51
|
Hou M, Zheng L, Zhao D, Tan X, Feng W, Fu J, Wei T, Cao M, Zhang J, Chen C. Microenvironment reconstitution of highly active Ni single atoms on oxygen-incorporated Mo 2C for water splitting. Nat Commun 2024; 15:1342. [PMID: 38351117 PMCID: PMC10864306 DOI: 10.1038/s41467-024-45533-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2023] [Accepted: 01/25/2024] [Indexed: 02/16/2024] Open
Abstract
The rational design of efficient bifunctional single-atom electrocatalysts for industrial water splitting and the comprehensive understanding of its complex catalytic mechanisms remain challenging. Here, we report a Ni single atoms supported on oxygen-incorporated Mo2C via Ni-O-Mo bridge bonds, that gives high oxygen evolution reaction (OER) and hydrogen evolution reaction (HER) bifunctional activity. By ex situ synchrotron X-ray absorption spectroscopy and electron microscopy, we found that after HER, the coordination number and bond lengths of Ni-O and Ni-Mo (Ni-O-Mo) were all altered, yet the Ni species still remain atomically dispersed. In contrast, after OER, the atomically dispersed Ni were agglomerated into very small clusters with new Ni-Ni (Ni-O-Ni) bonds appeared. Combining experimental results and DFT calculations, we infer the oxidation degree of Mo2C and the configuration of single-atom Ni are both vital for HER or OER. This study provides both a feasible strategy and model to rational design highly efficient electrocatalysts for water electrolysis.
Collapse
Affiliation(s)
- Mengyun Hou
- Key Laboratory of Cluster Science, Ministry of Education of China, Beijing Key Laboratory of Photoelectronic/Electrophotonic Conversion Materials, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing, 100081, China
| | - Lirong Zheng
- Beijing Synchrotron Radiation Facility, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing, 100049, China
| | - Di Zhao
- Key Laboratory of Cluster Science, Ministry of Education of China, Beijing Key Laboratory of Photoelectronic/Electrophotonic Conversion Materials, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing, 100081, China.
| | - Xin Tan
- Engineering Research Center of Advanced Rare Earth Materials, Department of Chemistry, Tsinghua University, Beijing, 100084, China
| | - Wuyi Feng
- Key Laboratory of Cluster Science, Ministry of Education of China, Beijing Key Laboratory of Photoelectronic/Electrophotonic Conversion Materials, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing, 100081, China
| | - Jiantao Fu
- Key Laboratory of Cluster Science, Ministry of Education of China, Beijing Key Laboratory of Photoelectronic/Electrophotonic Conversion Materials, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing, 100081, China
| | - Tianxin Wei
- Key Laboratory of Cluster Science, Ministry of Education of China, Beijing Key Laboratory of Photoelectronic/Electrophotonic Conversion Materials, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing, 100081, China
| | - Minhua Cao
- Key Laboratory of Cluster Science, Ministry of Education of China, Beijing Key Laboratory of Photoelectronic/Electrophotonic Conversion Materials, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing, 100081, China.
| | - Jiatao Zhang
- Key Laboratory of Cluster Science, Ministry of Education of China, Beijing Key Laboratory of Photoelectronic/Electrophotonic Conversion Materials, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing, 100081, China.
| | - Chen Chen
- Engineering Research Center of Advanced Rare Earth Materials, Department of Chemistry, Tsinghua University, Beijing, 100084, China.
| |
Collapse
|
52
|
Hou L, Li Z, Jang H, Kim MG, Cho J, Liu S, Liu X. Grain Boundary Tailors the Local Chemical Environment on Iridium Surface for Alkaline Electrocatalytic Hydrogen Evolution. Angew Chem Int Ed Engl 2024; 63:e202315633. [PMID: 38151468 DOI: 10.1002/anie.202315633] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Revised: 11/14/2023] [Accepted: 12/27/2023] [Indexed: 12/29/2023]
Abstract
Even though grain boundaries (GBs) have been previously employed to increase the number of active catalytic sites or tune the binding energies of reaction intermediates for promoting electrocatalytic reactions, the effect of GBs on the tailoring of the local chemical environment on the catalyst surface has not been clarified thus far. In this study, a GBs-enriched iridium (GB-Ir) was synthesized and examined for the alkaline hydrogen evolution reaction (HER). Operando Raman spectroscopy and density functional theory (DFT) calculations revealed that a local acid-like environment with H3 O+ intermediates was created in the GBs region owing to the electron-enriched surface Ir atoms at the GBs. The H3 O+ intermediates lowered the energy barrier for water dissociation and provided enough hydrogen proton to promote the generation of hydrogen spillover from the sites at the GBs to the sites away from the GBs, thus synergistically enhancing the hydrogen evolution activity. Notably, the GB-Ir catalyst exhibited a high alkaline HER activity (10 mV @ 10 mA cm-2 , 20 mV dec-1 ). We believe that our findings will promote further research on GBs and the surface science of electrochemical reactions.
Collapse
Affiliation(s)
- Liqiang Hou
- College of Chemical Engineering, Qingdao University of Science and Technology, Qingdao, 266042, China
| | - Zijian Li
- Department of Chemistry, City University of Hong Kong, Hong Kong, SAR, China
| | - Haeseong Jang
- Department of Advanced Materials Engineering, Chung-Ang University, Seoul, 156-756, South Korea
| | - Min Gyu Kim
- Beamline Research Division, Pohang Accelerator Laboratory (PAL), Pohang, 790-784, Korea
| | - Jaephil Cho
- Department of Energy Engineering, Department of Energy and Chemical Engineering, Ulsan National Institute of Science and Technology (UNIST), Ulsan, 44919, South Korea
| | - Shangguo Liu
- College of Chemical Engineering, Qingdao University of Science and Technology, Qingdao, 266042, China
| | - Xien Liu
- College of Chemical Engineering, Qingdao University of Science and Technology, Qingdao, 266042, China
| |
Collapse
|
53
|
Huang Z, Hu S, Sun M, Xu Y, Liu S, Ren R, Zhuang L, Chan TS, Hu Z, Ding T, Zhou J, Liu L, Wang M, Huang YC, Tian N, Bu L, Huang B, Huang X. Implanting oxophilic metal in PtRu nanowires for hydrogen oxidation catalysis. Nat Commun 2024; 15:1097. [PMID: 38321034 PMCID: PMC10847104 DOI: 10.1038/s41467-024-45369-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Accepted: 01/19/2024] [Indexed: 02/08/2024] Open
Abstract
Bimetallic PtRu are promising electrocatalysts for hydrogen oxidation reaction in anion exchange membrane fuel cell, where the activity and stability are still unsatisfying. Here, PtRu nanowires were implanted with a series of oxophilic metal atoms (named as i-M-PR), significantly enhancing alkaline hydrogen oxidation reaction (HOR) activity and stability. With the dual doping of In and Zn atoms, the i-ZnIn-PR/C shows mass activity of 10.2 A mgPt+Ru-1 at 50 mV, largely surpassing that of commercial Pt/C (0.27 A mgPt-1) and PtRu/C (1.24 A mgPt+Ru-1). More importantly, the peak power density and specific power density are as high as 1.84 W cm-2 and 18.4 W mgPt+Ru-1 with a low loading (0.1 mg cm-2) anion exchange membrane fuel cell. Advanced experimental characterizations and theoretical calculations collectively suggest that dual doping with In and Zn atoms optimizes the binding strengths of intermediates and promotes CO oxidation, enhancing the HOR performances. This work deepens the understanding of developing novel alloy catalysts, which will attract immediate interest in materials, chemistry, energy and beyond.
Collapse
Affiliation(s)
- Zhongliang Huang
- State Key Laboratory for Physical Chemistry of Solid Surfaces, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005, China
| | - Shengnan Hu
- State Key Laboratory for Physical Chemistry of Solid Surfaces, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005, China
| | - Mingzi Sun
- Department of Applied Biology and Chemical Technology, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong SAR, 999077, China
| | - Yong Xu
- Nano-X Vacuum Interconnected Nano-X Vacuum Interconnected Workstation, Suzhou Institute of Nano-Tech and Nano-Bionics (SINANO), Chinese Academy of Sciences (CAS), Suzhou, Jiangsu, 215123, China.
| | - Shangheng Liu
- State Key Laboratory for Physical Chemistry of Solid Surfaces, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005, China
| | - Renjie Ren
- College of Chemistry and Molecular Sciences, Hubei Key Lab of Electrochemical Power Sources, Wuhan University, Wuhan, 430072, China
| | - Lin Zhuang
- College of Chemistry and Molecular Sciences, Hubei Key Lab of Electrochemical Power Sources, Wuhan University, Wuhan, 430072, China
| | - Ting-Shan Chan
- National Synchrotron Radiation Research Center, 101 Hsin-Ann Road, Hsinchu, 30076, Taiwan
| | - Zhiwei Hu
- Max Planck Institute for Chemical Physics of Solids, Nothnitzer Strasse 40, Dresden, 01187, Germany
| | - Tianyi Ding
- State Key Laboratory for Physical Chemistry of Solid Surfaces, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005, China
| | - Jing Zhou
- Shanghai Institute of Applied Physics, Chinese Academy of Sciences, Shanghai, 201800, China
| | - Liangbin Liu
- State Key Laboratory for Physical Chemistry of Solid Surfaces, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005, China
| | - Mingmin Wang
- State Key Laboratory for Physical Chemistry of Solid Surfaces, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005, China
| | - Yu-Cheng Huang
- Department of Electrophysics, National Yang Ming Chiao Tung University, Hsinchu, 30010, Taiwan
| | - Na Tian
- State Key Laboratory for Physical Chemistry of Solid Surfaces, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005, China
| | - Lingzheng Bu
- College of Energy, Xiamen University, Xiamen, 361102, China.
| | - Bolong Huang
- Department of Applied Biology and Chemical Technology, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong SAR, 999077, China.
| | - Xiaoqing Huang
- State Key Laboratory for Physical Chemistry of Solid Surfaces, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005, China.
- Innovation Laboratory for Sciences and Technologies of Energy Materials of Fujian Province (IKKEM), Xiamen, 361005, China.
| |
Collapse
|
54
|
Xiong D, He X, Liu X, Gong S, Xu C, Tu Z, Wu D, Wang J, Chen Z. 1D/3D Heterogeneous Assembling Body of Cobalt Nitrides for Highly Efficient Overall Hydrazine Splitting and Supercapacitors. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2306100. [PMID: 37817367 DOI: 10.1002/smll.202306100] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/19/2023] [Revised: 09/27/2023] [Indexed: 10/12/2023]
Abstract
Herein, the construction of a heterostructured 1D/3D CoN-Co2 N@NF (nickel foam) electrode used for thermodynamically favorable hydrazine oxidation reaction (HzOR), as an alternative to sluggish anodic oxygen evolution reaction (OER) in water splitting for hydrogen production, is reported. The electrode exhibits remarkable catalytic activities, with an onset potential of -0.11 V in HzOR and -71 mV for a current density of 10 mA cm-2 in hydrogen evolution reaction (HER). Consequently, an extraordinary low cell voltage of 53 mV is required to achieve 10 mA cm-2 for overall hydrazine splitting in a two-electrode system, demonstrating significant energy-saving advantages over conventional water splitting. The HzOR proceeds through the 4e- reaction pathway to release N2 while the 1e- pathway to emit NH3 is uncompetitive, as evidenced by differential electrochemical mass spectrometric measurements. The X-ray absorption spectroscopy, in situ Raman spectroscopy, and theoretical calculations identify cobalt nitrides rather than corresponding oxides/(oxy)hydroxides as catalytic species for HzOR and illustrate advantages of heterostructured CoN-Co2 N in optimizing adsorption energies of intermediates/reagents and promoting catalytic activities toward both HzOR and HER. The CoN-Co2 N@NF is also an excellent supercapacitive material, exhibiting an increased specific capacity (938 F g-1 at 1 A g-1 ) with excellent cycling stability (95.8%, 5000 cycles).
Collapse
Affiliation(s)
- Dengke Xiong
- Shanghai Key Lab of Chemical Assessment and Sustainability, School of Chemical Science and Engineering, Tongji University, 1239 Siping Road, Shanghai, 200092, China
| | - Xiaoyang He
- Shanghai Key Lab of Chemical Assessment and Sustainability, School of Chemical Science and Engineering, Tongji University, 1239 Siping Road, Shanghai, 200092, China
| | - Xuan Liu
- Shanghai Key Lab of Chemical Assessment and Sustainability, School of Chemical Science and Engineering, Tongji University, 1239 Siping Road, Shanghai, 200092, China
| | - Shuaiqi Gong
- Shanghai Key Lab of Chemical Assessment and Sustainability, School of Chemical Science and Engineering, Tongji University, 1239 Siping Road, Shanghai, 200092, China
| | - Chen Xu
- Shanghai Key Lab of Chemical Assessment and Sustainability, School of Chemical Science and Engineering, Tongji University, 1239 Siping Road, Shanghai, 200092, China
| | - Zhentao Tu
- Shanghai Key Lab of Chemical Assessment and Sustainability, School of Chemical Science and Engineering, Tongji University, 1239 Siping Road, Shanghai, 200092, China
| | - Deli Wu
- State Key Laboratory of Pollution Control and Resources Reuse, College of Environmental Science and Engineering, Tongji University, 1239 Siping Road, Shanghai, 200092, China
| | - Jianying Wang
- Shanghai Key Lab of Chemical Assessment and Sustainability, School of Chemical Science and Engineering, Tongji University, 1239 Siping Road, Shanghai, 200092, China
| | - Zuofeng Chen
- Shanghai Key Lab of Chemical Assessment and Sustainability, School of Chemical Science and Engineering, Tongji University, 1239 Siping Road, Shanghai, 200092, China
| |
Collapse
|
55
|
Liu X, Sun W, Chen J, Wen Z. Controllable Electrochemical Liberation of Hydrogen from Sodium Borohydride. Angew Chem Int Ed Engl 2024; 63:e202317313. [PMID: 38055203 DOI: 10.1002/anie.202317313] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Revised: 12/01/2023] [Accepted: 12/05/2023] [Indexed: 12/07/2023]
Abstract
Sodium borohydride (NaBH4 ) has earned recognition as a promising hydrogen carrier, attributed to its exceptional hydrogen storage capacity, boasting a high theoretical storage capacity of 10.8 wt %. Nonetheless, the utilization of traditional pyrolysis and hydrolysis methods still presents a formidable challenge in achieving controlled hydrogen generation especially under ambient conditions. In this work, we report an innovative electrochemical strategy for production H2 by coupling NaBH4 electrooxidation reaction (BOR) at anode in alkaline media with hydrogen evolution reaction (HER) at cathode in acidic media. To implement this, we have developed a bifunctional electrocatalyst denoted as Pd-Mo2 C@CNTs, wherein Pd nanoparticles are grown in situ on Mo2 C embedded within N-doped carbon nanotubes. This electrocatalyst demonstrates exceptional performance in catalyzing both alkaline BOR and acidic HER. We have developed a hybrid acid/alkali cell, utilizing Pd/Mo2 C@CNTs as the anode and cathode electrocatalysts. This configuration showcases remarkable capabilities for self-sustained, precise, and uninterrupted indirect release of H2 stored in NaBH4 , even at high current densities of 100 mA cm-2 with a Faraday efficiency approaching 100 %. Additionally, this electrochemical device exhibits significant promise as a fuel cell, with the ability to deliver a maximum power density of 20 mW cm-2 .
