51
|
Bu LL, Yuan HH, Xie LL, Guo MH, Liao DF, Zheng XL. New Dawn for Atherosclerosis: Vascular Endothelial Cell Senescence and Death. Int J Mol Sci 2023; 24:15160. [PMID: 37894840 PMCID: PMC10606899 DOI: 10.3390/ijms242015160] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2023] [Revised: 10/01/2023] [Accepted: 10/05/2023] [Indexed: 10/29/2023] Open
Abstract
Endothelial cells (ECs) form the inner linings of blood vessels, and are directly exposed to endogenous hazard signals and metabolites in the circulatory system. The senescence and death of ECs are not only adverse outcomes, but also causal contributors to endothelial dysfunction, an early risk marker of atherosclerosis. The pathophysiological process of EC senescence involves both structural and functional changes and has been linked to various factors, including oxidative stress, dysregulated cell cycle, hyperuricemia, vascular inflammation, and aberrant metabolite sensing and signaling. Multiple forms of EC death have been documented in atherosclerosis, including autophagic cell death, apoptosis, pyroptosis, NETosis, necroptosis, and ferroptosis. Despite this, the molecular mechanisms underlying EC senescence or death in atherogenesis are not fully understood. To provide a comprehensive update on the subject, this review examines the historic and latest findings on the molecular mechanisms and functional alterations associated with EC senescence and death in different stages of atherosclerosis.
Collapse
Affiliation(s)
- Lan-Lan Bu
- School of Pharmacy, Hunan University of Chinese Medicine, Changsha 410208, China; (L.-L.B.); (D.-F.L.)
| | - Huan-Huan Yuan
- College of Integrated Chinese and Western Medicine, Hunan University of Chinese Medicine, Changsha 410208, China; (H.-H.Y.); (L.-L.X.); (M.-H.G.)
| | - Ling-Li Xie
- College of Integrated Chinese and Western Medicine, Hunan University of Chinese Medicine, Changsha 410208, China; (H.-H.Y.); (L.-L.X.); (M.-H.G.)
- Departments of Biochemistry and Molecular Biology and Physiology and Pharmacology, Cumming School of Medicine, University of Calgary, Calgary, AB T2N 1N4, Canada
| | - Min-Hua Guo
- College of Integrated Chinese and Western Medicine, Hunan University of Chinese Medicine, Changsha 410208, China; (H.-H.Y.); (L.-L.X.); (M.-H.G.)
| | - Duan-Fang Liao
- School of Pharmacy, Hunan University of Chinese Medicine, Changsha 410208, China; (L.-L.B.); (D.-F.L.)
| | - Xi-Long Zheng
- Departments of Biochemistry and Molecular Biology and Physiology and Pharmacology, Cumming School of Medicine, University of Calgary, Calgary, AB T2N 1N4, Canada
| |
Collapse
|
52
|
Yang D, Sun B, Li S, Wei W, Liu X, Cui X, Zhang X, Liu N, Yan L, Deng Y, Zhao X. NKG2D-CAR T cells eliminate senescent cells in aged mice and nonhuman primates. Sci Transl Med 2023; 15:eadd1951. [PMID: 37585504 DOI: 10.1126/scitranslmed.add1951] [Citation(s) in RCA: 73] [Impact Index Per Article: 36.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2022] [Accepted: 07/10/2023] [Indexed: 08/18/2023]
Abstract
Cellular senescence, characterized by stable cell cycle arrest, plays an important role in aging and age-associated pathologies. Eliminating senescent cells rejuvenates aged tissues and ameliorates age-associated diseases. Here, we identified that natural killer group 2 member D ligands (NKG2DLs) are up-regulated in senescent cells in vitro, regardless of stimuli that induced cellular senescence, and in various tissues of aged mice and nonhuman primates in vivo. Accordingly, we developed and demonstrated that chimeric antigen receptor (CAR) T cells targeting human NKG2DLs selectively and effectively diminish human cells undergoing senescence induced by oncogenic stress, replicative stress, DNA damage, or P16INK4a overexpression in vitro. Targeting senescent cells with mouse NKG2D-CAR T cells alleviated multiple aging-associated pathologies and improved physical performance in both irradiated and aged mice. Autologous T cells armed with the human NKG2D CAR effectively delete naturally occurring senescent cells in aged nonhuman primates without any observed adverse effects. Our findings establish that NKG2D-CAR T cells could serve as potent and selective senolytic agents for aging and age-associated diseases driven by senescence.
Collapse
Affiliation(s)
- Dong Yang
- Department of Targeting Therapy and Immunology and Laboratory of Animal Tumor Models, Cancer Center and State Key Laboratory of Biotherapy and National Clinical Research Center for Geriatrics and Frontiers Science Center for Disease-related Molecular Network, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, China
| | - Bin Sun
- Department of Targeting Therapy and Immunology and Laboratory of Animal Tumor Models, Cancer Center and State Key Laboratory of Biotherapy and National Clinical Research Center for Geriatrics and Frontiers Science Center for Disease-related Molecular Network, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, China
| | - Shirong Li
- Department of Targeting Therapy and Immunology and Laboratory of Animal Tumor Models, Cancer Center and State Key Laboratory of Biotherapy and National Clinical Research Center for Geriatrics and Frontiers Science Center for Disease-related Molecular Network, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, China
| | - Wenwen Wei
- Department of Targeting Therapy and Immunology and Laboratory of Animal Tumor Models, Cancer Center and State Key Laboratory of Biotherapy and National Clinical Research Center for Geriatrics and Frontiers Science Center for Disease-related Molecular Network, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, China
| | - Xiuyun Liu
- Key Laboratory of Animal Models and Human Disease Mechanisms of Chinese Academy of Sciences, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming,, Yunnan 650223, China
| | - Xiaoyue Cui
- Key Laboratory of Animal Models and Human Disease Mechanisms of Chinese Academy of Sciences, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming,, Yunnan 650223, China
| | - Xianning Zhang
- Key Laboratory of Animal Models and Human Disease Mechanisms of Chinese Academy of Sciences, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming,, Yunnan 650223, China
| | - Nan Liu
- Department of Targeting Therapy and Immunology and Laboratory of Animal Tumor Models, Cancer Center and State Key Laboratory of Biotherapy and National Clinical Research Center for Geriatrics and Frontiers Science Center for Disease-related Molecular Network, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, China
| | - Lanzhen Yan
- Department of Targeting Therapy and Immunology and Laboratory of Animal Tumor Models, Cancer Center and State Key Laboratory of Biotherapy and National Clinical Research Center for Geriatrics and Frontiers Science Center for Disease-related Molecular Network, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, China
| | - Yibin Deng
- Department of Urology, Masonic Cancer Center, University of Minnesota Medical School, Minneapolis, MN 55455, USA
| | - Xudong Zhao
- Department of Targeting Therapy and Immunology and Laboratory of Animal Tumor Models, Cancer Center and State Key Laboratory of Biotherapy and National Clinical Research Center for Geriatrics and Frontiers Science Center for Disease-related Molecular Network, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, China
- Key Laboratory of Animal Models and Human Disease Mechanisms of Chinese Academy of Sciences, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming,, Yunnan 650223, China
| |
Collapse
|
53
|
Hieber C, Grabbe S, Bros M. Counteracting Immunosenescence-Which Therapeutic Strategies Are Promising? Biomolecules 2023; 13:1085. [PMID: 37509121 PMCID: PMC10377144 DOI: 10.3390/biom13071085] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2023] [Revised: 07/03/2023] [Accepted: 07/05/2023] [Indexed: 07/30/2023] Open
Abstract
Aging attenuates the overall responsiveness of the immune system to eradicate pathogens. The increased production of pro-inflammatory cytokines by innate immune cells under basal conditions, termed inflammaging, contributes to impaired innate immune responsiveness towards pathogen-mediated stimulation and limits antigen-presenting activity. Adaptive immune responses are attenuated as well due to lowered numbers of naïve lymphocytes and their impaired responsiveness towards antigen-specific stimulation. Additionally, the numbers of immunoregulatory cell types, comprising regulatory T cells and myeloid-derived suppressor cells, that inhibit the activity of innate and adaptive immune cells are elevated. This review aims to summarize our knowledge on the cellular and molecular causes of immunosenescence while also taking into account senescence effects that constitute immune evasion mechanisms in the case of chronic viral infections and cancer. For tumor therapy numerous nanoformulated drugs have been developed to overcome poor solubility of compounds and to enable cell-directed delivery in order to restore immune functions, e.g., by addressing dysregulated signaling pathways. Further, nanovaccines which efficiently address antigen-presenting cells to mount sustained anti-tumor immune responses have been clinically evaluated. Further, senolytics that selectively deplete senescent cells are being tested in a number of clinical trials. Here we discuss the potential use of such drugs to improve anti-aging therapy.
Collapse
Affiliation(s)
- Christoph Hieber
- Department of Dermatology, University Medical Center of the Johannes Gutenberg-University Mainz, Langenbeckstraße 1, 55131 Mainz, Germany
- Institute of Molecular Biology (IMB), Ackermannweg 4, 55128 Mainz, Germany
| | - Stephan Grabbe
- Department of Dermatology, University Medical Center of the Johannes Gutenberg-University Mainz, Langenbeckstraße 1, 55131 Mainz, Germany
- Institute of Molecular Biology (IMB), Ackermannweg 4, 55128 Mainz, Germany
| | - Matthias Bros
- Department of Dermatology, University Medical Center of the Johannes Gutenberg-University Mainz, Langenbeckstraße 1, 55131 Mainz, Germany
| |
Collapse
|
54
|
D'Ambrosio M, Gil J. Reshaping of the tumor microenvironment by cellular senescence: An opportunity for senotherapies. Dev Cell 2023; 58:1007-1021. [PMID: 37339603 DOI: 10.1016/j.devcel.2023.05.010] [Citation(s) in RCA: 37] [Impact Index Per Article: 18.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2022] [Revised: 02/13/2023] [Accepted: 05/19/2023] [Indexed: 06/22/2023]
Abstract
Cellular senescence is a stress response associated with aging and disease, including cancer. Senescent cells undergo a stable cell cycle arrest, undergo a change in morphology and metabolic reprogramming, and produce a bioactive secretome termed the senescence-associated secretory phenotype (SASP). In cancer, senescence is an important barrier to tumor progression. Induction of senescence in preneoplastic cells limits cancer initiation, and many cancer therapies act in part by inducing senescence in cancer cells. Paradoxically, senescent cells lingering in the tumor microenvironment (TME) can contribute to tumor progression, metastasis, and therapy resistance. In this review, we discuss the different types of senescent cells present in the TME and how these senescent cells and their SASP reshape the TME, affect immune responses, and influence cancer progression. Furthermore, we will highlight the importance of senotherapies, including senolytic drugs that eliminate senescent cells and impede tumor progression and metastasis by restoring anti-tumor immune responses and influencing the TME.
Collapse
Affiliation(s)
- Mariantonietta D'Ambrosio
- MRC London Institute of Medical Sciences (LMS), Du Cane Road, London W12 0NN, UK; Institute of Clinical Sciences (ICS), Faculty of Medicine, Imperial College London, Du Cane Road, London W12 0NN, UK
| | - Jesús Gil
- MRC London Institute of Medical Sciences (LMS), Du Cane Road, London W12 0NN, UK; Institute of Clinical Sciences (ICS), Faculty of Medicine, Imperial College London, Du Cane Road, London W12 0NN, UK.
| |
Collapse
|
55
|
Du PY, Gandhi A, Bawa M, Gromala J. The ageing immune system as a potential target of senolytics. OXFORD OPEN IMMUNOLOGY 2023; 4:iqad004. [PMID: 37255929 PMCID: PMC10191675 DOI: 10.1093/oxfimm/iqad004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2023] [Revised: 04/26/2023] [Accepted: 04/27/2023] [Indexed: 06/01/2023] Open
Abstract
Ageing leads to a sharp decline in immune function, precipitating the development of inflammatory conditions. The combined impact of these processes renders older individuals at greater risk of inflammatory and immune-related diseases, such as cancer and infections. This is compounded by reduced efficacy in interventions aiming to limit disease impact, for instance vaccines being less effective in elderly populations. This state of diminished cellular function is driven by cellular senescence, a process where cells undergo stable growth arrest following exposure to stressful stimuli, and the associated pro-inflammatory secretory phenotype. Removing harmful senescent cells (SnCs) using senolytic therapies is an emerging field holding promise for patient benefit. Current senolytics have been developed either to specifically target SnCs, or repurposed from cancer therapies or vaccination protocols. Herein, we discuss recent developments in senolytic therapies, focusing on how senolytics could be used to combat the age-associated diminution of the immune system. In particular, exploring how these drugs may be used to promote immunity in the elderly, and highlighting recent trials of senolytics in idiopathic pulmonary fibrosis and diabetic kidney disease. Novel immunotherapeutic approaches including chimeric antigen receptor T-cells or monoclonal antibodies targeting SnCs are being investigated to combat the shortcomings of current senolytics and their adverse effects. The flexible nature of senolytic treatment modalities and their efficacy in safely removing harmful SnCs could have great potential to promote healthy immune function in ageing populations.
