524694 PMCID: PMC10390564 DOI: 10.1038/s41467-023-40393-9] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2023] [Accepted: 07/26/2023] [Indexed: 08/02/2023] Open
Abstract
Senescence drives organismal aging, yet the deep characterization of senescent cells in vivo remains incomplete. Here, we apply mass cytometry by time-of-flight using carefully validated antibodies to analyze senescent cells at single-cell resolution. We use multiple criteria to identify senescent mesenchymal cells that are growth-arrested and resistant to apoptosis. These p16 + Ki67-BCL-2+ cells are highly enriched for senescence-associated secretory phenotype and DNA damage markers, are strongly associated with age, and their percentages are increased in late osteoblasts/osteocytes and CD24high osteolineage cells. Moreover, both late osteoblasts/osteocytes and CD24high osteolineage cells are robustly cleared by genetic and pharmacologic senolytic therapies in aged mice. Following isolation, CD24+ skeletal cells exhibit growth arrest, senescence-associated β-galactosidase positivity, and impaired osteogenesis in vitro. These studies thus provide an approach using multiplexed protein profiling to define senescent mesenchymal cells in vivo and identify specific skeletal cell populations cleared by senolytics.
Collapse
Affiliation(s)
- Madison L Doolittle
- Division of Endocrinology, Diabetes and Metabolism, Mayo Clinic, Rochester, MN, 55905, USA
- Robert and Arlene Kogod Center on Aging, Mayo Clinic, Rochester, MN, 55905, USA
| | - Dominik Saul
- Division of Endocrinology, Diabetes and Metabolism, Mayo Clinic, Rochester, MN, 55905, USA
- Robert and Arlene Kogod Center on Aging, Mayo Clinic, Rochester, MN, 55905, USA
- Department for Trauma and Reconstructive Surgery, BG Clinic, University of Tübingen, Tübingen, Germany
| | - Japneet Kaur
- Division of Endocrinology, Diabetes and Metabolism, Mayo Clinic, Rochester, MN, 55905, USA
- Robert and Arlene Kogod Center on Aging, Mayo Clinic, Rochester, MN, 55905, USA
| | - Jennifer L Rowsey
- Division of Endocrinology, Diabetes and Metabolism, Mayo Clinic, Rochester, MN, 55905, USA
- Robert and Arlene Kogod Center on Aging, Mayo Clinic, Rochester, MN, 55905, USA
| | - Stephanie J Vos
- Division of Endocrinology, Diabetes and Metabolism, Mayo Clinic, Rochester, MN, 55905, USA
- Robert and Arlene Kogod Center on Aging, Mayo Clinic, Rochester, MN, 55905, USA
| | - Kevin D Pavelko
- Department of Immunology, Mayo Clinic, Rochester, MN, 55905, USA
| | - Joshua N Farr
- Division of Endocrinology, Diabetes and Metabolism, Mayo Clinic, Rochester, MN, 55905, USA
- Robert and Arlene Kogod Center on Aging, Mayo Clinic, Rochester, MN, 55905, USA
| | - David G Monroe
- Division of Endocrinology, Diabetes and Metabolism, Mayo Clinic, Rochester, MN, 55905, USA
- Robert and Arlene Kogod Center on Aging, Mayo Clinic, Rochester, MN, 55905, USA
| | - Sundeep Khosla
- Division of Endocrinology, Diabetes and Metabolism, Mayo Clinic, Rochester, MN, 55905, USA.
- Robert and Arlene Kogod Center on Aging, Mayo Clinic, Rochester, MN, 55905, USA.
| |
Collapse
|
76
|
Xu R, Li N, Shi B, Li Z, Han J, Sun J, Yallowitz A, Bok S, Xiao S, Wu Z, Chen Y, Xu Y, Qin T, Lin Z, Zheng H, Shen R, Greenblatt M. Schnurri-3 inhibition rescues skeletal fragility and vascular skeletal stem cell niche pathology in a mouse model of osteogenesis imperfecta. RESEARCH SQUARE 2023:rs.3.rs-3153957. [PMID: 37546916 PMCID: PMC10402191 DOI: 10.21203/rs.3.rs-3153957/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/08/2023]
Abstract
Osteogenesis imperfecta (OI) is a disorder of low bone mass and increased fracture risk due to a range of genetic variants that prominently include mutations in genes encoding type collagen. While it is well known that OI reflects defects in the activity of bone-forming osteoblasts, it is currently unclear whether OI also reflects defects in the many other cell types comprising bone, including defects in skeletal vascular endothelium or the skeletal stem cell populations that give rise to osteoblasts and whether correcting these broader defects could have therapeutic utility. Here, we find that numbers of skeletal stem cells (SSCs) and skeletal arterial endothelial cells (AECs) are augmented in Col1a2oim/oim mice, a well-studied animal model of moderate to severe OI, suggesting that disruption of a vascular SSC niche is a feature of OI pathogenesis. Moreover, crossing Col1a2oim/oim mice to mice lacking a negative regulator of skeletal angiogenesis and bone formation, Schnurri 3 (SHN3), not only corrected the SSC and AEC phenotypes but moreover robustly corrected the bone mass and spontaneous fracture phenotypes. As this finding suggested a strong therapeutic utility of SHN3 inhibition for the treatment of OI, a bone-targeting AAV was used to mediate Shn3 knockdown, rescuing the Col1a2oim/oim phenotype and providing therapeutic proof-of-concept for targeting SHN3 for the treatment of OI. Overall, this work both provides proof-of-concept for inhibition of the SHN3 pathway and more broadly addressing defects in the stem/osteoprogentior niche as is a strategy to treat OI.
Collapse
Affiliation(s)
- Ren Xu
- State Key Laboratory of Cellular Stress Biology, School of Medicine, Faculty of Medicine and Life Sciences, Xiamen University
| | | | | | - Zan Li
- First Affiliated Hospital of Zhejiang University
| | | | - Jun Sun
- Weill Cornell Medicine, Cornell University
| | | | - Seoyeon Bok
- Department of Pathology and Laboratory Medicine, Weill Cornell Medical College, New York, NY 10065, USA
| | - Shuang Xiao
- The First Affiliated Hospital of Xiamen University-ICMRS Collaborating Center for Skeletal Stem Cells, State Key Laboratory of Cellular Stress Biology, Faculty of Medicine and Life Sciences, Xiamen
| | - Zouxing Wu
- The First Affiliated Hospital of Xiamen University-ICMRS Collaborating Center for Skeletal Stem Cells, State Key Laboratory of Cellular Stress Biology, Faculty of Medicine and Life Sciences, Xiamen
| | | | - Yan Xu
- Department of Sports Medicine, Xiangya Hospital, Central South University, Changsha, 410000, China
| | - Tian Qin
- Department of Sports Medicine, Xiangya Hospital, Central South University, Changsha, 410000, China
| | - Zhiming Lin
- The First Affiliated Hospital of Xiamen University-ICMRS Collaborating Center for Skeletal Stem Cells, State Key Laboratory of Cellular Stress Biology, Faculty of Medicine and Life Sciences, Xiamen
| | - Haiping Zheng
- The First Affiliated Hospital of Xiamen University-ICMRS Collaborating Center for Skeletal Stem Cells, State Key Laboratory of Cellular Stress Biology, Faculty of Medicine and Life Sciences, Xiamen
| | | | | |
Collapse
|
77
|
Jacobi H, Vieri M, Bütow M, Namasu CY, Flüter L, Costa IG, Maié T, Lindemann-Docter K, Chatain N, Beier F, Huber M, Wagner W, Crysandt M, Brümmendorf TH, Schemionek M. Myelofibrosis at diagnosis is associated with the failure of treatment-free remission in CML patients. Front Pharmacol 2023; 14:1212392. [PMID: 37469867 PMCID: PMC10352620 DOI: 10.3389/fphar.2023.1212392] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2023] [Accepted: 06/19/2023] [Indexed: 07/21/2023] Open
Abstract
The management of patients with chronic myeloid leukemia (CML) has been revolutionized by the introduction of tyrosine kinase inhibitors (TKIs), which induce deep molecular responses so that treatment can eventually be discontinued, leading to treatment-free remission (TFR) in a subset of patients. Unfortunately, leukemic stem cells (LSCs) often persist and a fraction of these can again expand in about half of patients that attempt TKI discontinuation. In this study, we show that presence of myelofibrosis (MF) at the time of diagnosis is a factor associating with TFR failure. Fibrotic transformation is governed by the action of several cytokines, and interestingly, some of them have also been described to support LSC persistence. At the cellular level, these could be produced by both malignant cells and by components of the bone marrow (BM) niche, including megakaryocytes (MKs) and mesenchymal stromal cells (MSCs). In our cohort of 57 patients, around 40% presented with MF at diagnosis and the number of blasts in the peripheral blood and BM was significantly elevated in patients with higher grade of MF. Employing a CML transgenic mouse model, we could observe higher levels of alpha-smooth muscle actin (α-SMA) in the BM when compared to control mice. Short-term treatment with the TKI nilotinib, efficiently reduced spleen weight and BCR::ABL1 mRNA levels, while α-SMA expression was only partially reduced. Interestingly, the number of MKs was increased in the spleen of CML mice and elevated in both BM and spleen upon nilotinib treatment. Analysis of human CML-vs healthy donor (HD)-derived MSCs showed an altered expression of gene signatures reflecting fibrosis as well as hematopoietic support, thus suggesting MSCs as a potential player in these two processes. Finally, in our cohort, 12 patients qualified for TKI discontinuation, and here we observed that all patients who failed TFR had BM fibrosis at diagnosis, whereas this was only the case in 25% of patients with achieved TFR, further supporting the link between fibrosis and LSC persistence.