Collapse
Affiliation(s)
- Xi Liu
- CAS Key Laboratory of Design and Assembly of Functional Nanostructures, Fujian Provincial Key Laboratory of Materials and Techniques toward Hydrogen Energy, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian, 350002, China
| | - Wei Sun
- CAS Key Laboratory of Design and Assembly of Functional Nanostructures, Fujian Provincial Key Laboratory of Materials and Techniques toward Hydrogen Energy, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian, 350002, China
| | - Junxiang Chen
- CAS Key Laboratory of Design and Assembly of Functional Nanostructures, Fujian Provincial Key Laboratory of Materials and Techniques toward Hydrogen Energy, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian, 350002, China
| | - Zhenhai Wen
- CAS Key Laboratory of Design and Assembly of Functional Nanostructures, Fujian Provincial Key Laboratory of Materials and Techniques toward Hydrogen Energy, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian, 350002, China
| |
Collapse
|
56
|
Qin Q, Jang H, Jiang X, Wang L, Wang X, Kim MG, Liu S, Liu X, Cho J. Constructing Interfacial Oxygen Vacancy and Ruthenium Lewis Acid-Base Pairs to Boost the Alkaline Hydrogen Evolution Reaction Kinetics. Angew Chem Int Ed Engl 2024; 63:e202317622. [PMID: 38061991 DOI: 10.1002/anie.202317622] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2023] [Indexed: 01/10/2024]
Abstract
Simultaneous optimization of the energy level of water dissociation, hydrogen and hydroxide desorption is the key to achieving fast kinetics for the alkaline hydrogen evolution reaction (HER). Herein, the well-dispersed Ru clusters on the surface of amorphous/crystalline CeO2-δ (Ru/ac-CeO2-δ ) is demonstrated to be an excellent electrocatalyst for significantly boosting the alkaline HER kinetics owing to the presence of unique oxygen vacancy (VO ) and Ru Lewis acid-base pairs (LABPs). The representative Ru/ac-CeO2-δ exhibits an outstanding mass activity of 7180 mA mgRu -1 that is approximately 9 times higher than that of commercial Pt/C at the potential of -0.1 V (V vs RHE) and an extremely low overpotential of 21.2 mV at a geometric current density of 10 mA cm-2 . Experimental and theoretical studies reveal that the VO as Lewis acid sites facilitate the adsorption of H2 O and cleavage of H-OH bonds, meanwhile, the weak Lewis basic Ru clusters favor for the hydrogen desorption. Importantly, the desorption of OH from VO sites is accelerated via a water-assisted proton exchange pathway, and thus boost the kinetics of alkaline HER. This study sheds new light on the design of high-efficiency electrocatalysts with LABPs for the enhanced alkaline HER.
Collapse
Affiliation(s)
- Qing Qin
- College of Chemical Engineering, Qingdao University of Science and Technology, Qingdao, 266042, China
| | - Haeseong Jang
- Department of Advanced Materials Engineering, Chung-Ang University, Anseong-si, Gyeonggi-do, 17546, Korea
| | - Xiaoli Jiang
- College of Chemical Engineering, Qingdao University of Science and Technology, Qingdao, 266042, China
| | - Liu Wang
- College of Chemical Engineering, Qingdao University of Science and Technology, Qingdao, 266042, China
| | - Xuefeng Wang
- College of Chemical Engineering, Qingdao University of Science and Technology, Qingdao, 266042, China
| | - Min Gyu Kim
- Beamline Research Division, Pohang Accelerator Laboratory (PAL), Pohang, 37673, South Korea
| | - Shangguo Liu
- College of Chemical Engineering, Qingdao University of Science and Technology, Qingdao, 266042, China
| | - Xien Liu
- College of Chemical Engineering, Qingdao University of Science and Technology, Qingdao, 266042, China
| | - Jaephil Cho
- Department of Energy Engineering, School of Energy and Chemical Engineering, Ulsan National Institute of Science and Technology (UNIST), Ulsan 689-798, South Korea
| |
Collapse
|
57
|
Zou Y, Zhang WD, Chen M, Liu J, Gu ZG, Yan X. Ligand-engineered Ru-doped cobalt oxides derived from metal-organic frameworks for large-current-density water splitting. J Colloid Interface Sci 2024; 653:11-19. [PMID: 37708727 DOI: 10.1016/j.jcis.2023.09.040] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2023] [Revised: 08/28/2023] [Accepted: 09/08/2023] [Indexed: 09/16/2023]
Abstract
The influence of the preorganized structure and chemical composition of metal-organic frameworks (MOFs) on the morphology, surface properties, and catalytic activity of the MOFs-derived metal oxides is yet to be revealed. In this work, two types of Co-MOFs with different coordination configurations are synthesized for the preparation of the structure-engineered ruthenium (Ru)-doped cobalt oxides. The effect of the preorganized coordination structure of the MOFs on the morphology and surface properties is investigated. Interestingly, the oxalate-based MOFs derived Ru-doped cobalt oxide (OX-Co3O4-Ru) exhibits much better surface wettability and more oxygen vacancies than the zeolitic imidazolate framework-67 derived Ru-doped cobalt oxide. As expected, the OX-Co3O4-Ru owns excellent catalytic properties towards both hydrogen evolution reaction and oxygen evolution reaction with an overpotential of 49 and 286 mV, respectively at a current density of 100 mA cm-2 in 1.0 M KOH. Importantly, the bifunctional OX-Co3O4-Ru catalyst offers an extremely high current density of 500 mA cm-2 at a cell voltage of 1.71 V for overall water splitting and as well demonstrates robust working stability.
Collapse
Affiliation(s)
- Yizhong Zou
- Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, School of Chemical and Material Engineering, Jiangnan University, Wuxi 214122, China
| | - Wen-Da Zhang
- Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, School of Chemical and Material Engineering, Jiangnan University, Wuxi 214122, China
| | - Ming Chen
- Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, School of Chemical and Material Engineering, Jiangnan University, Wuxi 214122, China
| | - Jiangyong Liu
- School of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou 225002, China
| | - Zhi-Guo Gu
- Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, School of Chemical and Material Engineering, Jiangnan University, Wuxi 214122, China
| | - Xiaodong Yan
- Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, School of Chemical and Material Engineering, Jiangnan University, Wuxi 214122, China.
| |
Collapse
|
58
|
Ren JT, Chen L, Wang HY, Tian W, Wang L, Sun M, Feng Y, Zhai SX, Yuan ZY. Self-Powered Hydrogen Production with Improved Energy Efficiency via Polysulfides Redox. ACS NANO 2023; 17:25707-25720. [PMID: 38047808 DOI: 10.1021/acsnano.3c10867] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/05/2023]
Abstract
In the pursuit of efficient solar-driven electrocatalytic water splitting for hydrogen production, the intrinsic challenges posed by the sluggish kinetics of anodic oxygen evolution and intermittent sunlight have prompted the need for innovative energy systems. Here, we introduce an approach by coupling the polysulfides oxidation reaction with the hydrogen evolution reaction for energy-saving H2 production, which could be powered by an aqueous zinc-polysulfides battery to construct a self-powered energy system. This unusual hybrid water electrolyzer achieves 300 mA cm-2 at a low cell voltage of 1.14 V, saving electricity consumption by 100.4% from 5.47 to 2.73 kWh per m3 H2 compared to traditional overall water splitting. Benefiting from the favorable reaction kinetics of polysulfides oxidation/reduction, the aqueous zinc-polysulfides battery exhibits an energy efficiency of approximately 89% at 1.0 mA cm-2. Specially, the zinc-polysulfide battery effectively stores intermittent solar energy as chemical energy during light reaction by solar cells. Under an unassisted light reaction, the batteries could release energy to drive H2 production through a hybrid water electrolyzer for uninterrupted hydrogen production. Therefore, the aim of simultaneously generating H2 and eliminating the restrictions of intermittent sunlight is realized by combining the merits of polysulfides redox, an aqueous metal-polysulfide battery, and solar cells. We believe that this concept and utilization of polysulfides redox will inspire further fascinating attempts for the development of sustainable energy via electrocatalytic reactions.
Collapse
Affiliation(s)
- Jin-Tao Ren
- School of Materials Science and Engineering, Smart Sensing Interdisciplinary Science Center, Key Laboratory of Advanced Energy Materials Chemistry (Ministry of Education), Nankai University, Tianjin 300350, People's Republic of China
| | - Lei Chen
- School of Materials Science and Engineering, Smart Sensing Interdisciplinary Science Center, Key Laboratory of Advanced Energy Materials Chemistry (Ministry of Education), Nankai University, Tianjin 300350, People's Republic of China
| | - Hao-Yu Wang
- School of Materials Science and Engineering, Smart Sensing Interdisciplinary Science Center, Key Laboratory of Advanced Energy Materials Chemistry (Ministry of Education), Nankai University, Tianjin 300350, People's Republic of China
| | - Wenwen Tian
- School of Materials Science and Engineering, Smart Sensing Interdisciplinary Science Center, Key Laboratory of Advanced Energy Materials Chemistry (Ministry of Education), Nankai University, Tianjin 300350, People's Republic of China
| | - Lei Wang
- School of Materials Science and Engineering, Smart Sensing Interdisciplinary Science Center, Key Laboratory of Advanced Energy Materials Chemistry (Ministry of Education), Nankai University, Tianjin 300350, People's Republic of China
| | - Minglei Sun
- School of Materials Science and Engineering, Smart Sensing Interdisciplinary Science Center, Key Laboratory of Advanced Energy Materials Chemistry (Ministry of Education), Nankai University, Tianjin 300350, People's Republic of China
| | - Yi Feng
- School of Materials Science and Engineering, Smart Sensing Interdisciplinary Science Center, Key Laboratory of Advanced Energy Materials Chemistry (Ministry of Education), Nankai University, Tianjin 300350, People's Republic of China
| | - Si-Xiang Zhai
- School of Materials Science and Engineering, Smart Sensing Interdisciplinary Science Center, Key Laboratory of Advanced Energy Materials Chemistry (Ministry of Education), Nankai University, Tianjin 300350, People's Republic of China
| | - Zhong-Yong Yuan
- School of Materials Science and Engineering, Smart Sensing Interdisciplinary Science Center, Key Laboratory of Advanced Energy Materials Chemistry (Ministry of Education), Nankai University, Tianjin 300350, People's Republic of China
| |
Collapse
|
59
|
Yu H, Hu M, Chen C, Hu C, Li Q, Hu F, Peng S, Ma J. Ambient γ-Rays-Mediated Noble-Metal Deposition on Defect-Rich Manganese Oxide for Glycerol-Assisted H 2 Evolution at Industrial-Level Current Density. Angew Chem Int Ed Engl 2023; 62:e202314569. [PMID: 37942995 DOI: 10.1002/anie.202314569] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2023] [Revised: 10/22/2023] [Accepted: 11/09/2023] [Indexed: 11/10/2023]
Abstract
Developing novel synthesis technologies is crucial to expanding bifunctional electrocatalysts for energy-saving hydrogen production. Herein, we report an ambient and controllable γ-ray radiation reduction to synthesize a series of noble metal nanoparticles anchored on defect-rich manganese oxides (M@MnO2-x , M=Ru, Pt, Pd, Ir) for glycerol-assisted H2 evolution. Benefiting from the strong penetrability of γ-rays, nanoparticles and defect supports are formed simultaneously and bridged by metal-oxygen bonds, guaranteeing structural stability and active site exposure. The special Ru-O-Mn bonds activate the Ru and Mn sites in Ru@MnO2-x through strong interfacial coordination, driving glycerol electrolysis at low overpotential. Furthermore, only a low cell voltage of 1.68 V is required to achieve 0.5 A cm-2 in a continuous-flow electrolyzer system along with excellent stability. In situ spectroscopic analysis reveals that the strong interfacial coordination in Ru@MnO2-x balances the competitive adsorption of glycerol and OH* on the catalyst surface. Theoretical calculations further demonstrate that the defect-rich MnO2 support promotes the dissociation of H2 O, while the defect-regulated Ru sites promote deprotonation and hydrogen desorption, synergistically enhancing glycerol-assisted hydrogen production.