Collapse
Affiliation(s)
- Peter Yandi Du
- Correspondence address. Faculty of Medicine, Imperial College London, Level 2, Faculty Building, South Kensington Campus, London SW7 2AZ, UK. Tel: +44 (0)20 3313 8213, E-mail:
| | | | | | | |
Collapse
|
56
|
Suda M, Paul KH, Minamino T, Miller JD, Lerman A, Ellison-Hughes GM, Tchkonia T, Kirkland JL. Senescent Cells: A Therapeutic Target in Cardiovascular Diseases. Cells 2023; 12:1296. [PMID: 37174697 PMCID: PMC10177324 DOI: 10.3390/cells12091296] [Citation(s) in RCA: 46] [Impact Index Per Article: 23.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2023] [Revised: 04/27/2023] [Accepted: 04/29/2023] [Indexed: 05/15/2023] Open
Abstract
Senescent cell accumulation has been observed in age-associated diseases including cardiovascular diseases. Senescent cells lack proliferative capacity and secrete senescence-associated secretory phenotype (SASP) factors that may cause or worsen many cardiovascular diseases. Therapies targeting senescent cells, especially senolytic drugs that selectively induce senescent cell removal, have been shown to delay, prevent, alleviate, or treat multiple age-associated diseases in preclinical models. Some senolytic clinical trials have already been completed or are underway for a number of diseases and geriatric syndromes. Understanding how cellular senescence affects the various cell types in the cardiovascular system, such as endothelial cells, vascular smooth muscle cells, fibroblasts, immune cells, progenitor cells, and cardiomyocytes, is important to facilitate translation of senotherapeutics into clinical interventions. This review highlights: (1) the characteristics of senescent cells and their involvement in cardiovascular diseases, focusing on the aforementioned cardiovascular cell types, (2) evidence about senolytic drugs and other senotherapeutics, and (3) the future path and clinical potential of senotherapeutics for cardiovascular diseases.
Collapse
Affiliation(s)
- Masayoshi Suda
- Department of Physiology and Biomedical Engineering, Mayo Clinic, 200 First St., S.W., Rochester, MN 55905, USA
- Department of Cardiovascular Biology and Medicine, Juntendo University Graduate School of Medicine, 3-1-3 Hongo, Bunkyo-ku, Tokyo 113-8421, Japan
| | - Karl H. Paul
- Department of Physiology and Biomedical Engineering, Mayo Clinic, 200 First St., S.W., Rochester, MN 55905, USA
- Department of Physiology and Pharmacology, Karolinska Institutet, Solnavägen 9, 171 65 Solna, Sweden
| | - Tohru Minamino
- Department of Cardiovascular Biology and Medicine, Juntendo University Graduate School of Medicine, 3-1-3 Hongo, Bunkyo-ku, Tokyo 113-8421, Japan
- Japan Agency for Medical Research and Development-Core Research for Evolutionary Medical Science and Technology (AMED-CREST), Japan Agency for Medical Research and Development, Tokyo 100-0004, Japan
| | - Jordan D. Miller
- Division of Cardiovascular Surgery, Mayo Clinic College of Medicine, 200 First St., S.W., Rochester, MN 55905, USA
| | - Amir Lerman
- Department of Cardiovascular Medicine, Mayo Clinic, 200 First St., S.W., Rochester, MN 55905, USA
| | - Georgina M. Ellison-Hughes
- Centre for Human and Applied Physiological Sciences, School of Basic and Medical Biosciences, Faculty of Life Sciences & Medicine, Guy’s Campus, King’s College London, London SE1 1UL, UK
- Centre for Stem Cells and Regenerative Medicine, School of Basic and Medical Biosciences, Faculty of Life Sciences & Medicine, Guy’s Campus, King’s College London, London SE1 1UL, UK
| | - Tamar Tchkonia
- Department of Physiology and Biomedical Engineering, Mayo Clinic, 200 First St., S.W., Rochester, MN 55905, USA
| | - James L. Kirkland
- Department of Physiology and Biomedical Engineering, Mayo Clinic, 200 First St., S.W., Rochester, MN 55905, USA
- Division of General Internal Medicine, Department of Medicine, Mayo Clinic, 200 First St., S.W., Rochester, MN 55905, USA
| |
Collapse
|
57
|
Sato Y, Silina K, van den Broek M, Hirahara K, Yanagita M. The roles of tertiary lymphoid structures in chronic diseases. Nat Rev Nephrol 2023:10.1038/s41581-023-00706-z. [PMID: 37046081 PMCID: PMC10092939 DOI: 10.1038/s41581-023-00706-z] [Citation(s) in RCA: 124] [Impact Index Per Article: 62.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/15/2023] [Indexed: 04/14/2023]
Abstract
Tertiary lymphoid structures (TLSs) are ectopic lymphoid tissues that drive antigen-specific immune responses at sites of chronic inflammation. Unlike secondary lymphoid organs such as lymph nodes, TLSs lack capsules and have their own unique characteristics and functions. The presumed influence of TLSs on the disease course has led to widespread interest in obtaining a better understanding of their biology and function. Studies using single-cell analyses have suggested heterogeneity in TLS composition and phenotype, and consequently, functional correlates with disease progression are sometimes conflicting. The presence of TLSs correlates with a favourable disease course in cancer and infection. Conversely, in autoimmune diseases and chronic age-related inflammatory diseases including chronic kidney disease, the presence of TLSs is associated with a more severe disease course. However, the detailed mechanisms that underlie these clinical associations are not fully understood. To what extent the mechanisms of TLS development and maturation are shared across organs and diseases is also still obscure. Improved understanding of TLS development and function at the cellular and molecular levels may enable the exploitation of these structures to improve therapies for chronic diseases, including chronic kidney disease.
Collapse
Affiliation(s)
- Yuki Sato
- Department of Nephrology, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Karina Silina
- Institute of Pharmaceutical Sciences, Department of Chemistry and Applied Biosciences, ETH Zurich, Zurich, Switzerland
| | | | - Kiyoshi Hirahara
- Department of Immunology, Graduate School of Medicine, Chiba University, Chiba, Japan
- Synergy Institute for Futuristic Mucosal Vaccine Research and Development, Chiba University, Chiba, Japan
| | - Motoko Yanagita
- Department of Nephrology, Graduate School of Medicine, Kyoto University, Kyoto, Japan.
- Institute for the Advanced Study of Human Biology (ASHBi), Kyoto University, Kyoto, Japan.
| |
Collapse
|
58
|
Sugiyama Y, Harada T, Kamei Y, Yasuda T, Mashimo T, Nishikimi A, Maruyama M. A senolytic immunotoxin eliminates p16 INK4a-positive T cells and ameliorates age-associated phenotypes of CD4 + T cells in a surface marker knock-in mouse. Exp Gerontol 2023; 174:112130. [PMID: 36822486 DOI: 10.1016/j.exger.2023.112130] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2022] [Revised: 01/29/2023] [Accepted: 02/20/2023] [Indexed: 02/25/2023]
Abstract
Senescent cells were recently shown to play a role in aging-related malfunctions and pathologies. This consensus has been facilitated by evidence from senolytic model mice capable of eliminating senescent cells in tissues using well-characterized senescent markers, such as p16INK4a (hereafter p16). However, since the incomplete or artificial gene expression regulatory regions of manipulated marker genes affect their cognate expression, it currently remains unclear whether these models accurately reflect physiological senescence. We herein describe a novel approach to eliminate p16-expressing cells from mice at any given point in time, generating a new type of knock-in model, p16hCD2 mice and a toxin-conjugated anti-human CD2 antibody (hCD2-SAP) as an inducer. p16hCD2 mice possess an intact Cdkn2a locus that includes a p16 coding region and human CD2 (hCD2) expression unit. We confirmed cognate p16-associated hCD2 expression in mouse embryonic fibroblasts (MEFs) and in several tissues, such as the spleen, liver, and skin. We detected chronological increases in the hCD2-positive population in T lymphocytes that occurred in a p16-dependent manner, which reflected physiological aging. We then confirmed the high sensitivity of hCD2-SAP to hCD2 and validated its efficacy to remove p16-positive cells, particularly in T lymphocytes. The multiple administration of hCD2-SAP for a prolonged p16-positive cell deficiency partially restored aging-related phenotypes in T lymphocytes, such as the contraction of the CD4+ naïve population and expansion of senescence-associated T cells. Our novel approach of targeting p16-positive senescent cells will provide novel insights into the mechanisms underlying physiological aging in vivo.
Collapse
Affiliation(s)
- Yuma Sugiyama
- Department of Inflammation and Immunosenescence, Geroscience Research Center, Research Institute, National Center for Geriatrics and Gerontology, Obu, Aichi, Japan
| | - Tanenobu Harada
- Department of Inflammation and Immunosenescence, Geroscience Research Center, Research Institute, National Center for Geriatrics and Gerontology, Obu, Aichi, Japan
| | - Yuka Kamei
- Department of Inflammation and Immunosenescence, Geroscience Research Center, Research Institute, National Center for Geriatrics and Gerontology, Obu, Aichi, Japan
| | - Tomoharu Yasuda
- Department of Immunology, Graduate School of Biomedical and Health Science, Hiroshima University, Hiroshima, Japan
| | - Tomoji Mashimo
- Laboratory Animal Research Center, Institute of Medical Science, the University of Tokyo, Tokyo, Japan
| | - Akihiko Nishikimi
- Biosafety Division, Research Institute, National Center for Geriatrics and Gerontology, Obu, Aichi, Japan.
| | - Mitsuo Maruyama
- Department of Inflammation and Immunosenescence, Geroscience Research Center, Research Institute, National Center for Geriatrics and Gerontology, Obu, Aichi, Japan; Department of Aging Research, Nagoya University Graduate School of Medicine, Nagoya, Japan.
| |
Collapse
|
59
|
Takasugi M, Yoshida Y, Hara E, Ohtani N. The role of cellular senescence and SASP in tumour microenvironment. FEBS J 2023; 290:1348-1361. [PMID: 35106956 DOI: 10.1111/febs.16381] [Citation(s) in RCA: 64] [Impact Index Per Article: 32.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2021] [Revised: 12/04/2021] [Accepted: 01/31/2022] [Indexed: 01/01/2023]
Abstract
Cellular senescence refers to a state of irreversible cell cycle arrest that can be induced by various cellular stresses and is known to play a pivotal role in tumour suppression. While senescence-associated growth arrest can inhibit the proliferation of cancer-prone cells, the altered secretory profile of senescent cells, termed the senescence-associated secretory phenotype, can contribute to the microenvironment that promotes tumour development. Although the senescence-associated secretory phenotype and its effects on tumorigenesis are both highly context dependent, mechanisms underlying such diversity are becoming better understood, thereby allowing the creation of new strategies to effectively target the senescence-associated secretory phenotype and senescent cells for cancer therapy. In this review, we discuss the current knowledge on cellular senescence and the senescence-associated secretory phenotype to develop a structural understanding of their roles in the tumour microenvironment and provide perspectives for future research, including the possibility of senotherapy for the treatment of cancer.
Collapse
Affiliation(s)
- Masaki Takasugi
- Department of Pathophysiology, Graduate School of Medicine, Osaka City University, Japan
| | - Yuya Yoshida
- Department of Pathophysiology, Graduate School of Medicine, Osaka City University, Japan
| | - Eiji Hara
- Research Institute for Microbial Diseases, Osaka University, Japan.,Immunology Frontier Research Center (IFReC), Osaka University, Japan.,Center for Infectious Disease Education and Research (CiDER), Osaka University, Japan
| | - Naoko Ohtani
- Department of Pathophysiology, Graduate School of Medicine, Osaka City University, Japan.,AMED-CREST, AMED, Japan Agency for Medical Research and Development, Tokyo, Japan
| |
Collapse
|
60
|
Zhao Y, Li H, Guo Q, Hui H. Multiple characteristic alterations and available therapeutic strategies of cellular senescence. J Zhejiang Univ Sci B 2023; 24:101-114. [PMID: 36751697 PMCID: PMC9936135 DOI: 10.1631/jzus.b2200178] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/09/2023]
Abstract
Given its state of stable proliferative inhibition, cellular senescence is primarily depicted as a critical mechanism by which organisms delay the progression of carcinogenesis. Cells undergoing senescence are often associated with the alteration of a series of specific features and functions, such as metabolic shifts, stemness induction, and microenvironment remodeling. However, recent research has revealed more complexity associated with senescence, including adverse effects on both physiological and pathological processes. How organisms evade these harmful consequences and survive has become an urgent research issue. Several therapeutic strategies targeting senescence, including senolytics, senomorphics, immunotherapy, and function restoration, have achieved initial success in certain scenarios. In this review, we describe in detail the characteristic changes associated with cellular senescence and summarize currently available countermeasures.
