51
|
Wang J, Yu N, Tang Y, Cheng Y, Li H. FDA-Approved Hydrogel-Mediated In Situ Sonodynamic and Chemotherapeutic Therapy for Pancreatic Cancer. Pharmaceuticals (Basel) 2024; 17:1666. [PMID: 39770508 PMCID: PMC11678859 DOI: 10.3390/ph17121666] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2024] [Revised: 11/29/2024] [Accepted: 12/04/2024] [Indexed: 01/11/2025] Open
Abstract
Background: Albumin-bound paclitaxel (nab-PTX) nanoparticles have been proven effective in treating advanced pancreatic cancer. However, the clinical application of nab-PTX nanoparticles is often associated with suboptimal outcomes and severe side effects due to its non-specific distribution and rapid clearance. This study aims to develop a novel nanoplatform that integrates sonodynamic therapy (SDT) and chemotherapy to enhance treatment efficacy and reduce systemic side effects. Methods: Bovine serum albumin (BSA) was conjugated with chlorin e6 and paclitaxel (PTX) to form stable nanoparticles (NPs). These NPs were then incorporated into a biodegradable poly(lactic-co-glycolic acid)-b-polyethylene glycol-b-poly(lactic-co-glycolic acid) hydrogel for targeted drug delivery. The system's stability and drug release profile were analyzed, followed by in vitro studies to evaluate cellular uptake and cancer cell killing efficacy. In vivo evaluation was performed using pancreatic cancer xenograft models, with intratumoral injection of the drug-loaded hydrogel. Results: The developed hydrogel system demonstrated enhanced stability and sustained release of PTX. In vitro analyses revealed significant cellular uptake and synergistic cancer cell killing effects through combined SDT and chemotherapy. In vivo studies showed prolonged intratumoral retention of the drug and remarkable inhibition of tumor growth. Conclusions: This novel nanoplatform offers a promising approach for improving pancreatic cancer treatment by enhancing intratumoral drug retention and minimizing systemic side effects. The synergistic effects of SDT and chemotherapy demonstrate the potential of this strategy in achieving better therapeutic outcomes.
Collapse
Affiliation(s)
- Jian Wang
- Department of Radiology, Sixth People’s Hospital, Shanghai Jiaotong University School of Medicine, Shanghai 200025, China
| | - Nianhui Yu
- Department of Radiology, Sixth People’s Hospital, Shanghai Jiaotong University School of Medicine, Shanghai 200025, China
| | - Yunpeng Tang
- Department of Radiology, Sixth People’s Hospital, Shanghai Jiaotong University School of Medicine, Shanghai 200025, China
- Key Laboratory for Advanced Materials and Joint International Research Laboratory of Precision Chemistry and Molecular Engineering, East China University of Science and Technology, Shanghai 200231, China
| | - Yingsheng Cheng
- Department of Imaging Medicine and Nuclear Medicine, Tongji Hospital, Shanghai 200065, China
| | - Hui Li
- Department of Radiology, Sixth People’s Hospital, Shanghai Jiaotong University School of Medicine, Shanghai 200025, China
| |
Collapse
|
52
|
Tang J, Hu J, Bai X, Wang Y, Cai J, Zhang Z, Geng B, Pan D, Shen L. Near-Infrared Carbon Dots With Antibacterial and Osteogenic Activities for Sonodynamic Therapy of Infected Bone Defects. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2404900. [PMID: 39295501 DOI: 10.1002/smll.202404900] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/14/2024] [Revised: 08/19/2024] [Indexed: 09/21/2024]
Abstract
Repairing infected bone defects is hindered by the presence of stubborn bacterial infections and inadequate osteogenic activity. The incorporation of harmful antibiotics not only fosters the emergence of multidrug-resistant bacteria, but also diminishes the osteogenic properties of scaffold materials. In addition, it is essential to continuously monitor the degradation kinetics of scaffold materials at bone defect sites, yet the majority of bone repair materials lack imaging capability. To address these issues, this study reports for the first time the development of a single nanomaterial with triple functionality: efficient sonodynamic antibacterial activity, accelerated bone defect repair capability, and NIR imaging ability for visualized therapy of infected bone defects. Through rationally regulating the surface functional groups, the obtained multifunctional NIR carbon dots (NIR-CD) exhibit p-n junction-enhanced sonodynamic activity, narrow bandgap-facilitated NIR imaging capability, and negative charge-augmented osteogenic activity. The validation of NIR-CDs antibacterial and osteogenic activities in vivo is conducted by constructing 3D injectable hydrogels encapsulated by NIR-CDs (NIR-CD/GelMA). The implantation of multifunctional NIR-CD/GelMA hydrogel scaffolds in a model of MRSA-infected craniotomy defects results in almost complete restoration of the infected bone defects after 60 days. These findings will provide traceable, renewable, repairable and antibacterial candidate biomaterials for bone tissue engineering.
Collapse
Affiliation(s)
- Jianfei Tang
- Department of Orthopedic Surgery, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200233, China
| | - Jinyan Hu
- School of Environmental and Chemical Engineering, Shanghai University, Shanghai, 200444, China
| | - Xue Bai
- School of Environmental and Chemical Engineering, Shanghai University, Shanghai, 200444, China
| | - Yang Wang
- Department of Orthopedic Surgery, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200233, China
| | - Jinming Cai
- School of Environmental and Chemical Engineering, Shanghai University, Shanghai, 200444, China
| | - Zhenlin Zhang
- School of Environmental and Chemical Engineering, Shanghai University, Shanghai, 200444, China
| | - Bijiang Geng
- School of Environmental and Chemical Engineering, Shanghai University, Shanghai, 200444, China
| | - Dengyu Pan
- School of Environmental and Chemical Engineering, Shanghai University, Shanghai, 200444, China
| | - Longxiang Shen
- Department of Orthopedic Surgery, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200233, China
| |
Collapse
|
53
|
Cui M, Tang D, Zhang H, Liang G, Xu C, Xiao H. NIR-II Fluorescent Nanotheranostics with a Switchable Irradiation Mode for Immunogenic Sonodynamic Therapy. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2411328. [PMID: 39420648 DOI: 10.1002/adma.202411328] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/01/2024] [Revised: 09/22/2024] [Indexed: 10/19/2024]
Abstract
Nanotheranostics, which integrate diagnostic and therapeutic functionalities, offer significant potential for tumor treatment. However, current nanotheranostic systems typically involve multiple molecules, each providing a singular diagnostic or therapeutic function, leading to challenges such as complex structural composition, poor targeting efficiency, lack of spatiotemporal control, and dependence on a single therapeutic modality. This study introduces NPRBOXA, a nanoparticle functionalized with surface-bound cRGD for targeted delivery to αvβ3/αvβ5 receptors on tumor cells, achieving theranostic integration by sequentially switching its irradiation modes. Under 808 nm laser irradiation, NPRBOXA emits NIR-II fluorescence, which aids in identifying the nanoparticle's location and fluorescence intensity, thereby determining the optimal treatment window. Following this, the irradiation mode switches to ultrasound irradiation at the optimal treatment window. Ultrasound irradiation induces NPRBOXA to generate reactive oxygen species, promoting the reduction of OXA-IV to OXA-II, which in turn triggers immunogenic cell death. This mechanism enables a combination of sonodynamic therapy, chemotherapy, and immunotherapy for tumor treatment. The versatile design of NPRBOXA holds promise for advancing precision oncology through enhanced therapeutic efficacy and real-time imaging guidance.
Collapse
Affiliation(s)
- Minhui Cui
- Beijing National Laboratory for Molecular Sciences, Laboratory of Polymer Physics and Chemistry, Institute of Chemistry Chinese Academy of Sciences, Beijing, 100190, P. R. China
- University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Dongsheng Tang
- Beijing National Laboratory for Molecular Sciences, Laboratory of Polymer Physics and Chemistry, Institute of Chemistry Chinese Academy of Sciences, Beijing, 100190, P. R. China
- University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Hanchen Zhang
- Beijing National Laboratory for Molecular Sciences, Laboratory of Polymer Physics and Chemistry, Institute of Chemistry Chinese Academy of Sciences, Beijing, 100190, P. R. China
- University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Ganghao Liang
- Beijing National Laboratory for Molecular Sciences, Laboratory of Polymer Physics and Chemistry, Institute of Chemistry Chinese Academy of Sciences, Beijing, 100190, P. R. China
- University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Chun Xu
- Sydney Dental School, Faculty of Medicine and Health, The University of Sydney, Sydney, NSW, 2006, Australia
- Charles Perkins Centre, The University of Sydney, Camperdown, NSW, 2006, Australia
| | - Haihua Xiao
- Beijing National Laboratory for Molecular Sciences, Laboratory of Polymer Physics and Chemistry, Institute of Chemistry Chinese Academy of Sciences, Beijing, 100190, P. R. China
- University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| |
Collapse
|
54
|
Xu S, Zhang H, Qian Z, Yuan W. pH-Responsive injectable self-healing hydrogels loading Au nanoparticles-decorated bimetallic organic frameworks for synergistic sonodynamic-chemodynamic-starvation-chemo therapy of cancer. J Colloid Interface Sci 2024; 675:746-760. [PMID: 38996704 DOI: 10.1016/j.jcis.2024.07.039] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2024] [Revised: 07/04/2024] [Accepted: 07/05/2024] [Indexed: 07/14/2024]
Abstract
A novel and efficient cancer therapy was developed using a smart hydrogel containing multifunctional bimetallic organic frameworks and anticancer drugs. The injectable self-healing hydrogel with pH-responsiveness was constructed through borate ester and imine bonds among dopamine-grafted sodium alginate (SADA), hydroxypropyl chitosan (HPCS) and 2-formylphenylboronic acid (2-FPBA). The Au nanoparticles-decorated Ti/Fe bimetallic organic framework tetragonal nanosheets (Au/TF-MOF TNS) were synthesized and incorporated into the hydrogel with the anticancer drugs doxorubicin (DOX). Upon intratumoral injection of nanocomposite hydrogel, the acidic tumor microenvironment triggered the cleavage of borate ester and imine bonds, causing the hydrogel to break down and accelerating the release of both Au/TF-MOF TNS and DOX. These Au/TF-MOF TNS functioned as nanozymes, producing hydroxyl radicals (·OH) for chemodynamic therapy (CDT), generating oxygen (O2) to support sonodynamic therapy (SDT), and depleting glucose for starvation therapy (ST). Additionally, the Au/TF-MOF TNS served as sonosensitizers, capable of converting O2 into singlet oxygen (1O2) upon ultrasound irradiation to achieve SDT. Therefore, this nanocomposite hydrogel system enabled synergistic sonodynamic-chemodynamic-starvation-chemo therapy (SDT-CDT-ST-CT) of cancer, presenting a promising platform for advanced cancer therapy strategies.
Collapse
Affiliation(s)
- Sicheng Xu
- School of Materials Science and Engineering, Key Laboratory of Advanced Civil Materials of Ministry of Education, Tongji University, Shanghai 201804, People's Republic of China
| | - Hanyan Zhang
- School of Materials Science and Engineering, Key Laboratory of Advanced Civil Materials of Ministry of Education, Tongji University, Shanghai 201804, People's Republic of China
| | - Zhiyi Qian
- School of Materials Science and Engineering, Key Laboratory of Advanced Civil Materials of Ministry of Education, Tongji University, Shanghai 201804, People's Republic of China
| | - Weizhong Yuan
- School of Materials Science and Engineering, Key Laboratory of Advanced Civil Materials of Ministry of Education, Tongji University, Shanghai 201804, People's Republic of China.
| |
Collapse
|
55
|
Hu J, Zheng Z, Yang Y, Chen L, Kang W. Advance of Near-Infrared Emissive Carbon Dots in Diagnosis and Therapy: Synthesis, Luminescence, and Application. Adv Healthc Mater 2024; 13:e2401513. [PMID: 39091058 DOI: 10.1002/adhm.202401513] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2024] [Revised: 06/14/2024] [Indexed: 08/04/2024]
Abstract
Carbon dots (CDs) with good optical properties, biocompatibility, easy functionalization, and small size have attracted more and more attention and laid a good foundation for their applications in the biomedicine field. CDs emitted in near-infrared regions (NIR-CDs) can achieve high penetration depth imaging and produce high cytotoxic substance for disease treatment. Therefore, NIR-CDs are promising materials to realize high-quality imaging-guided diagnostic and therapeutic integration. This review first introduces the current mainstream synthesis methods of NIR-CDs by "top-down" and "bottom-up". Second, the luminescence modes of NIR-CDs are introduced, and the luminescence mechanisms based on carbon core state, surface state, molecular state, and crosslinking enhanced emission are summarized. Third, the applications and principles of NIR-CDs in imaging, drug delivery, and non-invasive therapeutics are introduced from a view of diagnosis and therapy. Finally, their prospects and challenges in biomedical and biotechnological applications are outlined.
Collapse
Affiliation(s)
- Jing Hu
- Key Laboratory of Interface Science and Engineering in Advanced Materials, Ministry of Education, Taiyuan University of Technology, Taiyuan, 030024, China
- College of Materials Science and Engineering, Taiyuan University of Technology, Taiyuan, 030024, China
| | - Ziliang Zheng
- Third Hospital of Shanxi Medical University, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences,Tongji Shanxi Hospital, Taiyuan, 030032, China
| | - Yongzhen Yang
- Key Laboratory of Interface Science and Engineering in Advanced Materials, Ministry of Education, Taiyuan University of Technology, Taiyuan, 030024, China
- College of Materials Science and Engineering, Taiyuan University of Technology, Taiyuan, 030024, China
- Shanxi-Zheda Institute of Advanced Materials and Chemical Engineering, Taiyuan, 030000, China
| | - Lin Chen
- Key Laboratory of Interface Science and Engineering in Advanced Materials, Ministry of Education, Taiyuan University of Technology, Taiyuan, 030024, China
- College of Materials Science and Engineering, Taiyuan University of Technology, Taiyuan, 030024, China
- Shanxi-Zheda Institute of Advanced Materials and Chemical Engineering, Taiyuan, 030000, China
| | - Weiwei Kang
- Third Hospital of Shanxi Medical University, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences,Tongji Shanxi Hospital, Taiyuan, 030032, China
| |
Collapse
|
56
|
Pechnikova NA, Domvri K, Porpodis K, Istomina MS, Iaremenko AV, Yaremenko AV. Carbon Quantum Dots in Biomedical Applications: Advances, Challenges, and Future Prospects. AGGREGATE 2024. [DOI: 10.1002/agt2.707] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/06/2025]
Abstract
ABSTRACTCarbon quantum dots (CQDs) represent a rapidly emerging class of nanomaterials with significant potential in biomedical applications due to their tunable fluorescence, high biocompatibility, and versatile functionalization. This review focuses on the recent progress in utilizing CQDs for drug delivery, bioimaging, biosensing, and cancer therapy. With their unique optical properties, such as tunable fluorescence, high quantum yield, and photostability, CQDs enable precise bioimaging and sensitive biosensing. Their small size, biocompatibility, and ease of surface functionalization allow for the development of targeted drug delivery systems, enhancing therapeutic precision and minimizing side effects. In cancer therapy, CQDs have shown potential in photodynamic and photothermal treatments by generating reactive oxygen species under light exposure, selectively targeting cancer cells while sparing healthy tissues. Furthermore, CQDs’ ability to penetrate biological barriers including the blood–brain barrier opens new possibilities for delivering therapeutic agents to hard‐to‐reach areas, such as tumors or diseased tissues. However, challenges such as optimizing synthesis, ensuring long‐term stability, and addressing safety concerns in biological environments remain critical hurdles. This review discusses current efforts to overcome these barriers and improve CQD performance in clinical settings, including scalable production methods and enhanced biocompatibility. As research progresses, CQDs are expected to play an important role in improving healthcare by offering more targeted treatment options and contributing to advancements in personalized medicine.