Collapse
Affiliation(s)
- Hanzhi Yu
- College of Materials Science and Technology, Nanjing University of Aeronautics and Astronautics, Nanjing, 211106, P. R. China
| | - Mengyu Hu
- College of Materials Science and Technology, Nanjing University of Aeronautics and Astronautics, Nanjing, 211106, P. R. China
| | - Chong Chen
- College of Materials Science and Technology, Nanjing University of Aeronautics and Astronautics, Nanjing, 211106, P. R. China
| | - Changjiang Hu
- College of Materials Science and Technology, Nanjing University of Aeronautics and Astronautics, Nanjing, 211106, P. R. China
| | - Qiuhao Li
- College of Materials Science and Technology, Nanjing University of Aeronautics and Astronautics, Nanjing, 211106, P. R. China
| | - Feng Hu
- College of Materials Science and Technology, Nanjing University of Aeronautics and Astronautics, Nanjing, 211106, P. R. China
| | - Shengjie Peng
- College of Materials Science and Technology, Nanjing University of Aeronautics and Astronautics, Nanjing, 211106, P. R. China
| | - Jun Ma
- College of Materials Science and Technology, Nanjing University of Aeronautics and Astronautics, Nanjing, 211106, P. R. China
- School of Nuclear Science and Technology, University of Science and Technology of China, Hefei, 230026, P. R. China
| |
Collapse
|
60
|
Luo YH, Fu HC, Chen XH, Wang BJ, Yang B, Li NB, Luo HQ. Modulating adsorption energy on nickel nitride-supported ruthenium nanoparticles through in-situ electrochemical activation for urea-assisted alkaline hydrogen production. J Colloid Interface Sci 2023; 652:1665-1672. [PMID: 37666198 DOI: 10.1016/j.jcis.2023.08.154] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2023] [Revised: 08/12/2023] [Accepted: 08/24/2023] [Indexed: 09/06/2023]
Abstract
The rational design of electrocatalysts with exceptional performance and durability for hydrogen production in alkaline medium is a formidable challenge. In this study, we have developed in-situ activated ruthenium nanoparticles dispersed on Ni3N nanosheets, forming a bifunctional electrocatalyst for hydrogen evolution and urea oxidation. The results of experimental analysis and theoretical calculations reveal that the enhanced hydrogen evolution reaction (HER) performance of O-Ru-Ni3N stems primarily from the optimized hydrogen adsorption and hydroxyl adsorption on Ru sites. The O-Ru-Ni3N on nickel foam (NF) electrode exhibits excellent HER performance, requiring only 29 mV to reach 10 mA cm-2 in an alkaline medium. Notably, when this O-Ru-Ni3N/NF catalyst is employed for both HER and urea oxidation reaction (UOR) to create an integrated H2 production system, a current density of 50 mA cm-2 can be generated at the cell voltage of 1.41 V. This report introduces an energy-efficient catalyst for hydrogen production and proposes a viable strategy for anodic activation in energy chemistry.
Collapse
Affiliation(s)
- Yuan Hao Luo
- School of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, People's Republic of China
| | - Hong Chuan Fu
- School of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, People's Republic of China
| | - Xiao Hui Chen
- School of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, People's Republic of China
| | - Bing Jie Wang
- School of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, People's Republic of China
| | - Bo Yang
- School of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, People's Republic of China
| | - Nian Bing Li
- School of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, People's Republic of China.
| | - Hong Qun Luo
- School of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, People's Republic of China.
| |
Collapse
|
61
|
Liu R, Sun M, Liu X, Lv Z, Yu X, Wang J, Liu Y, Li L, Feng X, Yang W, Huang B, Wang B. Enhanced Metal-Support Interactions Boost the Electrocatalytic Water Splitting of Supported Ruthenium Nanoparticles on a Ni 3 N/NiO Heterojunction at Industrial Current Density. Angew Chem Int Ed Engl 2023; 62:e202312644. [PMID: 37699862 DOI: 10.1002/anie.202312644] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2023] [Revised: 09/12/2023] [Accepted: 09/12/2023] [Indexed: 09/14/2023]
Abstract
Developing highly efficient and stable hydrogen production catalysts for electrochemical water splitting (EWS) at industrial current densities remains a great challenge. Herein, we proposed a heterostructure-induced-strategy to optimize the metal-support interaction (MSI) and the EWS activity of Ru-Ni3 N/NiO. Density functional theory (DFT) calculations firstly predicted that the Ni3 N/NiO-heterostructures can improve the structural stability, electronic distributions, and orbital coupling of Ru-Ni3 N/NiO compared to Ru-Ni3 N and Ru-NiO, which accordingly decreases energy barriers and increases the electroactivity for EWS. As a proof-of-concept, the Ru-Ni3 N/NiO catalyst with a 2D Ni3 N/NiO-heterostructures nanosheet array, uniformly dispersed Ru nanoparticles, and strong MSI, was successfully constructed in the experiment, which exhibited excellent HER and OER activity with overpotentials of 190 mV and 385 mV at 1000 mA cm-2 , respectively. Furthermore, the Ru-Ni3 N/NiO-based EWS device can realize an industrial current density (1000 mA cm-2 ) at 1.74 V and 1.80 V under alkaline pure water and seawater conditions, respectively. Additionally, it also achieves a high durability of 1000 h (@ 500 mA cm-2 ) in alkaline pure water.
Collapse
Affiliation(s)
- Rui Liu
- Key Laboratory of Cluster Science Ministry of Education, Beijing Key Laboratory of Photoelectronic/Electrophotonic Conversion Materials, Advanced Technology Research Institute (Jinan), Advanced Research Institute of Multidisciplinary Science, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, No. 5, South Street, Zhongguancun, Haidian District, Beijing, 100081, China
| | - Mingzi Sun
- Department of Applied Biology and Chemical Technology, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong SAR, China
| | - Xiangjian Liu
- Key Laboratory of Cluster Science Ministry of Education, Beijing Key Laboratory of Photoelectronic/Electrophotonic Conversion Materials, Advanced Technology Research Institute (Jinan), Advanced Research Institute of Multidisciplinary Science, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, No. 5, South Street, Zhongguancun, Haidian District, Beijing, 100081, China
| | - Zunhang Lv
- Key Laboratory of Cluster Science Ministry of Education, Beijing Key Laboratory of Photoelectronic/Electrophotonic Conversion Materials, Advanced Technology Research Institute (Jinan), Advanced Research Institute of Multidisciplinary Science, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, No. 5, South Street, Zhongguancun, Haidian District, Beijing, 100081, China
| | - Xinyu Yu
- Key Laboratory of Cluster Science Ministry of Education, Beijing Key Laboratory of Photoelectronic/Electrophotonic Conversion Materials, Advanced Technology Research Institute (Jinan), Advanced Research Institute of Multidisciplinary Science, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, No. 5, South Street, Zhongguancun, Haidian District, Beijing, 100081, China
| | - Jinming Wang
- Key Laboratory of Cluster Science Ministry of Education, Beijing Key Laboratory of Photoelectronic/Electrophotonic Conversion Materials, Advanced Technology Research Institute (Jinan), Advanced Research Institute of Multidisciplinary Science, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, No. 5, South Street, Zhongguancun, Haidian District, Beijing, 100081, China
| | - Yarong Liu
- Key Laboratory of Cluster Science Ministry of Education, Beijing Key Laboratory of Photoelectronic/Electrophotonic Conversion Materials, Advanced Technology Research Institute (Jinan), Advanced Research Institute of Multidisciplinary Science, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, No. 5, South Street, Zhongguancun, Haidian District, Beijing, 100081, China
| | - Liuhua Li
- Key Laboratory of Cluster Science Ministry of Education, Beijing Key Laboratory of Photoelectronic/Electrophotonic Conversion Materials, Advanced Technology Research Institute (Jinan), Advanced Research Institute of Multidisciplinary Science, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, No. 5, South Street, Zhongguancun, Haidian District, Beijing, 100081, China
| | - Xiao Feng
- Key Laboratory of Cluster Science Ministry of Education, Beijing Key Laboratory of Photoelectronic/Electrophotonic Conversion Materials, Advanced Technology Research Institute (Jinan), Advanced Research Institute of Multidisciplinary Science, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, No. 5, South Street, Zhongguancun, Haidian District, Beijing, 100081, China
| | - Wenxiu Yang
- Key Laboratory of Cluster Science Ministry of Education, Beijing Key Laboratory of Photoelectronic/Electrophotonic Conversion Materials, Advanced Technology Research Institute (Jinan), Advanced Research Institute of Multidisciplinary Science, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, No. 5, South Street, Zhongguancun, Haidian District, Beijing, 100081, China
| | - Bolong Huang
- Department of Applied Biology and Chemical Technology, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong SAR, China
| | - Bo Wang
- Key Laboratory of Cluster Science Ministry of Education, Beijing Key Laboratory of Photoelectronic/Electrophotonic Conversion Materials, Advanced Technology Research Institute (Jinan), Advanced Research Institute of Multidisciplinary Science, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, No. 5, South Street, Zhongguancun, Haidian District, Beijing, 100081, China
| |
Collapse
|
62
|
Ding P, Wang T, Chang P, Guan L, Liu Z, Xu C, Tao J. Multiple-Strategy Design of MOF-Derived N, P Co-Doped MoS 2 Electrocatalysts Toward Efficient Alkaline Hydrogen Evolution and Overall Water Splitting. ACS APPLIED MATERIALS & INTERFACES 2023. [PMID: 37910808 DOI: 10.1021/acsami.3c11802] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/03/2023]
Abstract
The multiple strategy design is crucial for enhancing the efficiency of nonprecious electrocatalysts in hydrogen evolution reaction (HER). In this work, we successfully synthesized N, P-codoped MoS2 nanosheets as highly efficient catalysts by integrating doping effects and phase engineering using a porous metal-organic framework (MOF) template. The electrocatalysts exhibit excellent bifunctional activity and stability in alkaline media. The N, P codoping induces electron redistribution to enhance conductivity and promote the intrinsic activity of the electrocatalysts. It optimizes the H* adsorption free energy and the dissociative adsorption energy, resulting in significant enhancement of HER activity. Moreover, the porous MOF structure exposes a large number of electrochemically active sites and facilitates the diffusion of ions and gases, which improve charge transfer efficiency and structural stability. Specifically, at a current density of 10 mA cm-2, the overpotential of the HER is only 32 mV, with a Tafel slope of 47 mV dec-1 and Faradaic efficiency as high as 98.51% (at 100 mA cm-2). Only a 338 mV overpotential is required to achieve a current density of 50 mA cm-2 for oxygen evolution reaction (OER), and a potential of 1.49 V (at 10 mA cm-2) is sufficient to drive overall water splitting. Further experimental measurements and first-principles calculations evidence that the exceptional performance is primarily attributed to the dual functionality of N and P dopants, which not only activate additional S sites but also initialize the phase transition of 2H to 1T-MoS2 to facilitate the rapid charge transfer. Through in-depth exploration of the combined design of multiple strategies for efficient catalysts, our work paves a new way for the development of future efficient nonprecious metal catalysts.
Collapse
Affiliation(s)
- Pengbo Ding
- School of Materials Science and Engineering, Hebei University of Technology, Tianjin 300132, China
| | - Tian Wang
- School of Sciences, Hebei University of Technology, Tianjin 300401, China
| | - Pu Chang
- School of Materials Science and Engineering, Hebei University of Technology, Tianjin 300132, China
| | - Lixiu Guan
- School of Sciences, Hebei University of Technology, Tianjin 300401, China
| | - Zongli Liu
- School of Materials Science and Engineering, Hebei University of Technology, Tianjin 300132, China
| | - Chao Xu
- School of Materials Science and Engineering, Hebei University of Technology, Tianjin 300132, China
| | - Junguang Tao
- School of Materials Science and Engineering, Hebei University of Technology, Tianjin 300132, China
- Hebei Engineering Laboratory of Photoelectronic Functional Crystals, Hebei University of Technology, Tianjin 300132, China
| |
Collapse
|
63
|
Qian C, Wang R, Shen H, Xia J, Cui D, Sun K, Liu H, Guo C, Yu F, Li J, Bao W. Computational-Guided Design of Photoelectrode Active Materials for Light-Assisted Energy Storage. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2023; 19:e2304045. [PMID: 37485629 DOI: 10.1002/smll.202304045] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/14/2023] [Revised: 07/06/2023] [Indexed: 07/25/2023]
Abstract
The design of a novel photoelectric integrated system is considered to be an efficient way to utilize and store inexhaustible solar energy. However, the mechanism of photoelectrode under illuminate conditions is still unclear. Density functional theory (DFT) provides standardized analysis and becomes a powerful way to explain the photoelectrochemical mechanism. Herein, the feasibility of four metal oxide configurations as photoelectrode materials by using a high throughput calculation method based on DFT are investigated. According to the photoelectrochemical properties, band structure and density of states are calculated, and the intercalate/deintercalate simulation is performed with adsorption configuration. The calculation indicates that the band gap of Fe2 CoO4 (2.404 eV) is narrower than that of Co3 O4 (2.553 eV), as well as stronger adsorption energy (-3.293 eV). The relationship between the electronic structure and the photoelectrochemical performance is analyzed and verified according to the predicted DFT results by subsequent experiments. Results show that the Fe2 CoO4 photoelectrode samples exhibit higher coulombic efficiency (97.4%) than that under dark conditions (94.9%), which is consistent with the DFT results. This work provides a general method for the design of integrated photoelectrode materials and is expected to be enlightening for the adjustment of light-assisted properties of multifunctional materials.