Collapse
Affiliation(s)
- Yunzi Zhao
- State Key Laboratory of Natural Medicines, Jiangsu Key Laboratory of Carcinogenesis and Intervention, China Pharmaceutical University, Nanjing, 210009 China
| | - Hui Li
- State Key Laboratory of Natural Medicines, Jiangsu Key Laboratory of Carcinogenesis and Intervention, China Pharmaceutical University, Nanjing, 210009 China
| | - Qinglong Guo
- State Key Laboratory of Natural Medicines, Jiangsu Key Laboratory of Carcinogenesis and Intervention, China Pharmaceutical University, Nanjing, 210009 China
| | - Hui Hui
- State Key Laboratory of Natural Medicines, Jiangsu Key Laboratory of Carcinogenesis and Intervention, China Pharmaceutical University, Nanjing 210009, China.
| |
Collapse
|
61
|
Emerging peptide-based nanovaccines: From design synthesis to defense against cancer and infection. Biomed Pharmacother 2023; 158:114117. [PMID: 36528914 DOI: 10.1016/j.biopha.2022.114117] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2022] [Revised: 12/02/2022] [Accepted: 12/09/2022] [Indexed: 12/23/2022] Open
Abstract
Peptide-based vaccines, which form one of the most potent vaccine platforms, offer exclusive advantages over classical vaccines that use whole organisms or proteins. However, peptides alone are still poor stability and weak immunogenicity, thus need a delivery system that can overcome these shortcomings. Currently, nanotechnology has been extensively utilized to address this issue. Nanovaccines, as new formulations of vaccines using nanoparticles (NPs) as carriers or adjuvants, are undergoing development instead of conventional vaccines. Indeed, peptide-based nanovaccine is a rapidly developing field of research that is emerging out of the confluence of antigenic peptides with the nano-delivery system. In this review, we shed light on the rational design and preparation strategies based on various nanomaterials of peptide-based nanovaccines, and we spotlight progress in the development of peptide-based nanovaccines against cancer and infectious diseases. Finally, the future prospects for development of peptide-based nanovaccines are presented.
Collapse
|
62
|
Shirakawa K, Sano M. Drastic transformation of visceral adipose tissue and peripheral CD4 T cells in obesity. Front Immunol 2023; 13:1044737. [PMID: 36685567 PMCID: PMC9846168 DOI: 10.3389/fimmu.2022.1044737] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2022] [Accepted: 12/12/2022] [Indexed: 01/05/2023] Open
Abstract
Obesity has a pronounced effect on the immune response in systemic organs that results in not only insulin resistance but also altered immune responses to infectious diseases and malignant tumors. Obesity-associated microenvironmental changes alter transcriptional expression and metabolism in T cells, leading to alterations in T-cell differentiation, proliferation, function, and survival. Adipokines, cytokines, and lipids derived from obese visceral adipose tissue (VAT) may also contribute to the systemic T-cell phenotype, resulting in obesity-specific pathogenesis. VAT T cells, which have multiple roles in regulating homeostasis and energy utilization and defending against pathogens, are most susceptible to obesity. In particular, many studies have shown that CD4 T cells are deeply involved in the homeostasis of VAT endocrine and metabolic functions and in obesity-related chronic inflammation. In obesity, macrophages and adipocytes in VAT function as antigen-presenting cells and contribute to the obesity-specific CD4 T-cell response by inducing CD4 T-cell proliferation and differentiation into inflammatory effectors via interactions between major histocompatibility complex class II and T-cell receptors. When obesity persists, prolonged stimulation by leptin and circulating free fatty acids, repetitive antigen stimulation, activating stress responses, and hypoxia induce exhaustion of CD4 T cells in VAT. T-cell exhaustion is characterized by restricted effector function, persistent expression of inhibitory receptors, and a transcriptional state distinct from functional effector and memory T cells. Moreover, obesity causes thymic regression, which may result in homeostatic proliferation of obesity-specific T-cell subsets due to changes in T-cell metabolism and gene expression in VAT. In addition to causing T-cell exhaustion, obesity also accelerates cellular senescence of CD4 T cells. Senescent CD4 T cells secrete osteopontin, which causes further VAT inflammation. The obesity-associated transformation of CD4 T cells remains a negative legacy even after weight loss, causing treatment resistance of obesity-related conditions. This review discusses the marked transformation of CD4 T cells in VAT and systemic organs as a consequence of obesity-related microenvironmental changes.
Collapse
Affiliation(s)
| | - Motoaki Sano
- Department of Cardiology, Keio University School of Medicine, Shinjuku-ku, Tokyo, Japan
| |
Collapse
|
63
|
Choi JY, Yee SF, Tchangalova T, Yang G, Fisher JP. Recent Advances in Senotherapeutics Delivery. TISSUE ENGINEERING. PART B, REVIEWS 2022; 28:1223-1234. [PMID: 35451328 PMCID: PMC9805860 DOI: 10.1089/ten.teb.2021.0212] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/07/2021] [Accepted: 04/12/2022] [Indexed: 01/13/2023]
Abstract
Accumulation of senescent cells (SnCs) in various tissue types has been connected to an occurrence of different age-related diseases that are indicated by its own tissue-specific hallmarks. Discovery of novel senolytic compounds that target major cellular mechanisms to inhibit the level of SnCs within the specific tissues or organs has been an emerging field in the age-related disease research. Although the positive effect of senolytics in global suppression of SnCs has been well studied in the past, effective tissue-specific delivery strategy of senotherapeutics before clinical application needs to be further investigated. In this review, we discuss the latest biological insights to currently available senotherapeutic options and explore the impactful in vitro tissue-engineered models possibly as a testbed for replicable testing of tissue-specific potency of senolytics. Impact statement Senotherapy, the inhibition of accumulated senescent cells, is recognized as a significantly impactful way to treat various human diseases. However, there is limited comprehensive reviews on this topic. This review provides in-depth discussion on diverse delivery strategies of senolytic agents and latest updates on a novel senotherapeutic research.
Collapse
Affiliation(s)
- Ji Young Choi
- Tissue Engineering and Biomaterials Laboratory, Fischell Department of Bioengineering, A. James Clark School of Engineering, University of Maryland, College Park, Maryland, USA
- NIBIB/NIH Center of Engineering Complex Tissues, University of Maryland, College Park, Maryland, USA
| | - Samantha F. Yee
- Tissue Engineering and Biomaterials Laboratory, Fischell Department of Bioengineering, A. James Clark School of Engineering, University of Maryland, College Park, Maryland, USA
| | - Tzvetelina Tchangalova
- Tissue Engineering and Biomaterials Laboratory, Fischell Department of Bioengineering, A. James Clark School of Engineering, University of Maryland, College Park, Maryland, USA
| | - Guang Yang
- Tissue Engineering and Biomaterials Laboratory, Fischell Department of Bioengineering, A. James Clark School of Engineering, University of Maryland, College Park, Maryland, USA
| | - John P. Fisher
- Tissue Engineering and Biomaterials Laboratory, Fischell Department of Bioengineering, A. James Clark School of Engineering, University of Maryland, College Park, Maryland, USA
- NIBIB/NIH Center of Engineering Complex Tissues, University of Maryland, College Park, Maryland, USA
| |
Collapse
|
64
|
Gabandé‐Rodríguez E, Pfeiffer M, Mittelbrunn M. Immuno(T)herapy for age-related diseases. EMBO Mol Med 2022; 15:e16301. [PMID: 36373340 PMCID: PMC9832825 DOI: 10.15252/emmm.202216301] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Revised: 10/10/2022] [Accepted: 10/11/2022] [Indexed: 11/16/2022] Open
Abstract
During the last decade, the stimulation of T-cell function by the blockage of immunosuppressive checkpoints has experienced an outstanding impact in the treatment of cancer. Development of the chimeric antigen receptor T-cell technology has also emerged as a powerful alternative for patients suffering from oncological processes, especially those affected by hematological neoplasms. Recent evidence suggest that the use of immunotherapy could be extended to non-oncological diseases and could be especially relevant for age-associated disorders, opening exciting therapeutic options for a wide range of diseases of the elderly. Here we comment on the emergence of T-cell-based immunotherapies as feasible approaches that could revolutionize the future of GeroScience.
Collapse
Affiliation(s)
- Enrique Gabandé‐Rodríguez
- Departamento de Biología Molecular, Facultad de Ciencias (UAM), Centro de Biología Molecular ‘Severo Ochoa’ (CSIC‐UAM)Universidad Autónoma de MadridMadridSpain,Instituto de Investigación Sanitaria del Hospital 12 de Octubre (i+12)MadridSpain
| | - Matilda Pfeiffer
- Departamento de Biología Molecular, Facultad de Ciencias (UAM), Centro de Biología Molecular ‘Severo Ochoa’ (CSIC‐UAM)Universidad Autónoma de MadridMadridSpain
| | - María Mittelbrunn
- Instituto de Investigación Sanitaria del Hospital 12 de Octubre (i+12)MadridSpain,Consejo Superior de Investigaciones Científicas (CSIC), Centro de Biología Molecular ‘Severo Ochoa’ (CSIC‐UAM)Universidad Autónoma de MadridMadridSpain
| |
Collapse
|
65
|
Olson NC, Doyle MF, Buzkova P, Huber SA, de Boer IH, Sitlani CM, Tracy RP, Psaty BM, Mukamal KJ, Delaney JA. Circulating differentiated and senescent lymphocyte subsets and incident diabetes risk in older adults: The Cardiovascular Health Study. Endocrinol Diabetes Metab 2022; 6:e384. [PMID: 36333945 PMCID: PMC9836256 DOI: 10.1002/edm2.384] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2022] [Revised: 09/28/2022] [Accepted: 10/03/2022] [Indexed: 11/06/2022] Open
Abstract
INTRODUCTION Cellular senescence is a feature of aging implicated in the pathophysiology of diabetes mellitus (DM). Whether senescent lymphocytes are associated with the future occurrence of DM is uncertain. METHODS We used cryopreserved peripheral blood mononuclear cells collected from 1860 Cardiovascular Health Study participants (average age 80.2 years) and flow cytometry immunophenotyping to evaluate the longitudinal relationships of naive (CD45RA+ ), memory (CD45RO+ ), senescent (CD28- ), and T effector memory RA+ (TEMRA) (CD28- CD57+ CD45RA+ ) CD4+ and CD8+ T cells, and memory B cells (CD19+ CD27+ ), with the risk of incident DM. In exploratory analyses we evaluated the relationships of 13 additional innate lymphocyte and CD4+ and CD8+ subsets with incident DM risk. RESULTS Over a median follow-up time of 8.9 years, 155 cases of incident DM occurred. In Cox models adjusted for demographic variables (age, sex, race, study site and flow cytometry analytical batch) or diabetes risk factors (demographic variables plus education, body mass index, smoking status, alcohol use, systolic blood pressure, hypertension medication use and physical activity), no significant associations were observed for any CD4+ , CD8+ or CD19+ cell phenotypes with incident DM. CONCLUSIONS These results suggest the frequencies of naive, memory and senescent T cells and memory B cells are not strongly associated with incident DM risk in older adults.