Collapse
Affiliation(s)
- Nadezhda A. Pechnikova
- Department of Biochemistry & Biotechnology University of Thessaly Volos Greece
- Laboratory of Chemical Engineering A’ Department of Chemical Engineering Faculty of Engineering Aristotle University of Thessaloniki Thessaloniki Greece
- Saint Petersburg Pasteur Institute Saint Petersburg Russia
| | - Kalliopi Domvri
- Oncology Unit, Pulmonary Department, George Papanikolaou Hospital, School of Medicine Aristotle University of Thessaloniki Thessaloniki Greece
- Laboratory of Histology‐Embryology School of Medicine Aristotle University of Thessaloniki Thessaloniki Greece
- Pathology Department George Papanikolaou Hospital Aristotle University of Thessaloniki Thessaloniki Greece
| | - Konstantinos Porpodis
- Oncology Unit, Pulmonary Department, George Papanikolaou Hospital, School of Medicine Aristotle University of Thessaloniki Thessaloniki Greece
| | - Maria S. Istomina
- Institute of Experimental Medicine Almazov National Medical Research Centre Saint‐Peterburg Russia
| | | | - Alexey V. Yaremenko
- Oncology Unit, Pulmonary Department, George Papanikolaou Hospital, School of Medicine Aristotle University of Thessaloniki Thessaloniki Greece
- Center for Nanomedicine Brigham and Women's Hospital, Harvard Medical School Boston Massachusetts USA
| |
Collapse
|
57
|
Ning XF, Zhu YQ, Sun H, Yang Y, Liu MX. The Latest Applications of Carbon-Nitride-Based Materials for Combination Treatment of Cancer. ACS APPLIED MATERIALS & INTERFACES 2024; 16:64410-64423. [PMID: 39530540 DOI: 10.1021/acsami.4c12350] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2024]
Abstract
Carbon-nitride-based (CN-based) materials have shown great potential in combination therapy in recent years. Due to their outstanding biocompatibility, ease of modification, and adjustable band-gap position, CN-based materials can be applied as photosensitizers in photodynamic therapy (PDT) and light-driven water-splitting catalysts in gas therapy. After doping with other elements, the photocatalytic performance of CN-based materials will be enhanced, and more interesting functions will be obtained. In addition, the large specific surface area also promotes CN-based materials as drug carriers combined with other therapeutic modalities to achieve combination therapy. This Review analyzes and summarizes the latest research on CN-based materials in combined therapies, such as PDT with photothermal therapy (PTT), PDT with sonodynamic therapy (SDT), PDT with drug therapy, PDT with gene therapy, gas therapy with PDT, and bioimaging-guided combined therapy. In particular, the applications of CN-based materials in gas and gene combination therapy are summarized for the first time. Finally, the current challenges faced by CN-based materials in combination therapy are further discussed.
Collapse
Affiliation(s)
- Xu-Feng Ning
- School of Pharmacy and Nantong Key Laboratory of Small Molecular Drug Innovation, Nantong University, 226001, Nantong, Jiangsu, People's Republic of China
- Department of Gastroenterology, The First Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang, 421001, People's Republic of China
| | - Ya-Qi Zhu
- School of Pharmacy and Nantong Key Laboratory of Small Molecular Drug Innovation, Nantong University, 226001, Nantong, Jiangsu, People's Republic of China
| | - Hao Sun
- School of Pharmacy and Nantong Key Laboratory of Small Molecular Drug Innovation, Nantong University, 226001, Nantong, Jiangsu, People's Republic of China
| | - Yuan Yang
- Department of Gastroenterology, The First Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang, 421001, People's Republic of China
| | - Ming-Xuan Liu
- School of Pharmacy and Nantong Key Laboratory of Small Molecular Drug Innovation, Nantong University, 226001, Nantong, Jiangsu, People's Republic of China
| |
Collapse
|
58
|
Deng X, Zhao R, Tang Y, Yi M, Wang D, Lin W, Wang G. FeS 2@COF based nanocarrier for photothermal-enhanced chemodynamic/thermodynamic tumor therapy and immunotherapy via reprograming tumor-associated macrophages. J Nanobiotechnology 2024; 22:711. [PMID: 39543651 PMCID: PMC11566302 DOI: 10.1186/s12951-024-02992-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2024] [Accepted: 11/05/2024] [Indexed: 11/17/2024] Open
Abstract
Developing high-performance nanomedicines to enhance antitumor efficacy remains a hot point in the field of biomedicine. In this study, we designed a versatile nanocomposite (FeS₂@COF-HA/AIPH) integrating covalent organic frameworks (COF) functionalized with pyrite (FeS₂) for synergistic photothermal (PTT), chemodynamic (CDT), thermodynamic (TDT) therapies, and immunotherapy. The superior photothermal effects and catalytic capabilities of FeS₂@COF enabled a minimally invasive PTT/CDT combination. The nanoplatform, with its mesoporous structure, also served as a drug delivery system, encapsulating the thermos-decomposable initiator AIPH. The hyaluronic acid (HA) coating not only improved tumor-targeting efficiency but also prevented nonspecific AIPH release. Under near-infrared (NIR) irradiation, the localized hyperthermia triggered AIPH decomposition, generating toxic alkyl radicals (•R) for TDT, further enhancing CDT efficiency. The combination of PTT, CDT, TDT, and immunotherapy led to potent antitumor effects with minimal systemic toxicity, both in vitro and in vivo. Notably, the nanoplatform effectively reprogrammed tumor-associated macrophages (TAMs) from an M2 to M1 phenotype, boosting antitumor immunity. This multifunctional platform thus offers a promising strategy for integrated PTT, CDT, TDT, and immune activation in tumor therapy.
Collapse
Affiliation(s)
- Xiangtian Deng
- Trauma medical center, Department of Orthopedics surgery, West China Hospital, Sichuan University, Chengdu, 610041, China
- Orthopedics Research Institute, Department of Orthopedics, West China Hospital, Sichuan University, Chengdu, China
| | - Renliang Zhao
- Trauma medical center, Department of Orthopedics surgery, West China Hospital, Sichuan University, Chengdu, 610041, China
- Orthopedics Research Institute, Department of Orthopedics, West China Hospital, Sichuan University, Chengdu, China
| | - YunFeng Tang
- Trauma medical center, Department of Orthopedics surgery, West China Hospital, Sichuan University, Chengdu, 610041, China
- Orthopedics Research Institute, Department of Orthopedics, West China Hospital, Sichuan University, Chengdu, China
| | - Min Yi
- Trauma medical center, Department of Orthopedics surgery, West China Hospital, Sichuan University, Chengdu, 610041, China
- Orthopedics Research Institute, Department of Orthopedics, West China Hospital, Sichuan University, Chengdu, China
| | - Dong Wang
- Trauma medical center, Department of Orthopedics surgery, West China Hospital, Sichuan University, Chengdu, 610041, China
- Orthopedics Research Institute, Department of Orthopedics, West China Hospital, Sichuan University, Chengdu, China
| | - Wei Lin
- Department of Gynecology, West China Second Hospital, Sichuan University, Chengdu, China
| | - Guanglin Wang
- Trauma medical center, Department of Orthopedics surgery, West China Hospital, Sichuan University, Chengdu, 610041, China.
| |
Collapse
|
59
|
Han B, Liu Y, Zhou Q, Yu Y, Liu X, Guo Y, Zheng X, Zhou M, Yu H, Wang W. The advance of ultrasound-enabled diagnostics and therapeutics. J Control Release 2024; 375:1-19. [PMID: 39208935 DOI: 10.1016/j.jconrel.2024.08.039] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Revised: 07/27/2024] [Accepted: 08/25/2024] [Indexed: 09/04/2024]
Abstract
Point-of-care ultrasound demonstrates significant potential in biomedical research due to its noninvasive, real-time visualization, cost-effectiveness, and other biological benefits. Ultrasound irradiation can precisely control the mechanical and physicochemical effects on pathogenic lesions, enabling real-time visualization, tunable tissue penetration depth, and therapeutic applications. This review summarizes recent advancements in ultrasound-enabled diagnostics and therapeutics, focusing on mechanochemical effects that can be directly integrated into biomedical applications. Additionally, the structure-functionality relationships of sonotheranostic nanoplatforms are systematically discussed, providing insights into the underlying biological effects. Finally, the limitations of current ultrasonic medicine are discussed, along with potential expansions to facilitate patient-centered translations.
Collapse
Affiliation(s)
- Biying Han
- School of Pharmacy, Nantong University, Nantong, Jiangsu Province 226001, China
| | - Yan Liu
- School of Pharmacy, Nantong University, Nantong, Jiangsu Province 226001, China
| | - Qianqian Zhou
- School of Pharmacy, Nantong University, Nantong, Jiangsu Province 226001, China
| | - Yuting Yu
- School of Pharmacy, Nantong University, Nantong, Jiangsu Province 226001, China
| | - Xingxing Liu
- School of Pharmacy, Nantong University, Nantong, Jiangsu Province 226001, China
| | - Yu Guo
- State Key Laboratory of Chemical Biology & Center of Pharmaceutics, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
| | - Xiaohua Zheng
- School of Pharmacy, Nantong University, Nantong, Jiangsu Province 226001, China
| | - Mengjiao Zhou
- School of Pharmacy, Nantong University, Nantong, Jiangsu Province 226001, China.
| | - Haijun Yu
- State Key Laboratory of Chemical Biology & Center of Pharmaceutics, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China.
| | - Weiqi Wang
- School of Pharmacy, Nantong University, Nantong, Jiangsu Province 226001, China.
| |
Collapse
|
60
|
Hu J, Yan L, Cao Z, Geng B, Cao X, Liu B, Guo J, Zhu J. Tumor Microenvironment Activated Cu Crosslinked Near-Infrared Sonosensitizers for Visualized Cuproptosis-Enhanced Sonodynamic Cancer Immunotherapy. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2407196. [PMID: 39331855 DOI: 10.1002/advs.202407196] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/27/2024] [Revised: 09/19/2024] [Indexed: 09/29/2024]
Abstract
Reactive oxygen species (ROS)-mediated sonodynamic therapy (SDT) holds increasing potential in treating deep-seated tumor owing to the high tissue-penetration depth. However, the inevitable accumulation of sonosensitizers in normal tissues not only make it difficult to realize the in situ SDT, but also induces sonodynamic effects in normal tissues. Herein, this work reports the passivation and selective activation strategies for the sonodynamic and near-infrared (NIR) imaging performances of an intelligent antitumor theranostic platform termed Cu-IR783 nanoparticles (NPs). Owing to the ruptured coordination bond between IR783 with Cu ions by responding to tumor microenvironment (TME), the selective activation of IR783 only occurred in tumor tissues to achieve the visualized in-situ SDT. The tumor-specific released Cu ions not only realized the cascade amplification of ROS generation through Cu+-mediated Fenton-like reaction, but also triggered cuproptosis through Cu+-induced DLAT oligomerization and mitochondrial dysfunction. More importantly, the immunosuppressive TME can be reversed by the greatly enhanced ROS levels and high-efficiency cuproptosis, ultimately inducing immunogenic cell death that promotes robust systemic immune responses for the eradication of primary tumors and suppression of distant tumors. This work provides a distinct paradigm of the integration of SDT, CDT, and cuproptosis in a controlled manner to achieve visualized in-situ antitumor therapy.
Collapse
Affiliation(s)
- Jinyan Hu
- Department of Health Toxicology, College of Naval Medicine, Naval Medical University, Shanghai, 200433, China
| | - Lang Yan
- Department of Health Toxicology, College of Naval Medicine, Naval Medical University, Shanghai, 200433, China
| | - Zhi Cao
- Department of Urology, Changhai Hospital, Naval Medical University, Shanghai, 200433, China
| | - Bijiang Geng
- Department of Health Toxicology, College of Naval Medicine, Naval Medical University, Shanghai, 200433, China
| | - Xiqian Cao
- Department of Health Toxicology, College of Naval Medicine, Naval Medical University, Shanghai, 200433, China
| | - Bing Liu
- Department of Urology, The Third Affiliated Hospital, Naval Medical University, Shanghai, 200433, China
| | - Jiaming Guo
- Department of Radiation Medicine, College of Naval Medicine, Naval Medical University, Shanghai, 200433, China
| | - Jiangbo Zhu
- Department of Health Toxicology, College of Naval Medicine, Naval Medical University, Shanghai, 200433, China
| |
Collapse
|
61
|
Dong C, Wang Y, Chen T, Ren W, Gao C, Ma X, Gao X, Wu A. Carbon Dots in the Pathological Microenvironment: ROS Producers or Scavengers? Adv Healthc Mater 2024; 13:e2402108. [PMID: 39036817 DOI: 10.1002/adhm.202402108] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2024] [Indexed: 07/23/2024]
Abstract
Reactive oxygen species (ROS), as metabolic byproducts, play pivotal role in physiological and pathological processes. Recently, studies on the regulation of ROS levels for disease treatments have attracted extensive attention, mainly involving the ROS-induced toxicity therapy mediated by ROS producers and antioxidant therapy by ROS scavengers. Nanotechnology advancements have led to the development of numerous nanomaterials with ROS-modulating capabilities, among which carbon dots (CDs) standing out as noteworthy ROS-modulating nanomedicines own their distinctive physicochemical properties, high stability, and excellent biocompatibility. Despite progress in treating ROS-related diseases based on CDs, critical issues such as rational design principles for their regulation remain underexplored. The primary cause of these issues may stem from the intricate amalgamation of core structure, defects, and surface states, inherent to CDs, which poses challenges in establishing a consistent generalization. This review succinctly summarizes the recently progress of ROS-modulated approaches using CDs in disease treatment. Specifically, it investigates established therapeutic strategies based on CDs-regulated ROS, emphasizing the interplay between intrinsic structure and ROS generation or scavenging ability. The conclusion raises several unresolved key scientific issues and prominent technological bottlenecks, and explores future perspectives for the comprehensive development of CDs-based ROS-modulating therapy.