Collapse
Affiliation(s)
- Chengfei Qian
- Institute of Advanced Materials and Flexible Electronics (IAMFE), School of Chemistry and Materials Science, Nanjing University of Information Science and Technology, 219 Ninliu Road, Nanjing, 210044, P. R. China
- Department of Materials Physics, School of Chemistry and Materials Science, Nanjing University of Information Science and Technology, 219 Ningliu Road, Nanjing, 210044, P. R. China
| | - Ronghao Wang
- Institute of Advanced Materials and Flexible Electronics (IAMFE), School of Chemistry and Materials Science, Nanjing University of Information Science and Technology, 219 Ninliu Road, Nanjing, 210044, P. R. China
- Department of Materials Physics, School of Chemistry and Materials Science, Nanjing University of Information Science and Technology, 219 Ningliu Road, Nanjing, 210044, P. R. China
| | - Hao Shen
- Institute of Advanced Materials and Flexible Electronics (IAMFE), School of Chemistry and Materials Science, Nanjing University of Information Science and Technology, 219 Ninliu Road, Nanjing, 210044, P. R. China
- Department of Materials Physics, School of Chemistry and Materials Science, Nanjing University of Information Science and Technology, 219 Ningliu Road, Nanjing, 210044, P. R. China
| | - Jingjie Xia
- Institute of Advanced Materials and Flexible Electronics (IAMFE), School of Chemistry and Materials Science, Nanjing University of Information Science and Technology, 219 Ninliu Road, Nanjing, 210044, P. R. China
- Department of Materials Physics, School of Chemistry and Materials Science, Nanjing University of Information Science and Technology, 219 Ningliu Road, Nanjing, 210044, P. R. China
| | - Dingyu Cui
- Institute of Advanced Materials and Flexible Electronics (IAMFE), School of Chemistry and Materials Science, Nanjing University of Information Science and Technology, 219 Ninliu Road, Nanjing, 210044, P. R. China
- Department of Materials Physics, School of Chemistry and Materials Science, Nanjing University of Information Science and Technology, 219 Ningliu Road, Nanjing, 210044, P. R. China
| | - Kaiwen Sun
- Australian Centre for Advanced Photovoltaics, School of Photovoltaic and Renewable Energy Engineering, University of New South Wales, Sydney, 2052, Australia
| | - He Liu
- Institute of Advanced Materials and Flexible Electronics (IAMFE), School of Chemistry and Materials Science, Nanjing University of Information Science and Technology, 219 Ninliu Road, Nanjing, 210044, P. R. China
- Department of Materials Physics, School of Chemistry and Materials Science, Nanjing University of Information Science and Technology, 219 Ningliu Road, Nanjing, 210044, P. R. China
| | - Cong Guo
- Institute of Advanced Materials and Flexible Electronics (IAMFE), School of Chemistry and Materials Science, Nanjing University of Information Science and Technology, 219 Ninliu Road, Nanjing, 210044, P. R. China
- Department of Materials Physics, School of Chemistry and Materials Science, Nanjing University of Information Science and Technology, 219 Ningliu Road, Nanjing, 210044, P. R. China
| | - Feng Yu
- Institute of Advanced Materials and Flexible Electronics (IAMFE), School of Chemistry and Materials Science, Nanjing University of Information Science and Technology, 219 Ninliu Road, Nanjing, 210044, P. R. China
- Department of Materials Physics, School of Chemistry and Materials Science, Nanjing University of Information Science and Technology, 219 Ningliu Road, Nanjing, 210044, P. R. China
| | - Jingfa Li
- Institute of Advanced Materials and Flexible Electronics (IAMFE), School of Chemistry and Materials Science, Nanjing University of Information Science and Technology, 219 Ninliu Road, Nanjing, 210044, P. R. China
- Department of Materials Physics, School of Chemistry and Materials Science, Nanjing University of Information Science and Technology, 219 Ningliu Road, Nanjing, 210044, P. R. China
| | - Weizhai Bao
- Institute of Advanced Materials and Flexible Electronics (IAMFE), School of Chemistry and Materials Science, Nanjing University of Information Science and Technology, 219 Ninliu Road, Nanjing, 210044, P. R. China
- Department of Materials Physics, School of Chemistry and Materials Science, Nanjing University of Information Science and Technology, 219 Ningliu Road, Nanjing, 210044, P. R. China
| |
Collapse
|
64
|
Pei L, Wang X, Zhu H, Yu H, Bandaru S, Yan S, Zou Z. Photothermal Effect- and Interfacial Chemical Bond-Modulated NiO x/Ta 3N 5 Heterojunction for Efficient CO 2 Photoreduction. ACS APPLIED MATERIALS & INTERFACES 2023. [PMID: 37903001 DOI: 10.1021/acsami.3c13538] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/01/2023]
Abstract
Photothermal catalysis, which combines light promotion and thermal activation, is a promising approach for converting CO2 into fuels. However, the development of photothermal catalysts with effective light-to-heat conversion, strong charge transfer ability, and suitable active sites remains a challenge. Herein, the photothermal effect- and interfacial N-Ni/Ta-O bond-modulated heterostructure composed of oxygen vacancy-rich NiOx and Ta3N5 was rationally fabricated for efficient photothermal catalytic CO2 reduction. Beyond the charge separation capability conferred by the NiOx/Ta3N5 heterojunction, we observed that the N-Ni and Ta-O bonds linking NiOx and Ta3N5 form a spatial charge transfer channel, which enhances the interfacial electron transfer. Additionally, the presence of surface oxygen vacancies in NiOx induced nonradiative relaxation, resulting in a pronounced photothermal effect that locally heated the catalyst and accelerated the reaction kinetically. Leveraging these favorable factors, the NiOx/Ta3N5 hybrids exhibit remarkably elevated activity (≈32.3 μmol·g-1·h-1) in the conversion of CO2 to CH4 with near-unity selectivity, surpassing the performance of bare Ta3N5 by over 14 times. This study unveils the synergistic effect of photothermal and interfacial chemical bonds in the photothermal-photocatalytic heterojunction system, offering a novel approach to enhance the reaction kinetics of various catalysts.
Collapse
Affiliation(s)
- Lang Pei
- College of Materials and Environmental Engineering, Hangzhou Dianzi University, Hangzhou 310018, P. R. China
| | - Xusheng Wang
- School of Materials Science and Engineering, Zhejiang Sci-Tech University, Hangzhou 310018, P. R. China
| | - Heng Zhu
- School of Physical and Mathematical Sciences, Nanjing Tech University, No. 30, Puzhu Nanlu Road, Pukou District, Nanjing 211800, Jiangsu, P. R. China
| | - He Yu
- School of Physical and Mathematical Sciences, Nanjing Tech University, No. 30, Puzhu Nanlu Road, Pukou District, Nanjing 211800, Jiangsu, P. R. China
| | - Sateesh Bandaru
- College of Materials and Environmental Engineering, Hangzhou Dianzi University, Hangzhou 310018, P. R. China
| | - Shicheng Yan
- Eco-materials and Renewable Energy Research Center (ERERC), Collaborative Innovation Center of Advanced Microstructures, College of Engineering and Applied Sciences, Nanjing University, Nanjing 210093, P. R. China
| | - Zhigang Zou
- Eco-materials and Renewable Energy Research Center (ERERC), Collaborative Innovation Center of Advanced Microstructures, College of Engineering and Applied Sciences, Nanjing University, Nanjing 210093, P. R. China
| |
Collapse
|
65
|
Dong X, Zeng Q, Dai L, Ren X, Cao W, Ju H, Wei Q. Signal "On-Amplified-Off" Strategy Based on Hafnium Dioxide Nanomaterials as Electrochemiluminescence Emitters for Progesterone Detection. Anal Chem 2023; 95:12184-12191. [PMID: 37530603 DOI: 10.1021/acs.analchem.3c02861] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/03/2023]
Abstract
When consumed, excess progesterone (P4)─found in food and the environment─can lead to severe illnesses in humans. Therefore, quantitative analysis of P4 is critical for identifying its hazardous levels. In this study, a novel signal "on-amplified-off" P4 detection mode was proposed, which was based on the utilization of hafnium oxide (HfO2) as a unique electrochemiluminescence (ECL) emitter, produced by calcining UiO-66(Hf). This is the first time that HfO2 has been used as an ECL emitter. HfO2 displayed excellent conductivity and a high specific surface area, allowing it to connect with numerous aptamers and produce a "signal-on" effect. Ni-doped ZnO (Ni-ZnO) acted as a coreaction accelerator, enhancing the ECL strength of HfO2 by generating more tripropylamine radicals. cDNA was labeled with Ni-ZnO, and Ni-ZnO was linked to the aptamer via base complementary pairing, affording "signal-amplified". The presence of the target molecule P4 instigated a specific binding process with the aptamer, triggering the shedding of cDNA-Ni-ZnO and resulting in "signal-off". This novel "on-amplified-off" strategy effectively improved the sensitivity and specificity of P4 analysis, introducing a practical method for detecting biomolecules beyond the scope of this study, which holds immense potential for future applications.
Collapse
Affiliation(s)
- Xue Dong
- Key Laboratory of Interfacial Reaction & Sensing Analysis in Universities of Shandong, Collaborative Innovation Center for Green Chemical Manufacturing and Accurate Detection, School of Chemistry and Chemical Engineering, University of Jinan, Jinan 250022, P. R. China
| | - Qingze Zeng
- Key Laboratory of Interfacial Reaction & Sensing Analysis in Universities of Shandong, Collaborative Innovation Center for Green Chemical Manufacturing and Accurate Detection, School of Chemistry and Chemical Engineering, University of Jinan, Jinan 250022, P. R. China
| | - Li Dai
- Key Laboratory of Interfacial Reaction & Sensing Analysis in Universities of Shandong, Collaborative Innovation Center for Green Chemical Manufacturing and Accurate Detection, School of Chemistry and Chemical Engineering, University of Jinan, Jinan 250022, P. R. China
| | - Xiang Ren
- Key Laboratory of Interfacial Reaction & Sensing Analysis in Universities of Shandong, Collaborative Innovation Center for Green Chemical Manufacturing and Accurate Detection, School of Chemistry and Chemical Engineering, University of Jinan, Jinan 250022, P. R. China
| | - Wei Cao
- Key Laboratory of Interfacial Reaction & Sensing Analysis in Universities of Shandong, Collaborative Innovation Center for Green Chemical Manufacturing and Accurate Detection, School of Chemistry and Chemical Engineering, University of Jinan, Jinan 250022, P. R. China
| | - Huangxian Ju
- Key Laboratory of Interfacial Reaction & Sensing Analysis in Universities of Shandong, Collaborative Innovation Center for Green Chemical Manufacturing and Accurate Detection, School of Chemistry and Chemical Engineering, University of Jinan, Jinan 250022, P. R. China
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, P. R. China
| | - Qin Wei
- Key Laboratory of Interfacial Reaction & Sensing Analysis in Universities of Shandong, Collaborative Innovation Center for Green Chemical Manufacturing and Accurate Detection, School of Chemistry and Chemical Engineering, University of Jinan, Jinan 250022, P. R. China
- Department of Chemistry, Sungkyunkwan University, Suwon 16419, Republic of Korea
| |
Collapse
|
66
|
Xie Y, Xiao S, Huang L, Guo J, Bai M, Gao Y, Zhou H, Qiu L, Cheng C, Han X. Cascade and Ultrafast Artificial Antioxidases Alleviate Inflammation and Bone Resorption in Periodontitis. ACS NANO 2023; 17:15097-15112. [PMID: 37378617 DOI: 10.1021/acsnano.3c04328] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/29/2023]
Abstract
Periodontitis, one of the most common, challenging, and rapidly expanding oral diseases, is an oxidative stress-related disease caused by excessive reactive oxygen species (ROS) production. Developing ROS-scavenging materials to regulate the periodontium microenvironments is essential for treating periodontitis. Here, we report on creating cobalt oxide-supported Ir (CoO-Ir) as a cascade and ultrafast artificial antioxidase to alleviate local tissue inflammation and bone resorption in periodontitis. It is demonstrated that the Ir nanoclusters are uniformly supported on the CoO lattice, and there is stable chemical coupling and strong charge transfer from Co to Ir sites. Benefiting from its structural advantages, CoO-Ir presents cascade and ultrafast superoxide dismutase-catalase-like catalytic activities. Notably, it displays distinctly increased Vmax (76.249 mg L-1 min-1) and turnover number (2.736 s-1) when eliminating H2O2, which surpasses most of the by-far-reported artificial enzymes. Consequently, the CoO-Ir not only provides efficient cellular protection from ROS attack but also promotes osteogenetic differentiation in vitro. Furthermore, CoO-Ir can efficiently combat periodontitis by inhibiting inflammation-induced tissue destruction and promoting osteogenic regeneration. We believe that this report will shed meaningful light on creating cascade and ultrafast artificial antioxidases and offer an effective strategy to combat tissue inflammation and osteogenic resorption in oxidative stress-related diseases.