Collapse
Affiliation(s)
- Henrike Jacobi
- Department of Hematology, Oncology, Hemostaseology and Stem Cell Transplantation, Faculty of Medicine, RWTH Aachen University, Aachen, Germany
- Center for Integrated Oncology Aachen Bonn Cologne Düsseldorf (CIO ABCD), Aachen, Germany
| | - Margherita Vieri
- Department of Hematology, Oncology, Hemostaseology and Stem Cell Transplantation, Faculty of Medicine, RWTH Aachen University, Aachen, Germany
- Center for Integrated Oncology Aachen Bonn Cologne Düsseldorf (CIO ABCD), Aachen, Germany
| | - Marlena Bütow
- Department of Hematology, Oncology, Hemostaseology and Stem Cell Transplantation, Faculty of Medicine, RWTH Aachen University, Aachen, Germany
- Center for Integrated Oncology Aachen Bonn Cologne Düsseldorf (CIO ABCD), Aachen, Germany
| | - Carolina Y. Namasu
- Department of Hematology, Oncology, Hemostaseology and Stem Cell Transplantation, Faculty of Medicine, RWTH Aachen University, Aachen, Germany
| | - Laura Flüter
- Department of Hematology, Oncology, Hemostaseology and Stem Cell Transplantation, Faculty of Medicine, RWTH Aachen University, Aachen, Germany
| | - Ivan G. Costa
- Institute for Computational Genomics, RWTH Aachen University, Aachen, Germany
| | - Tiago Maié
- Institute for Computational Genomics, RWTH Aachen University, Aachen, Germany
| | | | - Nicolas Chatain
- Department of Hematology, Oncology, Hemostaseology and Stem Cell Transplantation, Faculty of Medicine, RWTH Aachen University, Aachen, Germany
- Center for Integrated Oncology Aachen Bonn Cologne Düsseldorf (CIO ABCD), Aachen, Germany
| | - Fabian Beier
- Department of Hematology, Oncology, Hemostaseology and Stem Cell Transplantation, Faculty of Medicine, RWTH Aachen University, Aachen, Germany
- Center for Integrated Oncology Aachen Bonn Cologne Düsseldorf (CIO ABCD), Aachen, Germany
| | - Michael Huber
- Institute of Biochemistry and Molecular Immunology, RWTH Aachen University, Aachen, Germany
| | - Wolfgang Wagner
- Center for Integrated Oncology Aachen Bonn Cologne Düsseldorf (CIO ABCD), Aachen, Germany
- Helmholtz-Institute for Biomedical Engineering, Faculty of Medicine, RWTH Aachen University, Aachen, Germany
- Institute for Stem Cell Biology, RWTH Aachen University Medical School, Aachen, Germany
| | - Martina Crysandt
- Department of Hematology, Oncology, Hemostaseology and Stem Cell Transplantation, Faculty of Medicine, RWTH Aachen University, Aachen, Germany
- Center for Integrated Oncology Aachen Bonn Cologne Düsseldorf (CIO ABCD), Aachen, Germany
| | - Tim H. Brümmendorf
- Department of Hematology, Oncology, Hemostaseology and Stem Cell Transplantation, Faculty of Medicine, RWTH Aachen University, Aachen, Germany
- Center for Integrated Oncology Aachen Bonn Cologne Düsseldorf (CIO ABCD), Aachen, Germany
| | - Mirle Schemionek
- Department of Hematology, Oncology, Hemostaseology and Stem Cell Transplantation, Faculty of Medicine, RWTH Aachen University, Aachen, Germany
- Center for Integrated Oncology Aachen Bonn Cologne Düsseldorf (CIO ABCD), Aachen, Germany
| |
Collapse
|
78
|
Luo M, Zhao Z, Yi J. Osteogenesis of bone marrow mesenchymal stem cell in hyperglycemia. Front Endocrinol (Lausanne) 2023; 14:1150068. [PMID: 37415664 PMCID: PMC10321525 DOI: 10.3389/fendo.2023.1150068] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/23/2023] [Accepted: 06/05/2023] [Indexed: 07/08/2023] Open
Abstract
Diabetes mellitus (DM) has been shown to be a clinical risk factor for bone diseases including osteoporosis and fragility. Bone metabolism is a complicated process that requires coordinated differentiation and proliferation of bone marrow mesenchymal stem cells (BMSCs). Owing to the regenerative properties, BMSCs have laid a robust foundation for their clinical application in various diseases. However, mounting evidence indicates that the osteogenic capability of BMSCs is impaired under high glucose conditions, which is responsible for diabetic bone diseases and greatly reduces the therapeutic efficiency of BMSCs. With the rapidly increasing incidence of DM, a better understanding of the impacts of hyperglycemia on BMSCs osteogenesis and the underlying mechanisms is needed. In this review, we aim to summarize the current knowledge of the osteogenesis of BMSCs in hyperglycemia, the underlying mechanisms, and the strategies to rescue the impaired BMSCs osteogenesis.
Collapse
Affiliation(s)
- Meng Luo
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
- Department of Orthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Zhihe Zhao
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
- Department of Orthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Jianru Yi
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
- Department of Orthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| |
Collapse
|
79
|
Shen F, Huang X, He G, Shi Y. The emerging studies on mesenchymal progenitors in the long bone. Cell Biosci 2023; 13:105. [PMID: 37301964 DOI: 10.1186/s13578-023-01039-x] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2022] [Accepted: 05/01/2023] [Indexed: 06/12/2023] Open
Abstract
Mesenchymal progenitors (MPs) are considered to play vital roles in bone development, growth, bone turnover, and repair. In recent years, benefiting from advanced approaches such as single-cell sequence, lineage tracing, flow cytometry, and transplantation, multiple MPs are identified and characterized in several locations of bone, including perichondrium, growth plate, periosteum, endosteum, trabecular bone, and stromal compartment. However, although great discoveries about skeletal stem cells (SSCs) and progenitors are present, it is still largely obscure how the varied landscape of MPs from different residing sites diversely contribute to the further differentiation of osteoblasts, osteocytes, chondrocytes, and other stromal cells in their respective destiny sites during development and regeneration. Here we discuss recent findings on MPs' origin, differentiation, and maintenance during long bone development and homeostasis, providing clues and models of how the MPs contribute to bone development and repair.
Collapse
Affiliation(s)
- Fangyuan Shen
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Xiaobin Huang
- Department of Oral and Maxillofacial Surgery/Pharmacology, School of Dental Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Guangxu He
- Department of Orthopedics, The Second Xiangya Hospital, Central South University, NO. 139 Middle Renmin Road, Changsha, Hunan, China.
| | - Yu Shi
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China.
| |
Collapse
|
80
|
Zheng Y, Shen P, Tong M, Li H, Ren C, Wu F, Li H, Yang H, Cai B, Du W, Zhao X, Yao S, Quan R. WISP2 downregulation inhibits the osteogenic differentiation of BMSCs in congenital scoliosis by regulating Wnt/β-catenin pathway. Biochim Biophys Acta Mol Basis Dis 2023:166783. [PMID: 37302424 DOI: 10.1016/j.bbadis.2023.166783] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2022] [Revised: 05/09/2023] [Accepted: 06/05/2023] [Indexed: 06/13/2023]
Abstract
OBJECTIVES Bone marrow mesenchymal stem cells (BMSCs) are instrumental in bone development, metabolism, and marrow microenvironment homeostasis. Despite this, the relevant effects and mechanisms of BMSCs on congenital scoliosis (CS) remain undefined. Herein, it becomes our focus to reveal the corresponding effects and mechanisms implicated. METHODS BMSCs from CS patients (hereafter referred as CS-BMSCs) and healthy donors (NC-BMSCs) were observed and identified. Differentially expressed genes in BMSCs were analyzed utilizing scRNA-seq and RNA-seq profiles. The multi-differentiation potential of BMSCs following the transfection or infection was evaluated. The expression levels of factors related to osteogenic differentiation and Wnt/β-catenin pathway were further determined as appropriate. RESULTS A decreased osteogenic differentiation ability was shown in CS-BMSCs. Both the proportion of LEPR+ BMSCs and the expression level of WNT1-inducible-signaling pathway protein 2 (WISP2) were decreased in CS-BMSCs. WISP2 knockdown suppressed the osteogenic differentiation of NC-BMSCs, while WISP2 overexpression facilitated the osteogenesis of CS-BMSCs via acting on the Wnt/β-catenin pathway. CONCLUSIONS Our study collectively indicates WISP2 knockdown blocks the osteogenic differentiation of BMSCs in CS by regulating Wnt/β-catenin signaling, thus providing new insights into the aetiology of CS.
Collapse
Affiliation(s)
- Yang Zheng
- Zhejiang Chinese Medical University, Hangzhou, China; Department of Orthopedics Surgery, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Panyang Shen
- Department of Orthopedics Surgery, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Mengsha Tong
- Zhejiang Chinese Medical University, Hangzhou, China
| | - Hangchao Li
- Zhejiang Chinese Medical University, Hangzhou, China
| | - Conglin Ren
- Zhejiang Chinese Medical University, Hangzhou, China
| | - Fengqing Wu
- Zhejiang Chinese Medical University, Hangzhou, China
| | - Hanyu Li
- Zhejiang Chinese Medical University, Hangzhou, China
| | - Huan Yang
- Department of Biochemistry, Zhejiang University School of Medicine, Hangzhou, China
| | - Bingbing Cai
- Department of Orthopedics, Xiaoshan Traditional Chinese Medical Hospital, Hangzhou, China
| | - Weibin Du
- Department of Orthopedics, Xiaoshan Traditional Chinese Medical Hospital, Hangzhou, China
| | - Xing Zhao
- Department of Orthopedics Surgery, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China.
| | - Shasha Yao
- Department of Orthopedics Surgery, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China.
| | - Renfu Quan
- Zhejiang Chinese Medical University, Hangzhou, China; Department of Orthopedics, Xiaoshan Traditional Chinese Medical Hospital, Hangzhou, China; Research Institute of Orthopedics, The Affiliated Jiangnan Hospital of Zhejiang Chinese Medical University, Hangzhou, China.
| |
Collapse
|
81
|
Wu S, Ohba S, Matsushita Y. Single-Cell RNA-Sequencing Reveals the Skeletal Cellular Dynamics in Bone Repair and Osteoporosis. Int J Mol Sci 2023; 24:9814. [PMID: 37372962 DOI: 10.3390/ijms24129814] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2023] [Revised: 05/29/2023] [Accepted: 06/03/2023] [Indexed: 06/29/2023] Open
Abstract
The bone is an important organ that performs various functions, and the bone marrow inside the skeleton is composed of a complex intermix of hematopoietic, vascular, and skeletal cells. Current single-cell RNA sequencing (scRNA-seq) technology has revealed heterogeneity and sketchy differential hierarchy of skeletal cells. Skeletal stem and progenitor cells (SSPCs) are located upstream of the hierarchy and differentiate into chondrocytes, osteoblasts, osteocytes, and bone marrow adipocytes. In the bone marrow, multiple types of bone marrow stromal cells (BMSCs), which have the potential of SSPCs, are spatiotemporally located in distinct areas, and SSPCs' potential shift of BMSCs may occur with the advancement of age. These BMSCs contribute to bone regeneration and bone diseases, such as osteoporosis. In vivo lineage-tracing technologies show that various types of skeletal lineage cells concomitantly gather and contribute to bone regeneration. In contrast, these cells differentiate into adipocytes with aging, leading to senile osteoporosis. scRNA-seq analysis has revealed that alteration in the cell-type composition is a major cause of tissue aging. In this review, we discuss the cellular dynamics of skeletal cell populations in bone homeostasis, regeneration, and osteoporosis.