Collapse
Affiliation(s)
- Chen Dong
- Ningbo Key Laboratory of Biomedical Imaging Probe Materials and Technology, Laboratory of Advanced Theranostic Materials and Technology, Chinese Academy of Sciences (CAS) Key Laboratory of Magnetic Materials and Devices, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo, 315201, China
- Zhejiang International Cooperation Base of Biomedical Materials Technology and Application, Zhejiang Engineering Research Center for Biomedical Materials, Ningbo Cixi Institute of Biomedical Engineering, Cixi, 315300, China
- Department of Neurosurgery, The First Affiliated Hospital of Ningbo University, Ningbo, 315010, China
| | - Yanan Wang
- Ningbo Key Laboratory of Biomedical Imaging Probe Materials and Technology, Laboratory of Advanced Theranostic Materials and Technology, Chinese Academy of Sciences (CAS) Key Laboratory of Magnetic Materials and Devices, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo, 315201, China
- Zhejiang International Cooperation Base of Biomedical Materials Technology and Application, Zhejiang Engineering Research Center for Biomedical Materials, Ningbo Cixi Institute of Biomedical Engineering, Cixi, 315300, China
- Cixi Biomedical Research Institute, Wenzhou Medical University, Cixi, 315300, China
| | - Tianxiang Chen
- Ningbo Key Laboratory of Biomedical Imaging Probe Materials and Technology, Laboratory of Advanced Theranostic Materials and Technology, Chinese Academy of Sciences (CAS) Key Laboratory of Magnetic Materials and Devices, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo, 315201, China
- Zhejiang International Cooperation Base of Biomedical Materials Technology and Application, Zhejiang Engineering Research Center for Biomedical Materials, Ningbo Cixi Institute of Biomedical Engineering, Cixi, 315300, China
| | - Wenzhi Ren
- Ningbo Key Laboratory of Biomedical Imaging Probe Materials and Technology, Laboratory of Advanced Theranostic Materials and Technology, Chinese Academy of Sciences (CAS) Key Laboratory of Magnetic Materials and Devices, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo, 315201, China
- Zhejiang International Cooperation Base of Biomedical Materials Technology and Application, Zhejiang Engineering Research Center for Biomedical Materials, Ningbo Cixi Institute of Biomedical Engineering, Cixi, 315300, China
| | - Changyong Gao
- Ningbo Key Laboratory of Biomedical Imaging Probe Materials and Technology, Laboratory of Advanced Theranostic Materials and Technology, Chinese Academy of Sciences (CAS) Key Laboratory of Magnetic Materials and Devices, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo, 315201, China
- Zhejiang International Cooperation Base of Biomedical Materials Technology and Application, Zhejiang Engineering Research Center for Biomedical Materials, Ningbo Cixi Institute of Biomedical Engineering, Cixi, 315300, China
| | - Xuehua Ma
- Ningbo Key Laboratory of Biomedical Imaging Probe Materials and Technology, Laboratory of Advanced Theranostic Materials and Technology, Chinese Academy of Sciences (CAS) Key Laboratory of Magnetic Materials and Devices, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo, 315201, China
- Zhejiang International Cooperation Base of Biomedical Materials Technology and Application, Zhejiang Engineering Research Center for Biomedical Materials, Ningbo Cixi Institute of Biomedical Engineering, Cixi, 315300, China
| | - Xiang Gao
- Department of Neurosurgery, The First Affiliated Hospital of Ningbo University, Ningbo, 315010, China
| | - Aiguo Wu
- Ningbo Key Laboratory of Biomedical Imaging Probe Materials and Technology, Laboratory of Advanced Theranostic Materials and Technology, Chinese Academy of Sciences (CAS) Key Laboratory of Magnetic Materials and Devices, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo, 315201, China
- Zhejiang International Cooperation Base of Biomedical Materials Technology and Application, Zhejiang Engineering Research Center for Biomedical Materials, Ningbo Cixi Institute of Biomedical Engineering, Cixi, 315300, China
- Cixi Biomedical Research Institute, Wenzhou Medical University, Cixi, 315300, China
| |
Collapse
|
62
|
Yang F, Lv J, Ma W, Yang Y, Hu X, Yang Z. Engineering Sonosensitizer-Derived Nanotheranostics for Augmented Sonodynamic Therapy. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2402669. [PMID: 38970544 DOI: 10.1002/smll.202402669] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/04/2024] [Revised: 06/13/2024] [Indexed: 07/08/2024]
Abstract
Sonodynamic therapy (SDT), featuring noninvasive, deeper penetration, low cost, and repeatability, is a promising therapy approach for deep-seated tumors. However, the general or only utilization of SDT shows low efficiency and unsatisfactory treatment outcomes due to the complicated tumor microenvironment (TME) and SDT process. To circumvent the issues, three feasible approaches for enhancing SDT-based therapeutic effects, including sonosensitizer optimization, strategies for conquering hypoxia TME, and combinational therapy are summarized, with a particular focus on the combination therapy of SDT with other therapy modalities, including chemodynamic therapy, photodynamic therapy, photothermal therapy, chemotherapy, starvation therapy, gas therapy, and immunotherapy. In the end, the current challenges in SDT-based therapy on tumors are discussed and feasible approaches for enhanced therapeutic effects are provided. It is envisioned that this review will provide new insight into the strategic design of high-efficiency sonosensitizer-derived nanotheranostics, thereby augmenting SDT and accelerating the potential clinical transformation.
Collapse
Affiliation(s)
- Fuhong Yang
- Strait Institute of Flexible Electronics (SIFE, Future Technologies), Fujian Key Laboratory of Flexible Electronics, Fujian Normal University and Strait Laboratory of Flexible Electronics (SLoFE), Fuzhou, 350117, China
| | - Jingqi Lv
- Strait Institute of Flexible Electronics (SIFE, Future Technologies), Fujian Key Laboratory of Flexible Electronics, Fujian Normal University and Strait Laboratory of Flexible Electronics (SLoFE), Fuzhou, 350117, China
| | - Wen Ma
- Strait Institute of Flexible Electronics (SIFE, Future Technologies), Fujian Key Laboratory of Flexible Electronics, Fujian Normal University and Strait Laboratory of Flexible Electronics (SLoFE), Fuzhou, 350117, China
| | - Yanling Yang
- Strait Institute of Flexible Electronics (SIFE, Future Technologies), Fujian Key Laboratory of Flexible Electronics, Fujian Normal University and Strait Laboratory of Flexible Electronics (SLoFE), Fuzhou, 350117, China
| | - Xiaoming Hu
- Strait Institute of Flexible Electronics (SIFE, Future Technologies), Fujian Key Laboratory of Flexible Electronics, Fujian Normal University and Strait Laboratory of Flexible Electronics (SLoFE), Fuzhou, 350117, China
- Jiangxi Key Laboratory of Nanobiomaterials, School of Materials Science and Engineering, East China Jiaotong University, Nanchang, 330013, China
| | - Zhen Yang
- Strait Institute of Flexible Electronics (SIFE, Future Technologies), Fujian Key Laboratory of Flexible Electronics, Fujian Normal University and Strait Laboratory of Flexible Electronics (SLoFE), Fuzhou, 350117, China
| |
Collapse
|
63
|
Zhang X, Zhang Z, Yuan H, Sun X. ZnO quantum dots decorated BaTiO 3 for cancer sonodynamic therapy. ULTRASONICS SONOCHEMISTRY 2024; 110:107036. [PMID: 39191130 PMCID: PMC11396363 DOI: 10.1016/j.ultsonch.2024.107036] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/13/2024] [Revised: 08/10/2024] [Accepted: 08/18/2024] [Indexed: 08/29/2024]
Abstract
Sonodynamic therapy depending on ultrasound irradiation, which generates reactive species to kill cancer cells, has attracted considerable attention due to the deep tissue penetration depth. However, the insufficient separation of electron/hole pairs induces its limited therapeutic efficiency. Herein, we use oxygen vacancy and ZnO quantum dots decoration techniques to enhance electron/hole separation and reactive species production. In oxygen vacancy-engineered BaTiO3, the higher oxygen vacancy concentration leads to more efficient adsorption of activate O2 and thus results in production of more radicals. In BaTiO3/ZnO heterostructures, the built-in electric field further improves separation of electron/hole pairs. The separated electron/hole react with O2/H2O to produce reactive species of •OH/∙O2- and kill cancer cells upon ultrasound irradiation. The work provides a guidance for sonosensitizers to tumor therapy.
Collapse
Affiliation(s)
- Xiaojian Zhang
- School of Physics and Telecommunication Engineering, Zhoukou Normal University, Zhoukou 466001, China
| | - Zhiqin Zhang
- School of Physics and Telecommunication Engineering, Zhoukou Normal University, Zhoukou 466001, China
| | - Honglei Yuan
- School of Physics and Telecommunication Engineering, Zhoukou Normal University, Zhoukou 466001, China
| | - Xianke Sun
- School of Physics and Telecommunication Engineering, Zhoukou Normal University, Zhoukou 466001, China.
| |
Collapse
|
64
|
Huang H, Du L, Su R, Li Z, Shao Y, Yuan Y, Wang C, Lu C, He Y, He H, Zhang C. Albumin-based co-loaded sonosensitizer and STING agonist nanodelivery system for enhanced sonodynamic and immune combination antitumor therapy. J Control Release 2024; 375:524-536. [PMID: 39278356 DOI: 10.1016/j.jconrel.2024.09.023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2024] [Revised: 08/27/2024] [Accepted: 09/11/2024] [Indexed: 09/18/2024]
Abstract
STING agonists can activate natural and adaptive immune responses, and are expected to become a new type of immunotherapy drug for tumor therapy. However, how to target deliver STING agonists to tumor tissues is a key factor affecting the efficacy of tumor treatment. Sonodynamic therapy (SDT) has become a research hotspot in the field of cancer treatment due to its non-invasive, spatiotemporally controllable, and high tissue penetration capabilities. Therefore, how to choose the appropriate drug delivery strategy, build a suitable drug delivery system to co-deliver photosensitizers and STING agonists, is a challenge faced in the tumor treatment. In this study, we developed an albumin-based nanodelivery system named FA-ICG&MnOx@HSA that co-loaded the sonosensitizers indocyanine green (ICG) and manganese oxide (MnOx). This approach achieved folate receptor-targeting mediated tumor delivery and tumor microenvironment (TME)-responsive release facilitated by high levels of glutathione (GSH) and hydrogen peroxide (H2O2), which catalyze oxygen generation to potentiate SDT efficacy in killing tumors and inducing immunogenic cell death (ICD). Simultaneously, the released Mn2+ acted as a STING agonist promoting dendritic cell maturation, IFN-β production, and proliferation of T cells. Ultimately, this albumin based co-loaded sonosensitizer and STING agonist demonstrated promising potential for advancing tumor treatment.
Collapse
Affiliation(s)
- Huaping Huang
- Digestive Diseases Center, Guangdong Provincial Key Laboratory of Digestive Cancer Research, The Seventh Affiliated Hospital, Sun Yat-Sen University, Shenzhen 518107, China
| | - Lihua Du
- Digestive Diseases Center, Guangdong Provincial Key Laboratory of Digestive Cancer Research, The Seventh Affiliated Hospital, Sun Yat-Sen University, Shenzhen 518107, China; Guangdong-Hong Kong-Macau University Joint Laboratory of Digestive Cancer Research, The Seventh Affiliated Hospital, Sun Yat-Sen University, Shenzhen 518107, China
| | - Rishun Su
- Digestive Diseases Center, Guangdong Provincial Key Laboratory of Digestive Cancer Research, The Seventh Affiliated Hospital, Sun Yat-Sen University, Shenzhen 518107, China
| | - Zhuoyuan Li
- Digestive Diseases Center, Guangdong Provincial Key Laboratory of Digestive Cancer Research, The Seventh Affiliated Hospital, Sun Yat-Sen University, Shenzhen 518107, China
| | - Yu Shao
- Digestive Diseases Center, Guangdong Provincial Key Laboratory of Digestive Cancer Research, The Seventh Affiliated Hospital, Sun Yat-Sen University, Shenzhen 518107, China
| | - Yeling Yuan
- Department of Pediatrics, Division of Hematology/Oncology, Pediatric Hematology Laboratory, The Seventh Affiliated Hospital of Sun Yat-Sen University, Shenzhen 518107, China
| | - Chen Wang
- Digestive Diseases Center, Guangdong Provincial Key Laboratory of Digestive Cancer Research, The Seventh Affiliated Hospital, Sun Yat-Sen University, Shenzhen 518107, China
| | - Changzheng Lu
- Institute of Cancer Research, Shenzhen Bay Laboratory, Shenzhen 518107, China
| | - Yulong He
- Digestive Diseases Center, Guangdong Provincial Key Laboratory of Digestive Cancer Research, The Seventh Affiliated Hospital, Sun Yat-Sen University, Shenzhen 518107, China; Guangdong-Hong Kong-Macau University Joint Laboratory of Digestive Cancer Research, The Seventh Affiliated Hospital, Sun Yat-Sen University, Shenzhen 518107, China.
| | - Haozhe He
- Digestive Diseases Center, Guangdong Provincial Key Laboratory of Digestive Cancer Research, The Seventh Affiliated Hospital, Sun Yat-Sen University, Shenzhen 518107, China; Guangdong-Hong Kong-Macau University Joint Laboratory of Digestive Cancer Research, The Seventh Affiliated Hospital, Sun Yat-Sen University, Shenzhen 518107, China.
| | - Changhua Zhang
- Digestive Diseases Center, Guangdong Provincial Key Laboratory of Digestive Cancer Research, The Seventh Affiliated Hospital, Sun Yat-Sen University, Shenzhen 518107, China; Guangdong-Hong Kong-Macau University Joint Laboratory of Digestive Cancer Research, The Seventh Affiliated Hospital, Sun Yat-Sen University, Shenzhen 518107, China.
| |
Collapse
|
65
|
Xie K, Yin D, Yan L. Synthesis of D-A-type groups modified aza-BODIPY fluorescent dye encapsulated by amphiphilic polypeptide nanoparticles for NIR-II phototheranostics. Talanta 2024; 279:126633. [PMID: 39121551 DOI: 10.1016/j.talanta.2024.126633] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2024] [Revised: 07/22/2024] [Accepted: 07/29/2024] [Indexed: 08/12/2024]
Abstract
An innovative organic small molecule with a D-A structure was synthesized by connecting triphenylamine to BODIPY via a thiophene bridge. Triphenylamine and thiophene units ingeniously modulate the balance between steric hindrance and π-π interactions around the flat aza-BODIPY core. The molecule exhibits near-infrared fluorescence absorption and emits at roughly 1100 nm, featuring a significant Stokes shift. Both the molecule and its nanoparticles demonstrate high stability and achieve a remarkable 35 % photothermal conversion efficiency when conjugated with the P(OEGMA)20-P(Asp)14 copolymer. In vitro assessments show low dark toxicity and outstanding biocompatibility. Moreover, in vivo studies and photothermal therapy in mice indicate substantial tumor shrinkage and reduced recurrence, confirming its potential in cancer treatment. These results highlight the promise of this organic molecule and its nanoparticles for NIR-II imaging-guided photothermal therapy, introducing a novel approach to phototheranostic applications for cancer management.