Collapse
Affiliation(s)
- Yaxin Xie
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China
| | - Sutong Xiao
- Department of Ultrasound, Department of Nephrology, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Lingyi Huang
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China
| | - Jiusi Guo
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China
| | - Mingru Bai
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China
| | - Yang Gao
- Department of Ultrasound, Department of Nephrology, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Hongju Zhou
- Department of Ultrasound, Department of Nephrology, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Li Qiu
- Department of Ultrasound, Department of Nephrology, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Chong Cheng
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu 610065, China
| | - Xianglong Han
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China
| |
Collapse
|
67
|
Wu Y, Yao R, Zhao Q, Li J, Liu G. RuO 2 nanoparticles anchored on g-C 3N 4 as an efficient bifunctional electrocatalyst for water splitting in acidic media. Dalton Trans 2023. [PMID: 37449381 DOI: 10.1039/d3dt01676e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/18/2023]
Abstract
The electrolysis of water, particularly proton exchange membrane (PEM) water electrolysis, holds great promise for hydrogen production in industry. However, the catalyst used in this process is prone to dissolution in acidic environments, making it imperative to develop cost-effective, highly efficient, and acid-stable electrocatalytic materials to overcome this challenge and enable large-scale application of PEM water electrolysis technology. Herein, we prepared ruthenium oxide (RuO2)/graphitic carbon nitride (g-C3N4) composites (RuO2/C3N4) via a combination of sol-gel and annealing methods. The g-C3N4 provides a large surface area, while RuO2 is uniformly deposited on the g-C3N4 surface. The interaction between g-C3N4 and RuO2 stabilizes the RuO2 nanoparticles and enhances long-term water oxidation stability. This unique structure and the combined advantages of RuO2 and g-C3N4 yield exceptional electrocatalytic activity toward both the oxygen evolution reaction (OER, 240 mV@10 mA cm-2) and the hydrogen evolution reaction (HER, 109 mV@10 mA cm-2), with excellent durability (over 28 h), and a cell voltage of 1.607 V at 10 mA cm-2 when used in an RuO2/C3N4||RuO2/C3N4 electrolyzer. This study highlights the efficacy of the g-C3N4 support method in designing highly stable Ru-based OER electrocatalysts for efficient acidic water splitting.
Collapse
Affiliation(s)
- Yun Wu
- Shanxi Key Laboratory of Gas Energy Efficient and Clean Utilization, College of Chemical Engineering and Technology, Taiyuan University of Technology, Taiyuan, Shanxi 030024, PR China.
| | - Rui Yao
- Shanxi Key Laboratory of Gas Energy Efficient and Clean Utilization, College of Chemical Engineering and Technology, Taiyuan University of Technology, Taiyuan, Shanxi 030024, PR China.
| | - Qiang Zhao
- Shanxi Key Laboratory of Gas Energy Efficient and Clean Utilization, College of Chemical Engineering and Technology, Taiyuan University of Technology, Taiyuan, Shanxi 030024, PR China.
| | - Jinping Li
- Shanxi Key Laboratory of Gas Energy Efficient and Clean Utilization, College of Chemical Engineering and Technology, Taiyuan University of Technology, Taiyuan, Shanxi 030024, PR China.
| | - Guang Liu
- Shanxi Key Laboratory of Gas Energy Efficient and Clean Utilization, College of Chemical Engineering and Technology, Taiyuan University of Technology, Taiyuan, Shanxi 030024, PR China.
| |
Collapse
|
68
|
Wang Y, Gong N, Liu H, Ma W, Hippalgaonkar K, Liu Z, Huang Y. Ordering-Dependent Hydrogen Evolution and Oxygen Reduction Electrocatalysis of High-Entropy Intermetallic Pt 4 FeCoCuNi. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2023; 35:e2302067. [PMID: 37165532 DOI: 10.1002/adma.202302067] [Citation(s) in RCA: 31] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/04/2023] [Revised: 05/08/2023] [Indexed: 05/12/2023]
Abstract
Disordered solid-solution high-entropy alloys have attracted wide research attention as robust electrocatalysts. In comparison, ordered high-entropy intermetallics have been hardly explored and the effects of the degree of chemical ordering on catalytic activity remain unknown. In this study, a series of multicomponent intermetallic Pt4 FeCoCuNi nanoparticles with tunable ordering degrees is fabricated. The transformation mechanism of the multicomponent nanoparticles from disordered structure into ordered structure is revealed at the single-particle level, and it agrees with macroscopic analysis by selected-area electron diffraction and X-ray diffraction. The electrocatalytic performance of Pt4 FeCoCuNi nanoparticles correlates well with their crystal structure and electronic structure. It is found that increasing the degree of ordering promotes electrocatalytic performance. The highly ordered Pt4 FeCoCuNi achieves the highest mass activities toward both acidic oxygen reduction reaction (ORR) and alkaline hydrogen evolution reaction (HER) which are 18.9-fold and 5.6-fold higher than those of commercial Pt/C, respectively. The experiment also shows that this catalyst demonstrates better long-term stability than both partially ordered and disordered Pt4 FeCoCuNi as well as Pt/C when subject to both HER and ORR. This ordering-dependent structure-property relationship provides insight into the rational design of catalysts and stimulates the exploration of many other multicomponent intermetallic alloys.
Collapse
Affiliation(s)
- Yong Wang
- School of Materials Science and Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore, 639798, Singapore
| | - Na Gong
- Institute of Materials Research and Engineering (IMRE), A*STAR (Agency for Science, Technology and Research), 2 Fusionopolis Way, Singapore, 138634, Singapore
| | - Hongfei Liu
- Institute of Materials Research and Engineering (IMRE), A*STAR (Agency for Science, Technology and Research), 2 Fusionopolis Way, Singapore, 138634, Singapore
| | - Wei Ma
- School of Materials Science and Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore, 639798, Singapore
| | - Kedar Hippalgaonkar
- School of Materials Science and Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore, 639798, Singapore
- Institute of Materials Research and Engineering (IMRE), A*STAR (Agency for Science, Technology and Research), 2 Fusionopolis Way, Singapore, 138634, Singapore
| | - Zheng Liu
- School of Materials Science and Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore, 639798, Singapore
| | - Yizhong Huang
- School of Materials Science and Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore, 639798, Singapore
| |
Collapse
|
69
|
Shang D, Zheng W, Zhao P, Li Y, Xie L, Zhang J, Zhan S, Hu W. Investigation on the reaction kinetic mechanism of polydopamine-loaded copper as dual-functional catalyst in heterogeneous electro-Fenton process. CHEMOSPHERE 2023; 325:138339. [PMID: 36893871 DOI: 10.1016/j.chemosphere.2023.138339] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/12/2022] [Revised: 01/20/2023] [Accepted: 03/06/2023] [Indexed: 06/18/2023]
Abstract
Heterogeneous electro-Fenton (HEF) process has been regarded as a promising method in environmental remediation. However, the reaction kinetic mechanism of the HEF catalyst for simultaneous production and activation of H2O2 remained confounded. Herein, the copper supported on polydopamine (Cu/C) was synthesized by a facile method and employed as a bifunctional HEFcatalyst, and the catalytic kinetic pathways were deeply investigated by using rotating ring-disk electrode (RRDE) voltammetry based on the Damjanovic model. Experimental results substantiated that a two-electron oxygen reduction reaction (2e- ORR) and a sequential Fenton oxidation reaction were proceeded on 1.0-Cu/C, where metallic copper played a crucial role in the fabrication of 2e- active sites as well as utmost H2O2 activation to produce highly reactive oxygen species (ROS), resulting in the high H2O2 productivity (52.2%) and the almost complete removal of contaminant ciprofloxacin (CIP) after 90 min. The work not only expanded the idea of reaction mechanism on Cu-based catalyst in HEF process but also provided a promising catalyst for pollutants degradation in wastewater treatment.
Collapse
Affiliation(s)
- Denghui Shang
- Tianjin Key Laboratory of Molecular Optoelectronic Sciences, Department of Chemistry, School of Science, Tianjin University, Tianjin, 300072, China
| | - Wenwen Zheng
- Tianjin Key Laboratory of Molecular Optoelectronic Sciences, Department of Chemistry, School of Science, Tianjin University, Tianjin, 300072, China
| | - Peng Zhao
- China National Offshore Oil Corporation, Tianjin Branch, Tianjin, 300452, China
| | - Yi Li
- Tianjin Key Laboratory of Molecular Optoelectronic Sciences, Department of Chemistry, School of Science, Tianjin University, Tianjin, 300072, China; Joint School of National University of Singapore and Tianjin University, Fuzhou International Campus, Tianjin University, Binhai New City, Fuzhou, 350207, China.
| | - Liangbo Xie
- Tianjin Key Laboratory of Molecular Optoelectronic Sciences, Department of Chemistry, School of Science, Tianjin University, Tianjin, 300072, China
| | - Jinlong Zhang
- Tianjin Key Laboratory of Molecular Optoelectronic Sciences, Department of Chemistry, School of Science, Tianjin University, Tianjin, 300072, China
| | - Sihui Zhan
- College of Environmental Science and Engineering, Nankai University, Tianjin, 300071, China.
| | - Wenping Hu
- Tianjin Key Laboratory of Molecular Optoelectronic Sciences, Department of Chemistry, School of Science, Tianjin University, Tianjin, 300072, China; Joint School of National University of Singapore and Tianjin University, Fuzhou International Campus, Tianjin University, Binhai New City, Fuzhou, 350207, China
| |
Collapse
|
70
|
Feng Zai S, Han Wu Y, Tong Zhou Y, Tian Hui Li Z, Bin Guo C. Hierarchical NiO x nanotube arrays/CoP nanosheets heterostructure enables robust alkaline hydrogen evolution reaction. J Colloid Interface Sci 2023; 643:350-359. [PMID: 37080042 DOI: 10.1016/j.jcis.2023.04.043] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2023] [Revised: 04/05/2023] [Accepted: 04/11/2023] [Indexed: 04/22/2023]
Abstract
Rational design of low-cost and high-efficiency electrocatalysts for hydrogen evolution reaction (HER) is critical for scalable and sustainable hydrogen production from economical water-alkali splitting. Herein, density functional theory (DFT) calculations reveal that coupling NiOx and CoP could effectively boost overall HER kinetics through lowing the H2O dissociation barrier, accelerating the OH* transfer process, and providing the rapid H* migration kinetics as well as the appropriate H* energetics. Based on these findings, we successfully prepared a three-dimensional (3D) self-supported electrode of ultrathin CoP nanosheets directly grown on the surface-oxidized Ni nanotube arrays via a simple and scalable electrochemical synthesis method. As expected, such a heterostructure electrode exhibits superior alkaline HER performance with low overpotentials of 51 and 164 mV to drive the current densities of 10 and 500 mA cm-2, respectively, outperforming most of the efficient alkaline HER electrocatalysts.
Collapse
Affiliation(s)
- Shi Feng Zai
- Department of Materials Science and Engineering, Liaoning Technical University, Fuxin 123000, China.
| | - Yu Han Wu
- Department of Materials Science and Engineering, Liaoning Technical University, Fuxin 123000, China
| | - Yi Tong Zhou
- Institutes of Physical Science and Information Technology, Anhui University, Hefei 230601, China
| | - Zhao Tian Hui Li
- Liaoning Yingguan High-tech Ceramic Co., Ltd., Jinzhou 121213, Liaoning, China
| | - Chun Bin Guo
- Department of Materials Science and Engineering, Liaoning Technical University, Fuxin 123000, China
| |
Collapse
|
71
|
Zhang H, Qi S, Zhu K, Zong X. Ruthenium nanoclusters modified by zinc species towards enhanced electrochemical hydrogen evolution reaction. Front Chem 2023; 11:1189450. [PMID: 37090245 PMCID: PMC10115985 DOI: 10.3389/fchem.2023.1189450] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2023] [Accepted: 03/29/2023] [Indexed: 04/08/2023] Open
Abstract
Ruthenium (Ru) has been considered a promising electrocatalyst for electrochemical hydrogen evolution reaction (HER) while its performance is limited due to the problems of particle aggregation and competitive adsorption of the reaction intermediates. Herein, we reported the synthesis of a zinc (Zn) modified Ru nanocluster electrocatalyst anchored on multiwalled carbon nanotubes (Ru-Zn/MWCNTs). The Ru-Zn catalysts were found to be highly dispersed on the MWCNTs substrate. Moreover, the Ru-Zn/MWCNTs exhibited low overpotentials of 26 and 119 mV for achieving current intensities of 10 and 100 mA cm−2 under alkaline conditions, respectively, surpassing Ru/MWCNTs with the same Ru loading and the commercial 5 wt% Pt/C (47 and 270 mV). Moreover, the Ru-Zn/MWCNTs showed greatly enhanced stability compared to Ru/MWCNTs with no significant decay after 10,000 cycles of CV sweeps and long-term operation for 90 h. The incorporation of Zn species was found to modify the electronic structure of the Ru active species and thus modulate the adsorption energy of the Had and OHad intermediates, which could be the main reason for the enhanced HER performance. This study provides a strategy to develop efficient and stable electrocatalysts towards the clean energy conversion field.
Collapse
Affiliation(s)
| | | | | | - Xu Zong
- *Correspondence: Kaixin Zhu, ; Xu Zong,
| |
Collapse
|
72
|
Li X, Luo D, Jiang F, Zhang K, Wang S, Li S, Zha Q, Huang Y, Ni Y. Electronic Modulation of Metal-Organic Frameworks Caused by Atomically Dispersed Ru for Efficient Hydrogen Evolution. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2023:e2301850. [PMID: 37010015 DOI: 10.1002/smll.202301850] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/02/2023] [Revised: 03/20/2023] [Indexed: 06/19/2023]
Abstract
Designing excellent electrocatalysts for the hydrogen evolution reaction (HER) is extremely significant in producing clean and sustainable hydrogen fuel. Herein, a rational strategy is developed to fabricate a promising electrocatalyst by introducing atomically dispersed Ru into a cobalt-based metal-organic framework (MOF), Co-BPDC (Co(bpdc)(H2 O)2 , BPDC: 4,4'-Biphenyldicarboxylic acid). The obtained CoRu-BPDC nanosheet arrays exhibit remarkable HER performance with an overpotential of 37 mV at a current density of 10 mA cm-2 in alkaline media, which is superior to most of the MOF-based electrocatalysts and comparable to the commercial Pt/C. Synchrotron radiation-based X-ray absorption fine structure (XAFS) spectroscopy studies verify that the isolated Ru atoms are dispersed in Co-BPDC nanosheets with the formation of five-coordinated Ru-O5 species. XAFS spectroscopy combined with density functional theory (DFT) calculations unravels that atomically dispersed Ru can modulate the electronic structure of the as-obtained Co-BPDC, contributing to the optimization of binding strength for H* and the enhancement of HER performance. This work opens a new avenue to rationally design highly-active single-atom modified MOF-based HER electrocatalysts via modulating electronic structures of MOF.