Collapse
Affiliation(s)
- Nels C. Olson
- Department of Pathology and Laboratory Medicine, Larner College of MedicineUniversity of VermontBurlingtonVermontUSA
| | - Margaret F. Doyle
- Department of Pathology and Laboratory Medicine, Larner College of MedicineUniversity of VermontBurlingtonVermontUSA
| | - Petra Buzkova
- Department of BiostatisticsUniversity of Washington School of Public HealthSeattleWashingtonUSA
| | - Sally A. Huber
- Department of Pathology and Laboratory Medicine, Larner College of MedicineUniversity of VermontBurlingtonVermontUSA
| | - Ian H. de Boer
- Division of Nephrology, Department of MedicineUniversity of WashingtonSeattleWashingtonUSA,Kidney Research InstituteUniversity of WashingtonSeattleWashingtonUSA
| | - Colleen M. Sitlani
- Cardiovascular Health Research Unit, Department of MedicineUniversity of WashingtonSeattleWashingtonUSA
| | - Russell P. Tracy
- Department of Pathology and Laboratory Medicine, Larner College of MedicineUniversity of VermontBurlingtonVermontUSA,Department of Biochemistry, Larner College of MedicineUniversity of VermontBurlingtonVermontUSA
| | - Bruce M. Psaty
- Cardiovascular Health Research Unit, Department of MedicineUniversity of WashingtonSeattleWashingtonUSA,Departments of Epidemiology, and Health Systems and Population HealthUniversity of WashingtonSeattleWashingtonUSA
| | - Kenneth J. Mukamal
- Department of MedicineBeth Israel Deaconess Medical CenterBostonMassachusettsUSA
| | | |
Collapse
|
66
|
Marrella V, Facoetti A, Cassani B. Cellular Senescence in Immunity against Infections. Int J Mol Sci 2022; 23:11845. [PMID: 36233146 PMCID: PMC9570409 DOI: 10.3390/ijms231911845] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Revised: 09/26/2022] [Accepted: 09/29/2022] [Indexed: 11/16/2022] Open
Abstract
Cellular senescence is characterized by irreversible cell cycle arrest in response to different triggers and an inflammatory secretome. Although originally described in fibroblasts and cell types of solid organs, cellular senescence affects most tissues with advancing age, including the lymphoid tissue, causing chronic inflammation and dysregulation of both innate and adaptive immune functions. Besides its normal occurrence, persistent microbial challenge or pathogenic microorganisms might also accelerate the activation of cellular aging, inducing the premature senescence of immune cells. Therapeutic strategies counteracting the detrimental effects of cellular senescence are being developed. Their application to target immune cells might have the potential to improve immune dysfunctions during aging and reduce the age-dependent susceptibility to infections. In this review, we discuss how immune senescence influences the host's ability to resolve more common infections in the elderly and detail the different markers proposed to identify such senescent cells; the mechanisms by which infectious agents increase the extent of immune senescence are also reviewed. Finally, available senescence therapeutics are discussed in the context of their effects on immunity and against infections.
Collapse
Affiliation(s)
- Veronica Marrella
- UOS Milan Unit, Istituto di Ricerca Genetica e Biomedica (IRGB), CNR, 20138 Milan, Italy
- IRCCS Humanitas Research Hospital, 20089 Milan, Italy
| | - Amanda Facoetti
- Department of Biomedical Sciences, Humanitas University, 20090 Milan, Italy
| | - Barbara Cassani
- IRCCS Humanitas Research Hospital, 20089 Milan, Italy
- Department of Medical Biotechnologies and Translational Medicine, Università Degli Studi di Milano, 20089 Milan, Italy
| |
Collapse
|
67
|
New Trends in Aging Drug Discovery. Biomedicines 2022; 10:biomedicines10082006. [PMID: 36009552 PMCID: PMC9405986 DOI: 10.3390/biomedicines10082006] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2022] [Revised: 08/13/2022] [Accepted: 08/15/2022] [Indexed: 11/17/2022] Open
Abstract
Aging is considered the main risk factor for many chronic diseases that frequently appear at advanced ages. However, the inevitability of this process is being questioned by recent research that suggests that senescent cells have specific features that differentiate them from younger cells and that removal of these cells ameliorates senescent phenotype and associated diseases. This opens the door to the design of tailored therapeutic interventions aimed at reducing and delaying the impact of senescence in life, that is, extending healthspan and treating aging as another chronic disease. Although these ideas are still far from reaching the bedside, it is conceivable that they will revolutionize the way we understand aging in the next decades. In this review, we analyze the main and well-validated cellular pathways and targets related to senescence as well as their implication in aging-associated diseases. In addition, the most relevant small molecules with senotherapeutic potential, with a special emphasis on their mechanism of action, ongoing clinical trials, and potential limitations, are discussed. Finally, a brief overview of alternative strategies that go beyond the small molecule field, together with our perspectives for the future of the field, is provided.
Collapse
|
68
|
Chaib S, Tchkonia T, Kirkland JL. Cellular senescence and senolytics: the path to the clinic. Nat Med 2022; 28:1556-1568. [PMID: 35953721 PMCID: PMC9599677 DOI: 10.1038/s41591-022-01923-y] [Citation(s) in RCA: 516] [Impact Index Per Article: 172.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2022] [Accepted: 06/28/2022] [Indexed: 01/10/2023]
Abstract
Interlinked and fundamental aging processes appear to be a root-cause contributor to many disorders and diseases. One such process is cellular senescence, which entails a state of cell cycle arrest in response to damaging stimuli. Senescent cells can arise throughout the lifespan and, if persistent, can have deleterious effects on tissue function due to the many proteins they secrete. In preclinical models, interventions targeting those senescent cells that are persistent and cause tissue damage have been shown to delay, prevent or alleviate multiple disorders. In line with this, the discovery of small-molecule senolytic drugs that selectively clear senescent cells has led to promising strategies for preventing or treating multiple diseases and age-related conditions in humans. In this Review, we outline the rationale for senescent cells as a therapeutic target for disorders across the lifespan and discuss the most promising strategies-including recent and ongoing clinical trials-for translating small-molecule senolytics and other senescence-targeting interventions into clinical use.
Collapse
Affiliation(s)
- Selim Chaib
- Department of Physiology and Biomedical Engineering, Mayo Clinic, Rochester, MN, USA
| | - Tamar Tchkonia
- Department of Physiology and Biomedical Engineering, Mayo Clinic, Rochester, MN, USA
| | - James L Kirkland
- Department of Physiology and Biomedical Engineering, Mayo Clinic, Rochester, MN, USA.
- Division of General Internal Medicine, Department of Medicine, Mayo Clinic, Rochester, MN, USA.
| |
Collapse
|
69
|
The AI-Assisted Identification and Clinical Efficacy of Baricitinib in the Treatment of COVID-19. Vaccines (Basel) 2022; 10:vaccines10060951. [PMID: 35746559 PMCID: PMC9231077 DOI: 10.3390/vaccines10060951] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2022] [Revised: 05/31/2022] [Accepted: 06/08/2022] [Indexed: 02/07/2023] Open
Abstract
During the current pandemic, the vast majority of COVID-19 patients experienced mild symptoms, but some had a potentially fatal aberrant hyperinflammatory immune reaction characterized by high levels of IL-6 and other cytokines. Modulation of this immune reaction has proven to be the only method of reducing mortality in severe and critical COVID-19. The anti-inflammatory drug baricitinib (Olumiant) has recently been strongly recommended by the WHO for use in COVID-19 patients because it reduces the risk of progressive disease and death. It is a Janus Kinase (JAK) 1/2 inhibitor approved for rheumatoid arthritis which was suggested in early 2020 as a treatment for COVID-19. In this review the AI-assisted identification of baricitinib, its antiviral and anti-inflammatory properties, and efficacy in clinical trials are discussed and compared with those of other immune modulators including glucocorticoids, IL-6 and IL-1 receptor blockers and other JAK inhibitors. Baricitinib inhibits both virus infection and cytokine signalling and is not only important for COVID-19 management but is “non-immunological”, and so should remain effective if new SARS-CoV-2 variants escape immune control. The repurposing of baricitinib is an example of how advanced artificial intelligence (AI) can quickly identify new drug candidates that have clinical benefit in previously unsuspected therapeutic areas.
Collapse
|
70
|
Zhu X, Wang X, Li B, Zhang Y, Chen Y, Zhang W, Wang Y, Zhai W, Liu Z, Liu S, Sun J, Chen Z, Gao Y. A Three-In-One Assembled Nanoparticle Containing Peptide-Radio-Sensitizer Conjugate and TLR7/8 Agonist Can Initiate the Cancer-Immunity Cycle to Trigger Antitumor Immune Response. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2022; 18:e2107001. [PMID: 35434938 DOI: 10.1002/smll.202107001] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/13/2021] [Revised: 03/24/2022] [Indexed: 06/14/2023]
Abstract
Radiotherapy (RT) has been shown to cause immunogenic cell death (ICD) of cancer cells, which promote the release of tumor-associated antigens, and trigger the cancer-immunity cycle (CIC). However, ICD induced by RT usually does not occur in hypoxic tumor cells due to their resistance to radiation. Moreover, RT also induces programmed death ligand 1 (PD-L1) upregulation on tumor cells, which has an inhibitory effect on T lymphocytes. Therefore, therapy based on CIC must selectively target the restricted steps of antitumor immunity. Herein, the authors design a versatile three-in-one assembling nanoparticle that can simultaneously execute these obstacles. The amphiphilic peptide drug conjugate NIA-D1, containing the hydrophobic radio-sensitizer 2-(2-nitroimidazol-1-yl) acetic acid (NIA), a peptide substrate of matrix metalloproteinase-2, and a hydrophilic PD-L1 antagonist D PPA-1, is constructed and co-assembled with hydrophobic Toll-like receptor (TLR) 7/8 agonist R848 to form nanoparticle NIA-D1@R848. The NIA-D1@R848 nanoparticles combined with RT can trigger the apoptosis of tumor cells and initiate the CIC. In the presence of R848, it promotes the maturation of dendritic cells, which together with protein programmed cell death protein 1 (PD-1) and its ligand PD-L1 blockade to relieve T cell suppression, and amplify the antitumor immune cycle. In conclusion, a functionalized three-in-one nanoparticle NIA-D1@R848 is successfully constructed, which can induce strong systemic antitumor immune response.
Collapse
Affiliation(s)
- Xueqin Zhu
- School of Life Sciences, Zhengzhou University, Zhengzhou, 450001, China
| | - Xiaoxi Wang
- School of Life Sciences, Zhengzhou University, Zhengzhou, 450001, China
| | - Bingyu Li
- School of Life Sciences, Zhengzhou University, Zhengzhou, 450001, China
| | - Yun Zhang
- School of Life Sciences, Zhengzhou University, Zhengzhou, 450001, China
| | - Yalan Chen
- School of Life Sciences, Zhengzhou University, Zhengzhou, 450001, China
| | - Wenyan Zhang
- School of Life Sciences, Zhengzhou University, Zhengzhou, 450001, China
| | - Yan Wang
- School of Life Sciences, Zhengzhou University, Zhengzhou, 450001, China
| | - Wenjie Zhai
- School of Life Sciences, Zhengzhou University, Zhengzhou, 450001, China
- Henan Key Laboratory of Bioactive Macromolecules, Zhengzhou University, Zhengzhou, 450001, China
- International Joint Laboratory for Protein and Peptide Drugs of Henan Province, Zhengzhou University, Zhengzhou, 450001, China
| | - Zimai Liu
- School of Life Sciences, Zhengzhou University, Zhengzhou, 450001, China
| | - Sijia Liu
- School of Life Sciences, Zhengzhou University, Zhengzhou, 450001, China
| | - Jiaxin Sun
- School of Life Sciences, Zhengzhou University, Zhengzhou, 450001, China
| | - Zhenzhen Chen
- School of Life Sciences, Zhengzhou University, Zhengzhou, 450001, China
- Henan Key Laboratory of Bioactive Macromolecules, Zhengzhou University, Zhengzhou, 450001, China
- International Joint Laboratory for Protein and Peptide Drugs of Henan Province, Zhengzhou University, Zhengzhou, 450001, China
| | - Yanfeng Gao
- School of Life Sciences, Zhengzhou University, Zhengzhou, 450001, China
- School of Pharmaceutical Sciences (Shenzhen), Sun Yat-sen University, Shenzhen, 518107, China
| |
Collapse
|
71
|
A novel soluble epoxide hydrolase vaccine protects murine cardiac muscle against myocardial infarction. Sci Rep 2022; 12:6923. [PMID: 35484372 PMCID: PMC9051153 DOI: 10.1038/s41598-022-10641-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2021] [Accepted: 04/05/2022] [Indexed: 11/08/2022] Open
Abstract
Myocardial infarction is still a life-threatening disease, even though its prognosis has been improved through the development of percutaneous coronary intervention and pharmacotherapy. In addition, heart failure due to remodeling after myocardial infarction requires lifelong management. The aim of this study was to develop a novel treatment suppressing the myocardial damage done by myocardial infarction. We focused on inhibition of soluble epoxide hydrolase to prolong the activation of epoxyeicosatrienoic acids, which have vasodilatory and anti-inflammatory properties. We successfully made a new vaccine to inactivate soluble epoxide hydrolase, and we have evaluated the effect of the vaccine in a rat myocardial infarction model. In the vaccinated group, the ischemic area was significantly reduced, and cardiac function was significantly preserved. Vaccine treatment clearly increased microvessels in the border area and suppressed fibrosis secondary to myocardial infarction. This soluble epoxide hydrolase vaccine is a novel treatment for improving cardiac function following myocardial infarction.
Collapse
|
72
|
Lear TB, Finkel T. Senolytic vaccination: a new mandate for cardiovascular health? THE JOURNAL OF CARDIOVASCULAR AGING 2022; 2:17. [PMID: 36819765 PMCID: PMC9937554 DOI: 10.20517/jca.2022.03] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
Senescent cell accumulation is increasingly associated with a number of age-related cardiovascular diseases. Now, a new manuscript in Nature Aging suggests that a novel vaccine-based strategy might provide a targeted method to eliminate the senescent cell population.