Collapse
Affiliation(s)
- Kai Xie
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Jinzai Road 96. 230026, Anhui, PR China; Key Laboratory of Precision and Intelligent Chemistry, and Department of Chemical Physics, University of Science and Technology of China, Hefei, Jinzai Road 96. 230026, Anhui, PR China
| | - Dalong Yin
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Jinzai Road 96. 230026, Anhui, PR China
| | - Lifeng Yan
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Jinzai Road 96. 230026, Anhui, PR China; Key Laboratory of Precision and Intelligent Chemistry, and Department of Chemical Physics, University of Science and Technology of China, Hefei, Jinzai Road 96. 230026, Anhui, PR China.
| |
Collapse
|
66
|
Wen D, Feng J, Deng R, Li K, Zhang H. Zn/Pt dual-site single-atom driven difunctional superimposition-augmented sonosensitizer for sonodynamic therapy boosted ferroptosis of cancer. Nat Commun 2024; 15:9359. [PMID: 39472589 PMCID: PMC11522694 DOI: 10.1038/s41467-024-53488-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2023] [Accepted: 10/14/2024] [Indexed: 11/02/2024] Open
Abstract
Sonodynamic therapy (SDT) as a non-invasive antitumor strategy has been widely concerned. However, the rapid electron (e-) and hole (h+) recombination of traditional inorganic semiconductor sonosensitizers under ultrasonic (US) stimulation greatly limits the production of reactive oxygen species (ROS). Herein, we report a unique Zn/Pt dual-site single-atom driven difunctional superimposition-augmented TiO2-based sonosensitizer (Zn/Pt SATs). Initially, we verify through theoretical calculation that the strongly coupled Zn and Pt atoms can assist electron excitation at the atomic level by increasing electron conductivity and excitation efficiency under US, respectively, thus effectively improving the yield of ROS. Additionally, Zn/Pt SATs can significantly enhance ferroptosis by producing more ROS and sonoexcited holes under US stimuli. Therefore, the establishment of dual-site single-atom system represents an innovative strategy to enhance SDT in cancer model of female mice and provides a typical example for the development of inorganic sonosensitizer in the field of antitumor therapy.
Collapse
Affiliation(s)
- Ding Wen
- State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, 130022, Changchun, China
- University of Science and Technology of China, 230026, Hefei, China
| | - Jing Feng
- State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, 130022, Changchun, China.
- University of Science and Technology of China, 230026, Hefei, China.
| | - Ruiping Deng
- State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, 130022, Changchun, China
| | - Kai Li
- State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, 130022, Changchun, China.
| | - Hongjie Zhang
- State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, 130022, Changchun, China.
- University of Science and Technology of China, 230026, Hefei, China.
- Department of Chemistry, Tsinghua University, 100084, Beijing, China.
| |
Collapse
|
67
|
Wang H, Li D, Wang H, Ren Q, Pan Y, Dao A, Wang D, Wang Z, Zhang P, Huang H. Enhanced Sonodynamic Therapy for Deep Tumors Using a Self-Assembled Organoplatinum(II) Sonosensitizer. J Med Chem 2024; 67:18356-18367. [PMID: 39360515 DOI: 10.1021/acs.jmedchem.4c01671] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/04/2024]
Abstract
Despite the promising advances in photodynamic therapy (PDT), it remains challenging to target and treat deep-seated solid tumors effectively. Herein, we developed an organoplatinum(II) complex (Pt-TPE) with self-assembly properties for sonodynamic therapy (SDT). Pt-TPE forms a nanofiber network structure through Pt-Pt and π-π stacking interactions. Notably, under ultrasound (US), Pt-TPE demonstrates unique self-assembly-induced singlet oxygen (1O2) generation due to a significantly enhanced singlet-triplet intersystem crossing (ISC). This generation of 1O2 occurs exclusively in the self-assembled state of Pt-TPE. Additionally, Pt-TPE exhibits sono-cytotoxicity against cancer cells by impairing mitochondrial membrane potential (MMP), inhibiting glucose uptake, and aerobic glycolysis. Furthermore, US-activated Pt-TPE significantly inhibits deep solid tumors in mice, achieving remarkable therapeutic efficacy even at penetration depths greater than 10 cm. This study highlights the potential of self-assembled metal complexes to enhance the efficacy of SDT for treating deep tumors.
Collapse
Affiliation(s)
- Haobing Wang
- College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen 518060, China
| | - Dan Li
- College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen 518060, China
| | - Hanqiang Wang
- Department of Chemistry and Dongguan Key Laboratory for Data Science and Intelligent Medicine, Great Bay University, Dongguan 523000, China
| | - Qingyan Ren
- College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen 518060, China
| | - Yue Pan
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Medical Research Center, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou 510120, China
| | - Anyi Dao
- School of Pharmaceutical Science, Shenzhen Campus of Sun Yat-Sen University, Shenzhen 518107, China
| | - Deliang Wang
- Department of Materials Chemistry, Huzhou University, Huzhou 313000, China
| | - Zhigang Wang
- School of Pharmacy, International Cancer Center, Shenzhen University Medical School, Shenzhen University, Shenzhen 518060, China
| | - Pingyu Zhang
- College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen 518060, China
| | - Huaiyi Huang
- School of Pharmaceutical Science, Shenzhen Campus of Sun Yat-Sen University, Shenzhen 518107, China
| |
Collapse
|
68
|
Wang X, Wei X, Tong R, Yi C, Wang Y, Fu Y, Yan F. Boron-doped carbon dots with time-resolved room temperature phosphorescence for detection of ciprofloxacin hydrochloride and information encryption applications. Mikrochim Acta 2024; 191:691. [PMID: 39438317 DOI: 10.1007/s00604-024-06767-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2024] [Accepted: 10/10/2024] [Indexed: 10/25/2024]
Abstract
Novel boron-doped carbon dots (BCDs) with extended afterglow characteristics were synthesized via a one-step solvothermal method using acrylamide, sulfosalicylic acid, and sodium tetraborate as protective matrices. The presence of boron from sodium tetraborate introduced an empty orbital, allowing it to form a more extended conjugated system with adjacent oxygen atoms, thereby lowering the energy level of the lowest unoccupied molecular orbital in the system. The phosphorescence emission of these BCDs exhibits a red shift over time from 450 to 500 nm. These BCDs have been effectively utilized to produce anti-counterfeit phosphorescent powder. Additionally, the BCDs display optimal fluorescence excitation at 330 nm and optimal emission at 420 nm. They demonstrate a detection limit for ciprofloxacin hydrochloride of 37 nM in the 1-100 µM concentration range and 26 nM in the 100-210 µM range. This fluorescence detection is governed by an inner filter effect. Real sample testing further confirms that these BCDs serve as excellent sensors for ciprofloxacin hydrochloride.
Collapse
Affiliation(s)
- Xueyu Wang
- State Key Laboratory of Separation Membranes and Membrane Processes, Chemical Engineering and Technology, Tiangong University, Tianjin, 300387, PR China
| | - Xin Wei
- School of Textiles Science and Engineering, Tiangong University, Tianjin, 300387, PR China
- Hebei Industrial Technology Research Institute of Membranes, Cangzhou Institute of Tiangong University, Cangzhou, 061000, PR China
| | - Runze Tong
- State Key Laboratory of Separation Membranes and Membrane Processes, Chemical Engineering and Technology, Tiangong University, Tianjin, 300387, PR China
| | - Chunhui Yi
- State Key Laboratory of Separation Membranes and Membrane Processes, Chemical Engineering and Technology, Tiangong University, Tianjin, 300387, PR China
| | - Yidi Wang
- West China School of Pharmacy, Sichuan University, Chengdu, 610041, PR China
| | - Yang Fu
- School of Science, STEM College, RMIT University, Melbourne, VIC 3000, Australia
| | - Fanyong Yan
- School of Pharmaceutical Sciences, Tiangong University, Tianjin, 300387, PR China.
| |
Collapse
|
69
|
Xu J, Liu Y, Wang H, Hao J, Cao Y, Liu Z. Titanium boride nanosheets with photo-enhanced sonodynamic efficiency for glioblastoma treatment. Acta Biomater 2024; 188:344-357. [PMID: 39307260 DOI: 10.1016/j.actbio.2024.09.025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2024] [Revised: 08/20/2024] [Accepted: 09/16/2024] [Indexed: 10/04/2024]
Abstract
Sonodynamic therapy (SDT) has garnered significant attention in cancer treatment, however, the low-yield reactive oxygen species (ROS) generation from sonosensitizers remains a major challenge. In this study, titanium boride nanosheets (TiB2 NSs) with photo-enhanced sonodynamic efficiency was fabricated for SDT of glioblastoma (GBM). Compared with commonly-used TiO2 nanoparticles, the obtained TiB2 NSs exhibited much higher ROS generation efficiency under ultrasound (US) irradiation due to their narrower band gap (2.50 eV). Importantly, TiB2 NSs displayed strong localized surface plasmon resonance (LSPR) effect in the second near-infrared (NIR II) window, which facilitated charge transfer rate and improved the separation efficiency of US-triggered electron-hole pairs, leading to photo-enhanced ROS generation efficiency. Furthermore, TiB2 NSs were encapsulated with macrophage cell membranes (CM) and then modified with RGD peptide to construct biomimetic nanoagents (TiB2@CM-RGD) for efficient blood-brain barrier (BBB) penetrating and GBM targeting. After intravenous injection into the tumor-bearing mouse, TiB2@CM-RGD can efficiently cross BBB and accumulate in the tumor sites. The tumor growth was significantly inhibited under simultaneous NIR II laser and US irradiation without causing appreciable long-term toxicity. Our work highlighted a new type of multifunctional titanium-based sonosensitizer with photo-enhanced sonodynamic efficiency for GBM treatment. STATEMENT OF SIGNIFICANCE: Titanium boride nanosheets (TiB2 NSs) with photo-enhanced sonodynamic efficiency was fabricated for SDT of glioblastoma (GBM). The obtained TiB2 NSs displayed strong localized surface plasmon resonance (LSPR) effect in the second near-infrared (NIR II) window, which facilitated charge transfer rate and improved the separation efficiency of US-triggered electron-hole pairs, leading to photo-enhanced ROS generation efficiency. Furthermore, TiB2 NSs were encapsulated with macrophage cell membranes (CM) and then modified with RGD peptide to construct biomimetic nanoagents (TiB2@CM-RGD) for efficient blood-brain barrier (BBB) penetrating and GBM targeting. After intravenous injection into the tumor-bearing mouse, TiB2@CM-RGD can efficiently cross BBB and accumulate in the tumor sites. The tumor growth was significantly inhibited under simultaneous NIR II laser and US irradiation without causing appreciable long-term toxicity.
Collapse
Affiliation(s)
- Jiaqing Xu
- College of Health Science and Engineering, Ministry of Education Key Laboratory for the Synthesis and Application of Organic Functional Molecules, Hubei University, Wuhan 430062, PR China
| | - Ying Liu
- College of Health Science and Engineering, Ministry of Education Key Laboratory for the Synthesis and Application of Organic Functional Molecules, Hubei University, Wuhan 430062, PR China
| | - Han Wang
- College of Health Science and Engineering, Ministry of Education Key Laboratory for the Synthesis and Application of Organic Functional Molecules, Hubei University, Wuhan 430062, PR China
| | - Junxing Hao
- College of Health Science and Engineering, Ministry of Education Key Laboratory for the Synthesis and Application of Organic Functional Molecules, Hubei University, Wuhan 430062, PR China
| | - Yu Cao
- College of Health Science and Engineering, Ministry of Education Key Laboratory for the Synthesis and Application of Organic Functional Molecules, Hubei University, Wuhan 430062, PR China.
| | - Zhihong Liu
- College of Health Science and Engineering, Ministry of Education Key Laboratory for the Synthesis and Application of Organic Functional Molecules, Hubei University, Wuhan 430062, PR China.
| |
Collapse
|
70
|
Ju J, Kim Y, Shin TJ. Facile Molecular-Level Refinements for Carbon Quantum Dots via Hydrogen-Bonding-Assisted Selective Isolation. ACS APPLIED MATERIALS & INTERFACES 2024; 16:52824-52832. [PMID: 39312800 DOI: 10.1021/acsami.4c11097] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/25/2024]
Abstract
A novel method for synthesizing and refining high-purity carbon quantum dots (CQDs) using citric acid and diethylenetriamine as precursors is presented, achieved through molecular-level control by exploiting the differences in hydrogen-bonding strength. This process involves precipitation using melamine, extraction into ethanol, and encapsulation with (3-aminopropyl)triethoxysilane (APTES). The resulting APTES-encapsulated CQDs exhibited an enhanced color purity, higher photoluminescence quantum yield, and improved fluorescence stability over a broad pH range. Utilizing these well-defined high-purity CQDs with uniform surface states, it has been revealed that ferric ions are photochemically sensed through the inner filter effect (IFE) mechanism, while mercury ions are detected through the photoinduced electron transfer (PET) mechanism. The versatility of CQDs, coupled with our advanced refinement technology, is expected to contribute significantly to the development of advanced research applications, particularly in displays and sensors.
Collapse
Affiliation(s)
- Janghyun Ju
- Graduate School of Semiconductor Materials and Devices Engineering, Ulsan National Institute of Science and Technology (UNIST), 50 UNIST-gil, Ulsan 44919, Republic of Korea
| | - Yubin Kim
- The LOAD Co., Ltd., 50 UNIST-gil, Ulsan 44919, Republic of Korea
| | - Tae Joo Shin
- Graduate School of Semiconductor Materials and Devices Engineering, Ulsan National Institute of Science and Technology (UNIST), 50 UNIST-gil, Ulsan 44919, Republic of Korea
| |
Collapse
|
71
|
Wu X, Yang S, Li W, Wang J, Dular M, Tan X. Improving Microcystis aeruginosa removal efficiency through enhanced sonosensitivity of nitrogen-doped nanodiamonds. ULTRASONICS SONOCHEMISTRY 2024; 109:106993. [PMID: 39047459 PMCID: PMC11321446 DOI: 10.1016/j.ultsonch.2024.106993] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/08/2024] [Revised: 07/14/2024] [Accepted: 07/15/2024] [Indexed: 07/27/2024]
Abstract
Traditional methods for algae removal in drinking water treatment, such as coagulation and sedimentation, face challenges due to the negative charge on algae cells' surfaces, resulting in ineffective removal. Ultrasonic cavitation has shown promise in enhancing coagulation performance by disrupting extracellular polymer structures and improving cyanobacteria removal through various mechanisms like shear force and free radical reactions. However, the short lifespan and limited mass transfer distance of free radicals in conventional ultrasonic treatment lead to high energy consumption, limiting widespread application. To overcome these limitations and enhance energy efficiency, advanced carbon-based materials were developed and tested. Nitrogen-doped functional groups on nanodiamond surfaces were found to boost sonosensitivity by increasing the production of reactive oxygen species at the sonosensitizer-water interface. Utilizing low-power ultrasound (0.12 W/mL) in combination with N-ND treatment for 5 min, removal rates of Microcystis aeruginosa cells in water exceeded 90 %, with enhanced removal of algal organic matters and microcystins in water. Visualization through confocal microscopy highlighted the role of positively charged nitrogen-doped nanodiamonds in aggregating algae cells. The synergy between cell capturing and catalysis of N-ND indicates that efficient mass transfer of free radicals from the sonosensitizer's surface to the microalgae's surface is critical for promoting cyanobacteria floc formation. This study underscores the potential of employing a low-intensity ultrasound and N-ND system in effectively improving algae removal in water treatment processes.