Collapse
Affiliation(s)
- Sixun Wu
- Department of Cell Biology, Nagasaki University Graduate School of Biomedical Sciences, Nagasaki 852-8588, Japan
| | - Shinsuke Ohba
- Department of Cell Biology, Nagasaki University Graduate School of Biomedical Sciences, Nagasaki 852-8588, Japan
- Department of Tissue and Developmental Biology, Osaka University Graduate School of Dentistry, Osaka 565-0871, Japan
| | - Yuki Matsushita
- Department of Cell Biology, Nagasaki University Graduate School of Biomedical Sciences, Nagasaki 852-8588, Japan
| |
Collapse
|
82
|
Zhang J, Du L, Davis B, Gu Z, Lyu J, Zhao Z, Xu J, Morrison SJ. Osteolectin increases bone elongation and body length by promoting growth plate chondrocyte proliferation. Proc Natl Acad Sci U S A 2023; 120:e2220159120. [PMID: 37216542 PMCID: PMC10235998 DOI: 10.1073/pnas.2220159120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2022] [Accepted: 04/21/2023] [Indexed: 05/24/2023] Open
Abstract
Osteolectin is a recently identified osteogenic growth factor that binds to Integrin α11 (encoded by Itga11), promoting Wnt pathway activation and osteogenic differentiation by bone marrow stromal cells. While Osteolectin and Itga11 are not required for the formation of the skeleton during fetal development, they are required for the maintenance of adult bone mass. Genome-wide association studies in humans reported a single-nucleotide variant (rs182722517) 16 kb downstream of Osteolectin associated with reduced height and plasma Osteolectin levels. In this study, we tested whether Osteolectin promotes bone elongation and found that Osteolectin-deficient mice have shorter bones than those of sex-matched littermate controls. Integrin α11 deficiency in limb mesenchymal progenitors or chondrocytes reduced growth plate chondrocyte proliferation and bone elongation. Recombinant Osteolectin injections increased femur length in juvenile mice. Human bone marrow stromal cells edited to contain the rs182722517 variant produced less Osteolectin and underwent less osteogenic differentiation than that of control cells. These studies identify Osteolectin/Integrin α11 as a regulator of bone elongation and body length in mice and humans.
Collapse
Affiliation(s)
- Jingzhu Zhang
- Children’s Research Institute, University of Texas Southwestern Medical Center, Dallas, TX75390
| | - Liming Du
- Children’s Research Institute, University of Texas Southwestern Medical Center, Dallas, TX75390
| | - Bethany Davis
- Children’s Research Institute, University of Texas Southwestern Medical Center, Dallas, TX75390
| | - Zhimin Gu
- Children’s Research Institute, University of Texas Southwestern Medical Center, Dallas, TX75390
| | - Junhua Lyu
- Children’s Research Institute, University of Texas Southwestern Medical Center, Dallas, TX75390
| | - Zhiyu Zhao
- Children’s Research Institute, University of Texas Southwestern Medical Center, Dallas, TX75390
| | - Jian Xu
- Children’s Research Institute, University of Texas Southwestern Medical Center, Dallas, TX75390
| | - Sean J. Morrison
- Children’s Research Institute, University of Texas Southwestern Medical Center, Dallas, TX75390
- Department of Pediatrics, University of Texas Southwestern Medical Center, Dallas, TX75390
- HHMI, University of Texas Southwestern Medical Center, Dallas, TX75390
| |
Collapse
|
83
|
Cadinu P, Sivanathan KN, Misra A, Xu RJ, Mangani D, Yang E, Rone JM, Tooley K, Kye YC, Bod L, Geistlinger L, Lee T, Ono N, Wang G, Sanmarco L, Quintana FJ, Anderson AC, Kuchroo VK, Moffitt JR, Nowarski R. Charting the cellular biogeography in colitis reveals fibroblast trajectories and coordinated spatial remodeling. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.05.08.539701. [PMID: 37214800 PMCID: PMC10197602 DOI: 10.1101/2023.05.08.539701] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
Gut inflammation involves contributions from immune and non-immune cells, whose interactions are shaped by the spatial organization of the healthy gut and its remodeling during inflammation. The crosstalk between fibroblasts and immune cells is an important axis in this process, but our understanding has been challenged by incomplete cell-type definition and biogeography. To address this challenge, we used MERFISH to profile the expression of 940 genes in 1.35 million cells imaged across the onset and recovery from a mouse colitis model. We identified diverse cell populations; charted their spatial organization; and revealed their polarization or recruitment in inflammation. We found a staged progression of inflammation-associated tissue neighborhoods defined, in part, by multiple inflammation-associated fibroblasts, with unique expression profiles, spatial localization, cell-cell interactions, and healthy fibroblast origins. Similar signatures in ulcerative colitis suggest conserved human processes. Broadly, we provide a framework for understanding inflammation-induced remodeling in the gut and other tissues.
Collapse
Affiliation(s)
- Paolo Cadinu
- Program in Cellular and Molecular Medicine, Boston Children’s Hospital, Boston, MA 02115 USA
- Department of Microbiology, Blavatnik Institute, Harvard Medical School, Boston, MA 02115 USA
- These authors contributed equally
| | - Kisha N. Sivanathan
- Evergrande Center for Immunologic Diseases and Ann Romney Center for Neurologic Diseases, Harvard Medical School and Brigham and Women’s Hospital, Boston, MA 02115, USA
- Department of Immunology, Blavatnik Institute, Harvard Medical School, Boston, MA 02115 USA
- These authors contributed equally
| | - Aditya Misra
- Evergrande Center for Immunologic Diseases and Ann Romney Center for Neurologic Diseases, Harvard Medical School and Brigham and Women’s Hospital, Boston, MA 02115, USA
- Department of Immunology, Blavatnik Institute, Harvard Medical School, Boston, MA 02115 USA
| | - Rosalind J. Xu
- Program in Cellular and Molecular Medicine, Boston Children’s Hospital, Boston, MA 02115 USA
- Department of Microbiology, Blavatnik Institute, Harvard Medical School, Boston, MA 02115 USA
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, MA 02138 USA
| | - Davide Mangani
- Evergrande Center for Immunologic Diseases and Ann Romney Center for Neurologic Diseases, Harvard Medical School and Brigham and Women’s Hospital, Boston, MA 02115, USA
| | - Evan Yang
- Program in Cellular and Molecular Medicine, Boston Children’s Hospital, Boston, MA 02115 USA
- Department of Microbiology, Blavatnik Institute, Harvard Medical School, Boston, MA 02115 USA
| | - Joseph M. Rone
- Evergrande Center for Immunologic Diseases and Ann Romney Center for Neurologic Diseases, Harvard Medical School and Brigham and Women’s Hospital, Boston, MA 02115, USA
- Department of Immunology, Blavatnik Institute, Harvard Medical School, Boston, MA 02115 USA
| | - Katherine Tooley
- Evergrande Center for Immunologic Diseases and Ann Romney Center for Neurologic Diseases, Harvard Medical School and Brigham and Women’s Hospital, Boston, MA 02115, USA
| | - Yoon-Chul Kye
- Evergrande Center for Immunologic Diseases and Ann Romney Center for Neurologic Diseases, Harvard Medical School and Brigham and Women’s Hospital, Boston, MA 02115, USA
| | - Lloyd Bod
- Evergrande Center for Immunologic Diseases and Ann Romney Center for Neurologic Diseases, Harvard Medical School and Brigham and Women’s Hospital, Boston, MA 02115, USA
| | - Ludwig Geistlinger
- Center for Computational Biomedicine, Harvard Medical School, Boston, MA 02115, USA
| | - Tyrone Lee
- Center for Computational Biomedicine, Harvard Medical School, Boston, MA 02115, USA
| | - Noriaki Ono
- University of Texas Health Science Center at Houston School of Dentistry, Houston, TX 77030 USA
| | - Gang Wang
- Department of Immunology, Blavatnik Institute, Harvard Medical School, Boston, MA 02115 USA
| | - Liliana Sanmarco
- Evergrande Center for Immunologic Diseases and Ann Romney Center for Neurologic Diseases, Harvard Medical School and Brigham and Women’s Hospital, Boston, MA 02115, USA
| | - Francisco J. Quintana
- Evergrande Center for Immunologic Diseases and Ann Romney Center for Neurologic Diseases, Harvard Medical School and Brigham and Women’s Hospital, Boston, MA 02115, USA
- Broad Institute of Harvard and MIT, Cambridge, MA 02142 USA
| | - Ana C. Anderson
- Evergrande Center for Immunologic Diseases and Ann Romney Center for Neurologic Diseases, Harvard Medical School and Brigham and Women’s Hospital, Boston, MA 02115, USA
- Broad Institute of Harvard and MIT, Cambridge, MA 02142 USA
| | - Vijay K. Kuchroo
- Evergrande Center for Immunologic Diseases and Ann Romney Center for Neurologic Diseases, Harvard Medical School and Brigham and Women’s Hospital, Boston, MA 02115, USA
- Broad Institute of Harvard and MIT, Cambridge, MA 02142 USA
| | - Jeffrey R. Moffitt
- Program in Cellular and Molecular Medicine, Boston Children’s Hospital, Boston, MA 02115 USA
- Department of Microbiology, Blavatnik Institute, Harvard Medical School, Boston, MA 02115 USA
- Broad Institute of Harvard and MIT, Cambridge, MA 02142 USA
| | - Roni Nowarski
- Evergrande Center for Immunologic Diseases and Ann Romney Center for Neurologic Diseases, Harvard Medical School and Brigham and Women’s Hospital, Boston, MA 02115, USA
- Department of Immunology, Blavatnik Institute, Harvard Medical School, Boston, MA 02115 USA
- Broad Institute of Harvard and MIT, Cambridge, MA 02142 USA
- Lead contact
| |
Collapse
|
84
|
Otani S, Ohnuma M, Ito K, Matsushita Y. Cellular dynamics of distinct skeletal cells and the development of osteosarcoma. Front Endocrinol (Lausanne) 2023; 14:1181204. [PMID: 37229448 PMCID: PMC10203529 DOI: 10.3389/fendo.2023.1181204] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/07/2023] [Accepted: 04/21/2023] [Indexed: 05/27/2023] Open
Abstract
Bone contributes to the maintenance of vital biological activities. At the cellular level, multiple types of skeletal cells, including skeletal stem and progenitor cells (SSPCs), osteoblasts, chondrocytes, marrow stromal cells, and adipocytes, orchestrate skeletal events such as development, aging, regeneration, and tumorigenesis. Osteosarcoma (OS) is a primary malignant tumor and the main form of bone cancer. Although it has been proposed that the cellular origins of OS are in osteogenesis-related skeletal lineage cells with cancer suppressor gene mutations, its origins have not yet been fully elucidated because of a poor understanding of whole skeletal cell diversity and dynamics. Over the past decade, the advent and development of single-cell RNA sequencing analyses and mouse lineage-tracing approaches have revealed the diversity of skeletal stem and its lineage cells. Skeletal stem cells (SSCs) in the bone marrow endoskeletal region have now been found to efficiently generate OS and to be robust cells of origin under p53 deletion conditions. The identification of SSCs may lead to a more limited redefinition of bone marrow mesenchymal stem/stromal cells (BM-MSCs), and this population has been thought to contain cells from which OS originates. In this mini-review, we discuss the cellular diversity and dynamics of multiple skeletal cell types and the origin of OS in the native in vivo environment in mice. We also discuss future challenges in the study of skeletal cells and OS.