Collapse
Affiliation(s)
- Travis B. Lear
- Aging Institute, University of Pittsburgh/UPMC, Pittsburgh, PA 15219, USA
- Vascular Medicine Institute, University of Pittsburgh, Pittsburgh, PA 15213, USA
| | - Toren Finkel
- Aging Institute, University of Pittsburgh/UPMC, Pittsburgh, PA 15219, USA
| |
Collapse
|
73
|
Murakami T, Inagaki N, Kondoh H. Cellular Senescence in Diabetes Mellitus: Distinct Senotherapeutic Strategies for Adipose Tissue and Pancreatic β Cells. Front Endocrinol (Lausanne) 2022; 13:869414. [PMID: 35432205 PMCID: PMC9009089 DOI: 10.3389/fendo.2022.869414] [Citation(s) in RCA: 50] [Impact Index Per Article: 16.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/04/2022] [Accepted: 03/02/2022] [Indexed: 12/15/2022] Open
Abstract
Increased insulin resistance and impaired insulin secretion are significant characteristics manifested by patients with type 2 diabetes mellitus (T2DM). The degree and extent of these two features in T2DM vary among races and individuals. Insulin resistance is accelerated by obesity and is accompanied by accumulation of dysfunctional adipose tissues. In addition, dysfunction of pancreatic β-cells impairs insulin secretion. T2DM is significantly affected by aging, as the β-cell mass diminishes with age. Moreover, both obesity and hyperglycemia-related metabolic changes in developing diabetes are associated with accumulation of senescent cells in multiple organs, that is, organismal aging. Cellular senescence is defined as a state of irreversible cell cycle arrest with concomitant functional decline. It is caused by telomere shortening or senescence-inducing stress. Senescent cells secrete proinflammatory cytokines and chemokines, which is designated as the senescence-associated secretory phenotype (SASP), and this has a negative impact on adipose tissues and pancreatic β-cells. Recent advances in aging research have suggested that senolysis, the removal of senescent cells, can be a promising therapeutic approach to prevent or improve aging-related diseases, including diabetes. The attenuation of a SASP may be beneficial, although the pathophysiological involvement of cellular senescence in diabetes is not fully understood. In the clinical application of senotherapy, tissue-context-dependent senescent cells are increasingly being recognized as an issue to be solved. Recent studies have observed highly heterogenic and complex senescent cell populations that serve distinct roles among tissues, various stages of disease, and different ages. For example, in high-fat-diet induced diabetes with obesity, mouse adipose tissues display accumulation of p21Cip1-highly-expressing (p21high) cells in the early stage, followed by increases in both p21high and p16INK4a-highly-expressing (p16high) cells in the late stage. Interestingly, elimination of p21high cells in visceral adipose tissue can prevent or improve insulin resistance in mice with obesity, while p16high cell clearance is less effective in alleviating insulin resistance. Importantly, in immune-deficient mice transplanted with fat from obese patients, dasatinib plus quercetin, a senolytic cocktail that reduces the number of both p21high and p16high cells, improves both glucose tolerance and insulin resistance. On the other hand, in pancreatic β cells, p16high cells become increasingly predominant with age and development of diabetes. Consistently, elimination of p16high cells in mice improves both glucose tolerance and glucose-induced insulin secretion. Moreover, a senolytic compound, the anti-Bcl-2 inhibitor ABT263 reduces p16INK4a expression in islets and restores glucose tolerance in mice when combined with insulin receptor antagonist S961 treatment. In addition, efficacy of senotherapy in targeting mouse pancreatic β cells has been validated not only in T2DM, but also in type 1 diabetes mellitus. Indeed, in non-obese diabetic mice, treatment with anti-Bcl-2 inhibitors, such as ABT199, eliminates senescent pancreatic β cells, resulting in prevention of diabetes mellitus. These findings clearly indicate that features of diabetes are partly determined by which or where senescent cells reside in vivo, as adipose tissues and pancreatic β cells are responsible for insulin resistance and insulin secretion, respectively. In this review, we summarize recent advances in understanding cellular senescence in adipose tissues and pancreatic β cells in diabetes. We review the different potential molecular targets and distinctive senotherapeutic strategies in adipose tissues and pancreatic β cells. We propose the novel concept of a dual-target tailored approach in senotherapy against diabetes.
Collapse
Affiliation(s)
- Takaaki Murakami
- Department of Diabetes, Endocrinology and Nutrition, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - Nobuya Inagaki
- Department of Diabetes, Endocrinology and Nutrition, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - Hiroshi Kondoh
- Department of Diabetes, Endocrinology and Nutrition, Kyoto University Graduate School of Medicine, Kyoto, Japan
- Geriatric Unit, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| |
Collapse
|
74
|
Osorio C, Sfera A, Anton JJ, Thomas KG, Andronescu CV, Li E, Yahia RW, Avalos AG, Kozlakidis Z. Virus-Induced Membrane Fusion in Neurodegenerative Disorders. Front Cell Infect Microbiol 2022; 12:845580. [PMID: 35531328 PMCID: PMC9070112 DOI: 10.3389/fcimb.2022.845580] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2022] [Accepted: 03/01/2022] [Indexed: 12/15/2022] Open
Abstract
A growing body of epidemiological and research data has associated neurotropic viruses with accelerated brain aging and increased risk of neurodegenerative disorders. Many viruses replicate optimally in senescent cells, as they offer a hospitable microenvironment with persistently elevated cytosolic calcium, abundant intracellular iron, and low interferon type I. As cell-cell fusion is a major driver of cellular senescence, many viruses have developed the ability to promote this phenotype by forming syncytia. Cell-cell fusion is associated with immunosuppression mediated by phosphatidylserine externalization that enable viruses to evade host defenses. In hosts, virus-induced immune dysfunction and premature cellular senescence may predispose to neurodegenerative disorders. This concept is supported by novel studies that found postinfectious cognitive dysfunction in several viral illnesses, including human immunodeficiency virus-1, herpes simplex virus-1, and SARS-CoV-2. Virus-induced pathological syncytia may provide a unified framework for conceptualizing neuronal cell cycle reentry, aneuploidy, somatic mosaicism, viral spreading of pathological Tau and elimination of viable synapses and neurons by neurotoxic astrocytes and microglia. In this narrative review, we take a closer look at cell-cell fusion and vesicular merger in the pathogenesis of neurodegenerative disorders. We present a "decentralized" information processing model that conceptualizes neurodegeneration as a systemic illness, triggered by cytoskeletal pathology. We also discuss strategies for reversing cell-cell fusion, including, TMEM16F inhibitors, calcium channel blockers, senolytics, and tubulin stabilizing agents. Finally, going beyond neurodegeneration, we examine the potential benefit of harnessing fusion as a therapeutic strategy in regenerative medicine.
Collapse
Affiliation(s)
- Carolina Osorio
- Department of Psychiatry, Loma Linda University, Loma Linda, CA, United States
| | - Adonis Sfera
- Department of Psychiatry, Loma Linda University, Loma Linda, CA, United States
- Department of Psychiatry, Patton State Hospital, San Bernardino, CA, United States
| | - Jonathan J. Anton
- Department of Psychiatry, Patton State Hospital, San Bernardino, CA, United States
| | - Karina G. Thomas
- Department of Psychiatry, Patton State Hospital, San Bernardino, CA, United States
| | - Christina V. Andronescu
- Medical Anthropology – Department of Anthropology, Stanford University, Stanford, CA, United States
| | - Erica Li
- School of Medicine, University of California, Riverside, Riverside, CA, United States
| | - Rayan W. Yahia
- School of Medicine, University of California, Riverside, Riverside, CA, United States
| | - Andrea García Avalos
- Universidad Nacional Autónoma de México (UNAM), Facultad de Medicina Campus, Ciudad de Mexico, Mexico
| | - Zisis Kozlakidis
- International Agency for Research on Cancer (IARC), Lyon, France
| |
Collapse
|
75
|
Abstract
The development of senomorphic drugs to attenuate the senescent phenotype and senolytics to clear pro-inflammatory senescent cells to treat aging-associated disorders is being hotly pursued. The effort is complicated by the fact that senescent cells play a constructive role in some cellular processes such as tissue repair and wound healing. However, concerns about efficacy, which senescent cells to target, and unwanted side effects have created potential roadblocks. Chimeric Antigen Receptor (CAR) T cells directed against urokinase-type plasminogen activator receptor (uPAR), which is expressed on at least a subset of senescent cells (SC) in atherosclerotic plaques and fibrotic livers, removed SC and improved glucose metabolism. A conventional vaccine targeting CD153-expressing senescent T-cells, also improved glucose metabolism in obese mice. Recent work to selectively target senescent cells associated with several pathologies has resulted in the creation of a peptide vaccine that primarily targets endothelial cells expressing high levels of GPNMB, recently identified as a biomarker of senescence. The vaccine reduces atherosclerotic plaque burden and metabolic dysfunction such as glucose intolerance in mouse models of obesity and atherosclerosis. For translation to humans the activity of the vaccine will need to be tightly controlled, as the target, GPNMB has multiple roles in normal physiology including acting to inhibit and possibly resolve inflammation. A promising alternative approach would be to use passive immunization with a monoclonal antibody directed against GPNMB.
Collapse
Affiliation(s)
- Andrew R Mendelsohn
- Panorama Research Institute, 1230 Bordeaux Dr, Sunnyvale, California, United States, 94089.,Regenerative Sciences Institute, 1230 Bordeaux Dr, Sunnyvale, California, United States, 94089;
| | - James Larrick
- Panorama Research Institute, 1230 Bordeaux Drive, Sunnyvale, California, United States, 94089;
| |
Collapse
|
76
|
Omura T, Araki A. Skeletal muscle as a treatment target for older adults with diabetes mellitus: The importance of a multimodal intervention based on functional category. Geriatr Gerontol Int 2022; 22:110-120. [PMID: 34986525 DOI: 10.1111/ggi.14339] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2021] [Revised: 12/01/2021] [Accepted: 12/16/2021] [Indexed: 12/21/2022]
Abstract
Although the lifespan of people with diabetes has increased in many countries, the age-related increase in comorbidities (sarcopenia, frailty and disabilities) and diabetic complications has become a major issue. Diabetes accelerates the aging of skeletal muscles and blood vessels through mechanisms, such as increased oxidative stress, chronic inflammation, insulin resistance, mitochondrial dysfunction, genetic polymorphism (fat mass and obesity-associated genes) and accumulation of advanced glycation end-products. Diabetes is associated with early onset, and progression of muscle weakness and sarcopenia, thus resulting in diminished daily life function. The type and duration of diabetes, insulin section/resistance, hyperglycemia, diabetic neuropathy, malnutrition and low physical activity might affect muscular loss and weakness. To prevent the decline in daily activities in older adults with diabetes, resistance training or multicomponent exercise should be recommended. To maintain muscle function, optimal energy and sufficient protein intake are necessary. Although no specific drug enhances muscle mass and function, antidiabetic drugs that increase insulin sensitivity or secretion could be candidates for improvement of sarcopenia. The goals of glycemic control for older patients are determined based on three functional categories through an assessment of cognitive function and activities of daily living, and the presence or absence of medications that pose a hypoglycemic risk. As these functional categories are associated with muscle weakness, frailty and mortality risk, providing multimodal interventions (exercise, nutrition, social network or support and optimal medical treatment) is important, starting at the category II stage for maintenance or improvement in daily life functions. Geriatr Gerontol Int 2022; ••: ••-••.