Collapse
Affiliation(s)
- Xiaoge Wu
- College of Environmental Science and Engineering, Yangzhou University, Yangzhou, Jiangsu 225009, China
| | - Su Yang
- College of Environmental Science and Engineering, Yangzhou University, Yangzhou, Jiangsu 225009, China
| | - Wenshu Li
- College of Environmental Science and Engineering, Yangzhou University, Yangzhou, Jiangsu 225009, China
| | - JuanJuan Wang
- College of Environmental Science and Engineering, Yangzhou University, Yangzhou, Jiangsu 225009, China.
| | - Matevž Dular
- Faculty of Mechanical Engineering, University of Ljubljana, Aškerčeva 6, 1000 Ljubljana, Slovenia.
| | - Xiao Tan
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, Ministry of Education, College of Environment, Hohai University, Nanjing 210098, China.
| |
Collapse
|
72
|
Cai Y, Lv Z, Chen X, Jin K, Mou X. Recent advances in biomaterials based near-infrared mild photothermal therapy for biomedical application: A review. Int J Biol Macromol 2024; 278:134746. [PMID: 39147342 DOI: 10.1016/j.ijbiomac.2024.134746] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2024] [Revised: 08/06/2024] [Accepted: 08/12/2024] [Indexed: 08/17/2024]
Abstract
Mild photothermal therapy (MPTT) generates heat therapeutic effect at the temperature below 45 °C under near-infrared (NIR) irradiation, which has the advantages of controllable treatment efficacy, lower hyperthermia temperatures, reduced dosage, and minimized damage to surrounding tissues. Despite significant progress has been achieved in MPTT, it remains primarily in the stage of basic and clinical research and has not yet seen widespread clinical adoption. Herein, a comprehensive overview of the recent NIR MPTT development was provided, aiming to emphasize the mechanism and obstacles, summarize the used photothermal agents, and introduce various biomedical applications such as anti-tumor, wound healing, and vascular disease treatment. The challenges of MPTT were proposed with potential solutions, and the future development direction in MPTT was outlooked to enhance the prospects for clinical translation.
Collapse
Affiliation(s)
- Yu Cai
- Center for Rehabilitation Medicine, Rehabilitation & Sports Medicine Research Institute of Zhejiang Province, Department of Rehabilitation Medicine, Zhejiang Provincial People's Hospital (Affiliated People's Hospital), Hangzhou Medical College, Hangzhou, Zhejiang 310014, China; Clinical Research Institute, Zhejiang Provincial People's Hospital (Affiliated People's Hospital), Hangzhou Medical College, Hangzhou, Zhejiang 310014, China.
| | - Zhenye Lv
- General Surgery, Cancer Center, Department of Breast Surgery, Zhejiang Provincial People's Hospital (Affiliated People's Hospital), Hangzhou Medical College, Hangzhou 310014, China
| | - Xiaoyi Chen
- Center for Rehabilitation Medicine, Rehabilitation & Sports Medicine Research Institute of Zhejiang Province, Department of Rehabilitation Medicine, Zhejiang Provincial People's Hospital (Affiliated People's Hospital), Hangzhou Medical College, Hangzhou, Zhejiang 310014, China; Clinical Research Institute, Zhejiang Provincial People's Hospital (Affiliated People's Hospital), Hangzhou Medical College, Hangzhou, Zhejiang 310014, China
| | - Ketao Jin
- Department of Gastrointestinal, Colorectal and Anal Surgery, Affiliated Hangzhou First People's Hospital, School of Medicine, Westlake University, Hangzhou, Zhejiang 310006, China.
| | - Xiaozhou Mou
- Clinical Research Institute, Zhejiang Provincial People's Hospital (Affiliated People's Hospital), Hangzhou Medical College, Hangzhou, Zhejiang 310014, China.
| |
Collapse
|
73
|
Wang D, Yuan F, Deng X, Liu Q, Shi W, Wang X. Sub-Nanosheet Induced Inverse Growth of Negative Valency Au Clusters for Tumor Treatment by Enhanced Oxidative Stress. Angew Chem Int Ed Engl 2024; 63:e202410649. [PMID: 38965041 DOI: 10.1002/anie.202410649] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2024] [Revised: 06/29/2024] [Accepted: 07/04/2024] [Indexed: 07/06/2024]
Abstract
Cluster aggregation states are thermodynamically favored at the subnanoscale, for which an inverse growth from nanoparticles to clusters may be realized on subnanometer supports. Herein, we develop Au-polyoxometalate-layered double hydroxide (Au-POM-LDH) sub-1 nm nanosheets (Sub-APL) based on the above strategy, where sub-1 nm Au clusters with negative valence are generated by the in situ disintegration of Au nanoparticles on POM-LDH supports. Sub-1 nm Au clusters with ultrahigh surface atom ratios exhibit remarkable efficiency for glutathione (GSH) depletion. The closely connected sub-1 nm Au with negative valence and POM hetero-units can promote the separation of hole-electrons, resulting in the enhanced reactive oxygen species (ROS) generation under ultrasound (US). Besides, the reversible redox of Mo in POM is able to deplete GSH and trigger chemodynamic therapy (CDT) simultaneously, further enhancing the oxidative stress. Consequently, the Sub-APL present 2-fold ROS generation under US and 7-fold GSH depletion compared to the discrete Au and POM-LDH mixture. Therefore, the serious imbalance of redox in the TME caused by the sharp increase of ROS and rapid decrease of GSH leads to death of tumor ultimately.
Collapse
Affiliation(s)
- Dong Wang
- Engineering Research Center of Advanced Rare Earth Materials, Department of Chemistry, Tsinghua University, Beijing, 100084, China
| | - Feng Yuan
- Engineering Research Center of Advanced Rare Earth Materials, Department of Chemistry, Tsinghua University, Beijing, 100084, China
| | - Xuliang Deng
- Beijing Laboratory of Biomedical Materials, Department of Geriatric Dentistry, Peking University School and Hospital of Stomatology, Beijing, 100081, China
| | - Qingda Liu
- Engineering Research Center of Advanced Rare Earth Materials, Department of Chemistry, Tsinghua University, Beijing, 100084, China
| | - Wenxiong Shi
- Institute for New Energy Materials and Low Carbon Technologies, School of Materials Science and Engineering, Tianjin University of Technology, Tianjin, 300387, China
| | - Xun Wang
- Engineering Research Center of Advanced Rare Earth Materials, Department of Chemistry, Tsinghua University, Beijing, 100084, China
| |
Collapse
|
74
|
Wu X, Chen F, Zhang Q, Tu J. What Is the Magical Cavitation Bubble: A Holistic Perspective to Trigger Advanced Bubbles, Nano-Sonocatalysts, and Cellular Sonosensitizers. BME FRONTIERS 2024; 5:0067. [PMID: 39301016 PMCID: PMC11411164 DOI: 10.34133/bmef.0067] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2024] [Revised: 08/23/2024] [Accepted: 09/03/2024] [Indexed: 09/22/2024] Open
Abstract
Sonodynamic therapy (SDT) has emerged as a novel and highly researched advancement in the medical field. Traditional ultrasound contrast agents and novel bubble-shaped agents are used to stimulate cavitation and enhance SDT efficiency. However, the impact of artificially modified shell structures on the acoustic properties of microbubbles remains to be explored. Alternatively, in the absence of bubble-shaped agents, some clinically available organic sonosensitizers and advanced inorganic materials are also used to enhance the efficacy of SDT. Diagnostic and therapeutic ultrasound can also activate cavitation bubbles, which supply energy to sonosensitive agents, leading to the production of cytotoxic free radicals to achieve therapeutic effects. While inorganic materials often spark controversy in clinical applications, their relatively simple structure enables researchers to gain insight into the mechanism by which SDT produces various free radicals. Some organic-inorganic hybrid sonosensitive systems have also been reported, combining the benefits of inorganic and organic sonosensitive agents. Alternatively, by employing cell surface modification engineering to enable cells to perform functions such as immune escape, drug loading, gas loading, and sonosensitivity, cellular sonosensitizers have also been developed. However, further exploration is needed on the acoustic properties, ability to generate reactive oxygen species (ROS), and potential clinical application of this cellular sonosensitizer. This review offers a comprehensive analysis of vesical microbubbles and nanoscale sonocatalysts, including organic, inorganic, combined organic-inorganic sonosensitizers, and cellular sonosensitizers. This analysis will enhance our understanding of SDT and demonstrate its important potential in transforming medical applications.
Collapse
Affiliation(s)
- Xiaoge Wu
- College of Environmental Science and Engineering, Yangzhou University, Yangzhou 225009, China
| | - Fulong Chen
- College of Environmental Science and Engineering, Yangzhou University, Yangzhou 225009, China
| | - Qi Zhang
- Key Laboratory of Modern Acoustics (MOE), Department of Physics, Collaborative Innovation Center of Advanced Microstructure, Nanjing University, Nanjing 210093, China
| | - Juan Tu
- Key Laboratory of Modern Acoustics (MOE), Department of Physics, Collaborative Innovation Center of Advanced Microstructure, Nanjing University, Nanjing 210093, China
| |
Collapse
|
75
|
Wang H, Liu X, Yan X, Du Y, Pu F, Ren J, Qu X. A nanocarbon-enabled hybridization strategy to construct pharmacologically cooperative therapeutics for augmented anticancer efficacy. Chem Sci 2024:d4sc05280c. [PMID: 39290590 PMCID: PMC11403576 DOI: 10.1039/d4sc05280c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2024] [Accepted: 09/02/2024] [Indexed: 09/19/2024] Open
Abstract
The drug design principles are of great value in developing nanomedicines with favorable functionalities. Herein we propose a nanocarbon-enabled hybridization strategy to construct a pharmacologically cooperative nanodrug for improved cancer therapy in the light of pharmacophore hybridization in medicinal chemistry and the synthetic principles of nanocarbons. An antioxidant defense pharmacological inhibitor and a co-nucleation precursor are structurally hybridized into nanodrugs (SCACDs) via forming carbon quantum dots. These SCACDs elicit dual enhanced bioactivities, including superior sonocatalytic activity that arose from the appropriate band structure of the pharmacophoric carbon cores, and more than an order of magnitude higher antioxidant defense inhibitory activity than the pharmacological inhibitor via conveying the bioactive pharmacophores from the molecular level to nanoscale. In vivo, SCACDs possess a long body retention and desirable biodistribution to eliminate melanoma cells at a very low injection dose. The present study provides a viable yet effective strategy for the development of pharmacologically cooperative nanodrugs to achieve remarkably improved therapeutic efficacy.
Collapse
Affiliation(s)
- Huan Wang
- State Key Laboratory of Rare Earth Resources Utilization and Laboratory of Chemical Biology, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences Changchun Jilin 130022 P. R. China
| | - Xinchen Liu
- Jilin Provincial Key Laboratory of Tooth Development and Bone Remodeling, Hospital of Stomatology, Jilin University Changchun Jilin 130021 P. R. China
| | - Xiangyu Yan
- State Key Laboratory of Powder Metallurgy, Central South University Changsha Hunan 410083 P. R. China
| | - Yong Du
- State Key Laboratory of Powder Metallurgy, Central South University Changsha Hunan 410083 P. R. China
| | - Fang Pu
- State Key Laboratory of Rare Earth Resources Utilization and Laboratory of Chemical Biology, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences Changchun Jilin 130022 P. R. China
| | - Jinsong Ren
- State Key Laboratory of Rare Earth Resources Utilization and Laboratory of Chemical Biology, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences Changchun Jilin 130022 P. R. China
| | - Xiaogang Qu
- State Key Laboratory of Rare Earth Resources Utilization and Laboratory of Chemical Biology, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences Changchun Jilin 130022 P. R. China
| |
Collapse
|
76
|
Cheng M, Liu Y, You Q, Lei Z, Ji J, Zhang F, Dong WF, Li L. Metal-Doping Strategy for Carbon-Based Sonosensitizer in Sonodynamic Therapy of Glioblastoma. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2404230. [PMID: 38984451 PMCID: PMC11425966 DOI: 10.1002/advs.202404230] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/21/2024] [Revised: 06/25/2024] [Indexed: 07/11/2024]
Abstract
Glioblastoma multiforme (GBM) is the most common primary malignant brain tumor and known for its challenging prognosis. Sonodynamic therapy (SDT) is an innovative therapeutic approach that shows promise in tumor elimination by activating sonosensitizers with low-intensity ultrasound. In this study, a novel sonosensitizer is synthesized using Cu-doped carbon dots (Cu-CDs) for the sonodynamic treatment of GBM. Doping with copper transforms the carbon dots into a p-n type semiconductor having a bandgap of 1.58 eV, a prolonged lifespan of 10.7 µs, and an improved electron- and hole-separation efficiency. The sonodynamic effect is efficiency enhanced. Western blot analysis reveals that the Cu-CDs induces a biological response leading to cell death, termed as cuproptosis. Specifically, Cu-CDs upregulate dihydrosulfanyl transacetylase expression, thereby establishing a synergistic therapeutic effect against tumor cell death when combined with SDT. Furthermore, Cu-CDs exhibit excellent permeability through the blood-brain barrier and potent anti-tumor activity. Importantly, the Cu-CDs effectively impede the growth of glioblastoma tumors and prolong the survival of mice bearing these tumors. This study provides support for the application of carbon-based nanomaterials as sonosensitizers in tumor therapy.
Collapse
Affiliation(s)
- Mingming Cheng
- School of Biomedical Engineering (Suzhou), Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, 230026, China
- CAS Key Laboratory of Biomedical Diagnostics, Suzhou Institute of Biomedical Engineering and Technology, Chinese Academy of Science (CAS), Suzhou, 215163, China
| | - Yan Liu
- School of Biomedical Engineering (Suzhou), Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, 230026, China
- CAS Key Laboratory of Biomedical Diagnostics, Suzhou Institute of Biomedical Engineering and Technology, Chinese Academy of Science (CAS), Suzhou, 215163, China
| | - Qiannan You
- School of Biomedical Engineering (Suzhou), Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, 230026, China
- CAS Key Laboratory of Biomedical Diagnostics, Suzhou Institute of Biomedical Engineering and Technology, Chinese Academy of Science (CAS), Suzhou, 215163, China
| | - Zhubing Lei
- School of Biomedical Engineering (Suzhou), Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, 230026, China
- CAS Key Laboratory of Biomedical Diagnostics, Suzhou Institute of Biomedical Engineering and Technology, Chinese Academy of Science (CAS), Suzhou, 215163, China
| | - Jiajian Ji
- School of Biomedical Engineering (Suzhou), Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, 230026, China
- CAS Key Laboratory of Biomedical Diagnostics, Suzhou Institute of Biomedical Engineering and Technology, Chinese Academy of Science (CAS), Suzhou, 215163, China
| | - Fan Zhang
- School of Biomedical Engineering (Suzhou), Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, 230026, China
- CAS Key Laboratory of Biomedical Diagnostics, Suzhou Institute of Biomedical Engineering and Technology, Chinese Academy of Science (CAS), Suzhou, 215163, China
| | - Wen-Fei Dong
- School of Biomedical Engineering (Suzhou), Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, 230026, China
- CAS Key Laboratory of Biomedical Diagnostics, Suzhou Institute of Biomedical Engineering and Technology, Chinese Academy of Science (CAS), Suzhou, 215163, China
| | - Li Li
- School of Biomedical Engineering (Suzhou), Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, 230026, China
- CAS Key Laboratory of Biomedical Diagnostics, Suzhou Institute of Biomedical Engineering and Technology, Chinese Academy of Science (CAS), Suzhou, 215163, China
| |
Collapse
|
77
|
Chen H, Luo K, Xie C, Zhou L. Nanotechnology of carbon dots with their hybrids for biomedical applications: A review. CHEMICAL ENGINEERING JOURNAL 2024; 496:153915. [DOI: 10.1016/j.cej.2024.153915] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/06/2025]
|
78
|
Qian Y, Wang J, Geng X, Jia B, Wang L, Li YQ, Geng B, Huang W. Graphene Quantum Dots Nanoantibiotic-Sensitized TiO 2- x Heterojunctions for Sonodynamic-Nanocatalytic Therapy of Multidrug-Resistant Bacterial Infections. Adv Healthc Mater 2024; 13:e2400659. [PMID: 38700840 DOI: 10.1002/adhm.202400659] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2024] [Revised: 04/14/2024] [Indexed: 05/12/2024]
Abstract
The exploration of sonodynamic therapy (SDT) as a possible replacement for antibiotics by creating reactive oxygen species (ROS) is suggested as a non-drug-resistant theranostic method. However, the low-efficiency ROS generation and complex tumor microenvironment which can deplete ROS and promote tumor growth will cause the compromised antibacterial efficacy of SDT. Herein, through an oxygen vacancy engineering strategy, TiO2- x microspheres with an abundance of Ti3+ are synthesized using a straightforward reductant co-assembly approach. The narrow bandgaps and Ti3+/Ti4+-mediated multiple-enzyme catalytic activities of the obtained TiO2- x microspheres make them suitable for use as sonosensitizers and nanozymes. When graphene quantum dot (GQD) nanoantibiotics are deposited on TiO2- x microspheres, the resulting GQD/TiO2- x shows an increased production of ROS, which can be ascribed to the accelerated separation of electron-hole pairs, as well as the peroxidase-like catalytic activity mediated by Ti3+, and the depletion of glutathione mediated by Ti4+. Moreover, the catalytic activities of TiO2- x microspheres are amplified by the heterojunctions-accelerated carrier transfer. In addition, GQDs can inhibit Topo I, displaying strong antibacterial activity and further enhancing the antibacterial activity. Collectively, the combination of GQD/TiO2- x-mediated SDT/NCT with nanoantibiotics can result in a synergistic effect, allowing for multimodal antibacterial treatment that effectively promotes wound healing.