Collapse
Affiliation(s)
- Shohei Otani
- Department of Molecular Bone Biology, Nagasaki University Graduate School of Biomedical Sciences, Nagasaki, Japan
| | - Mizuho Ohnuma
- Department of Cell Biology, Nagasaki University Graduate School of Biomedical Sciences, Nagasaki, Japan
- Department of Clinical Oral Oncology, Nagasaki University Graduate School of Biomedical Sciences, Nagasaki, Japan
| | - Kosei Ito
- Department of Molecular Bone Biology, Nagasaki University Graduate School of Biomedical Sciences, Nagasaki, Japan
| | - Yuki Matsushita
- Department of Cell Biology, Nagasaki University Graduate School of Biomedical Sciences, Nagasaki, Japan
| |
Collapse
|
85
|
Matsushita Y, Liu J, Chu AKY, Tsutsumi-Arai C, Nagata M, Arai Y, Ono W, Yamamoto K, Saunders TL, Welch JD, Ono N. Bone marrow endosteal stem cells dictate active osteogenesis and aggressive tumorigenesis. Nat Commun 2023; 14:2383. [PMID: 37185464 PMCID: PMC10130060 DOI: 10.1038/s41467-023-38034-2] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2022] [Accepted: 04/11/2023] [Indexed: 05/17/2023] Open
Abstract
The bone marrow contains various populations of skeletal stem cells (SSCs) in the stromal compartment, which are important regulators of bone formation. It is well-described that leptin receptor (LepR)+ perivascular stromal cells provide a major source of bone-forming osteoblasts in adult and aged bone marrow. However, the identity of SSCs in young bone marrow and how they coordinate active bone formation remains unclear. Here we show that bone marrow endosteal SSCs are defined by fibroblast growth factor receptor 3 (Fgfr3) and osteoblast-chondrocyte transitional (OCT) identities with some characteristics of bone osteoblasts and chondrocytes. These Fgfr3-creER-marked endosteal stromal cells contribute to a stem cell fraction in young stages, which is later replaced by Lepr-cre-marked stromal cells in adult stages. Further, Fgfr3+ endosteal stromal cells give rise to aggressive osteosarcoma-like lesions upon loss of p53 tumor suppressor through unregulated self-renewal and aberrant osteogenic fates. Therefore, Fgfr3+ endosteal SSCs are abundant in young bone marrow and provide a robust source of osteoblasts, contributing to both normal and aberrant osteogenesis.
Collapse
Affiliation(s)
- Yuki Matsushita
- University of Texas Health Science Center at Houston School of Dentistry, Houston, TX, USA
- Department of Cell Biology, Nagasaki University Graduate School of Biomedical Sciences, Nagasaki, Japan
| | - Jialin Liu
- Department of Computational Medicine and Bioinformatics, University of Michigan, Ann Arbor, MI, USA
| | - Angel Ka Yan Chu
- Department of Computational Medicine and Bioinformatics, University of Michigan, Ann Arbor, MI, USA
| | - Chiaki Tsutsumi-Arai
- University of Texas Health Science Center at Houston School of Dentistry, Houston, TX, USA
| | - Mizuki Nagata
- University of Texas Health Science Center at Houston School of Dentistry, Houston, TX, USA
| | - Yuki Arai
- University of Texas Health Science Center at Houston School of Dentistry, Houston, TX, USA
| | - Wanida Ono
- University of Texas Health Science Center at Houston School of Dentistry, Houston, TX, USA
| | - Kouhei Yamamoto
- Department of Comprehensive Pathology, Tokyo Medical and Dental University, Tokyo, Japan
| | - Thomas L Saunders
- Transgenic Animal Model Core, University of Michigan Medical School, Ann Arbor, MI, USA
| | - Joshua D Welch
- Department of Computational Medicine and Bioinformatics, University of Michigan, Ann Arbor, MI, USA.
| | - Noriaki Ono
- University of Texas Health Science Center at Houston School of Dentistry, Houston, TX, USA.
| |
Collapse
|
86
|
Rong L, Zhang L, Yang Z, Xu L. New insights into the properties, functions, and aging of skeletal stem cells. Osteoporos Int 2023:10.1007/s00198-023-06736-4. [PMID: 37069243 DOI: 10.1007/s00198-023-06736-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/24/2022] [Accepted: 03/27/2023] [Indexed: 04/19/2023]
Abstract
Bone-related diseases pose a major health burden for modern society. Bone is one of the organs that rely on stem cell function to maintain tissue homeostasis. Stem cell therapy has emerged as an effective new strategy to repair and replace damaged tissue. Although research on bone marrow mesenchymal stem cells has been conducted over the last few decades, the identity and definition of the true skeletal stem cell population remains controversial. Due to technological advances, some progress has been made in the prospective separation and function research of purified skeletal stem cells. Here, we reviewed the recent progress of highly purified skeletal stem cells, their function in bone development and repair, and the impact of aging on skeletal stem cells. Various studies on animal and human models distinguished and isolated skeletal stem cells using different surface markers based on flow-cytometry-activated cell sorting. The roles of different types of skeletal stem cells in bone growth, remodeling, and repair are gradually becoming clear. Thanks to technological advances, SSCs can be specifically identified and purified for functional testing and molecular analysis. The basic features of SSCs and their roles in bone development and repair and the effects of aging on SSCs are gradually being elucidated. Future mechanistic studies can help to develop new therapeutic interventions to improve various types of skeletal diseases and enhance the regenerative potential of SSCs.
Collapse
Affiliation(s)
- Lingjun Rong
- Department of Geriatric Endocrinology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Lixia Zhang
- Department of Endocrinology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Zaigang Yang
- Department of Geriatric Endocrinology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China.
| | - Lijun Xu
- Department of Endocrinology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China.
| |
Collapse
|
87
|
Anginot A, Nguyen J, Abou Nader Z, Rondeau V, Bonaud A, Kalogeraki M, Boutin A, Lemos JP, Bisio V, Koenen J, Hanna Doumit Sakr L, Picart A, Coudert A, Provot S, Dulphy N, Aurrand-Lions M, Mancini SJC, Lazennec G, McDermott DH, Guidez F, Blin-Wakkach C, Murphy PM, Cohen-Solal M, Espéli M, Rouleau M, Balabanian K. WHIM Syndrome-linked CXCR4 mutations drive osteoporosis. Nat Commun 2023; 14:2058. [PMID: 37045841 PMCID: PMC10097661 DOI: 10.1038/s41467-023-37791-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2021] [Accepted: 03/07/2023] [Indexed: 04/14/2023] Open
Abstract
WHIM Syndrome is a rare immunodeficiency caused by gain-of-function CXCR4 mutations. Here we report a decrease in bone mineral density in 25% of WHIM patients and bone defects leading to osteoporosis in a WHIM mouse model. Imbalanced bone tissue is observed in mutant mice combining reduced osteoprogenitor cells and increased osteoclast numbers. Mechanistically, impaired CXCR4 desensitization disrupts cell cycle progression and osteogenic commitment of skeletal stromal/stem cells, while increasing their pro-osteoclastogenic capacities. Impaired osteogenic differentiation is evidenced in primary bone marrow stromal cells from WHIM patients. In mice, chronic treatment with the CXCR4 antagonist AMD3100 normalizes in vitro osteogenic fate of mutant skeletal stromal/stem cells and reverses in vivo the loss of skeletal cells, demonstrating that proper CXCR4 desensitization is required for the osteogenic specification of skeletal stromal/stem cells. Our study provides mechanistic insights into how CXCR4 signaling regulates the osteogenic fate of skeletal cells and the balance between bone formation and resorption.
Collapse
Affiliation(s)
- Adrienne Anginot
- Université Paris Cité, Institut de Recherche Saint-Louis, INSERM U1160, Paris, France
- CNRS, GDR3697 "Microenvironment of tumor niches", Micronit, France
- OPALE Carnot Institute, The Organization for Partnerships in Leukemia, Hôpital Saint-Louis, Paris, France
| | - Julie Nguyen
- CNRS, GDR3697 "Microenvironment of tumor niches", Micronit, France
- Inflammation, Microbiome and Immunosurveillance, INSERM, Université Paris-Saclay, Orsay, France
| | - Zeina Abou Nader
- Université Paris Cité, Institut de Recherche Saint-Louis, INSERM U1160, Paris, France
- CNRS, GDR3697 "Microenvironment of tumor niches", Micronit, France
- OPALE Carnot Institute, The Organization for Partnerships in Leukemia, Hôpital Saint-Louis, Paris, France
| | - Vincent Rondeau
- Université Paris Cité, Institut de Recherche Saint-Louis, INSERM U1160, Paris, France
- CNRS, GDR3697 "Microenvironment of tumor niches", Micronit, France
- OPALE Carnot Institute, The Organization for Partnerships in Leukemia, Hôpital Saint-Louis, Paris, France
| | - Amélie Bonaud
- Université Paris Cité, Institut de Recherche Saint-Louis, INSERM U1160, Paris, France
- CNRS, GDR3697 "Microenvironment of tumor niches", Micronit, France
- OPALE Carnot Institute, The Organization for Partnerships in Leukemia, Hôpital Saint-Louis, Paris, France
| | - Maria Kalogeraki
- Université Paris Cité, Institut de Recherche Saint-Louis, INSERM U1160, Paris, France
- CNRS, GDR3697 "Microenvironment of tumor niches", Micronit, France
- OPALE Carnot Institute, The Organization for Partnerships in Leukemia, Hôpital Saint-Louis, Paris, France
| | | | - Julia P Lemos
- Université Paris Cité, Institut de Recherche Saint-Louis, INSERM U1160, Paris, France
- CNRS, GDR3697 "Microenvironment of tumor niches", Micronit, France
- OPALE Carnot Institute, The Organization for Partnerships in Leukemia, Hôpital Saint-Louis, Paris, France
| | - Valeria Bisio
- Université Paris Cité, Institut de Recherche Saint-Louis, INSERM U1160, Paris, France
- CNRS, GDR3697 "Microenvironment of tumor niches", Micronit, France
- OPALE Carnot Institute, The Organization for Partnerships in Leukemia, Hôpital Saint-Louis, Paris, France
| | - Joyce Koenen
- CNRS, GDR3697 "Microenvironment of tumor niches", Micronit, France
- Inflammation, Microbiome and Immunosurveillance, INSERM, Université Paris-Saclay, Orsay, France
| | - Lea Hanna Doumit Sakr
- Université Paris Cité, BIOSCAR Inserm U1132, Department of Rheumatology and Reference Center for Rare Bone Diseases, AP-HP Hospital Lariboisière, Paris, France
| | - Amandine Picart
- Université Paris Cité, BIOSCAR Inserm U1132, Department of Rheumatology and Reference Center for Rare Bone Diseases, AP-HP Hospital Lariboisière, Paris, France
| | - Amélie Coudert
- Université Paris Cité, BIOSCAR Inserm U1132, Department of Rheumatology and Reference Center for Rare Bone Diseases, AP-HP Hospital Lariboisière, Paris, France
| | - Sylvain Provot
- Université Paris Cité, BIOSCAR Inserm U1132, Department of Rheumatology and Reference Center for Rare Bone Diseases, AP-HP Hospital Lariboisière, Paris, France
| | - Nicolas Dulphy
- Université Paris Cité, Institut de Recherche Saint-Louis, INSERM U1160, Paris, France
- CNRS, GDR3697 "Microenvironment of tumor niches", Micronit, France
- OPALE Carnot Institute, The Organization for Partnerships in Leukemia, Hôpital Saint-Louis, Paris, France
| | - Michel Aurrand-Lions
- CNRS, GDR3697 "Microenvironment of tumor niches", Micronit, France
- OPALE Carnot Institute, The Organization for Partnerships in Leukemia, Hôpital Saint-Louis, Paris, France
- Aix Marseille Univ, CNRS, INSERM, Institut Paoli-Calmettes, CRCM, Marseille, France
| | - Stéphane J C Mancini
- CNRS, GDR3697 "Microenvironment of tumor niches", Micronit, France
- Aix Marseille Univ, CNRS, INSERM, Institut Paoli-Calmettes, CRCM, Marseille, France
| | - Gwendal Lazennec
- CNRS, GDR3697 "Microenvironment of tumor niches", Micronit, France
- CNRS, SYS2DIAG-ALCEDIAG, Cap Delta, Montpellier, France
| | - David H McDermott
- Molecular Signaling Section, Laboratory of Molecular Immunology, National Institute of Allergy and Infectious Diseases, NIH, Bethesda, MD, USA
| | - Fabien Guidez
- OPALE Carnot Institute, The Organization for Partnerships in Leukemia, Hôpital Saint-Louis, Paris, France
- Université Paris Cité, Institut de Recherche Saint-Louis, INSERM U1131, Paris, France
| | | | - Philip M Murphy
- Molecular Signaling Section, Laboratory of Molecular Immunology, National Institute of Allergy and Infectious Diseases, NIH, Bethesda, MD, USA
| | - Martine Cohen-Solal
- Université Paris Cité, BIOSCAR Inserm U1132, Department of Rheumatology and Reference Center for Rare Bone Diseases, AP-HP Hospital Lariboisière, Paris, France
| | - Marion Espéli
- Université Paris Cité, Institut de Recherche Saint-Louis, INSERM U1160, Paris, France
- CNRS, GDR3697 "Microenvironment of tumor niches", Micronit, France
- OPALE Carnot Institute, The Organization for Partnerships in Leukemia, Hôpital Saint-Louis, Paris, France
| | | | - Karl Balabanian
- Université Paris Cité, Institut de Recherche Saint-Louis, INSERM U1160, Paris, France.