Collapse
Affiliation(s)
- Takuya Omura
- Department of Diabetes, Metabolism and Endocrinology, Tokyo Metropolitan Geriatric Hospital, Tokyo, Japan
| | - Atsushi Araki
- Department of Diabetes, Metabolism and Endocrinology, Tokyo Metropolitan Geriatric Hospital, Tokyo, Japan
| |
Collapse
|
77
|
Tomás-Cortázar J, Bossi L, Quinn C, Reynolds CJ, Butler DK, Corcoran N, Murchú MÓ, McMahon E, Singh M, Rongkard P, Anguita J, Blanco A, Dunachie SJ, Altmann D, Boyton RJ, Arnold J, Giltaire S, McClean S. BpOmpW Antigen Stimulates the Necessary Protective T-Cell Responses Against Melioidosis. Front Immunol 2021; 12:767359. [PMID: 34966388 PMCID: PMC8710444 DOI: 10.3389/fimmu.2021.767359] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2021] [Accepted: 11/19/2021] [Indexed: 11/24/2022] Open
Abstract
Melioidosis is a potentially fatal bacterial disease caused by Burkholderia pseudomallei and is estimated to cause 89,000 deaths per year in endemic areas of Southeast Asia and Northern Australia. People with diabetes mellitus are most at risk of melioidosis, with a 12-fold increased susceptibility for severe disease. Interferon gamma (IFN-γ) responses from CD4 and CD8 T cells, but also from natural killer (NK) and natural killer T (NKT) cells, are necessary to eliminate the pathogen. We previously reported that immunization with B. pseudomallei OmpW (BpOmpW antigen) protected mice from lethal B. pseudomallei challenge for up to 81 days. Elucidating the immune correlates of protection of the protective BpOmpW vaccine is an essential step prior to clinical trials. Thus, we immunized either non-insulin-resistant C57BL/6J mice or an insulin-resistant C57BL/6J mouse model of type 2 diabetes (T2D) with a single dose of BpOmpW. BpOmpW induced strong antibody responses, stimulated effector CD4+ and CD8+ T cells and CD4+ CD25+ Foxp3+ regulatory T cells, and produced higher IFN-γ responses in CD4+, CD8+, NK, and NKT cells in non-insulin-resistant mice. The T-cell responses of insulin-resistant mice to BpOmpW were comparable to those of non-insulin-resistant mice. In addition, as a precursor to its evaluation in human studies, humanized HLA-DR and HLA-DQ (human leukocyte antigen DR and DQ isotypes, respectively) transgenic mice elicited IFN-γ recall responses in an enzyme-linked immune absorbent spot (ELISpot)-based study. Moreover, human donor peripheral blood mononuclear cells (PBMCs) exposed to BpOmpW for 7 days showed T-cell proliferation. Finally, plasma from melioidosis survivors with diabetes recognized our BpOmpW vaccine antigen. Overall, the range of approaches used strongly indicated that BpOmpW elicits the necessary immune responses to combat melioidosis and bring this vaccine closer to clinical trials.
Collapse
MESH Headings
- Animals
- Antigens, Bacterial/immunology
- Bacterial Outer Membrane Proteins/immunology
- Bacterial Vaccines/administration & dosage
- Bacterial Vaccines/immunology
- Burkholderia pseudomallei/immunology
- Burkholderia pseudomallei/metabolism
- Burkholderia pseudomallei/physiology
- CD4-Positive T-Lymphocytes/immunology
- CD4-Positive T-Lymphocytes/metabolism
- CD4-Positive T-Lymphocytes/microbiology
- CD8-Positive T-Lymphocytes/immunology
- CD8-Positive T-Lymphocytes/metabolism
- CD8-Positive T-Lymphocytes/microbiology
- Cells, Cultured
- Diabetes Mellitus, Type 2/immunology
- Humans
- Interferon-gamma/immunology
- Interferon-gamma/metabolism
- Killer Cells, Natural/immunology
- Killer Cells, Natural/metabolism
- Killer Cells, Natural/microbiology
- Male
- Melioidosis/immunology
- Melioidosis/microbiology
- Melioidosis/prevention & control
- Mice, Inbred C57BL
- Mice, Transgenic
- T-Lymphocytes/immunology
- T-Lymphocytes/metabolism
- T-Lymphocytes/microbiology
- T-Lymphocytes, Regulatory/immunology
- T-Lymphocytes, Regulatory/metabolism
- T-Lymphocytes, Regulatory/microbiology
- Mice
Collapse
Affiliation(s)
- Julen Tomás-Cortázar
- Conway Institute of Biomolecular and Biomedical Science, University College Dublin, Dublin, Ireland
- School of Biomolecular and Biomedical Science, University College Dublin, Dublin, Ireland
| | - Lorenzo Bossi
- Immunxperts SA, a Nexelis Company, Gosselies, Belgium
| | - Conor Quinn
- Conway Institute of Biomolecular and Biomedical Science, University College Dublin, Dublin, Ireland
- School of Biomolecular and Biomedical Science, University College Dublin, Dublin, Ireland
| | - Catherine J. Reynolds
- Department of Infectious Disease, Imperial College London, London, United Kingdom
- Lung Division, Royal Brompton and Harefield Hospitals, Guy’s and St Thomas’ NHS Foundation Trust, London, United Kingdom
| | - David K. Butler
- Department of Infectious Disease, Imperial College London, London, United Kingdom
- Lung Division, Royal Brompton and Harefield Hospitals, Guy’s and St Thomas’ NHS Foundation Trust, London, United Kingdom
| | - Niamh Corcoran
- Conway Institute of Biomolecular and Biomedical Science, University College Dublin, Dublin, Ireland
- School of Biomolecular and Biomedical Science, University College Dublin, Dublin, Ireland
| | - Maitiú Ó Murchú
- Conway Institute of Biomolecular and Biomedical Science, University College Dublin, Dublin, Ireland
- School of Biomolecular and Biomedical Science, University College Dublin, Dublin, Ireland
| | - Eve McMahon
- Conway Institute of Biomolecular and Biomedical Science, University College Dublin, Dublin, Ireland
- School of Biomolecular and Biomedical Science, University College Dublin, Dublin, Ireland
| | - Mahavir Singh
- LIONEX Diagnostics and Therapeutics GmbH, Brunswick, Germany
| | - Patpong Rongkard
- Mahidol-Oxford Tropical Medicine Research Unit, Bangkok, Thailand
- Oxford Centre for Global Health Research, University of Oxford, Oxford, United Kingdom
| | - Juan Anguita
- Inflammation and Macrophage Plasticity Lab, CIC bioGUNE-BRTA (Basque Research and Technology Alliance), Derio, Spain
- Ikerbasque, Basque Foundation for Science, Bilbao, Spain
| | - Alfonso Blanco
- Conway Institute of Biomolecular and Biomedical Science, University College Dublin, Dublin, Ireland
| | - Susanna J. Dunachie
- Mahidol-Oxford Tropical Medicine Research Unit, Bangkok, Thailand
- Oxford Centre for Global Health Research, University of Oxford, Oxford, United Kingdom
| | - Daniel Altmann
- Department of Infectious Disease, Imperial College London, London, United Kingdom
- Lung Division, Royal Brompton and Harefield Hospitals, Guy’s and St Thomas’ NHS Foundation Trust, London, United Kingdom
| | - Rosemary J. Boyton
- Department of Infectious Disease, Imperial College London, London, United Kingdom
- Lung Division, Royal Brompton and Harefield Hospitals, Guy’s and St Thomas’ NHS Foundation Trust, London, United Kingdom
| | - Johan Arnold
- Immunxperts SA, a Nexelis Company, Gosselies, Belgium
| | | | - Siobhán McClean
- Conway Institute of Biomolecular and Biomedical Science, University College Dublin, Dublin, Ireland
- School of Biomolecular and Biomedical Science, University College Dublin, Dublin, Ireland
| |
Collapse
|
78
|
Yin Y, Chen H, Wang Y, Zhang L, Wang X. Roles of extracellular vesicles in the aging microenvironment and age-related diseases. J Extracell Vesicles 2021; 10:e12154. [PMID: 34609061 PMCID: PMC8491204 DOI: 10.1002/jev2.12154] [Citation(s) in RCA: 99] [Impact Index Per Article: 24.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Revised: 08/12/2021] [Accepted: 09/21/2021] [Indexed: 01/10/2023] Open
Abstract
Cellular senescence is a persistently hypoproliferative state with diverse stressors in a specific aging microenvironment. Senescent cells have a double-edged sword effect: they can be physiologically beneficial for tissue repair, organ growth, and body homeostasis, and they can be pathologically harmful in age-related diseases. Among the hallmarks of senescence, the SASP, especially SASP-related extracellular vesicle (EV) signalling, plays the leading role in aging transmission via paracrine and endocrine mechanisms. EVs are successful in intercellular and interorgan communication in the aging microenvironment and age-related diseases. They have detrimental effects on downstream targets at the levels of immunity, inflammation, gene expression, and metabolism. Furthermore, EVs obtained from different donors are also promising materials and tools for antiaging treatments and are used for regeneration and rejuvenation in cell-free systems. Here, we describe the characteristics of cellular senescence and the aging microenvironment, concentrating on the production and function of EVs in age-related diseases, and provide new ideas for antiaging therapy with EVs.
Collapse
Affiliation(s)
- Yujia Yin
- Department of Obstetrics and GynecologyXinhua Hospital Affiliated to Shanghai Jiao Tong University School of MedicineShanghaiChina
| | - Huihui Chen
- Department of Obstetrics and GynecologyXinhua Hospital Affiliated to Shanghai Jiao Tong University School of MedicineShanghaiChina
| | - Yizhi Wang
- Department of Obstetrics and GynecologyXinhua Hospital Affiliated to Shanghai Jiao Tong University School of MedicineShanghaiChina
| | - Ludi Zhang
- State Key Laboratory of Cell Biology, Shanghai Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological SciencesChinese Academy of Sciences, University of Chinese Academy of SciencesShanghaiChina
| | - Xipeng Wang
- Department of Obstetrics and GynecologyXinhua Hospital Affiliated to Shanghai Jiao Tong University School of MedicineShanghaiChina
| |
Collapse
|
79
|
Gasek NS, Kuchel GA, Kirkland JL, Xu M. Strategies for Targeting Senescent Cells in Human Disease. NATURE AGING 2021; 1:870-879. [PMID: 34841261 PMCID: PMC8612694 DOI: 10.1038/s43587-021-00121-8] [Citation(s) in RCA: 294] [Impact Index Per Article: 73.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/08/2021] [Accepted: 08/27/2021] [Indexed: 12/26/2022]
Abstract
Cellular senescence represents a distinct cell fate characterized by replicative arrest in response to a host of extrinsic and intrinsic stresses. Senescence provides programming during development and wound healing, while limiting tumorigenesis. However, pathologic accumulation of senescent cells is implicated in a range of diseases and age-associated morbidities across organ systems. Senescent cells produce distinct paracrine and endocrine signals, causing local tissue dysfunction and exerting deleterious systemic effects. Senescent cell removal by apoptosis-inducing "senolytic" agents or therapies that inhibit the senescence-associated secretory phenotype, SASP inhibitors, have demonstrated benefit in both pre-clinical and clinical models of geriatric decline and chronic diseases, suggesting senescent cells represent a pharmacologic target for alleviating effects of fundamental aging processes. However, senescent cell populations are heterogeneous in form, function, tissue distribution, and even differ among species, possibly explaining issues of bench-to-bedside translation in current clinical trials. Here, we review features of senescent cells and strategies for targeting them, including immunologic approaches, as well as key intracellular signaling pathways. Additionally, we survey current senolytic therapies in human trials. Collectively, there is demand for research to develop targeted senotherapeutics that address the needs of the aging and chronically-ill.
Collapse
Affiliation(s)
- Nathan S. Gasek
- UConn Center on Aging, UConn Health, Farmington, CT
- Department of Genetics and Genome Sciences, UConn Health, Farmington, CT
| | | | | | - Ming Xu
- UConn Center on Aging, UConn Health, Farmington, CT
- Department of Genetics and Genome Sciences, UConn Health, Farmington, CT
| |
Collapse
|
80
|
Shirakawa K, Sano M. T Cell Immunosenescence in Aging, Obesity, and Cardiovascular Disease. Cells 2021; 10:cells10092435. [PMID: 34572084 PMCID: PMC8464832 DOI: 10.3390/cells10092435] [Citation(s) in RCA: 48] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2021] [Revised: 09/13/2021] [Accepted: 09/14/2021] [Indexed: 12/24/2022] Open
Abstract
Although advances in preventive medicine have greatly improved prognosis, cardiovascular disease (CVD) remains the leading cause of death worldwide. This clearly indicates that there remain residual cardiovascular risks that have not been targeted by conventional therapies. The results of multiple animal studies and clinical trials clearly indicate that inflammation is the most important residual risk and a potential target for CVD prevention. The immune cell network is intricately regulated to maintain homeostasis. Ageing associated changes to the immune system occurs in both innate and adaptive immune cells, however T cells are most susceptible to this process. T-cell changes due to thymic degeneration and homeostatic proliferation, metabolic abnormalities, telomere length shortening, and epigenetic changes associated with aging and obesity may not only reduce normal immune function, but also induce inflammatory tendencies, a process referred to as immunosenescence. Since the disruption of biological homeostasis by T cell immunosenescence is closely related to the development and progression of CVD via inflammation, senescent T cells are attracting attention as a new therapeutic target. In this review, we discuss the relationship between CVD and T cell immunosenescence associated with aging and obesity.