Collapse
Affiliation(s)
- Xinyue Li
- Key Laboratory of Functional Molecular Solids, Ministry of Education, Anhui Laboratory of Molecule-Based Materials, Anhui Key Laboratory of Functional Molecular Solids, College of Chemistry and Materials Science, Anhui Normal University, Wuhu, Anhui, 241002, P. R. China
| | - Dian Luo
- Key Laboratory of Functional Molecular Solids, Ministry of Education, Anhui Laboratory of Molecule-Based Materials, Anhui Key Laboratory of Functional Molecular Solids, College of Chemistry and Materials Science, Anhui Normal University, Wuhu, Anhui, 241002, P. R. China
| | - Fan Jiang
- Key Laboratory of Functional Molecular Solids, Ministry of Education, Anhui Laboratory of Molecule-Based Materials, Anhui Key Laboratory of Functional Molecular Solids, College of Chemistry and Materials Science, Anhui Normal University, Wuhu, Anhui, 241002, P. R. China
| | - Kuanjian Zhang
- Key Laboratory of Functional Molecular Solids, Ministry of Education, Anhui Laboratory of Molecule-Based Materials, Anhui Key Laboratory of Functional Molecular Solids, College of Chemistry and Materials Science, Anhui Normal University, Wuhu, Anhui, 241002, P. R. China
| | - Shaoxia Wang
- Key Laboratory of Functional Molecular Solids, Ministry of Education, Anhui Laboratory of Molecule-Based Materials, Anhui Key Laboratory of Functional Molecular Solids, College of Chemistry and Materials Science, Anhui Normal University, Wuhu, Anhui, 241002, P. R. China
| | - Shifeng Li
- Key Laboratory of Functional Molecular Solids, Ministry of Education, Anhui Laboratory of Molecule-Based Materials, Anhui Key Laboratory of Functional Molecular Solids, College of Chemistry and Materials Science, Anhui Normal University, Wuhu, Anhui, 241002, P. R. China
| | - Qingqing Zha
- Key Laboratory of Functional Molecular Solids, Ministry of Education, Anhui Laboratory of Molecule-Based Materials, Anhui Key Laboratory of Functional Molecular Solids, College of Chemistry and Materials Science, Anhui Normal University, Wuhu, Anhui, 241002, P. R. China
| | - Yucheng Huang
- Key Laboratory of Functional Molecular Solids, Ministry of Education, Anhui Laboratory of Molecule-Based Materials, Anhui Key Laboratory of Functional Molecular Solids, College of Chemistry and Materials Science, Anhui Normal University, Wuhu, Anhui, 241002, P. R. China
| | - Yonghong Ni
- Key Laboratory of Functional Molecular Solids, Ministry of Education, Anhui Laboratory of Molecule-Based Materials, Anhui Key Laboratory of Functional Molecular Solids, College of Chemistry and Materials Science, Anhui Normal University, Wuhu, Anhui, 241002, P. R. China
| |
Collapse
|
73
|
Yang C, Wu Z, Zhao Z, Gao Y, Ma T, He C, Wu C, Liu X, Luo X, Li S, Cheng C, Zhao C. Electronic Structure-Dependent Water-Dissociation Pathways of Ruthenium-Based Catalysts in Alkaline H 2 -Evolution. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2023; 19:e2206949. [PMID: 36599619 DOI: 10.1002/smll.202206949] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/09/2022] [Revised: 12/14/2022] [Indexed: 06/17/2023]
Abstract
Ruthenium (Ru)-based catalysts have displayed compelling hydrogen evolution activities, which hold the promising potential to substitute platinum in alkaline H2 -evolution. In the challenging alkaline electrolytes, the water-dissociation process involves multistep reactions, while the profound origin and intrinsic factors of diverse Ru species on water-dissociation pathways and reaction principles remain ambiguous. Here the fundamental origin of water-dissociation pathways of Ru-based catalysts in alkaline media to be from their unique electronic structures in complex coordination environments are disclosed. These theoretical results validate that the modulated electronic structures with delocalization-localization coexistence at their boundaries between the Ru nanocluster and single-atom site have a profound influence on water-dissociation pathways, which push H2 O* migration and binding orientation during the splitting process, thus enhancing the dissociation kinetics. By creating Ru catalysts with well-defined nanocluster, single-atom site, and also complex site, the electrocatalytic data shows that both the nanocluster and single-atom play essential roles in water-dissociation, while the complex site possesses synergistically enhanced roles in alkaline electrolytes. This study discloses a new electronic structure-dependent water-dissociation pathway and reaction principle in Ru-based catalysts, thus offering new inspiration to design efficient and durable catalysts for the practical production of H2 in alkaline electrolytes.
Collapse
Affiliation(s)
- Chengdong Yang
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu, 610065, P. R. China
| | - Zihe Wu
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu, 610065, P. R. China
| | - Zhenyang Zhao
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu, 610065, P. R. China
| | - Yun Gao
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu, 610065, P. R. China
| | - Tian Ma
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu, 610065, P. R. China
- Department of Ultrasound, West China Hospital, Sichuan University, Chengdu, 610041, P. R. China
| | - Chao He
- Department of Physics, Chemistry, and Pharmacy, Danish Institute for Advanced Study (DIAS), University of Southern Denmark, Campusvej 55, Odense, 5230, Denmark
| | - Changzhu Wu
- Department of Physics, Chemistry, and Pharmacy, Danish Institute for Advanced Study (DIAS), University of Southern Denmark, Campusvej 55, Odense, 5230, Denmark
| | - Xikui Liu
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu, 610065, P. R. China
| | - Xianglin Luo
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu, 610065, P. R. China
| | - Shuang Li
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu, 610065, P. R. China
| | - Chong Cheng
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu, 610065, P. R. China
- Med-X Center for Materials, Sichuan University, Chengdu, 610065, P. R. China
| | - Changsheng Zhao
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu, 610065, P. R. China
- Med-X Center for Materials, Sichuan University, Chengdu, 610065, P. R. China
- School of Chemical Engineering, Sichuan University, Chengdu, 610065, P. R. China
| |
Collapse
|
74
|
Zhao X, Wu G, Zheng X, Jiang P, Yi JD, Zhou H, Gao X, Yu ZQ, Wu Y. A Double Atomic-Tuned RuBi SAA/Bi@OG Nanostructure with Optimum Charge Redistribution for Efficient Hydrogen Evolution. Angew Chem Int Ed Engl 2023; 62:e202300879. [PMID: 36721306 DOI: 10.1002/anie.202300879] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2023] [Revised: 01/31/2023] [Accepted: 01/31/2023] [Indexed: 02/02/2023]
Abstract
Charge redistribution on surface of Ru nanoparticle can significantly affect electrocatalytic HER activity. Herein, a double atomic-tuned RuBi SAA/Bi@OG nanostructure that features RuBi single-atom alloy nanoparticle supported by Bi-O single-site-doped graphene was successfully developed by one-step pyrolysis method. The alloyed Bi single atom and adjacent Bi-O single site in RuBi SAA/Bi@OG can synergistically manipulate electron transfer on Ru surface leading to optimum charge redistribution. Thus, the resulting RuBi SAA/Bi@OG exhibits superior alkaline HER activity. Its mass activity is up to 65000 mA mg-1 at an overpotential of 150 mV, which is 72.2 times as much as that of commercial Pt/C. DFT calculations reveal that the RuBi SAA/Bi@OG possesses the optimum charge redistribution, which is most beneficial to strengthen adsorption of water and weaken hydrogen-adsorption free energy in HER process. This double atomic-tuned strategy on surface charge redistribution of Ru nanoparticle opens a new way to develop highly efficient electrocatalysts.
Collapse
Affiliation(s)
- Xiaole Zhao
- College of Chemistry and Environmental Engineering, Institute of Low-dimensional Materials Genome Initiative, Shenzhen University, Shenzhen, 518071, China.,School of Chemistry and Materials Science, University of Science and Technology of China, Hefei, 230026, China
| | - Geng Wu
- School of Chemistry and Materials Science, University of Science and Technology of China, Hefei, 230026, China
| | - Xusheng Zheng
- National Synchrotron Radiation Laboratory, University of Science and Technology of China, Hefei, 230029, China
| | - Peng Jiang
- School of Chemistry and Materials Science, University of Science and Technology of China, Hefei, 230026, China
| | - Jun-Dong Yi
- School of Chemistry and Materials Science, University of Science and Technology of China, Hefei, 230026, China
| | - Huang Zhou
- School of Chemistry and Materials Science, University of Science and Technology of China, Hefei, 230026, China
| | - Xiaoping Gao
- School of Chemistry and Materials Science, University of Science and Technology of China, Hefei, 230026, China
| | - Zhen-Qiang Yu
- College of Chemistry and Environmental Engineering, Institute of Low-dimensional Materials Genome Initiative, Shenzhen University, Shenzhen, 518071, China
| | - Yuen Wu
- School of Chemistry and Materials Science, University of Science and Technology of China, Hefei, 230026, China.,Dalian National Laboratory for Clean Energy, Dalian, 116023, China
| |
Collapse
|
75
|
Yan M, Yin S, Meng F, Qi J, Li X, Cui P, Wang Y, Wang L. Metal nanoparticles capped with plant polyphenol for oxygen reduction electrocatalysis. J Colloid Interface Sci 2023; 641:359-365. [PMID: 36940592 DOI: 10.1016/j.jcis.2023.03.023] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2023] [Revised: 02/24/2023] [Accepted: 03/02/2023] [Indexed: 03/13/2023]
Abstract
The development of a convenient and universal strategy for the synthesis of inorganic-organic hybrid nanomaterials with phenolic coating on the surface is of special significance for the preparation of electrocatalysts. In this work, we report an environmentally friendly, practical, and convenient method for one-step reduction and generation of organically capped nanocatalysts using natural polyphenol tannic acid (TA) as reducing agents and coating agents. TA coated metal (Pd, Ag and Au) nanoparticles are prepared by this strategy, among which TA coated Pd nanoparticles (PdTA NPs) show excellent oxygen reduction reaction activity and stability under alkaline conditions. Interestingly, the TA in the outer layer makes PdTA NPs methanol resistant, and TA acts as molecular armor against CO poisoning. We propose an efficient interfacial coordination coating strategy, which opens up new way to regulate the interface engineering of electrocatalysts reasonably and has broad application prospects.
Collapse
Affiliation(s)
- Min Yan
- College of Chemical Engineering, Qingdao University of Science and Technology, Qingdao 266042, PR China
| | - Shuli Yin
- College of Chemical Engineering, Qingdao University of Science and Technology, Qingdao 266042, PR China.
| | - Fanqing Meng
- College of Chemical Engineering, Qingdao University of Science and Technology, Qingdao 266042, PR China
| | - Jianguang Qi
- College of Chemical Engineering, Qingdao University of Science and Technology, Qingdao 266042, PR China
| | - Xin Li
- College of Chemical Engineering, Qingdao University of Science and Technology, Qingdao 266042, PR China
| | - Peizhe Cui
- College of Chemical Engineering, Qingdao University of Science and Technology, Qingdao 266042, PR China
| | - Yinglong Wang
- College of Chemical Engineering, Qingdao University of Science and Technology, Qingdao 266042, PR China
| | - Liang Wang
- State Key Laboratory Breeding Base of Green-Chemical Synthesis Technology, College of Chemical Engineering, Zhejiang University of Technology, Hangzhou 310014, PR China.
| |
Collapse
|
76
|
Wang Y, Li Z, Hou L, Wang Y, Zhang L, Wang T, Liu H, Liu S, Qin Q, Liu X. In Situ Activation Endows Orthorhombic Fluorite-Type Samarium Iridium Oxide with Enhanced Acidic Water Oxidation. ACS APPLIED MATERIALS & INTERFACES 2023. [PMID: 36892547 DOI: 10.1021/acsami.2c22102] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
Developing electrochemical catalysts for acidic water oxidation with improved activity and stability has been the key to the further popularization of proton exchange membrane electrolyzers. In this work, an orthorhombic fluorite-type samarium iridium oxide (Sm3IrO7) catalyst is synthesized by a simple solid-state reaction. After in situ activation, the as-prepared Sm3IrO7 exhibits higher mass activity and durability than that of commercial IrO2. The in-depth analyses indicate the formation of amorphous IrOx species on the surface to evolve to a new heterostructure IrOx/Sm3IrO7, along with Sm leaching during the in situ activation process. More importantly, strong electronic interactions exist between newborn IrOx species and remaining Sm3IrO7, leading to the compressed Ir-O bonds in IrOx compared to commercial IrO2, thus reducing the energy barrier for oxygen evolution reaction (OER) intermediates to improve the OER process. Based on the above-mentioned analyses, it is speculated that the actual active species for enhanced acidic water oxidation should be IrOx/Sm3IrO7, rather than Sm3IrO7 itself. Theoretical calculations confirm that the optimal energy level path of IrOx/Sm3IrO7 follows the lattice oxygen mechanism, and the energy level of surface Ir 5d orbitals is lower than O 2p orbitals in IrOx/Sm3IrO7, enabling it a superior OER activity.