- CNRS, GDR3697 "Microenvironment of tumor niches", Micronit, France.
- OPALE Carnot Institute, The Organization for Partnerships in Leukemia, Hôpital Saint-Louis, Paris, France.
| |
Collapse
|
88
|
Wang J, Xu C, Zhang J, Bao Y, Tang Y, Lv X, Ma B, Wu X, Mao G. RhoA promotes osteoclastogenesis and regulates bone remodeling through mTOR-NFATc1 signaling. Mol Med 2023; 29:49. [PMID: 37020186 PMCID: PMC10077675 DOI: 10.1186/s10020-023-00638-1] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2022] [Accepted: 03/19/2023] [Indexed: 04/07/2023] Open
Abstract
BACKGROUND The cytoskeletal architecture of osteoclasts (OCs) and bone resorption activity must be appropriately controlled for proper bone remodeling, which is associated with osteoporosis. The RhoA protein of GTPase plays a regulatory role in cytoskeletal components and contributes to osteoclast adhesion, podosome positioning, and differentiation. Although osteoclast investigations have traditionally been performed by in vitro analysis, however, the results have been inconsistent, and the significance of RhoA in bone physiology and pathology is still unknown. METHODS We generated RhoA knockout mice by specifically deleting RhoA in the osteoclast lineage to understand more about RhoA's involvement in bone remodeling. The function of RhoA in osteoclast differentiation and bone resorption and the mechanisms were assessed using bone marrow macrophages (BMMs) in vitro. The ovariectomized (OVX) mouse model was adopted to examine the pathological effect of RhoA in bone loss. RESULTS Conditional deletion of RhoA in the osteoclast lineage causes a severe osteopetrosis phenotype, which is attributable to a bone resorption suppression. Further mechanistic studies suggest that RhoA deficiency suppresses Akt-mTOR-NFATc1 signaling during osteoclast differentiation. Additionally, RhoA activation is consistently related to the significant enhancement the osteoclast activity, which culminates in the development of an osteoporotic bone phenotype. Furthermore, in mice, the absence of RhoA in osteoclast precursors prevented occurring OVX-induced bone loss. CONCLUSION RhoA promoted osteoclast development via the Akt-mTOR-NFATc1 signaling pathway, resulting a osteoporosis phenotype, and that manipulating RhoA activity might be a therapeutic strategy for osteoporotic bone loss.
Collapse
Affiliation(s)
- Jirong Wang
- Zhejiang Provincial Key Lab of Geriatrics, Department of Geriatrics, Zhejiang Hospital, 1229 Gudun Road, Hangzhou, 310030, China.
| | - Chengyun Xu
- Department of Pharmacology, Zhejiang University School of Medicine, 866 Yuhangtang Road, Hangzhou, 310058, China
| | - Jing Zhang
- Zhejiang Provincial Key Lab of Geriatrics, Department of Geriatrics, Zhejiang Hospital, 1229 Gudun Road, Hangzhou, 310030, China
| | - Yizhong Bao
- Zhejiang Provincial Key Lab of Geriatrics, Department of Geriatrics, Zhejiang Hospital, 1229 Gudun Road, Hangzhou, 310030, China
| | - Ying Tang
- Zhejiang Provincial Key Lab of Geriatrics, Department of Geriatrics, Zhejiang Hospital, 1229 Gudun Road, Hangzhou, 310030, China
| | - Xiaoling Lv
- Zhejiang Provincial Key Lab of Geriatrics, Department of Geriatrics, Zhejiang Hospital, 1229 Gudun Road, Hangzhou, 310030, China
| | - Bo Ma
- Zhejiang Provincial Key Lab of Geriatrics, Department of Geriatrics, Zhejiang Hospital, 1229 Gudun Road, Hangzhou, 310030, China
| | - Ximei Wu
- Department of Pharmacology, Zhejiang University School of Medicine, 866 Yuhangtang Road, Hangzhou, 310058, China.
| | - Genxiang Mao
- Zhejiang Provincial Key Lab of Geriatrics, Department of Geriatrics, Zhejiang Hospital, 1229 Gudun Road, Hangzhou, 310030, China.
| |
Collapse
|
89
|
Movérare-Skrtic S, Voelkl J, Nilsson KH, Nethander M, Luong TTD, Alesutan I, Li L, Wu J, Horkeby K, Lagerquist MK, Koskela A, Tuukkanen J, Tobias JH, Lerner UH, Henning P, Ohlsson C. B4GALNT3 regulates glycosylation of sclerostin and bone mass. EBioMedicine 2023; 91:104546. [PMID: 37023531 PMCID: PMC10102813 DOI: 10.1016/j.ebiom.2023.104546] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2022] [Revised: 03/14/2023] [Accepted: 03/15/2023] [Indexed: 04/08/2023] Open
Abstract
BACKGROUND Global sclerostin inhibition reduces fracture risk efficiently but has been associated with cardiovascular side effects. The strongest genetic signal for circulating sclerostin is in the B4GALNT3 gene region, but the causal gene is unknown. B4GALNT3 expresses the enzyme beta-1,4-N-acetylgalactosaminyltransferase 3 that transfers N-acetylgalactosamine onto N-acetylglucosaminebeta-benzyl on protein epitopes (LDN-glycosylation). METHODS To determine if B4GALNT3 is the causal gene, B4galnt3-/- mice were developed and serum levels of total sclerostin and LDN-glycosylated sclerostin were analysed and mechanistic studies were performed in osteoblast-like cells. Mendelian randomization was used to determine causal associations. FINDINGS B4galnt3-/- mice had higher circulating sclerostin levels, establishing B4GALNT3 as a causal gene for circulating sclerostin levels, and lower bone mass. However, serum levels of LDN-glycosylated sclerostin were lower in B4galnt3-/- mice. B4galnt3 and Sost were co-expressed in osteoblast-lineage cells. Overexpression of B4GALNT3 increased while silencing of B4GALNT3 decreased the levels of LDN-glycosylated sclerostin in osteoblast-like cells. Mendelian randomization demonstrated that higher circulating sclerostin levels, genetically predicted by variants in the B4GALNT3 gene, were causally associated with lower BMD and higher risk of fractures but not with higher risk of myocardial infarction or stroke. Glucocorticoid treatment reduced B4galnt3 expression in bone and increased circulating sclerostin levels and this may contribute to the observed glucocorticoid-induced bone loss. INTERPRETATION B4GALNT3 is a key factor for bone physiology via regulation of LDN-glycosylation of sclerostin. We propose that B4GALNT3-mediated LDN-glycosylation of sclerostin may be a bone-specific osteoporosis target, separating the anti-fracture effect of global sclerostin inhibition, from indicated cardiovascular side effects. FUNDING Found in acknowledgements.
Collapse
Affiliation(s)
- Sofia Movérare-Skrtic
- Sahlgrenska Osteoporosis Centre, Centre for Bone and Arthritis Research, Institute of Medicine, Sahlgrenska Academy at University of Gothenburg, Gothenburg, Sweden.