Collapse
Affiliation(s)
- Kohsuke Shirakawa
- Department of Cardiovascular Medicine, Graduate School of Medicine, Juntendo University, Bunkyo-ku, Tokyo 1138421, Japan;
| | - Motoaki Sano
- Department of Cardiology, Keio University School of Medicine, Shinjuku-ku, Tokyo 1608582, Japan
- Correspondence: ; Tel.: +81-(3)-5363-3874
| |
Collapse
|
81
|
Borgoni S, Kudryashova KS, Burka K, de Magalhães JP. Targeting immune dysfunction in aging. Ageing Res Rev 2021; 70:101410. [PMID: 34280555 DOI: 10.1016/j.arr.2021.101410] [Citation(s) in RCA: 102] [Impact Index Per Article: 25.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2021] [Revised: 06/28/2021] [Accepted: 07/14/2021] [Indexed: 12/23/2022]
Abstract
Human aging is a multifactorial phenomenon that affects numerous organ systems and cellular processes, with the immune system being one of the most dysregulated. Immunosenescence, the gradual deterioration of the immune system, and inflammaging, a chronic inflammatory state that persists in the elderly, are among the plethora of immune changes that occur during aging. Almost all populations of immune cells change with age in terms of numbers and/or activity. These alterations are in general highly detrimental, resulting in an increased susceptibility to infections, reduced healing abilities, and altered homeostasis that promote the emergence of age-associated diseases such as cancer, diabetes, and other diseases associated with inflammation. Thanks to recent developments, several strategies have been proposed to target central immunological processes or specific immune subpopulations affected by aging. These therapeutic approaches could soon be applied in the clinic to slow down or even reverse specific age-induced immune changes in order to rejuvenate the immune system and prevent or reduce the impact of various diseases. Due to its systemic nature and interconnection with all the other systems in the body, the immune system is an attractive target for aging intervention because relatively targeted modifications to a small set of cells have the potential to improve the health of multiple organ systems. Therefore, anti-aging immune targeting therapies could represent a potent approach for improving healthspan. Here, we review aging changes in the major components of the immune system, we summarize the current immune-targeting therapeutic approaches in the context of aging and discuss the future directions in the field of immune rejuvenation.
Collapse
|
82
|
Yan X, Imano N, Tamaki K, Sano M, Shinmura K. The effect of caloric restriction on the increase in senescence-associated T cells and metabolic disorders in aged mice. PLoS One 2021; 16:e0252547. [PMID: 34143796 PMCID: PMC8213184 DOI: 10.1371/journal.pone.0252547] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2021] [Accepted: 05/18/2021] [Indexed: 12/14/2022] Open
Abstract
Aging is associated with functional decline in the immune system and increases the risk of chronic diseases owing to smoldering inflammation. In the present study, we demonstrated an age-related increase in the accumulation of Programmed Death-1 (PD-1)+ memory-phenotype T cells that are considered “senescence-associated T cells” in both the visceral adipose tissue and spleen. As caloric restriction is an established intervention scientifically proven to exert anti-aging effects and greatly affects physiological and pathophysiological alterations with advanced age, we evaluated the effect of caloric restriction on the increase in this T-cell subpopulation and glucose tolerance in aged mice. Long-term caloric restriction significantly decreased the number of PD-1+ memory-phenotype cluster of differentiation (CD) 4+ and CD8+ T cells in the spleen and visceral adipose tissue, decreased M1-type macrophage accumulation in visceral adipose tissue, and improved insulin resistance in aged mice. Furthermore, the immunological depletion of PD-1+ T cells reduced adipose inflammation and improved insulin resistance in aged mice. Taken together with our previous report, these results indicate that senescence-related T-cell subpopulations are involved in the development of chronic inflammation and insulin resistance in the context of chronological aging and obesity. Thus, long-term caloric restriction and specific deletion of senescence-related T cells are promising interventions to regulate age-related chronic diseases.
Collapse
Affiliation(s)
- Xiaoxiang Yan
- Ruijin Hospital, Institute of Cardiovascular Diseases and Department of Cardiology, Shanghai Jiao Tong University School of Medicine, Shanghai, PR China
- Department of Cardiology, Keio University School of Medicine, Tokyo, Japan
| | - Natsumi Imano
- Department of General Internal Medicine, Hyogo College of Medicine, Nishinomiya, Japan
- Department of Bioscience, School of Science and Technology, Kwansei Gakuin University, Sanda, Japan
| | - Kayoko Tamaki
- Department of Cardiology, Keio University School of Medicine, Tokyo, Japan
- Department of General Internal Medicine, Hyogo College of Medicine, Nishinomiya, Japan
| | - Motoaki Sano
- Department of Cardiology, Keio University School of Medicine, Tokyo, Japan
| | - Ken Shinmura
- Department of Cardiology, Keio University School of Medicine, Tokyo, Japan
- Department of General Internal Medicine, Hyogo College of Medicine, Nishinomiya, Japan
- * E-mail: ,
| |
Collapse
|
83
|
Nakagami H, Hayashi H, Shimamura M, Rakugi H, Morishita R. Therapeutic vaccine for chronic diseases after the COVID-19 Era. Hypertens Res 2021; 44:1047-1053. [PMID: 34099884 PMCID: PMC8184354 DOI: 10.1038/s41440-021-00677-3] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2021] [Accepted: 04/24/2021] [Indexed: 12/27/2022]
Abstract
There is currently a respiratory disease outbreak caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). After rapid development, RNA vaccines and adenoviral vector vaccines were approved within a year, which has demonstrated the strong impact of preventing infectious diseases using gene therapy technology. Furthermore, intensive immunological analysis has been performed to evaluate the efficiency and safety of these vaccines, potentially allowing for rapid progress in vaccine technology. After the coronavirus disease 2019 (COVID-19) era, the novel vaccine technology developed will expand to other vaccines. We have been developing vaccines for chronic diseases, such as hypertension, for >10 years. Regarding the development of vaccines against self-antigens (i.e., angiotensin II), the vaccine should efficiently induce a blocking antibody response against the self-antigen without activating cytotoxic T cells. Therefore, the epitope vaccine approach has been proposed to induce antibody production in response to a combination of a B cell epitope and exogenous T cell epitopes through major histocompatibility complex molecules. When these vaccines are established as therapeutic options for hypertension, their administration regimen, which might be a few times per year, will replace daily medication use. Thus, therapeutic vaccines for hypertension may be a novel option to control the progression of cerebrovascular diseases. Hopefully, the accumulation of immunological findings and vaccine technology advances due to COVID-19 will provide a novel concept for vaccines for chronic diseases.
Collapse
Affiliation(s)
- Hironori Nakagami
- Department of Health Development and Medicine, Osaka University Graduate School of Medicine, Suita, Japan.
| | - Hiroki Hayashi
- Department of Health Development and Medicine, Osaka University Graduate School of Medicine, Suita, Japan
| | - Munehisa Shimamura
- Department of Health Development and Medicine, Osaka University Graduate School of Medicine, Suita, Japan
| | - Hiromi Rakugi
- Department of Geriatric and General Medicine, Osaka University Graduate School of Medicine, Suita, Japan
| | - Ryuichi Morishita
- Department of Clinical Gene Therapy, Osaka University Graduate School of Medicine, Suita, Japan
| |
Collapse
|
84
|
Carrasco E, Gómez de Las Heras MM, Gabandé-Rodríguez E, Desdín-Micó G, Aranda JF, Mittelbrunn M. The role of T cells in age-related diseases. Nat Rev Immunol 2021; 22:97-111. [PMID: 34099898 DOI: 10.1038/s41577-021-00557-4] [Citation(s) in RCA: 107] [Impact Index Per Article: 26.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/22/2021] [Indexed: 12/11/2022]
Abstract
Age-related T cell dysfunction can lead to failure of immune tolerance mechanisms, resulting in aberrant T cell-driven cytokine and cytotoxic responses that ultimately cause tissue damage. In this Review, we discuss the role of T cells in the onset and progression of age-associated conditions, focusing on cardiovascular disorders, metabolic dysfunction, neuroinflammation and defective tissue repair and regeneration. We present different mechanisms by which T cells contribute to inflammageing and might act as modulators of age-associated diseases, including through enhanced pro-inflammatory and cytotoxic activity, defective clearance of senescent cells or regulation of the gut microbiota. Finally, we propose that 'resetting' immune system tolerance or targeting pathogenic T cells could open up new therapeutic opportunities to boost resilience to age-related diseases.
Collapse
Affiliation(s)
- Elisa Carrasco
- Departamento de Biología, Facultad de Ciencias (UAM); Centro de Biología Molecular 'Severo Ochoa' (CSIC-UAM), Universidad Autónoma de Madrid, Madrid, Spain.,Departamento de Biología Molecular, Facultad de Ciencias (UAM); Centro de Biología Molecular 'Severo Ochoa' (CSIC-UAM), Universidad Autónoma de Madrid, Madrid, Spain
| | - Manuel M Gómez de Las Heras
- Departamento de Biología Molecular, Facultad de Ciencias (UAM); Centro de Biología Molecular 'Severo Ochoa' (CSIC-UAM), Universidad Autónoma de Madrid, Madrid, Spain.,Instituto de Investigación Sanitaria del Hospital 12 de Octubre (i+12), Madrid, Spain
| | - Enrique Gabandé-Rodríguez
- Departamento de Biología Molecular, Facultad de Ciencias (UAM); Centro de Biología Molecular 'Severo Ochoa' (CSIC-UAM), Universidad Autónoma de Madrid, Madrid, Spain.,Instituto de Investigación Sanitaria del Hospital 12 de Octubre (i+12), Madrid, Spain
| | - Gabriela Desdín-Micó
- Departamento de Biología Molecular, Facultad de Ciencias (UAM); Centro de Biología Molecular 'Severo Ochoa' (CSIC-UAM), Universidad Autónoma de Madrid, Madrid, Spain.,Instituto de Investigación Sanitaria del Hospital 12 de Octubre (i+12), Madrid, Spain
| | - Juan Francisco Aranda
- Departamento de Biología Molecular, Facultad de Ciencias (UAM); Centro de Biología Molecular 'Severo Ochoa' (CSIC-UAM), Universidad Autónoma de Madrid, Madrid, Spain.,Instituto de Investigación Sanitaria del Hospital 12 de Octubre (i+12), Madrid, Spain
| | - Maria Mittelbrunn
- Departamento de Biología Molecular, Facultad de Ciencias (UAM); Centro de Biología Molecular 'Severo Ochoa' (CSIC-UAM), Universidad Autónoma de Madrid, Madrid, Spain. .,Instituto de Investigación Sanitaria del Hospital 12 de Octubre (i+12), Madrid, Spain.
| |
Collapse
|
85
|
Senescent T cells: a potential biomarker and target for cancer therapy. EBioMedicine 2021; 68:103409. [PMID: 34049248 PMCID: PMC8170103 DOI: 10.1016/j.ebiom.2021.103409] [Citation(s) in RCA: 88] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2021] [Revised: 04/09/2021] [Accepted: 05/06/2021] [Indexed: 12/27/2022] Open
Abstract
The failure of T cells to eradicate tumour cells in the tumour microenvironment is mainly due to the dysfunction of T cells. Senescent T cells, with defects in proliferation and effector functions, accumulate in ageing, chronic viral infections, and autoimmune disorders where antigen stimulation persists. Increasing evidence suggests that inducing T cell senescence is a key strategy used by malignant tumours to evade immune surveillance. In this review, we summarize the general features, functional regulation, and signalling network of senescent T cells in tumour development and highlight their potential as prognostic biomarkers in multiple cancer treatments, including chemotherapy, radiotherapy, and immunotherapy. Moreover, we discuss possible therapeutic strategies for preventing or rejuvenating senescence in tumour-specific T cells. Understanding these critical issues may provide novel strategies to enhance cancer immunotherapy.
Collapse
|
86
|
Mittelbrunn M, Kroemer G. Hallmarks of T cell aging. Nat Immunol 2021; 22:687-698. [PMID: 33986548 DOI: 10.1038/s41590-021-00927-z] [Citation(s) in RCA: 323] [Impact Index Per Article: 80.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2020] [Accepted: 03/17/2021] [Indexed: 12/13/2022]
Abstract
The aged adaptive immune system is characterized by progressive dysfunction as well as increased autoimmunity. This decline is responsible for elevated susceptibility to infection and cancer, as well as decreased vaccination efficacy. Recent evidence indicates that CD4+ T cell-intrinsic alteratins contribute to chronic inflammation and are sufficient to accelerate an organism-wide aging phenotype, supporting the idea that T cell aging plays a major role in body-wide deterioration. In this Review, we propose ten molecular hallmarks to represent common denominators of T cell aging. These hallmarks are grouped into four primary hallmarks (thymic involution, mitochondrial dysfunction, genetic and epigenetic alterations, and loss of proteostasis) and four secondary hallmarks (reduction of the TCR repertoire, naive-memory imbalance, T cell senescence, and lack of effector plasticity), and together they explain the manifestation of the two integrative hallmarks (immunodeficiency and inflammaging). A major challenge now is weighing the relative impact of these hallmarks on T cell aging and understanding their interconnections, with the final goal of defining molecular targets for interventions in the aging process.