Collapse
Affiliation(s)
- Ying Qian
- Endocrinology Department, 960 Hospital of People's Liberation Army, Jinan, Shandong, 250031, P. R. China
| | - Jingming Wang
- Orthopedic Department, 960 Hospital of People's Liberation Army, Jinan, Shandong, 250031, P. R. China
| | - Xudong Geng
- Institute of Advanced Interdisciplinary Science, School of Physics, Shandong University, Jinan, 250100, P. R. China
| | - Bingqing Jia
- Institute of Advanced Interdisciplinary Science, School of Physics, Shandong University, Jinan, 250100, P. R. China
| | - Lei Wang
- Orthopedic Department, 960 Hospital of People's Liberation Army, Jinan, Shandong, 250031, P. R. China
| | - Yong-Qiang Li
- Institute of Advanced Interdisciplinary Science, School of Physics, Shandong University, Jinan, 250100, P. R. China
| | - Bijiang Geng
- School of Environmental and Chemical Engineering, Shanghai University, Shanghai, 200444, China
| | - Weimin Huang
- Orthopedic Department, 960 Hospital of People's Liberation Army, Jinan, Shandong, 250031, P. R. China
| |
Collapse
|
79
|
Nie R, Zhang J, Jia Q, Li Y, Tao W, Qin G, Liu X, Tao Y, Zhang Y, Li P. Structurally Oriented Carbon Dots as ROS Nanomodulators for Dynamic Chronic Inflammation and Infection Elimination. ACS NANO 2024; 18:22055-22070. [PMID: 39116283 DOI: 10.1021/acsnano.4c05266] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/10/2024]
Abstract
The selective elimination of cytotoxic ROS while retaining essential ones is pivotal in the management of chronic inflammation. Co-occurring bacterial infection further complicates the conditions, necessitating precision and an efficacious treatment strategy. Herein, the dynamic ROS nanomodulators are rationally constructed through regulating the surface states of herbal carbon dots (CDs) for on-demand inflammation or infection elimination. The phenolic OH containing CDs derived from honeysuckle (HOCD) and dandelion (DACD) demonstrated appropriate redox potentials, ensuring their ability to scavenge cytotoxic ROS such as ·OH and ONOO-, while invalidity toward essential ones such as O2·-, H2O2, and NO. This enables efficient treatment of chronic inflammation without affecting essential ROS signal pathways. The surface C-N/C═N of CDs derived from taxus leaves (TACD) and DACD renders them with suitable band structures, facilitating absorption in the red region and efficient generation of O2·- upon light irradiation for sterilization. Specifically, the facilely prepared DACD demonstrates fascinating dynamic ROS modulating ability, making it highly suitable for addressing concurrent chronic inflammation and infection, such as diabetic wound infection. This dynamic ROS regulation strategy facilitates the realization of the precise and efficient treatment of chronic inflammation and infection with minimal side effects, holding immense potential for clinical practice.
Collapse
Affiliation(s)
- Renhao Nie
- Frontiers Science Center for Flexible Electronics (FSCFE), Xi'an Institute of Flexible Electronics (IFE) and Xi'an Institute of Biomedical Materials and Engineering (IBME), Northwestern Polytechnical University, 127 West Youyi Road, Xi'an 710072, China
| | - Jianhong Zhang
- Frontiers Science Center for Flexible Electronics (FSCFE), Xi'an Institute of Flexible Electronics (IFE) and Xi'an Institute of Biomedical Materials and Engineering (IBME), Northwestern Polytechnical University, 127 West Youyi Road, Xi'an 710072, China
| | - Qingyan Jia
- Frontiers Science Center for Flexible Electronics (FSCFE), Xi'an Institute of Flexible Electronics (IFE) and Xi'an Institute of Biomedical Materials and Engineering (IBME), Northwestern Polytechnical University, 127 West Youyi Road, Xi'an 710072, China
- Key laboratory of Flexible Electronics of Zhejiang Province, Ningbo Institute of Northwestern Polytechnical University, 218 Qingyi Road, Ningbo 315103, China
| | - Yuanying Li
- Frontiers Science Center for Flexible Electronics (FSCFE), Xi'an Institute of Flexible Electronics (IFE) and Xi'an Institute of Biomedical Materials and Engineering (IBME), Northwestern Polytechnical University, 127 West Youyi Road, Xi'an 710072, China
| | - Wei Tao
- Frontiers Science Center for Flexible Electronics (FSCFE), Xi'an Institute of Flexible Electronics (IFE) and Xi'an Institute of Biomedical Materials and Engineering (IBME), Northwestern Polytechnical University, 127 West Youyi Road, Xi'an 710072, China
| | - Guofeng Qin
- Frontiers Science Center for Flexible Electronics (FSCFE), Xi'an Institute of Flexible Electronics (IFE) and Xi'an Institute of Biomedical Materials and Engineering (IBME), Northwestern Polytechnical University, 127 West Youyi Road, Xi'an 710072, China
| | - Xiyin Liu
- Frontiers Science Center for Flexible Electronics (FSCFE), Xi'an Institute of Flexible Electronics (IFE) and Xi'an Institute of Biomedical Materials and Engineering (IBME), Northwestern Polytechnical University, 127 West Youyi Road, Xi'an 710072, China
| | - Yaolan Tao
- Frontiers Science Center for Flexible Electronics (FSCFE), Xi'an Institute of Flexible Electronics (IFE) and Xi'an Institute of Biomedical Materials and Engineering (IBME), Northwestern Polytechnical University, 127 West Youyi Road, Xi'an 710072, China
| | - Yunxiu Zhang
- School of Flexible Electronics (SoFE) and Henan Institute of Flexible Electronics (HIFE), Henan University, 379 mingli Road, Zhengzhou 450046, China
| | - Peng Li
- Frontiers Science Center for Flexible Electronics (FSCFE), Xi'an Institute of Flexible Electronics (IFE) and Xi'an Institute of Biomedical Materials and Engineering (IBME), Northwestern Polytechnical University, 127 West Youyi Road, Xi'an 710072, China
| |
Collapse
|
80
|
Barman BK, Yamada H, Watanabe K, Deguchi K, Ohki S, Hashi K, Goto A, Nagao T. Rare-Earth-Metal-Free Solid-State Fluorescent Carbonized-Polymer Microspheres for Unclonable Anti-Counterfeit Whispering-Gallery Emissions from Red to Near-Infrared Wavelengths. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2400693. [PMID: 38867440 PMCID: PMC11321640 DOI: 10.1002/advs.202400693] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/19/2024] [Revised: 04/05/2024] [Indexed: 06/14/2024]
Abstract
Colloidal carbon dots (CDs) have garnered much attention as metal-free photoluminescent nanomaterials, yet creation of solid-state fluorescent (SSF) materials emitting in the deep red (DR) to near-infrared (NIR) range poses a significant challenge with practical implications. To address this challenge and to engineer photonic functionalities, a micro-resonator architecture is developed using carbonized polymer microspheres (CPMs), evolved from conventional colloidal nanodots. Gram-scale production of CPMs utilizes controlled microscopic phase separation facilitated by natural peptide cross-linking during hydrothermal processing. The resulting microstructure effectively suppresses aggregation-induced quenching (AIQ), enabling strong solid-state light emission. Both experimental and theoretical analysis support a role for extended π-conjugated polycyclic aromatic hydrocarbons (PAHs) trapped within these microstructures, which exhibit a progressive red shift in light absorption/emission toward the NIR range. Moreover, the highly spherical shape of CPMs endows them with innate photonic functionalities in combination with their intrinsic CD-based attributes. Harnessing their excitation wavelength-dependent photoluminescent (PL) property, a single CPM exhibits whispering-gallery modes (WGMs) that are emission-tunable from the DR to the NIR. This type of newly developed microresonator can serve as, for example, unclonable anti-counterfeiting labels. This innovative cross-cutting approach, combining photonics and chemistry, offers robust, bottom-up, built-in photonic functionality with diverse NIR applications.
Collapse
Affiliation(s)
- Barun Kumar Barman
- Research Center for Materials Nanoarchitectonics (WPI‐MANA)National Institute for Materials Science (NIMS)TsukubaIbaraki305‐0044Japan
| | - Hiroyuki Yamada
- Research Center for Materials Nanoarchitectonics (WPI‐MANA)National Institute for Materials Science (NIMS)TsukubaIbaraki305‐0044Japan
| | - Keisuke Watanabe
- Research Center for Materials Nanoarchitectonics (WPI‐MANA)National Institute for Materials Science (NIMS)TsukubaIbaraki305‐0044Japan
| | - Kenzo Deguchi
- Research Network and Facility Services DivisionNational Institute for Materials Science (NIMS)3‐13 SakuraTsukubaIbaraki305‐0003Japan
| | - Shinobu Ohki
- Research Network and Facility Services DivisionNational Institute for Materials Science (NIMS)3‐13 SakuraTsukubaIbaraki305‐0003Japan
| | - Kenjiro Hashi
- Center for Basic Research on MaterialsNational Institute for Materials Science (NIMS)3‐13 SakuraTsukubaIbaraki305‐0003Japan
| | - Atsushi Goto
- Center for Basic Research on MaterialsNational Institute for Materials Science (NIMS)3‐13 SakuraTsukubaIbaraki305‐0003Japan
| | - Tadaaki Nagao
- Research Center for Materials Nanoarchitectonics (WPI‐MANA)National Institute for Materials Science (NIMS)TsukubaIbaraki305‐0044Japan
- Department of Condensed Matter Physics Graduate School of ScienceHokkaido UniversitySapporoHokkaido060‐0810Japan
| |
Collapse
|
81
|
Li Y, Yao T, Wang Y, Chen J, You H, Lu J, Xiong Y, Xiong Z, Liu J, Qi Y, Wang W, Wang D. Fully Floatable Mortise-and-Tenon Architecture for Synergistically Photo/Sono-Driven Evaporation Desalination and Plastic-Enabled Value-Added Co-Conversion of H 2O and CO 2. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2404423. [PMID: 38767186 PMCID: PMC11304291 DOI: 10.1002/advs.202404423] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/24/2024] [Revised: 05/09/2024] [Indexed: 05/22/2024]
Abstract
Establishing an advanced ecosystem incorporating freshwater harvesting, plastic utilization, and clean fuel acquisition is profoundly significant. However, low-efficiency evaporation, single energy utilization, and catalyst leakage severely hinder sustainable development. Herein, a nanofiber-based mortise-and-tenon structural Janus aerogel (MTSJA) is strategically designed in the first attempt and supports Z-scheme catalysts. By harnessing of the upper hydrophilic layer with hydrophilic channels embedding into the hydrophobic bottom layer to achieve tailoring bottom wettability states. MTSJA is capable of a fully-floating function for lower heat loss, water supply, and high-efficiency solar-to-vapor conversion. Benefiting from the ultrasonic cavitation effect and high sensitivity of materials to mechanical forces, this is also the first demonstration of synergistic solar and ultrasound fields to power simultaneous evaporation desalination and waste plastics as reusable substrates generating fuel energy. The system enables persistent desalination with an exceptional evaporation rate of 3.1 kg m-2 h-1 and 82.3% efficiency (21 wt.% NaCl solution and 1 sun), and realizes H2, CO, and CH4 yields with 16.1, 9.5, and 3 µmol h-1 g-1, respectively. This strategy holds great potential for desalination and plastics value-added transformation toward clean energy and carbon neutrality.
Collapse
Affiliation(s)
- Yingying Li
- Key Laboratory of Textile Fiber and ProductsMinistry of EducationWuhan Textile UniversityWuhan430200China
| | - Tongrong Yao
- Key Laboratory of Textile Fiber and ProductsMinistry of EducationWuhan Textile UniversityWuhan430200China
| | - Yanqiu Wang
- Key Laboratory of Textile Fiber and ProductsMinistry of EducationWuhan Textile UniversityWuhan430200China
| | - Jiahui Chen
- Key Laboratory of Textile Fiber and ProductsMinistry of EducationWuhan Textile UniversityWuhan430200China
| | - Haining You
- Key Laboratory of Textile Fiber and ProductsMinistry of EducationWuhan Textile UniversityWuhan430200China
| | - Jing Lu
- Key Laboratory of Textile Fiber and ProductsMinistry of EducationWuhan Textile UniversityWuhan430200China
| | - Yi Xiong
- Key Laboratory of Textile Fiber and ProductsMinistry of EducationWuhan Textile UniversityWuhan430200China
| | - Zhongduo Xiong
- Key Laboratory of Textile Fiber and ProductsMinistry of EducationWuhan Textile UniversityWuhan430200China
| | - Jia Liu
- Multifunctional Electronic Ceramics LaboratoryCollege of EngineeringXi'an International UniversityXi'an710077China
| | - Yajuan Qi
- College of ScienceWuhan University of Science and TechnologyWuhan430081China
| | - Wenwen Wang
- Key Laboratory of Textile Fiber and ProductsMinistry of EducationWuhan Textile UniversityWuhan430200China
| | - Dong Wang
- Key Laboratory of Textile Fiber and ProductsMinistry of EducationWuhan Textile UniversityWuhan430200China
| |
Collapse
|
82
|
Huang H, Zheng Y, Chang M, Song J, Xia L, Wu C, Jia W, Ren H, Feng W, Chen Y. Ultrasound-Based Micro-/Nanosystems for Biomedical Applications. Chem Rev 2024; 124:8307-8472. [PMID: 38924776 DOI: 10.1021/acs.chemrev.4c00009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/28/2024]
Abstract
Due to the intrinsic non-invasive nature, cost-effectiveness, high safety, and real-time capabilities, besides diagnostic imaging, ultrasound as a typical mechanical wave has been extensively developed as a physical tool for versatile biomedical applications. Especially, the prosperity of nanotechnology and nanomedicine invigorates the landscape of ultrasound-based medicine. The unprecedented surge in research enthusiasm and dedicated efforts have led to a mass of multifunctional micro-/nanosystems being applied in ultrasound biomedicine, facilitating precise diagnosis, effective treatment, and personalized theranostics. The effective deployment of versatile ultrasound-based micro-/nanosystems in biomedical applications is rooted in a profound understanding of the relationship among composition, structure, property, bioactivity, application, and performance. In this comprehensive review, we elaborate on the general principles regarding the design, synthesis, functionalization, and optimization of ultrasound-based micro-/nanosystems for abundant biomedical applications. In particular, recent advancements in ultrasound-based micro-/nanosystems for diagnostic imaging are meticulously summarized. Furthermore, we systematically elucidate state-of-the-art studies concerning recent progress in ultrasound-based micro-/nanosystems for therapeutic applications targeting various pathological abnormalities including cancer, bacterial infection, brain diseases, cardiovascular diseases, and metabolic diseases. Finally, we conclude and provide an outlook on this research field with an in-depth discussion of the challenges faced and future developments for further extensive clinical translation and application.