| | - Jakob Voelkl
- Institute for Physiology and Pathophysiology, Johannes Kepler University Linz, Linz, Austria; Department of Nephrology and Medical Intensive Care, Charité - Universitätsmedizin Berlin, Berlin, Germany; DZHK (German Centre for Cardiovascular Research), Partner Site Berlin, Berlin, Germany
| | - Karin H Nilsson
- Sahlgrenska Osteoporosis Centre, Centre for Bone and Arthritis Research, Institute of Medicine, Sahlgrenska Academy at University of Gothenburg, Gothenburg, Sweden
| | - Maria Nethander
- Sahlgrenska Osteoporosis Centre, Centre for Bone and Arthritis Research, Institute of Medicine, Sahlgrenska Academy at University of Gothenburg, Gothenburg, Sweden; Bioinformatics Core Facility, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Trang Thi Doan Luong
- Institute for Physiology and Pathophysiology, Johannes Kepler University Linz, Linz, Austria
| | - Ioana Alesutan
- Institute for Physiology and Pathophysiology, Johannes Kepler University Linz, Linz, Austria
| | - Lei Li
- Sahlgrenska Osteoporosis Centre, Centre for Bone and Arthritis Research, Institute of Medicine, Sahlgrenska Academy at University of Gothenburg, Gothenburg, Sweden
| | - Jianyao Wu
- Sahlgrenska Osteoporosis Centre, Centre for Bone and Arthritis Research, Institute of Medicine, Sahlgrenska Academy at University of Gothenburg, Gothenburg, Sweden
| | - Karin Horkeby
- Sahlgrenska Osteoporosis Centre, Centre for Bone and Arthritis Research, Institute of Medicine, Sahlgrenska Academy at University of Gothenburg, Gothenburg, Sweden
| | - Marie K Lagerquist
- Sahlgrenska Osteoporosis Centre, Centre for Bone and Arthritis Research, Institute of Medicine, Sahlgrenska Academy at University of Gothenburg, Gothenburg, Sweden
| | - Antti Koskela
- Department of Anatomy and Cell Biology, Faculty of Medicine, Institute of Cancer Research and Translational Medicine, University of Oulu, Oulu, Finland
| | - Juha Tuukkanen
- Department of Anatomy and Cell Biology, Faculty of Medicine, Institute of Cancer Research and Translational Medicine, University of Oulu, Oulu, Finland
| | - Jon H Tobias
- Musculoskeletal Research Unit, Translational Health Sciences, and Medical Research Council Integrative Epidemiology Unit, Bristol Medical School, University of Bristol, Bristol, UK
| | - Ulf H Lerner
- Sahlgrenska Osteoporosis Centre, Centre for Bone and Arthritis Research, Institute of Medicine, Sahlgrenska Academy at University of Gothenburg, Gothenburg, Sweden
| | - Petra Henning
- Sahlgrenska Osteoporosis Centre, Centre for Bone and Arthritis Research, Institute of Medicine, Sahlgrenska Academy at University of Gothenburg, Gothenburg, Sweden
| | - Claes Ohlsson
- Sahlgrenska Osteoporosis Centre, Centre for Bone and Arthritis Research, Institute of Medicine, Sahlgrenska Academy at University of Gothenburg, Gothenburg, Sweden; Region Västra Götaland, Department of Drug Treatment, Sahlgrenska University Hospital, Gothenburg, Sweden
| |
Collapse
|
90
|
Luo Y, Liu Y, Wang B, Tu X. CHIR99021-Treated Osteocytes with Wnt Activation in 3D-Printed Module Form an Osteogenic Microenvironment for Enhanced Osteogenesis and Vasculogenesis. Int J Mol Sci 2023; 24:ijms24066008. [PMID: 36983081 PMCID: PMC10052982 DOI: 10.3390/ijms24066008] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2023] [Revised: 03/02/2023] [Accepted: 03/21/2023] [Indexed: 03/30/2023] Open
Abstract
Finding a bone implant that has high bioactivity that can safely drive stem cell differentiation and simulate a real in vivo microenvironment is a challenge for bone tissue engineering. Osteocytes significantly regulate bone cell fate, and Wnt-activated osteocytes can reversely regulate bone formation by regulating bone anabolism, which may improve the biological activity of bone implants. To achieve a safe application, we used the Wnt agonist CHIR99021 (C91) to treat MLO-Y4 for 24 h, in a co-culture with ST2 for 3 days after withdrawal. We found that the expression of Runx2 and Osx increased, promoted osteogenic differentiation, and inhibited adipogenic differentiation in the ST2 cells, and these effects were eliminated by the triptonide. Therefore, we hypothesized that C91-treated osteocytes form an osteogenic microenvironment (COOME). Subsequently, we constructed a bio-instructive 3D printing system to verify the function of COOME in 3D modules that mimic the in vivo environment. Within PCI3D, COOME increased the survival and proliferation rates to as high as 92% after 7 days and promoted ST2 cell differentiation and mineralization. Simultaneously, we found that the COOME-conditioned medium also had the same effects. Therefore, COOME promotes ST2 cell osteogenic differentiation both directly and indirectly. It also promotes HUVEC migration and tube formation, which can be explained by the high expression of Vegf. Altogether, these results indicate that COOME, combined with our independently developed 3D printing system, can overcome the poor cell survival and bioactivity of orthopedic implants and provide a new method for clinical bone defect repair.
Collapse
Affiliation(s)
- Yisheng Luo
- Laboratory of Skeletal Development and Regeneration, Institute of Life Sciences, Chongqing Medical University, Chongqing 400016, China
| | - Yangxi Liu
- Laboratory of Skeletal Development and Regeneration, Institute of Life Sciences, Chongqing Medical University, Chongqing 400016, China
| | - Bo Wang
- Laboratory of Skeletal Development and Regeneration, Institute of Life Sciences, Chongqing Medical University, Chongqing 400016, China
| | - Xiaolin Tu
- Laboratory of Skeletal Development and Regeneration, Institute of Life Sciences, Chongqing Medical University, Chongqing 400016, China
| |
Collapse
|
91
|
Kara N, Xue Y, Zhao Z, Murphy MM, Comazzetto S, Lesser A, Du L, Morrison SJ. Endothelial and Leptin Receptor + cells promote the maintenance of stem cells and hematopoiesis in early postnatal murine bone marrow. Dev Cell 2023; 58:348-360.e6. [PMID: 36868235 PMCID: PMC10035381 DOI: 10.1016/j.devcel.2023.02.003] [Citation(s) in RCA: 32] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2022] [Revised: 12/08/2022] [Accepted: 02/06/2023] [Indexed: 03/05/2023]
Abstract
Mammalian hematopoietic stem cells (HSCs) colonize the bone marrow during late fetal development, and this becomes the major site of hematopoiesis after birth. However, little is known about the early postnatal bone marrow niche. We performed single-cell RNA sequencing of mouse bone marrow stromal cells at 4 days, 14 days, and 8 weeks after birth. Leptin-receptor-expressing (LepR+) stromal cells and endothelial cells increased in frequency during this period and changed their properties. At all postnatal stages, LepR+ cells and endothelial cells expressed the highest stem cell factor (Scf) levels in the bone marrow. LepR+ cells expressed the highest Cxcl12 levels. In early postnatal bone marrow, SCF from LepR+/Prx1+ stromal cells promoted myeloid and erythroid progenitor maintenance, while SCF from endothelial cells promoted HSC maintenance. Membrane-bound SCF in endothelial cells contributed to HSC maintenance. LepR+ cells and endothelial cells are thus important niche components in early postnatal bone marrow.
Collapse
Affiliation(s)
- Nergis Kara
- Children's Research Institute and the Department of Pediatrics, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Yuanyuan Xue
- Children's Research Institute and the Department of Pediatrics, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Zhiyu Zhao
- Children's Research Institute and the Department of Pediatrics, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Malea M Murphy
- Department of Medical Physiology, Texas A&M School of Medicine, Bryan, TX 77807, USA
| | - Stefano Comazzetto
- Children's Research Institute and the Department of Pediatrics, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Ashley Lesser
- Children's Research Institute and the Department of Pediatrics, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Liming Du
- Children's Research Institute and the Department of Pediatrics, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Sean J Morrison
- Children's Research Institute and the Department of Pediatrics, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA; Howard Hughes Medical Institute, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA.
| |
Collapse
|
92
|
He Y, Li F, Jiang P, Cai F, Lin Q, Zhou M, Liu H, Yan F. Remote control of the recruitment and capture of endogenous stem cells by ultrasound for in situ repair of bone defects. Bioact Mater 2023; 21:223-238. [PMID: 36157244 PMCID: PMC9465026 DOI: 10.1016/j.bioactmat.2022.08.012] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2022] [Revised: 08/08/2022] [Accepted: 08/10/2022] [Indexed: 12/02/2022] Open
Abstract
Stem cell-based tissue engineering has provided a promising platform for repairing of bone defects. However, the use of exogenous bone marrow mesenchymal stem cells (BMSCs) still faces many challenges such as limited sources and potential risks. It is important to develop new approach to effectively recruit endogenous BMSCs and capture them for in situ bone regeneration. Here, we designed an acoustically responsive scaffold (ARS) and embedded it into SDF-1/BMP-2 loaded hydrogel to obtain biomimetic hydrogel scaffold complexes (BSC). The SDF-1/BMP-2 cytokines can be released on demand from the BSC implanted into the defected bone via pulsed ultrasound (p-US) irradiation at optimized acoustic parameters, recruiting the endogenous BMSCs to the bone defected or BSC site. Accompanied by the daily p-US irradiation for 14 days, the alginate hydrogel was degraded, resulting in the exposure of ARS to these recruited host stem cells. Then another set of sinusoidal continuous wave ultrasound (s-US) irradiation was applied to excite the ARS intrinsic resonance, forming highly localized acoustic field around its surface and generating enhanced acoustic trapping force, by which these recruited endogenous stem cells would be captured on the scaffold, greatly promoting them to adhesively grow for in situ bone tissue regeneration. Our study provides a novel and effective strategy for in situ bone defect repairing through acoustically manipulating endogenous BMSCs. We designed ARS and embedded it into SDF-1/BMP-2 loaded hydrogel to form BSC. The BSC can release SDF-1/BMP-2 by p-US irradiation for recruitment of endogenous BMSCs and capture them by s-US irradiation. The in situ repair of bone defects were successfully realized by US-mediated control of the recruitment and capture of BMSCs.
Collapse
Affiliation(s)
- Yanni He
- Department of Ultrasound, Institute of Ultrasound in Musculoskeletal Sports Medicine, Guangdong Second Provincial General Hospital, Guangzhou, 510317, PR China
- The Second School of Clinical Medicine, Southern Medical University, Guangzhou, 510515, China
| | - Fei Li
- Paul C. Lauterbur Research Center for Biomedical Imaging, Institute of Biomedical and Health Engineering, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, People's Republic of China
| | - Peng Jiang
- Paul C. Lauterbur Research Center for Biomedical Imaging, Institute of Biomedical and Health Engineering, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, People's Republic of China
| | - Feiyan Cai
- Paul C. Lauterbur Research Center for Biomedical Imaging, Institute of Biomedical and Health Engineering, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, People's Republic of China
| | - Qin Lin
- Paul C. Lauterbur Research Center for Biomedical Imaging, Institute of Biomedical and Health Engineering, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, People's Republic of China
| | - Meijun Zhou
- Department of Ultrasound, Institute of Ultrasound in Musculoskeletal Sports Medicine, Guangdong Second Provincial General Hospital, Guangzhou, 510317, PR China
| | - Hongmei Liu
- Department of Ultrasound, Institute of Ultrasound in Musculoskeletal Sports Medicine, Guangdong Second Provincial General Hospital, Guangzhou, 510317, PR China
- The Second School of Clinical Medicine, Southern Medical University, Guangzhou, 510515, China
- Corresponding author. Department of Ultrasound, Institute of Ultrasound in Musculoskeletal Sports Medicine, Guangdong Second Provincial General Hospital, Guangzhou, 510317, PR China.
| | - Fei Yan
- Center for Cell and Gene Circuit Design, CAS Key Laboratory of Quantitative Engineering Biology, Shenzhen Institute of Synthetic Biology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, People's Republic of China
- Corresponding author. Center for Cell and Gene Circuit Design, CAS Key Laboratory of Quantitative Engineering Biology, Shenzhen Institute of Synthetic Biology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, People's Republic of China.
| |
Collapse
|
93
|
Solidum JGN, Jeong Y, Heralde F, Park D. Differential regulation of skeletal stem/progenitor cells in distinct skeletal compartments. Front Physiol 2023; 14:1137063. [PMID: 36926193 PMCID: PMC10013690 DOI: 10.3389/fphys.2023.1137063] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2023] [Accepted: 02/16/2023] [Indexed: 03/06/2023] Open
Abstract
Skeletal stem/progenitor cells (SSPCs), characterized by self-renewal and multipotency, are essential for skeletal development, bone remodeling, and bone repair. These cells have traditionally been known to reside within the bone marrow, but recent studies have identified the presence of distinct SSPC populations in other skeletal compartments such as the growth plate, periosteum, and calvarial sutures. Differences in the cellular and matrix environment of distinct SSPC populations are believed to regulate their stemness and to direct their roles at different stages of development, homeostasis, and regeneration; differences in embryonic origin and adjacent tissue structures also affect SSPC regulation. As these SSPC niches are dynamic and highly specialized, changes under stress conditions and with aging can alter the cellular composition and molecular mechanisms in place, contributing to the dysregulation of local SSPCs and their activity in bone regeneration. Therefore, a better understanding of the different regulatory mechanisms for the distinct SSPCs in each skeletal compartment, and in different conditions, could provide answers to the existing knowledge gap and the impetus for realizing their potential in this biological and medical space. Here, we summarize the current scientific advances made in the study of the differential regulation pathways for distinct SSPCs in different bone compartments. We also discuss the physical, biological, and molecular factors that affect each skeletal compartment niche. Lastly, we look into how aging influences the regenerative capacity of SSPCs. Understanding these regulatory differences can open new avenues for the discovery of novel treatment approaches for calvarial or long bone repair.