Collapse
Affiliation(s)
- Maria Mittelbrunn
- Instituto de Investigación Sanitaria Hospital 12 de Octubre (imas12), Madrid, Spain. .,Centro de Biología Molecular Severo Ochoa (CBMSO), Consejo Superior de Investigaciones Científicas (CSIC)-Universidad Autónoma de Madrid (UAM), Madrid, Spain.
| | - Guido Kroemer
- Centre de Recherche des Cordeliers, Equipe labellisée par la Ligue contre le cancer, Université de Paris, Sorbonne Université, Inserm U1138, Institut Universitaire de France, Paris, France. .,Metabolomics and Cell Biology Platforms, Institut Gustave Roussy, Villejuif, France. .,Pôle de Biologie, Hôpital Européen Georges Pompidou, AP-HP, Paris, France. .,Suzhou Institute for Systems Medicine, Chinese Academy of Medical Sciences, Suzhou, China. .,Karolinska Institute, Department of Women's and Children's Health, Karolinska University Hospital, Stockholm, Sweden.
| |
Collapse
|
87
|
Chandra A, Rajawat J. Skeletal Aging and Osteoporosis: Mechanisms and Therapeutics. Int J Mol Sci 2021; 22:ijms22073553. [PMID: 33805567 PMCID: PMC8037620 DOI: 10.3390/ijms22073553] [Citation(s) in RCA: 130] [Impact Index Per Article: 32.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2021] [Revised: 03/23/2021] [Accepted: 03/25/2021] [Indexed: 02/06/2023] Open
Abstract
Bone is a dynamic organ maintained by tightly regulated mechanisms. With old age, bone homeostasis, which is maintained by an intricate balance between bone formation and bone resorption, undergoes deregulation. Oxidative stress-induced DNA damage, cellular apoptosis, and cellular senescence are all responsible for this tissue dysfunction and the imbalance in the bone homeostasis. These cellular mechanisms have become a target for therapeutics to treat age-related osteoporosis. Genetic mouse models have shown the importance of senescent cell clearance in alleviating age-related osteoporosis. Furthermore, we and others have shown that targeting cellular senescence pharmacologically was an effective tool to alleviate age- and radiation-induced osteoporosis. Senescent cells also have an altered secretome known as the senescence associated secretory phenotype (SASP), which may have autocrine, paracrine, or endocrine function. The current review discusses the current and potential pathways which lead to a senescence profile in an aged skeleton and how bone homeostasis is affected during age-related osteoporosis. The review has also discussed existing therapeutics for the treatment of osteoporosis and rationalizes for novel therapeutic options based on cellular senescence and the SASP as an underlying pathogenesis of an aging bone.
Collapse
Affiliation(s)
- Abhishek Chandra
- Department of Physiology and Biomedical Engineering, Mayo Clinic, Rochester, MN 55902, USA
- Department of Internal Medicine, Division of Geriatric Medicine and Gerontology, Mayo Clinic, Rochester, MN 55902, USA
- Robert and Arlene Kogod Aging Center, Mayo Clinic, Rochester, MN 55902, USA
- Correspondence: ; Tel.: +1-507-266-1847
| | - Jyotika Rajawat
- Department of Zoology, University of Lucknow, University Rd, Babuganj, Hasanganj, Lucknow, Uttar Pradesh 226007, India;
| |
Collapse
|
88
|
Kurosawa M, Shikama Y, Furukawa M, Arakaki R, Ishimaru N, Matsushita K. Chemokines Up-Regulated in Epithelial Cells Control Senescence-Associated T Cell Accumulation in Salivary Glands of Aged and Sjögren's Syndrome Model Mice. Int J Mol Sci 2021; 22:ijms22052302. [PMID: 33669065 PMCID: PMC7956724 DOI: 10.3390/ijms22052302] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2021] [Revised: 02/21/2021] [Accepted: 02/22/2021] [Indexed: 12/29/2022] Open
Abstract
Immunosenescence is characterized by age-associated changes in immunological functions. Although age- and autoimmune-related sialadenitis cause dry mouth (xerostomia), the roles of immunosenescence and cellular senescence in the pathogenesis of sialadenitis remain unknown. We demonstrated that acquired immune cells rather than innate immune cells infiltrated the salivary glands (SG) of aged mice. An analysis of isolated epithelial cells from SG revealed that the expression levels of the chemokine CXCL13 were elevated in aged mice. Senescence-associated T cells (SA-Ts), which secrete large amounts of atypical pro-inflammatory cytokines, are involved in the pathogenesis of metabolic disorders and autoimmune diseases. The present results showed that SA-Ts and B cells, which express the CXCL13 receptor CXCR5, accumulated in the SG of aged mice, particularly females. CD4+ T cells derived from aged mice exhibited stronger in vitro migratory activity toward CXCL13 than those from young mice. In a mouse model of Sjögren’s syndrome (SS), SA-Ts also accumulated in SG, presumably via CXCL12-CXCR4 signaling. Collectively, the present results indicate that SA-Ts accumulate in SG, contribute to the pathogenesis of age- and SS-related sialadenitis by up-regulating chemokines in epithelial cells, and have potential as therapeutic targets for the treatment of xerostomia caused by these types of sialadenitis.
Collapse
Affiliation(s)
- Mie Kurosawa
- Department of Oral Disease Research, National Center for Geriatrics and Gerontology, 7-430 Morioka-cho, Obu 474-8511, Japan; (M.K.); (M.F.); (K.M.)
| | - Yosuke Shikama
- Department of Oral Disease Research, National Center for Geriatrics and Gerontology, 7-430 Morioka-cho, Obu 474-8511, Japan; (M.K.); (M.F.); (K.M.)
- Correspondence: ; Tel.: +81-562-46-2311
| | - Masae Furukawa
- Department of Oral Disease Research, National Center for Geriatrics and Gerontology, 7-430 Morioka-cho, Obu 474-8511, Japan; (M.K.); (M.F.); (K.M.)
| | - Rieko Arakaki
- Department of Oral Molecular Pathology, Tokushima University Graduate School of Biomedical Sciences, 3-18-15 Kuramoto-cho, Tokushima 770-8504, Japan; (R.A.); (N.I.)
| | - Naozumi Ishimaru
- Department of Oral Molecular Pathology, Tokushima University Graduate School of Biomedical Sciences, 3-18-15 Kuramoto-cho, Tokushima 770-8504, Japan; (R.A.); (N.I.)
| | - Kenji Matsushita
- Department of Oral Disease Research, National Center for Geriatrics and Gerontology, 7-430 Morioka-cho, Obu 474-8511, Japan; (M.K.); (M.F.); (K.M.)
| |
Collapse
|
89
|
Abstract
PURPOSE OF REVIEW Childhood obesity, with persistent chronic inflammation, is a worldwide epidemic. Obesity causes dysregulation throughout the immune system, affecting the balance and levels of cytokines, adipokines, and innate and adaptive immune cells. The present review focuses on the impact of obesity on immune function in children: altering the baseline activation state of immune cells and affecting the ability of the host to combat pathogens and malignancy and respond appropriately to vaccination. RECENT FINDINGS Obesity causes dysregulation of the immune system. Single-cell RNA-sequencing of adipose tissue and resident immune cells is quantifying the impact of obesity on the frequency of immune cell subsets and their states. The system-wide alterations in immune function in obesity are most evident upon perturbation, including the response to infection (e.g. increased risk of severe COVID-19 in the ongoing pandemic), vaccination, and malignancy. However, mechanistic research in pediatric obesity is limited and this impacts our ability to care for these children. SUMMARY We must better understand baseline and perturbed immune health in obese children to determine how to account for altered frequency and function of humoral and cellular immune components in acute infection, during vaccine design and when considering therapeutic options for this complex, medically vulnerable group.
Collapse
Affiliation(s)
- Xingyuan Fang
- Children’s Hospital of Philadelphia, Department of Pediatrics, Division of Allergy Immunology, Philadelphia, PA
| | - Jorge Henao-Mejia
- Children’s Hospital of Philadelphia, Department of Pathology, Division of Allergy Immunology, Philadelphia, PA
- Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA
- Institute for Immunology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA
| | - Sarah E. Henrickson
- Children’s Hospital of Philadelphia, Department of Pediatrics, Division of Allergy Immunology, Philadelphia, PA
- Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA
- Institute for Immunology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA
| |
Collapse
|
90
|
Peng S, Cao F, Xia Y, Gao XD, Dai L, Yan J, Ma G. Particulate Alum via Pickering Emulsion for an Enhanced COVID-19 Vaccine Adjuvant. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2020; 32:e2004210. [PMID: 32864794 DOI: 10.1002/adma.202004210] [Citation(s) in RCA: 53] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/20/2020] [Revised: 07/27/2020] [Indexed: 05/02/2023]
Abstract
For rapid response against the prevailing COVID-19 (coronavirus disease 19), it is a global imperative to exploit the immunogenicity of existing formulations for safe and efficient vaccines. As the most accessible adjuvant, aluminum hydroxide (alum) is still the sole employed adjuvant in most countries. However, alum tends to attach on the membrane rather than entering the dendritic cells (DCs), leading to the absence of intracellular transfer and process of the antigens, and thus limits T-cell-mediated immunity. To address this, alum is packed on the squalene/water interphase is packed, forming an alum-stabilized Pickering emulsion (PAPE). "Inheriting" from alum and squalene, PAPE demonstrates a good biosafety profile. Intriguingly, with the dense array of alum on the oil/water interphase, PAPE not only adsorbs large quantities of SARS-CoV-2 (severe acute respiratory syndrome coronavirus 2) antigens, but also harbors a higher affinity for DC uptake, which provokes the uptake and cross-presentation of the delivered antigens. Compared with alum-treated groups, more than six times higher antigen-specific antibody titer and three-fold more IFN-γ-secreting T cells are induced, indicating the potent humoral and cellular immune activations. Collectively, the data suggest that PAPE may provide potential insights toward a safe and efficient adjuvant platform for the enhanced COVID-19 vaccinations.
Collapse
Affiliation(s)
- Sha Peng
- State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing, 100190, P. R. China
- Key Laboratory of Carbohydrate Chemistry and Biotechnology Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, Jiangsu, 214122, P. R. China
| | - Fengqiang Cao
- State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing, 100190, P. R. China
- Graduate School of Bio-Applications and Systems Engineering, Tokyo University of Agriculture and Technology, 2-24-16 Nakacho, Koganei, Tokyo, 184-8588, Japan
| | - Yufei Xia
- State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing, 100190, P. R. China
- University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
- Innovation Academy for Green Manufacture, Chinese Academy of Sciences, Beijing, 100190, P. R. China
| | - Xiao-Dong Gao
- Key Laboratory of Carbohydrate Chemistry and Biotechnology Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, Jiangsu, 214122, P. R. China
| | - Lianpan Dai
- Beijing Institute of Life Science, Chinese Academy of Sciences, Beijing, 100101, P. R. China
| | - Jinghua Yan
- Institute of Microbiology, Chinese Academy of Sciences, Beijing, 100101, P. R. China
| | - Guanghui Ma
- State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing, 100190, P. R. China
- University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
- Innovation Academy for Green Manufacture, Chinese Academy of Sciences, Beijing, 100190, P. R. China
| |
Collapse
|
91
|
Abstract
Vaccines are well-known therapies for infectious disease and cancer; however, recently, we and others have developed vaccines for other chronic diseases, such as hypertension, diabetes and dyslipidemia. Although we have many treatment options for hypertension, including angiotensin II type 1 receptor blockers, calcium-channel blockers, and diuretics, a substantial portion of the hypertensive population has uncontrolled blood pressure due to poor medication adherence. When these vaccines are established in the future as therapeutic options for chronic diseases, their administration regimen, such as several times per year, will replace daily medication use. Thus, therapeutic vaccines might be a novel option to control the progression of cardiovascular diseases. Importantly, regarding the development of vaccines against self-antigens (i.e., angiotensin II), the vaccine should efficiently induce a blocking antibody response against the self-antigen without provoking cytotoxic T cells. Therefore, to address the safety and efficiency of therapeutic vaccines, we have developed an original B-cell vaccine to induce antibody production and used carrier proteins, which include exogenous T-cell epitopes through the major histocompatibility complex. In this review, we will introduce the challenges in developing therapeutic vaccines for chronic diseases and describe the therapeutic potential for cardiovascular diseases.
Collapse
Affiliation(s)
- Ryo Nakamaru
- Department of Geriatric and General Medicine, Osaka University Graduate School of Medicine.,Department of Health Development and Medicine, Osaka University Graduate School of Medicine
| | - Hironori Nakagami
- Department of Health Development and Medicine, Osaka University Graduate School of Medicine
| | - Hiromi Rakugi
- Department of Geriatric and General Medicine, Osaka University Graduate School of Medicine
| | - Ryuichi Morishita
- Department of Clinical Gene Therapy, Osaka University Graduate School of Medicine
| |
Collapse
|