Collapse
Affiliation(s)
- Hui Huang
- School of Environmental and Chemical Engineering, Shanghai University, Shanghai 200444, P. R. China
- Materdicine Lab, School of Life Sciences, Shanghai University, Shanghai 200444, P. R. China
| | - Yi Zheng
- Department of Ultrasound, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200080, P. R. China
| | - Meiqi Chang
- Laboratory Center, Shanghai Municipal Hospital of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai 200071, P. R. China
| | - Jun Song
- Materdicine Lab, School of Life Sciences, Shanghai University, Shanghai 200444, P. R. China
| | - Lili Xia
- Materdicine Lab, School of Life Sciences, Shanghai University, Shanghai 200444, P. R. China
| | - Chenyao Wu
- Materdicine Lab, School of Life Sciences, Shanghai University, Shanghai 200444, P. R. China
| | - Wencong Jia
- Materdicine Lab, School of Life Sciences, Shanghai University, Shanghai 200444, P. R. China
| | - Hongze Ren
- Materdicine Lab, School of Life Sciences, Shanghai University, Shanghai 200444, P. R. China
| | - Wei Feng
- School of Environmental and Chemical Engineering, Shanghai University, Shanghai 200444, P. R. China
- Materdicine Lab, School of Life Sciences, Shanghai University, Shanghai 200444, P. R. China
| | - Yu Chen
- School of Environmental and Chemical Engineering, Shanghai University, Shanghai 200444, P. R. China
- Materdicine Lab, School of Life Sciences, Shanghai University, Shanghai 200444, P. R. China
| |
Collapse
|
83
|
Barhum H, McDonnell C, Peltek O, Jain R, Amer M, Kain D, Elad-Sfadia G, Athamna M, Blinder P, Ginzburg P. In-Brain Multiphoton Imaging of Vaterite Cargoes Loaded with Carbon Dots. NANO LETTERS 2024; 24:8232-8239. [PMID: 38781101 PMCID: PMC11247546 DOI: 10.1021/acs.nanolett.4c00325] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/25/2024]
Abstract
Biocompatible fluorescent agents are key contributors to the theranostic paradigm by enabling real-time in vivo imaging. This study explores the optical properties of phenylenediamine carbon dots (CDs) and demonstrates their potential for fluorescence imaging in cells and brain blood vessels. The nonlinear absorption cross-section of the CDs was measured and achieved values near 50 Goeppert-Mayer (GM) units with efficient excitation in the 775-895 nm spectral range. Mesoporous vaterite nanoparticles were loaded with CDs to examine the possibility of a biocompatible imaging platform. Efficient one- and two-photon imaging of the CD-vaterite composites uptaken by diverse cells was demonstrated. For an in vivo scenario, CD-vaterite composites were injected into the bloodstream of a mouse, and their flow was monitored within the blood vessels of the brain through a cranial window. These results show the potential of the platform for high-brightness biocompatible imaging with the potential for both sensing and simultaneous drug delivery.
Collapse
Affiliation(s)
- Hani Barhum
- Department of Electrical Engineering, Tel Aviv University, Ramat Aviv, Tel Aviv 69978, Israel
- Triangle Regional Research and Development Center, Kfar Qara 3007500, Israel
- Light-Matter Interaction Centre, Tel Aviv University, Tel Aviv 69978, Israel
| | - Cormac McDonnell
- Department of Electrical Engineering, Tel Aviv University, Ramat Aviv, Tel Aviv 69978, Israel
- Light-Matter Interaction Centre, Tel Aviv University, Tel Aviv 69978, Israel
| | - Oleksii Peltek
- School of Physics and Engineering, ITMO University, St. Petersburg 191002, Russian Federation
| | - Rudhvi Jain
- Neurobiology, Biochemistry and Biophysics School, Wise Life Science Faculty, Tel Aviv University, Tel Aviv 69978, Israel
| | - Mariam Amer
- Triangle Regional Research and Development Center, Kfar Qara 3007500, Israel
| | - David Kain
- Sagol School of Neuroscience, Tel Aviv University, Tel Aviv 69978, Israel
| | - Galit Elad-Sfadia
- Neurobiology, Biochemistry and Biophysics School, Wise Life Science Faculty, Tel Aviv University, Tel Aviv 69978, Israel
| | - Muhammad Athamna
- Triangle Regional Research and Development Center, Kfar Qara 3007500, Israel
- Neurobiology, Biochemistry and Biophysics School, Wise Life Science Faculty, Tel Aviv University, Tel Aviv 69978, Israel
| | - Pablo Blinder
- Neurobiology, Biochemistry and Biophysics School, Wise Life Science Faculty, Tel Aviv University, Tel Aviv 69978, Israel
- Sagol School of Neuroscience, Tel Aviv University, Tel Aviv 69978, Israel
| | - Pavel Ginzburg
- Department of Electrical Engineering, Tel Aviv University, Ramat Aviv, Tel Aviv 69978, Israel
- Light-Matter Interaction Centre, Tel Aviv University, Tel Aviv 69978, Israel
| |
Collapse
|
84
|
Su Y, Ye K, Hu J, Zhang Z, Wang Y, Geng B, Pan D, Shen L. Graphene Quantum Dots Eradicate Resistant and Metastatic Cancer Cells by Enhanced Interfacial Inhibition. Adv Healthc Mater 2024; 13:e2304648. [PMID: 38597827 DOI: 10.1002/adhm.202304648] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2023] [Revised: 04/07/2024] [Indexed: 04/11/2024]
Abstract
Drug-resistant and metastatic cancer cells such as a small population of cancer stem cells (CSCs) play a crucial role in metastasis and relapse. Conventional small-molecule chemotherapeutics, however, are unable to eradicate drug-resistant CSCs owing to limited interface inhibitory effects. Herein, it is reported that enhanced interfacial inhibition leading to eradication of drug-resistant CSCs can be dramatically induced by self-insertion of bioactive graphene quantum dots (GQDs) into DNA major groove (MAG) sites in cancer cells. Since transcription factors regulate gene expression at the MAG site, MAG-targeted GQDs exert greatly enhanced interfacial inhibition, downregulating the expression of a collection of cancer stem genes such as ALDH1, Notch1, and Bmi1. Moreover, the nanoscale interface inhibition mechanism reverses cancer multidrug resistance (MDR) by inhibiting MDR1 gene expression when GQDs are used at a nontoxic concentration (1/4 × half-maximal inhibitory concentration (IC50)) as the MDR reverser. Given their high efficacy in interfacial inhibition, CSC-mediated migration, invasion, and metastasis of cancer cells can be substantially blocked by MAG-targeted GQDs, which can also be harnessed to sensitize clinical cytotoxic agents for improved efficacy in combination chemotherapy. These findings elucidate the inhibitory effects of the enhanced nano-bio interface at the MAG site on eradicating CSCs, thus preventing cancer metastasis and recurrence.
Collapse
Affiliation(s)
- Yan Su
- Department of Orthopedic Surgery, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200233, China
| | - Kai Ye
- Department of Orthopedic Surgery, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200233, China
| | - Jinyan Hu
- School of Environmental and Chemical Engineering, Shanghai University, Shanghai, 200444, China
| | - Zhenlin Zhang
- School of Environmental and Chemical Engineering, Shanghai University, Shanghai, 200444, China
| | - Yang Wang
- Department of Orthopedic Surgery, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200233, China
| | - Bijiang Geng
- School of Environmental and Chemical Engineering, Shanghai University, Shanghai, 200444, China
| | - Dengyu Pan
- School of Environmental and Chemical Engineering, Shanghai University, Shanghai, 200444, China
| | - Longxiang Shen
- Department of Orthopedic Surgery, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200233, China
- Department of Orthopedic Surgery, Sheyang County People's Hospital, Yancheng, Jiangsu, 224300, China
| |
Collapse
|
85
|
Feng C, Wang L, Zhang D, Geng L, Zhou L, Wang L, Tian G, Tang Q, Hu J, Geng B, Yan L. Tumour microenvironment-responded Fe-doped carbon dots-sensitized cubic Cu 2O for Z-scheme heterojunction-enhanced sono-chemodynamic synergistic tumor therapy. J Colloid Interface Sci 2024; 665:681-692. [PMID: 38552583 DOI: 10.1016/j.jcis.2024.03.175] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2024] [Revised: 03/12/2024] [Accepted: 03/26/2024] [Indexed: 04/17/2024]
Abstract
The efficacy of electron-hole separation in a single sonosensitizer and the complexities of the tumor microenvironment (TME) present significant challenges to the effectiveness of sonodynamic therapy (SDT). Designing efficient sonosensitizers to enhance electron-hole separation and alleviate TME resistance is crucial yet challenging. Herein, we introduce a novel Z-scheme heterojunctions (HJs) sonosensitizer using Fe-doped carbon dots (CDs) as auxiliary semiconductors to sensitize cubic Cu2O (Fe-CDs@Cu2O) for the first time. Fe-CDs@Cu2O demonstrated enhanced SDT effects due to improved electron-hole separation. Additionally, the introduction of Fe ions in CDs synergistically enhances Fenton-like reactions with Cu ions in Cu2O, resulting in enhanced chemodynamic therapy (CDT) effects. Moreover, Fe-CDs@Cu2O exhibited rapid glutathione (GSH) depletion, effectively mitigating TME resistance. With high rates of 1O2 and OH generated by Fe-CDs@Cu2O, coupled with strong GSH depletion, single drug injection and ultrasound (US) irradiation effectively eliminate tumors. This innovative heterojunction sonosensitizer offers a promising pathway for clinical anti-tumor treatment.
Collapse
Affiliation(s)
- Chuanqi Feng
- Shandong Provincial Key Laboratory of Monocrystalline Silicon Semiconductor Materials and Technology, College of Chemistry and Chemical Engineering, Dezhou University, 253023 Dezhou, Shandong, PR China.
| | - Lumin Wang
- Shandong Provincial Key Laboratory of Monocrystalline Silicon Semiconductor Materials and Technology, College of Chemistry and Chemical Engineering, Dezhou University, 253023 Dezhou, Shandong, PR China
| | - Dashuai Zhang
- Shandong Provincial Key Laboratory of Monocrystalline Silicon Semiconductor Materials and Technology, College of Chemistry and Chemical Engineering, Dezhou University, 253023 Dezhou, Shandong, PR China
| | - Longlong Geng
- Shandong Provincial Key Laboratory of Monocrystalline Silicon Semiconductor Materials and Technology, College of Chemistry and Chemical Engineering, Dezhou University, 253023 Dezhou, Shandong, PR China
| | - Lianwen Zhou
- Shandong Provincial Key Laboratory of Monocrystalline Silicon Semiconductor Materials and Technology, College of Chemistry and Chemical Engineering, Dezhou University, 253023 Dezhou, Shandong, PR China
| | - Ling Wang
- Shandong Provincial Key Laboratory of Monocrystalline Silicon Semiconductor Materials and Technology, College of Chemistry and Chemical Engineering, Dezhou University, 253023 Dezhou, Shandong, PR China
| | - Guanfeng Tian
- Shandong Provincial Key Laboratory of Monocrystalline Silicon Semiconductor Materials and Technology, College of Chemistry and Chemical Engineering, Dezhou University, 253023 Dezhou, Shandong, PR China
| | - Qi Tang
- Shandong Provincial Key Laboratory of Monocrystalline Silicon Semiconductor Materials and Technology, College of Chemistry and Chemical Engineering, Dezhou University, 253023 Dezhou, Shandong, PR China
| | - Jinyan Hu
- School of Environmental and Chemical Engineering, Shanghai University, 200444 Shanghai, PR China.
| | - Bijiang Geng
- School of Environmental and Chemical Engineering, Shanghai University, 200444 Shanghai, PR China.
| | - Lang Yan
- Department of Health Toxicology, Faculty of Naval Medicine, Naval Medical University, Shanghai 200433, PR China.
| |
Collapse
|
86
|
Meng X, Wang M, Lin J, Wang L, Liu J, Song Y, Jing Q, Zhao H. Intermediate aminophenol enables hectogram-scale synthesis of highly bright red carbon quantum dots under ambient conditions. Chem Sci 2024; 15:9806-9813. [PMID: 38939133 PMCID: PMC11206295 DOI: 10.1039/d4sc02331e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2024] [Accepted: 05/21/2024] [Indexed: 06/29/2024] Open
Abstract
Carbon quantum dots (C-dots) have developed into potential nanomaterials for lighting, catalysis and bioimaging because of their excellent optical properties and good biocompatibility. However, it is still a challenge to produce efficient red emitting carbon quantum dots (R-C-dots) due to their obscure formation mechanism. This work offered a method to reveal the formation process from the precursor o-phenylenediamine (o-PDA) to R-C-dots. Different from traditional hydrothermal reactions, R-C-dots were synthesized at relatively low temperature and ambient pressure. The pre-oxidation intermediate aminophenol played an important role in the synthesis of R-C-dots, which further cross-linked and polymerized with o-PDA in an acid environment to form R-C-dots. The obtained R-C-dots had a photoluminescence quantum yield of up to 33.26% and excellent two-photon fluorescence properties. A white light-emitting diode (WLED) based on R-C-dots as the red phosphor exhibited standard white light CIE color coordinates of (0.33, 0.33) with a correlated color temperature of 5342 K and a high color rendering index (CRI) of 94.5. The obtained rendering index is the highest value among WLEDs with color coordinates of (0.33, 0.33) based on C-dots. This work provides a new perspective for the controllable large-scale synthesis of red C-dots.