Collapse
Affiliation(s)
- Jea Giezl Niedo Solidum
- Department of Biochemistry and Molecular Biology, College of Medicine, University of the Philippines Manila, Manila, Philippines
- Department of Molecular and Human Genetics, Houston, TX, United States
| | - Youngjae Jeong
- Department of Molecular and Human Genetics, Houston, TX, United States
| | - Francisco Heralde
- Department of Biochemistry and Molecular Biology, College of Medicine, University of the Philippines Manila, Manila, Philippines
| | - Dongsu Park
- Department of Molecular and Human Genetics, Houston, TX, United States
- Center for Skeletal Biology, Baylor College of Medicine, Houston, TX, United States
| |
Collapse
|
94
|
Zhong L, Lu J, Fang J, Yao L, Yu W, Gui T, Duffy M, Holdreith N, Bautista CA, Huang X, Bandyopadhyay S, Tan K, Chen C, Choi Y, Jiang JX, Yang S, Tong W, Dyment N, Qin L. Csf1 from marrow adipogenic precursors is required for osteoclast formation and hematopoiesis in bone. eLife 2023; 12:e82112. [PMID: 36779854 PMCID: PMC10005765 DOI: 10.7554/elife.82112] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2022] [Accepted: 02/03/2023] [Indexed: 02/14/2023] Open
Abstract
Colony-stimulating factor 1 (Csf1) is an essential growth factor for osteoclast progenitors and an important regulator for bone resorption. It remains elusive which mesenchymal cells synthesize Csf1 to stimulate osteoclastogenesis. We recently identified a novel mesenchymal cell population, marrow adipogenic lineage precursors (MALPs), in bone. Compared to other mesenchymal subpopulations, MALPs expressed Csf1 at a much higher level and this expression was further increased during aging. To investigate its role, we constructed MALP-deficient Csf1 CKO mice using AdipoqCre. These mice had increased femoral trabecular bone mass, but their cortical bone appeared normal. In comparison, depletion of Csf1 in the entire mesenchymal lineage using Prrx1Cre led to a more striking high bone mass phenotype, suggesting that additional mesenchymal subpopulations secrete Csf1. TRAP staining revealed diminished osteoclasts in the femoral secondary spongiosa region of Csf1 CKOAdipoq mice, but not at the chondral-osseous junction nor at the endosteal surface of cortical bone. Moreover, Csf1 CKOAdipoq mice were resistant to LPS-induced calvarial osteolysis. Bone marrow cellularity, hematopoietic progenitors, and macrophages were also reduced in these mice. Taken together, our studies demonstrate that MALPs synthesize Csf1 to control bone remodeling and hematopoiesis.
Collapse
Affiliation(s)
- Leilei Zhong
- Department of Orthopaedic Surgery, Perelman School of Medicine, University of PennsylvaniaPhiladelphiaUnited States
| | - Jiawei Lu
- Department of Orthopaedic Surgery, Perelman School of Medicine, University of PennsylvaniaPhiladelphiaUnited States
| | - Jiankang Fang
- Department of Orthopaedic Surgery, Perelman School of Medicine, University of PennsylvaniaPhiladelphiaUnited States
| | - Lutian Yao
- Department of Orthopaedic Surgery, Perelman School of Medicine, University of PennsylvaniaPhiladelphiaUnited States
| | - Wei Yu
- Department of Orthopaedic Surgery, Perelman School of Medicine, University of PennsylvaniaPhiladelphiaUnited States
- Department of Orthopaedics, Union Hospital, Tongji Medical College, Huazhong University of Science and TechnologyWuhanChina
| | - Tao Gui
- Department of Orthopaedic Surgery, Perelman School of Medicine, University of PennsylvaniaPhiladelphiaUnited States
- Department of Bone and Joint Surgery, Institute of Orthopedic Diseases, The First Affiliated Hospital, Jinan UniversityGuangzhouChina
| | - Michael Duffy
- Department of Orthopaedic Surgery, Perelman School of Medicine, University of PennsylvaniaPhiladelphiaUnited States
| | - Nicholas Holdreith
- Division of Hematology, Children’s Hospital of PhiladelphiaPhiladelphiaUnited States
- Department of Pediatrics, Perelman School of Medicine, University of PennsylvaniaPhiladelphiaUnited States
| | - Catherine A Bautista
- Department of Orthopaedic Surgery, Perelman School of Medicine, University of PennsylvaniaPhiladelphiaUnited States
| | - Xiaobin Huang
- Department of Oral and Maxillofacial Surgery/Pharmacology, School of Dental Medicine, University of PennsylvaniaPhiladelphiaUnited States
| | - Shovik Bandyopadhyay
- Graduate Group in Cell and Molecular Biology, Perelman School of Medicine, University of PennsylvaniaPhiladelphiaUnited States
- Medical Scientist Training Program, Perelman School of Medicine, University of PennsylvaniaPhiladelphiaUnited States
| | - Kai Tan
- Department of Pediatrics, Perelman School of Medicine, University of PennsylvaniaPhiladelphiaUnited States
- Center for Childhood Cancer Research, The Children's Hospital of PhiladelphiaPhiladelphiaUnited States
| | - Chider Chen
- Department of Oral and Maxillofacial Surgery/Pharmacology, School of Dental Medicine, University of PennsylvaniaPhiladelphiaUnited States
| | - Yongwon Choi
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of PennsylvaniaPhiladelphiaUnited States
| | - Jean X Jiang
- Department of Biochemistry and Structural Biology, University of Texas Health Science Center at San AntonioSan AntonioUnited States
| | - Shuying Yang
- Department of Basic and Translational Sciences, School of Dental Medicine, University of PennsylvaniaPhiladelphiaUnited States
| | - Wei Tong
- Division of Hematology, Children’s Hospital of PhiladelphiaPhiladelphiaUnited States
- Department of Pediatrics, Perelman School of Medicine, University of PennsylvaniaPhiladelphiaUnited States
| | - Nathanial Dyment
- Department of Orthopaedic Surgery, Perelman School of Medicine, University of PennsylvaniaPhiladelphiaUnited States
| | - Ling Qin
- Department of Orthopaedic Surgery, Perelman School of Medicine, University of PennsylvaniaPhiladelphiaUnited States
| |
Collapse
|
95
|
Duda GN, Geissler S, Checa S, Tsitsilonis S, Petersen A, Schmidt-Bleek K. The decisive early phase of bone regeneration. Nat Rev Rheumatol 2023; 19:78-95. [PMID: 36624263 DOI: 10.1038/s41584-022-00887-0] [Citation(s) in RCA: 125] [Impact Index Per Article: 62.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/05/2022] [Indexed: 01/11/2023]
Abstract
Bone has a remarkable endogenous regenerative capacity that enables scarless healing and restoration of its prior mechanical function, even under challenging conditions such as advanced age and metabolic or immunological degenerative diseases. However - despite much progress - a high number of bone injuries still heal with unsatisfactory outcomes. The mechanisms leading to impaired healing are heterogeneous, and involve exuberant and non-resolving immune reactions or overstrained mechanical conditions that affect the delicate regulation of the early initiation of scar-free healing. Every healing process begins phylogenetically with an inflammatory reaction, but its spatial and temporal intensity must be tightly controlled. Dysregulation of this inflammatory cascade directly affects the subsequent healing phases and hinders the healing progression. This Review discusses the complex processes underlying bone regeneration, focusing on the early healing phase and its highly dynamic environment, where vibrant changes in cellular and tissue composition alter the mechanical environment and thus affect the signalling pathways that orchestrate the healing process. Essential to scar-free healing is the interplay of various dynamic cascades that control timely resolution of local inflammation and tissue self-organization, while also providing sufficient local stability to initiate endogenous restoration. Various immunotherapy and mechanobiology-based therapy options are under investigation for promoting bone regeneration.
Collapse
Affiliation(s)
- Georg N Duda
- Julius Wolff Institute for Biomechanics and Musculoskeletal Regeneration, Berlin Institute of Health at Charité - Universitätsmedizin Berlin, Berlin, Germany. .,Berlin Institute of Health Centre for Regenerative Therapies (BCRT), Berlin Institute of Health at Charité - Universitätsmedizin Berlin, Berlin, Germany.