Collapse
Affiliation(s)
- Yu Wang
- College of Chemical Engineering, Qingdao University of Science and Technology, Qingdao 266042, P. R. China
| | - Zijian Li
- Department of Chemistry, City University of Hong Kong, Kowloon 999077, Hong Kong, P. R. China
| | - Liqiang Hou
- College of Chemical Engineering, Qingdao University of Science and Technology, Qingdao 266042, P. R. China
| | - Yimeng Wang
- College of Chemical Engineering, Qingdao University of Science and Technology, Qingdao 266042, P. R. China
| | - Lijie Zhang
- State Key Laboratory of Bio-Fibers and Eco-Textiles, Collaborative Innovation Center of Marine Biobased Fibers and Ecological Textiles, College of Materials Science and Engineering, Qingdao University, Qingdao 266071, P. R. China
| | - Tiantian Wang
- College of Chemical Engineering, Qingdao University of Science and Technology, Qingdao 266042, P. R. China
| | - Huihui Liu
- College of Chemical Engineering, Qingdao University of Science and Technology, Qingdao 266042, P. R. China
| | - Shangguo Liu
- College of Chemical Engineering, Qingdao University of Science and Technology, Qingdao 266042, P. R. China
| | - Qing Qin
- College of Chemical Engineering, Qingdao University of Science and Technology, Qingdao 266042, P. R. China
| | - Xien Liu
- College of Chemical Engineering, Qingdao University of Science and Technology, Qingdao 266042, P. R. China
| |
Collapse
|
77
|
Single atomic Ru in TiO 2 boost efficient electrocatalytic water oxidation to hydrogen peroxide. Sci Bull (Beijing) 2023; 68:613-621. [PMID: 36914544 DOI: 10.1016/j.scib.2023.03.003] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2022] [Revised: 02/05/2023] [Accepted: 02/27/2023] [Indexed: 03/06/2023]
Abstract
Electrocatalytic two-electron water oxidation affords a promising approach for distributed production of H2O2 using electricity. However, it suffers from the trade-off between the selectivity and high production rate of H2O2 due to the lack of suitable electrocatalysts. In this study, single atoms of Ru were controllably introduced into titanium dioxide to produce H2O2 through an electrocatalytic two-electron water oxidation reaction. The adsorption energy values of OH intermediates could be tuned by introducing Ru single atoms, offering superior H2O2 production under high current density. Notably, a Faradaic efficiency of 62.8% with an H2O2 production rate of 24.2 μmol min-1 cm-2 (>400 ppm within 10 min) was achieved at a current density of 120 mA cm-2. Consequently, herein, the possibility of high-yield H2O2 production under high current density was demonstrated and the importance of regulating intermediate adsorption during electrocatalysis was evidenced.
Collapse
|
78
|
Yang J, Shen Y, Sun Y, Xian J, Long Y, Li G. Ir Nanoparticles Anchored on Metal-Organic Frameworks for Efficient Overall Water Splitting under pH-Universal Conditions. Angew Chem Int Ed Engl 2023; 62:e202302220. [PMID: 36859751 DOI: 10.1002/anie.202302220] [Citation(s) in RCA: 40] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2023] [Revised: 02/28/2023] [Accepted: 03/01/2023] [Indexed: 03/03/2023]
Abstract
The construction of high-activity and low-cost electrocatalysts is critical for efficient hydrogen production by water electrolysis. Herein, we developed an advanced electrocatalyst by anchoring well-dispersed Ir nanoparticles on nickel metal-organic framework (MOF) Ni-NDC (NDC: 2,6-naphthalenedicarboxylic) nanosheets. Benefiting from the strong synergy between Ir and MOF through interfacial Ni-O-Ir bonds, the synthesized Ir@Ni-NDC showed exceptional electrocatalytic performance for hydrogen evolution reaction (HER), oxygen evolution reaction (OER) and overall water splitting in a wide pH range, superior to commercial benchmarks and most reported electrocatalysts. Theoretical calculations revealed that the charge redistribution of Ni-O-Ir bridge induced the optimization of H2 O, OH* and H* adsorption, thus leading to the accelerated electrochemical kinetics for HER and OER. This work provides a new clue to exploit bifunctional electrocatalysts for pH-universal overall water splitting.
Collapse
Affiliation(s)
- Jun Yang
- MOE Laboratory of Bioinorganic and Synthetic Chemistry, Lehn Institute of Functional Materials, School of Chemistry, Sun Yat-Sen University, Guangzhou, 510006, China
| | - Yong Shen
- School of Chemistry, Sun Yat-sen University, Guangzhou, 510006, China
| | - Yamei Sun
- MOE Laboratory of Bioinorganic and Synthetic Chemistry, Lehn Institute of Functional Materials, School of Chemistry, Sun Yat-Sen University, Guangzhou, 510006, China
| | - Jiahui Xian
- MOE Laboratory of Bioinorganic and Synthetic Chemistry, Lehn Institute of Functional Materials, School of Chemistry, Sun Yat-Sen University, Guangzhou, 510006, China
| | - Yanju Long
- MOE Laboratory of Bioinorganic and Synthetic Chemistry, Lehn Institute of Functional Materials, School of Chemistry, Sun Yat-Sen University, Guangzhou, 510006, China
| | - Guangqin Li
- MOE Laboratory of Bioinorganic and Synthetic Chemistry, Lehn Institute of Functional Materials, School of Chemistry, Sun Yat-Sen University, Guangzhou, 510006, China
| |
Collapse
|
79
|
Pi Y, Qiu Z, Sun Y, Ishii H, Liao Y, Zhang X, Chen H, Pang H. Synergistic Mechanism of Sub-Nanometric Ru Clusters Anchored on Tungsten Oxide Nanowires for High-Efficient Bifunctional Hydrogen Electrocatalysis. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2023; 10:e2206096. [PMID: 36594619 PMCID: PMC9982562 DOI: 10.1002/advs.202206096] [Citation(s) in RCA: 24] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/19/2022] [Revised: 12/11/2022] [Indexed: 06/17/2023]
Abstract
The construction of strong interactions and synergistic effects between small metal clusters and supports offers a great opportunity to achieve high-performance and cost-effective heterogeneous catalysis, however, studies on its applications in electrocatalysis are still insufficient. Herein, it is reported that W18 O49 nanowires supported sub-nanometric Ru clusters (denoted as Ru SNC/W18 O49 NWs) constitute an efficient bifunctional electrocatalyst for hydrogen evolution/oxidation reactions (HER and HOR) under acidic condition. Microstructural analyses, X-ray absorption spectroscopy, and density functional theory (DFT) calculations reveal that the Ru SNCs with an average RuRu coordination number of 4.9 are anchored to the W18 O49 NWs via RuOW bonds at the interface. The strong metal-support interaction leads to the electron-deficient state of Ru SNCs, which enables a modulated RuH strength. Furthermore, the unique proton transport capability of the W18 O49 also provides a potential migration channel for the reaction intermediates. These components collectively enable the remarkable performance of Ru SNC/W18 O49 NWs for hydrogen electrocatalysis with 2.5 times of exchange current density than that of carbon-supported Ru nanoparticles, and even rival the state-of-the-art Pt catalyst. This work provides a new prospect for the development of supported sub-nanometric metal clusters for efficient electrocatalysis.
Collapse
Affiliation(s)
- Yecan Pi
- School of Chemistry and Chemical EngineeringYangzhou UniversityJiangsu225002China
- Key Laboratory of Advanced Energy Materials Chemistry (Ministry of Education)College of ChemistryNankai UniversityTianjin300071China
| | - Ziming Qiu
- School of Chemistry and Chemical EngineeringYangzhou UniversityJiangsu225002China
| | - Yi Sun
- School of Chemistry and Chemical EngineeringYangzhou UniversityJiangsu225002China
| | - Hirofumi Ishii
- National Synchrotron Radiation Research Center101 Hsin‐Ann Road, Hsinchu Science ParkHsinchu30076Taiwan
| | - Yen‐Fa Liao
- National Synchrotron Radiation Research Center101 Hsin‐Ann Road, Hsinchu Science ParkHsinchu30076Taiwan
| | - Xiuyun Zhang
- School of Chemistry and Chemical EngineeringYangzhou UniversityJiangsu225002China
| | - Han‐Yi Chen
- Department of Materials Science and EngineeringNational Tsing Hua University101, Sec. 2, Kuang‐Fu RoadHsinchu300044Taiwan
| | - Huan Pang
- School of Chemistry and Chemical EngineeringYangzhou UniversityJiangsu225002China
| |
Collapse
|
80
|
Lian Z, Lu Y, Zhao S, Li Z, Liu Q. Engineering the Electronic Interaction between Atomically Dispersed Fe and RuO 2 Attaining High Catalytic Activity and Durability Catalyst for Li-O 2 Battery. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2023; 10:e2205975. [PMID: 36683253 PMCID: PMC10037969 DOI: 10.1002/advs.202205975] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/14/2022] [Revised: 12/22/2022] [Indexed: 06/17/2023]
Abstract
It is significant to develop catalysts with high catalytic activity and durability to improve the electrochemical performances of lithium-oxygen batteries (LOBs). While electronic metal-support interaction (EMSI) between metal atoms and support has shown great potential in catalytic field. Hence, to effectively improve the electrochemical performance of LOBs, atomically dispersed Fe modified RuO2 nanoparticles are designed to be loaded on hierarchical porous carbon shells (FeSA -RuO2 /HPCS) based on EMSI criterion. It is revealed that the Ru-O-Fe1 structure is formed between the atomically dispersed Fe atoms and the surrounding Ru sites through electron interaction, and this structure could act as the ultra-high activity driving force center of oxygen reduction/evolution reaction (ORR/OER). Specifically, the Ru-O-Fe1 structure enhances the reaction kinetics of ORR to a certain extent, and optimizes the morphology of discharge products by reducing the adsorption energy of catalyst for O2 and LiO2 ; while during the OER process, the Ru-O-Fe1 structure not only greatly enhances the reaction kinetics of OER, but also catalyzes the efficient decomposition of the discharge products Li2 O2 by the favorable electron transfer between the active sites and the discharge products. Hence, LOBs based on FeSA-RuO2 /HPCS cathodes show an ultra-low over-potential, high discharge capacity and superior durability.
Collapse
Affiliation(s)
- Zheng Lian
- Green Catalysis Centerand College of ChemistryZhengzhou UniversityZhengzhou450001P. R. China
- State Key Laboratory of Pulp and Paper EngineeringSouth China University of TechnologyGuangzhou510641P. R. China
| | - Youcai Lu
- Green Catalysis Centerand College of ChemistryZhengzhou UniversityZhengzhou450001P. R. China
| | - Shaoze Zhao
- Green Catalysis Centerand College of ChemistryZhengzhou UniversityZhengzhou450001P. R. China
| | - Zhongjun Li
- Green Catalysis Centerand College of ChemistryZhengzhou UniversityZhengzhou450001P. R. China
| | - Qingchao Liu
- Green Catalysis Centerand College of ChemistryZhengzhou UniversityZhengzhou450001P. R. China
| |
Collapse
|
81
|
Nicole SLD, Li Y, Xie W, Wang G, Lee JM. Heterointerface and Tensile Strain Effects Synergistically Enhances Overall Water-Splitting in Ru/RuO 2 Aerogels. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2023; 19:e2206844. [PMID: 36642855 DOI: 10.1002/smll.202206844] [Citation(s) in RCA: 29] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/05/2022] [Revised: 12/19/2022] [Indexed: 06/17/2023]
Abstract
Designing robust electrocatalysts for water-splitting is essential for sustainable hydrogen generation, yet difficult to accomplish. In this study, a fast and facile two-step technique to synthesize Ru/RuO2 aerogels for catalyzing overall water-splitting under alkaline conditions is reported. Benefiting from the synergistic combination of high porosity, heterointerface, and tensile strain effects, the Ru/RuO2 aerogel exhibits low overpotential for oxygen evolution reaction (189 mV) and hydrogen evolution reaction (34 mV) at 10 mA cm-2 , surpassing RuO2 (338 mV) and Pt/C (53 mV), respectively. Notably, when the Ru/RuO2 aerogels are applied at the anode and cathode, the resultant water-splitting cell reflected a low potential of 1.47 V at 10 mA cm-2 , exceeding the commercial Pt/C||RuO2 standard (1.63 V). X-ray adsorption spectroscopy and theoretical studies demonstrate that the heterointerface of Ru/RuO2 optimizes charge redistribution, which reduces the energy barriers for hydrogen and oxygen intermediates, thereby enhancing oxygen and hydrogen evolution reaction kinetics.
Collapse
Affiliation(s)
- Sui L D Nicole
- School of Chemistry, Chemical Engineering and Biotechnology, Nanyang Technological University, 62 Nanyang Drive, Singapore, 637459, Singapore
- Environmental Chemistry and Materials Centre, Nanyang Environment & Water Research Institute (NEWRI), Interdisciplinary Graduate Programme, Nanyang Technological University, Singapore, 637141, Singapore
| | - Yinghao Li
- School of Chemistry, Chemical Engineering and Biotechnology, Nanyang Technological University, 62 Nanyang Drive, Singapore, 637459, Singapore
| | - Wenjie Xie
- Key Laboratory of Extraordinary Bond Engineering and Advanced Materials Technology of Chongqing, School of Electronic Information Engineering, Yangtze Normal University, Chongqing, 408100, China
| | - Guangzhao Wang
- Key Laboratory of Extraordinary Bond Engineering and Advanced Materials Technology of Chongqing, School of Electronic Information Engineering, Yangtze Normal University, Chongqing, 408100, China
| | - Jong-Min Lee
- School of Chemistry, Chemical Engineering and Biotechnology, Nanyang Technological University, 62 Nanyang Drive, Singapore, 637459, Singapore
| |
Collapse
|
82
|
Zhu T, Han J, Sun T, Chen J, Wang S, Ren S, Pi X, Xu J, Chen K. Interface-Enhanced SiO x/Ru Heterocatalysts for Efficient Electrochemical Water Splitting. ACS APPLIED MATERIALS & INTERFACES 2023; 15:8200-8207. [PMID: 36734345 DOI: 10.1021/acsami.2c21953] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
Developing a bifunctional electrocatalyst with remarkable performance viable for overall water splitting is increasingly essential for industrial-scale renewable energy conversion. However, the current electrocatalyst still requires a large cell voltage to drive water splitting due to the unsuitable adsorption/desorption capacity of reaction intermediates, which seriously hinders the practical application of water splitting. Herein, a unique SiOx/Ru nanosheet (NS) material was proposed as a high-performance electrocatalyst for overall water splitting. The SiOx/Ru NSs show superior performance in the hydrogen evolution reaction with a low overpotential of 23 mV (@ 10 mA cm-2) and excellent stability for nearly 200 h (@ 10 mA cm-2) in 1 M KOH. By means of the introduction of SiOx, it is beneficial for balancing the local charge density of the surrounding Ru sites. The suitable electronic coupling between the d-band electrons of Ru and the adsorbed species effectively balances the adsorption and desorption of reaction intermediates on the surface. As a result, the catalyst also exhibits overall water splitting activity with a cell voltage of only 1.496 V to reach the current density of 10 mA cm-2. The present work opens up a new strategy for designing high-performance electrocatalysts for water splitting.