| | - Sven Geissler
- Julius Wolff Institute for Biomechanics and Musculoskeletal Regeneration, Berlin Institute of Health at Charité - Universitätsmedizin Berlin, Berlin, Germany.,Berlin Institute of Health Centre for Regenerative Therapies (BCRT), Berlin Institute of Health at Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - Sara Checa
- Julius Wolff Institute for Biomechanics and Musculoskeletal Regeneration, Berlin Institute of Health at Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - Serafeim Tsitsilonis
- Julius Wolff Institute for Biomechanics and Musculoskeletal Regeneration, Berlin Institute of Health at Charité - Universitätsmedizin Berlin, Berlin, Germany.,Berlin Institute of Health Centre for Regenerative Therapies (BCRT), Berlin Institute of Health at Charité - Universitätsmedizin Berlin, Berlin, Germany.,Center for Musculoskeletal Surgery, Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - Ansgar Petersen
- Julius Wolff Institute for Biomechanics and Musculoskeletal Regeneration, Berlin Institute of Health at Charité - Universitätsmedizin Berlin, Berlin, Germany.,Berlin Institute of Health Centre for Regenerative Therapies (BCRT), Berlin Institute of Health at Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - Katharina Schmidt-Bleek
- Julius Wolff Institute for Biomechanics and Musculoskeletal Regeneration, Berlin Institute of Health at Charité - Universitätsmedizin Berlin, Berlin, Germany.,Berlin Institute of Health Centre for Regenerative Therapies (BCRT), Berlin Institute of Health at Charité - Universitätsmedizin Berlin, Berlin, Germany
| |
Collapse
|
96
|
Greenblatt M, Debnath S, Yallowitz A, McCormick J, Lalani S, Zhang T, Cung M, Bok S, Sun J, Ravichandran H, Liu Y, Healey J, Cohen P. Identification of a stem cell mediating osteoblast versus adipocyte lineage selection. RESEARCH SQUARE 2023:rs.3.rs-198922. [PMID: 36747839 PMCID: PMC9901016 DOI: 10.21203/rs.3.rs-198922/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
Most skeletal fragility disorders are characterized by bone loss with a concurrent gain in marrow adipocytes 1-8. This suggests that a cell that forms adipocytes at the expense of osteoblasts is central to the pathogenesis of skeletal disorders. However, this cellular point of bifurcation between adipocyte and osteoblast differentiation pathways remains unknown. Here, we identify a new cell type defined by co-expression of skeletal stem cell and adipocyte precursor markers, 9-13 (CD24+CD29+ skeletal stem cells (SSCs)), that serves as a key cellular point of bifurcation between the osteoblast and adipocyte differentiation pathways, giving rise to closely related osteoblast and adipocyte lineage-restricted precursors. CD24+CD29+SSCs comprise a small fraction of SSCs, and only this fraction displays full stemness features, including the ability to undergo serial transplantation. In line with serving as the osteoblast/adipocyte bipotent cell, the "bone to fat" tissue remodeling occurring in models of postmenopausal osteoporosis or after high fat diet exposure occur in part by reprogramming these CD24+CD29+SSCs to change their output of lineage-restricted precursors. Lastly, as subcutaneous white adipose tissue displays a similar set of CD24+CD29+ stem cells and related lineage-restricted progenitors, these findings provide a new schema explaining the stem cell basis of bone versus adipose tissue production that unifies multiple mesenchymal tissues.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | - Jun Sun
- Weill Cornell Medicine, Cornell University
| | | | - Yifang Liu
- Immunopathology Laboratory, New York Presbyterian
| | | | | |
Collapse
|
97
|
Abstract
Osteoclasts are multinucleated cells with the unique ability to resorb bone matrix. Excessive production or activation of osteoclasts leads to skeletal pathologies that affect a significant portion of the population. Although therapies that effectively target osteoclasts have been developed, they are associated with sometimes severe side effects, and a fuller understanding of osteoclast biology may lead to more specific treatments. Along those lines, a rich body of work has defined essential signaling pathways required for osteoclast formation, function, and survival. Nonetheless, recent studies have cast new light on long-held views regarding the origin of these cells during development and homeostasis, their life span, and the cellular sources of factors that drive their production and activity during homeostasis and disease. In this review, we discuss these new findings in the context of existing work and highlight areas of ongoing and future investigation.
Collapse
Affiliation(s)
- Deborah J Veis
- Division of Bone and Mineral Diseases, Musculoskeletal Research Center; and Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, Missouri, USA; .,Shriners Hospitals for Children, St. Louis, Missouri, USA
| | - Charles A O'Brien
- Center for Musculoskeletal Disease Research, Division of Endocrinology, and Department of Orthopaedic Surgery, University of Arkansas for Medical Sciences, Little Rock, Arkansas, USA.,Central Arkansas Veterans Healthcare System, Little Rock, Arkansas, USA
| |
Collapse
|
98
|
Doolittle ML, Saul D, Kaur J, Rowsey JL, Vos SJ, Pavelko KD, Farr JN, Monroe DG, Khosla S. Multiparametric senescent cell phenotyping reveals CD24 osteolineage cells as targets of senolytic therapy in the aged murine skeleton. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.01.12.523760. [PMID: 36711531 PMCID: PMC9882155 DOI: 10.1101/2023.01.12.523760] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/25/2023]
Abstract
Senescence drives organismal aging, yet the deep characterization of senescent cells in vivo remains incomplete. Here, we applied mass cytometry by time-of-flight (CyTOF) using carefully validated antibodies to analyze senescent cells at single-cell resolution. We used multiple criteria to identify senescent mesenchymal cells that were growth arrested and resistant to apoptosis (p16+/Ki67-/BCL-2+; "p16KB" cells). These cells were highly enriched for senescence-associated secretory phenotype (SASP) and DNA damage markers and were strongly associated with age. p16KB cell percentages were also increased in CD24+ osteolineage cells, which exhibited an inflammatory SASP in aged mice and were robustly cleared by both genetic and pharmacologic senolytic therapies. Following isolation, CD24+ skeletal cells exhibited growth arrest, SA-βgal positivity, and impaired osteogenesis in vitro . These studies thus provide a new approach using multiplexed protein profiling by CyTOF to define senescent mesenchymal cells in vivo and identify a highly inflammatory, senescent CD24+ osteolineage population cleared by senolytics.
Collapse
Affiliation(s)
- Madison L. Doolittle
- Division of Endocrinology, Diabetes and Metabolism, Mayo Clinic, Rochester, MN, 55905, USA
- Robert and Arlene Kogod Center on Aging, Mayo Clinic, Rochester, MN 55905, USA
| | - Dominik Saul
- Division of Endocrinology, Diabetes and Metabolism, Mayo Clinic, Rochester, MN, 55905, USA
- Robert and Arlene Kogod Center on Aging, Mayo Clinic, Rochester, MN 55905, USA
- Department for Trauma and Reconstructive Surgery, BG Clinic, University of Tübingen, Germany
| | - Japneet Kaur
- Division of Endocrinology, Diabetes and Metabolism, Mayo Clinic, Rochester, MN, 55905, USA
- Robert and Arlene Kogod Center on Aging, Mayo Clinic, Rochester, MN 55905, USA
| | - Jennifer L. Rowsey
- Division of Endocrinology, Diabetes and Metabolism, Mayo Clinic, Rochester, MN, 55905, USA
- Robert and Arlene Kogod Center on Aging, Mayo Clinic, Rochester, MN 55905, USA
| | - Stephanie J. Vos
- Division of Endocrinology, Diabetes and Metabolism, Mayo Clinic, Rochester, MN, 55905, USA
- Robert and Arlene Kogod Center on Aging, Mayo Clinic, Rochester, MN 55905, USA
| | - Kevin D. Pavelko
- Department of Immunology, Mayo Clinic, Rochester, MN, 55905, USA
| | - Joshua N. Farr
- Division of Endocrinology, Diabetes and Metabolism, Mayo Clinic, Rochester, MN, 55905, USA
- Robert and Arlene Kogod Center on Aging, Mayo Clinic, Rochester, MN 55905, USA
| | - David G. Monroe
- Division of Endocrinology, Diabetes and Metabolism, Mayo Clinic, Rochester, MN, 55905, USA
- Robert and Arlene Kogod Center on Aging, Mayo Clinic, Rochester, MN 55905, USA
| | - Sundeep Khosla
- Division of Endocrinology, Diabetes and Metabolism, Mayo Clinic, Rochester, MN, 55905, USA
- Robert and Arlene Kogod Center on Aging, Mayo Clinic, Rochester, MN 55905, USA
| |
Collapse
|
99
|
Bone marrow-derived IGF-1 orchestrates maintenance and regeneration of the adult skeleton. Proc Natl Acad Sci U S A 2023; 120:e2203779120. [PMID: 36577075 PMCID: PMC9910602 DOI: 10.1073/pnas.2203779120] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
Insulin-like growth factor I (IGF-1) is a key regulator of tissue growth and development in response to growth hormone stimulation. In the skeletal system, IGF-1 derived from osteoblasts and chondrocytes are essential for normal bone development; however, whether bone marrow (BM)-resident cells provide distinct sources of IGF-1 in the adult skeleton remains elusive. Here, we show that BM stromal cells (BMSCs) and megakaryocytes/platelets (MKs/PLTs) express the highest levels of IGF-1 in adult long bones. Deletion of Igf1 from BMSCs by Lepr-Cre leads to decreased bone formation, impaired bone regeneration, and increased BM adipogenesis. Importantly, reduction of BMSC-derived IGF-1 contributes to fasting-induced marrow fat accumulation. In contrast, deletion of Igf1 from MKs/PLTs by Pf4-Cre leads to reduced bone formation and regeneration without affecting BM adipogenesis. To our surprise, MKs/PLTs are also an important source of systemic IGF-1. Platelet-rich plasma (PRP) from Pf4-Cre; Igf1f/fmice showed compromised osteogenic potential both in vivo and in vitro, suggesting that MK/PLT-derived IGF-1 underlies the therapeutic effects of PRP. Taken together, this study identifies BMSCs and MKs/PLTs as two important sources of IGF-1 that coordinate to maintain and regenerate the adult skeleton, highlighting reciprocal regulation between the hematopoietic and skeletal systems.
Collapse
|
100
|
Novak S, Kalajzic I. AcanCreER lacks specificity to chondrocytes and targets periosteal progenitors in the fractured callus. Bone 2023; 166:116599. [PMID: 36309308 PMCID: PMC9832919 DOI: 10.1016/j.bone.2022.116599] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/26/2022] [Revised: 10/19/2022] [Accepted: 10/24/2022] [Indexed: 11/06/2022]
Abstract
Aggrecan (Acan) is a large proteoglycan molecule constituting the extracellular matrix of cartilage, secreted by chondrocytes. To specifically target the chondrocyte lineage, researchers have widely used the AcanCreER mouse model. Evaluation of specificity and efficiency of recombination, requires Cre animals to be crossed with reporter mice. In order to accurately interpret data from Cre models, it is imperative to consider A) the amount of recombination occurring in cells/tissues that are not intended for targeting (i.e., non-specific expression), B) the efficiency of Cre recombination, which can depend on dose and duration of tamoxifen treatment, and C) the activation of CreER without tamoxifen induction, known as "Cre leakage." Using a highly sensitive reporter mouse (Ai9, tdTomato), we performed a comprehensive analysis of the AcanCreER system. Surprisingly, we observed expression in cells within the periosteum. These cells expand at a stage when chondrocytes are not yet present within the forming callus tissue (Acan/Ai9+ cells). In pulse-chase experiments, we confirmed that fibroblastic Acan/Ai9+ cells within the periosteum can directly give rise to osteoblasts. Our results show that Acan/Ai9+ is not specific for the chondrocyte lineage in the fracture callus or with the tibial holes. The expression of AcanCreER in periosteal progenitor cells complicates the interpretation of studies evaluating the transition of chondrocytes to osteoblasts (termed transdifferentiation). Awareness of these issues and the limitations of the system will lead to better data interpretation.
Collapse
Affiliation(s)
- Sanja Novak
- Department of Reconstructive Sciences, UConn Health, Farmington, CT, USA
| | - Ivo Kalajzic
- Department of Reconstructive Sciences, UConn Health, Farmington, CT, USA.
| |
Collapse
|