Collapse
Affiliation(s)
- Ting Zhu
- School of Electronic Science and Engineering, National Laboratory of Solid State Microstructures, Collaborative Innovation Center of Advanced Microstructures, Jiangsu Provincial Key Laboratory of Advanced Photonic and Electronic Materials, Nanjing University, Nanjing 210000, China
| | - Junnan Han
- School of Electronic Science and Engineering, National Laboratory of Solid State Microstructures, Collaborative Innovation Center of Advanced Microstructures, Jiangsu Provincial Key Laboratory of Advanced Photonic and Electronic Materials, Nanjing University, Nanjing 210000, China
| | - Teng Sun
- School of Electronic Science and Engineering, National Laboratory of Solid State Microstructures, Collaborative Innovation Center of Advanced Microstructures, Jiangsu Provincial Key Laboratory of Advanced Photonic and Electronic Materials, Nanjing University, Nanjing 210000, China
| | - Jiaming Chen
- School of Electronic Science and Engineering, National Laboratory of Solid State Microstructures, Collaborative Innovation Center of Advanced Microstructures, Jiangsu Provincial Key Laboratory of Advanced Photonic and Electronic Materials, Nanjing University, Nanjing 210000, China
| | - Sheng Wang
- School of Electronic Science and Engineering, National Laboratory of Solid State Microstructures, Collaborative Innovation Center of Advanced Microstructures, Jiangsu Provincial Key Laboratory of Advanced Photonic and Electronic Materials, Nanjing University, Nanjing 210000, China
| | - Siyun Ren
- School of Electronic Science and Engineering, National Laboratory of Solid State Microstructures, Collaborative Innovation Center of Advanced Microstructures, Jiangsu Provincial Key Laboratory of Advanced Photonic and Electronic Materials, Nanjing University, Nanjing 210000, China
| | - Xiaodong Pi
- State Key Laboratory of Silicon Materials, School of Materials Science and Engineering, Zhejiang University, Hangzhou, Zhejiang 310027, P. R. China
- Institute of Advanced Semiconductors, Hangzhou Innovation Center, Zhejiang University, Hangzhou, Zhejiang 310027, P. R. China
| | - Jun Xu
- School of Electronic Science and Engineering, National Laboratory of Solid State Microstructures, Collaborative Innovation Center of Advanced Microstructures, Jiangsu Provincial Key Laboratory of Advanced Photonic and Electronic Materials, Nanjing University, Nanjing 210000, China
| | - Kunji Chen
- School of Electronic Science and Engineering, National Laboratory of Solid State Microstructures, Collaborative Innovation Center of Advanced Microstructures, Jiangsu Provincial Key Laboratory of Advanced Photonic and Electronic Materials, Nanjing University, Nanjing 210000, China
| |
Collapse
|
83
|
Zhu Y, Wang J, Koketsu T, Kroschel M, Chen JM, Hsu SY, Henkelman G, Hu Z, Strasser P, Ma J. Iridium single atoms incorporated in Co 3O 4 efficiently catalyze the oxygen evolution in acidic conditions. Nat Commun 2022; 13:7754. [PMID: 36517475 PMCID: PMC9751110 DOI: 10.1038/s41467-022-35426-8] [Citation(s) in RCA: 71] [Impact Index Per Article: 23.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2022] [Accepted: 12/02/2022] [Indexed: 12/15/2022] Open
Abstract
Designing active and stable electrocatalysts with economic efficiency for acidic oxygen evolution reaction is essential for developing proton exchange membrane water electrolyzers. Herein, we report on a cobalt oxide incorporated with iridium single atoms (Ir-Co3O4), prepared by a mechanochemical approach. Operando X-ray absorption spectroscopy reveals that Ir atoms are partially oxidized to active Ir>4+ during the reaction, meanwhile Ir and Co atoms with their bridged electrophilic O ligands acting as active sites, are jointly responsible for the enhanced performance. Theoretical calculations further disclose the isolated Ir atoms can effectively boost the electronic conductivity and optimize the energy barrier. As a result, Ir-Co3O4 exhibits significantly higher mass activity and turnover frequency than those of benchmark IrO2 in acidic conditions. Moreover, the catalyst preparation can be easily scaled up to gram-level per batch. The present approach highlights the concept of constructing single noble metal atoms incorporated cost-effective metal oxides catalysts for practical applications.
Collapse
Affiliation(s)
- Yiming Zhu
- Shanghai Key Laboratory for R&D and Application of Metallic Functional Materials, Institute of New Energy for Vehicles, School of Materials Science and Engineering, Tongji University, Shanghai, 201804, China
| | - Jiaao Wang
- Department of Chemistry and the Oden Institute for Computational Engineering and Sciences, The University of Texas at Austin, Austin, TX, 78712-0165, USA
| | - Toshinari Koketsu
- Shanghai Key Laboratory for R&D and Application of Metallic Functional Materials, Institute of New Energy for Vehicles, School of Materials Science and Engineering, Tongji University, Shanghai, 201804, China
- Department of Chemistry, Technical University Berlin, 10623, Berlin, Germany
| | - Matthias Kroschel
- Department of Chemistry, Technical University Berlin, 10623, Berlin, Germany
| | - Jin-Ming Chen
- National Synchrotron Radiation Research Center, Hsinchu, 30076, Taiwan
| | - Su-Yang Hsu
- National Synchrotron Radiation Research Center, Hsinchu, 30076, Taiwan
| | - Graeme Henkelman
- Department of Chemistry and the Oden Institute for Computational Engineering and Sciences, The University of Texas at Austin, Austin, TX, 78712-0165, USA
| | - Zhiwei Hu
- Max Planck Institute for Chemical Physics of Solids, Nöthnitzer Strasse 40, 01187, Dresden, Germany.
| | - Peter Strasser
- Department of Chemistry, Technical University Berlin, 10623, Berlin, Germany.
| | - Jiwei Ma
- Shanghai Key Laboratory for R&D and Application of Metallic Functional Materials, Institute of New Energy for Vehicles, School of Materials Science and Engineering, Tongji University, Shanghai, 201804, China.
| |
Collapse
|
84
|
Xing G, Tong M, Yu P, Wang L, Zhang G, Tian C, Fu H. Reconstruction of Highly Dense Cu−N
4
Active Sites in Electrocatalytic Oxygen Reduction Characterized by Operando Synchrotron Radiation. Angew Chem Int Ed Engl 2022; 61:e202211098. [PMID: 35993239 DOI: 10.1002/anie.202211098] [Citation(s) in RCA: 49] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2022] [Indexed: 11/06/2022]
Abstract
The emerging star of single atomic site (SAS) catalyst has been regarded as the most promising Pt-substituted electrocatalyst for oxygen reduction reaction (ORR) in anion-exchange membrane fuel cells (AEMFCs). However, the metal loading in SAS directly affects the whole device performance. Herein, we report a dual nitrogen source coordinated strategy to realize high dense Cu-N4 SAS with a metal loading of 5.61 wt% supported on 3D N-doped carbon nanotubes/graphene structure wherein simultaneously performs superior ORR activity and stability in alkaline media. When applied in H2 /O2 AEMFC, it could reach an open-circuit voltage of 0.90 V and a peak power density of 324 mW cm-2 . Operando synchrotron radiation analyses identify the reconstruction from initial Cu-N4 to Cu-N4 /Cu-nanoclusters (NC) and the subsequent Cu-N3 /Cu-NC under working conditions, which gradually regulate the d-band center of central metal and balance the Gibbs free energy of *OOH and *O intermediates, benefiting to ORR activity.
Collapse
Affiliation(s)
- Gengyu Xing
- Key Laboratory of Functional Inorganic Materials Chemistry Ministry of Education of the People's Republic of China Heilongjiang University Harbin 150080 China
| | - Miaomiao Tong
- Key Laboratory of Functional Inorganic Materials Chemistry Ministry of Education of the People's Republic of China Heilongjiang University Harbin 150080 China
| | - Peng Yu
- Key Laboratory for Photonic and Electronic Bandgap Materials Ministry of Education, School of Physics and Electronic Engineering Harbin Normal University Harbin 150025 China
| | - Lei Wang
- Key Laboratory of Functional Inorganic Materials Chemistry Ministry of Education of the People's Republic of China Heilongjiang University Harbin 150080 China
| | - Guangying Zhang
- Key Laboratory of Functional Inorganic Materials Chemistry Ministry of Education of the People's Republic of China Heilongjiang University Harbin 150080 China
| | - Chungui Tian
- Key Laboratory of Functional Inorganic Materials Chemistry Ministry of Education of the People's Republic of China Heilongjiang University Harbin 150080 China
| | - Honggang Fu
- Key Laboratory of Functional Inorganic Materials Chemistry Ministry of Education of the People's Republic of China Heilongjiang University Harbin 150080 China
| |
Collapse
|
85
|
Xing G, Tong M, Yu P, Wang L, Zhang G, Tian C, Fu H. Reconstruction of Highly Dense Cu−N4 Active Sites in Electrocatalytic Oxygen Reduction Characterized by Operando Synchrotron Radiation. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202211098] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Gengyu Xing
- Heilongjiang University Key Laboratory of Functional Inorganic Materials Chemistry, Ministry of Education of the People’s Republic of China CHINA
| | - Miaomiao Tong
- Heilongjiang University Key Laboratory of Functional Inorganic Materials Chemistry, Ministry of Education of the People’s Republic of China CHINA
| | - Peng Yu
- Harbin Normal University Key Laboratory for Photonic and Electronic Bandgap Materials, Ministry of Education, School of Physics and Electronic Engineering CHINA
| | - Lei Wang
- Heilongjiang University Key Laboratory of Functional Inorganic Materials Chemistry, Ministry of Education of the People’s Republic of China CHINA
| | - Guangying Zhang
- Heilongjiang University Key Laboratory of Functional Inorganic Materials Chemistry, Ministry of Education of the People’s Republic of China CHINA
| | - Chungui Tian
- Heilongjiang University Key Laboratory of Functional Inorganic Materials Chemistry, Ministry of Education of the People’s Republic of China CHINA
| | - Honggang Fu
- Heilongjiang University Key Laboratory of Functional Inorganic Material Chemistry, Ministry of Education of the People’s Republic of China Xuefu Road 150080 Harbin CHINA
| |
Collapse
|
86
|
Advances in Anion Vacancy for Electrocatalytic Oxygen Evolution Reaction. J Electroanal Chem (Lausanne) 2022. [DOI: 10.1016/j.jelechem.2022.116650] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
87
|
Yang X, Liu Y, Guo R, Xiao J. Ru doping boosts electrocatalytic water splitting. Dalton Trans 2022; 51:11208-11225. [PMID: 35730677 DOI: 10.1039/d2dt01394k] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Heteroatom doping plays a crucial role in improving the electrocatalytic performance of catalysts towards water splitting. Owing to the existence of Ru-O moieties, Ru is thus emerging as an ideal dopant for promoting the electrocatalytic performance for water splitting by modifying the electronic structure, introducing extra active sites, improving electronic conductivity, and inducing a strong synergistic effect. Benefitting from these advantages, Ru-doped nanomaterials have been widely investigated and employed as advanced electrocatalysts for water splitting, and many excellent Ru-doped electrocatalysts have been successfully developed. In an effort to obtain a better understanding of the influence of Ru doping on the electrocatalytic water splitting performance of nanocatalysts, we herein summarize the recent progress of Ru-doped electrocatalysts by focusing on the synthesis strategies and advantageous merits. Applications of these new materials in water electrolysis technology are also discussed with emphasis on future directions in this active field of research.
Collapse
Affiliation(s)
- Xin Yang
- Hunan Engineering Laboratory for Preparation Technology of Polyvinyl Alcohol Fiber Material, Key Laboratory of Research and Utilization of Ethnomedicinal Plant Resources of Hunan Province, Huaihua University, Huaihua 418000, PR China.
| | - Yan Liu
- Hunan Engineering Laboratory for Preparation Technology of Polyvinyl Alcohol Fiber Material, Key Laboratory of Research and Utilization of Ethnomedicinal Plant Resources of Hunan Province, Huaihua University, Huaihua 418000, PR China.
| | - Ruike Guo
- Hunan Engineering Laboratory for Preparation Technology of Polyvinyl Alcohol Fiber Material, Key Laboratory of Research and Utilization of Ethnomedicinal Plant Resources of Hunan Province, Huaihua University, Huaihua 418000, PR China.
| | - Jiafu Xiao
- Hunan Province Key Laboratory for Antibody-based Drug and Intelligent Delivery System, Hunan University of Medicine, Huaihua 418000, PR China.
| |
Collapse
|