Collapse
Affiliation(s)
- Xiangyong Meng
- College of Materials Science and Engineering, College of Textiles and Clothes, College of Physics, State Key Laboratory of Bio-Fibers and Eco-Textiles, Qingdao University No. 308 Ningxia Road Qingdao 266071 P. R. China
| | - Maorong Wang
- College of Materials Science and Engineering, College of Textiles and Clothes, College of Physics, State Key Laboratory of Bio-Fibers and Eco-Textiles, Qingdao University No. 308 Ningxia Road Qingdao 266071 P. R. China
| | - Jishuai Lin
- College of Materials Science and Engineering, College of Textiles and Clothes, College of Physics, State Key Laboratory of Bio-Fibers and Eco-Textiles, Qingdao University No. 308 Ningxia Road Qingdao 266071 P. R. China
| | - Lihua Wang
- College of Materials Science and Engineering, College of Textiles and Clothes, College of Physics, State Key Laboratory of Bio-Fibers and Eco-Textiles, Qingdao University No. 308 Ningxia Road Qingdao 266071 P. R. China
| | - Jin Liu
- College of Materials Science and Engineering, College of Textiles and Clothes, College of Physics, State Key Laboratory of Bio-Fibers and Eco-Textiles, Qingdao University No. 308 Ningxia Road Qingdao 266071 P. R. China
| | - Yang Song
- College of Materials Science and Engineering, College of Textiles and Clothes, College of Physics, State Key Laboratory of Bio-Fibers and Eco-Textiles, Qingdao University No. 308 Ningxia Road Qingdao 266071 P. R. China
| | - Qiang Jing
- College of Materials Science and Engineering, College of Textiles and Clothes, College of Physics, State Key Laboratory of Bio-Fibers and Eco-Textiles, Qingdao University No. 308 Ningxia Road Qingdao 266071 P. R. China
| | - Haiguang Zhao
- College of Materials Science and Engineering, College of Textiles and Clothes, College of Physics, State Key Laboratory of Bio-Fibers and Eco-Textiles, Qingdao University No. 308 Ningxia Road Qingdao 266071 P. R. China
| |
Collapse
|
87
|
Tian H, Zhu H, Xue Y, Wang M, Xing K, Li Z, Loh XJ, Ye E, Ding X, Li BL, Yin X, Leong DT. White light powered antimicrobial nanoagents for triple photothermal, chemodynamic and photodynamic based sterilization. NANOSCALE HORIZONS 2024; 9:1190-1199. [PMID: 38757185 DOI: 10.1039/d4nh00060a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2024]
Abstract
Antibacterial nanoagents have been increasingly developed due to their favorable biocompatibility, cost-effective raw materials, and alternative chemical or optical properties. Nevertheless, there is still a pressing need for antibacterial nanoagents that exhibit outstanding bacteria-binding capabilities and high antibacterial efficiency. In this study, we constructed a multifunctional cascade bioreactor (GCDCO) as a novel antibacterial agent. This involved incorporating carbon dots (CDs), cobalt sulfide quantum dots (CoSx QDs), and glucose oxidase (GOx) to enhance bacterial inhibition under sunlight irradiation. The GCDCO demonstrated highly efficient antibacterial capabilities attributed to its favorable photothermal properties, photodynamic activity, as well as the synergistic effects of hyperthermia, glucose-augmented chemodynamic action, and additional photodynamic activity. Within this cascade bioreactor, CDs played the role of a photosensitizer for photodynamic therapy (PDT), capable of generating ˙O2- even under solar light irradiation. The CoSx QDs not only functioned as a catalytic component to decompose hydrogen peroxide (H2O2) and generate hydroxyl radicals (˙OH), but they also served as heat generators to enhance the Fenton-like catalysis process. Furthermore, GOx was incorporated into this cascade bioreactor to internally supply H2O2 by consuming glucose for a Fenton-like reaction. As a result, GCDCO could generate a substantial amount of reactive oxygen species (ROS), leading to a significant synergistic effect that greatly induced bacterial death. Furthermore, the in vitro antibacterial experiment revealed that GCDCO displayed notably enhanced antibacterial activity against E. coli (99+ %) when combined with glucose under simulated sunlight, surpassing the efficacy of the individual components. This underscores its remarkable efficiency in combating bacterial growth. Taken together, our GCDCO demonstrates significant potential for use in the routine treatment of skin infections among diabetic patients.
Collapse
Affiliation(s)
- Hua Tian
- Department of Chemical and Biomolecular Engineering, National University of Singapore, Singapore 117585, Singapore.
- Hainan Provincial Fine Chemical Engineering Research Centre, Hainan University, Haikou, Hainan, 570228, P. R. China.
| | - Houjuan Zhu
- Institute of Materials Research and Engineering (IMRE), Agency for Science, Technology and Research (A*STAR), 2 Fusionopolis Way, Innovis #08-03, Singapore 138634, Singapore.
| | - Yuling Xue
- Department of Chemical and Biomolecular Engineering, National University of Singapore, Singapore 117585, Singapore.
| | - Maonan Wang
- Department of Pathology, Xiangya Hospital, School of Basic Medical Sciences, Central South University, Changsha, China
| | - Kuoran Xing
- Department of Chemical and Biomolecular Engineering, National University of Singapore, Singapore 117585, Singapore.
| | - Zibiao Li
- Institute of Materials Research and Engineering (IMRE), Agency for Science, Technology and Research (A*STAR), 2 Fusionopolis Way, Innovis #08-03, Singapore 138634, Singapore.
| | - Xian Jun Loh
- Institute of Materials Research and Engineering (IMRE), Agency for Science, Technology and Research (A*STAR), 2 Fusionopolis Way, Innovis #08-03, Singapore 138634, Singapore.
| | - Enyi Ye
- Institute of Materials Research and Engineering (IMRE), Agency for Science, Technology and Research (A*STAR), 2 Fusionopolis Way, Innovis #08-03, Singapore 138634, Singapore.
| | - Xianguang Ding
- Key Laboratory for Organic Electronics and Information Displays & Jiangsu Key Laboratory for Biosensors, Nanjing University of Posts & Telecommunications, Nanjing, 210023, China
| | - Bang Lin Li
- School of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, P. R. China
| | - Xueqiong Yin
- Hainan Provincial Fine Chemical Engineering Research Centre, Hainan University, Haikou, Hainan, 570228, P. R. China.
| | - David Tai Leong
- Department of Chemical and Biomolecular Engineering, National University of Singapore, Singapore 117585, Singapore.
| |
Collapse
|
88
|
Xu J, Huang BB, Lai CM, Lu YS, Shao JW. Advancements in the synthesis of carbon dots and their application in biomedicine. JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY. B, BIOLOGY 2024; 255:112920. [PMID: 38669742 DOI: 10.1016/j.jphotobiol.2024.112920] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/09/2024] [Revised: 04/09/2024] [Accepted: 04/18/2024] [Indexed: 04/28/2024]
Abstract
As a sort of fluorescent carbon nanomaterial with a particle size of less than 10 nm, carbon dots (CDs) have their own merits of good dispersibility in water, stable optical properties, strong chemical inertness, stable optical properties, and good biosecurity. These excellent peculiarities facilitated them like sensing, imaging, medicine, catalysis, and optoelectronics, making them a new star in the field of nanotechnology. In particular, the development of CDs in the fields of chemical probes, imaging, cancer therapy, antibacterial and drug delivery has become a hot topic in current research. Although the biomedical applications in CDs have been demonstrated in many research articles, a systematic summary of their role in biomedical applications is scarce. In this review, we introduced the basic information of CDs in detail, including synthesis approaches of CDs as well as their favorable properties including photoluminescence and low cytotoxicity. Subsequently, the application of CDs in the field of biomedicine was emphasized. Finally, the main challenges and research prospects of CDs in this field were proposed, which might provide some detailed information in designing new CDs in this promising biomedical field.
Collapse
Affiliation(s)
- Jia Xu
- Fujian Provincial Key Laboratory of Cancer Metastasis Chemoprevention and Chemotherapy, College of Chemistry, Fuzhou University, Fuzhou 350108, China
| | - Bing-Bing Huang
- Fujian Provincial Key Laboratory of Cancer Metastasis Chemoprevention and Chemotherapy, College of Chemistry, Fuzhou University, Fuzhou 350108, China
| | - Chun-Mei Lai
- Fujian Provincial Key Laboratory of Cancer Metastasis Chemoprevention and Chemotherapy, College of Chemistry, Fuzhou University, Fuzhou 350108, China
| | - Yu-Sheng Lu
- College of Materials and Chemical Engineering, Minjiang University, Fuzhou, Fujian 350108, China
| | - Jing-Wei Shao
- Fujian Provincial Key Laboratory of Cancer Metastasis Chemoprevention and Chemotherapy, College of Chemistry, Fuzhou University, Fuzhou 350108, China; College of Materials and Chemical Engineering, Minjiang University, Fuzhou, Fujian 350108, China.
| |
Collapse
|
89
|
Geng B, Hu J, He X, Zhang Z, Cai J, Pan D, Shen L. Single Atom Catalysts Remodel Tumor Microenvironment for Augmented Sonodynamic Immunotherapy. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2313670. [PMID: 38490191 DOI: 10.1002/adma.202313670] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/14/2023] [Revised: 03/06/2024] [Indexed: 03/17/2024]
Abstract
The immunosuppressive tumor microenvironment (TME) is a huge hurdle in immunotherapy. Sono-immunotherapy is a new treatment modality that can reverse immunosuppressive TME, but the sonodynamic effects are compromised by overexpressed glutathione (GSH) and hypoxia in the TME. Herein, this work reports a new sono-immunotherapy strategy using Pdδ+ single atom catalysts to enhance positive sonodynamic responses to the immunosuppressive and sono-suppressive TME. To demonstrate this technique, this work employs rich and reductive Ti vacancies in Ti3-xC2Ty nanosheets to construct the atomically dispersed Pd-C3 single atom catalysts (SAC) with Pd content up to 2.5 wt% (PdSA/Ti3-xC2Ty). Compared with Pd nanoparticle loaded Ti3-xC2Ty, PdSA/Ti3-xC2Ty single-atom enzyme showed augmented sonodynamic effects that are ascribed to SAC facilitated electron-hole separation, rapid depletion of overexpressed GSH by ultrasound (US) excited holes, and catalytic decomposition of endogenous H2O2 for relieving hypoxia. Importantly, the sono-immunotherapy strategy can boost abscopal antitumor immune responses by driving maturation of dendritic cells and polarization of tumor-associated macrophages into the antitumoral M1 phenotype. Bilateral tumor models demonstrate the complete eradication of localized tumors and enhance metastatic regression. Th strategy highlights the potential of single-atom catalysts for robust sono-immunotherapy by remodeling the tumor microenvironment.
Collapse
Affiliation(s)
- Bijiang Geng
- School of Environmental and Chemical Engineering, Shanghai University, Shanghai, 200444, China
| | - Jinyan Hu
- School of Environmental and Chemical Engineering, Shanghai University, Shanghai, 200444, China
| | - Xialing He
- School of Environmental and Chemical Engineering, Shanghai University, Shanghai, 200444, China
| | - Zhenlin Zhang
- School of Environmental and Chemical Engineering, Shanghai University, Shanghai, 200444, China
| | - Jinming Cai
- School of Environmental and Chemical Engineering, Shanghai University, Shanghai, 200444, China
| | - Dengyu Pan
- School of Environmental and Chemical Engineering, Shanghai University, Shanghai, 200444, China
| | - Longxiang Shen
- Department of Orthopedic Surgery, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200233, China
- Department of Orthopedic Surgery, Sheyang County People's Hospital, Yancheng, Jiangsu, 224300, China
| |
Collapse
|
90
|
Wang P, You Q, Liu Y, Miao H, Dong WF, Li L. Combating infections from drug-resistant bacteria: Unleashing synergistic broad-spectrum antibacterial power with high-entropy MXene/CDs. Colloids Surf B Biointerfaces 2024; 238:113874. [PMID: 38581833 DOI: 10.1016/j.colsurfb.2024.113874] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2024] [Revised: 03/21/2024] [Accepted: 03/22/2024] [Indexed: 04/08/2024]
Abstract
The growing resistance of bacteria to antibiotics has posed challenges in treating associated bacterial infections, while the development of multi-model antibacterial strategies could efficient sterilization to prevent drug resistance. High-entropy MXene has emerged as a promising candidate for antibacterial synergy with inherent photothermal and photodynamic properties. Herein, a high-entropy nanomaterial of MXene/CDs was synthesized to amplify oxidative stress under near-infrared laser irradiation. Well-exfoliated MXene nanosheets have proven to show an excellent photothermal effect for sterilization. The incorporation of CDs could provide photo-generated electrons for MXene nanosheets to generate ROS, meanwhile reducing the recombination of electron-hole pairs to further accelerate the generation of photo-generated electrons. The MXene/CDs material demonstrates outstanding synergistic photothermal and photodynamic effects, possesses excellent biocompatibility and successfully eliminates drug-resistant bacteria as well as inhibits biofilm formation. While attaining a remarkable killing efficiency of up to 99.99% against drug-resistant Escherichia coli and Staphylococcus aureus, it also demonstrates outstanding antibacterial effects against four additional bacterial strains. This work not only establishes a synthesis precedent for preparing high-entropy MXene materials with CDs but also provides a potential approach for addressing the issue of drug-resistant bacterial infections.
Collapse
Affiliation(s)
- Panyong Wang
- School of Biomedical Engineering (Suzhou), Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230026, China; CAS Key Laboratory of Biomedical Diagnostics, Suzhou Institute of Biomedical Engineering and Technology, Chinese Academy of Science (CAS), Suzhou 215163, China
| | - Qiannan You
- School of Biomedical Engineering (Suzhou), Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230026, China; CAS Key Laboratory of Biomedical Diagnostics, Suzhou Institute of Biomedical Engineering and Technology, Chinese Academy of Science (CAS), Suzhou 215163, China.
| | - Yulu Liu
- School of Biomedical Engineering (Suzhou), Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230026, China; CAS Key Laboratory of Biomedical Diagnostics, Suzhou Institute of Biomedical Engineering and Technology, Chinese Academy of Science (CAS), Suzhou 215163, China
| | - Huimin Miao
- School of Biomedical Engineering (Suzhou), Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230026, China; CAS Key Laboratory of Biomedical Diagnostics, Suzhou Institute of Biomedical Engineering and Technology, Chinese Academy of Science (CAS), Suzhou 215163, China
| | - Wen-Fei Dong
- School of Biomedical Engineering (Suzhou), Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230026, China; CAS Key Laboratory of Biomedical Diagnostics, Suzhou Institute of Biomedical Engineering and Technology, Chinese Academy of Science (CAS), Suzhou 215163, China.
| | - Li Li
- School of Biomedical Engineering (Suzhou), Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230026, China; CAS Key Laboratory of Biomedical Diagnostics, Suzhou Institute of Biomedical Engineering and Technology, Chinese Academy of Science (CAS), Suzhou 215163, China.
| |
Collapse
|
91
|
Cao C, Lu Y, Pan X, Lin Y, Fan S, Niu J, Lin S, Tan H, Wang Y, Cui S, Liu Y. Time and Space Dual-Blockade Strategy for Highly Invasive Nature of Triple-Negative Breast Cancer in Enhanced Sonodynamic Therapy Based on Fe-MOF Nanoplatforms. Adv Healthc Mater 2024; 13:e2304249. [PMID: 38325812 DOI: 10.1002/adhm.202304249] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Revised: 01/25/2024] [Indexed: 02/09/2024]
Abstract
Triple-negative breast cancer (TNBC), due to its high malignant degree and strong invasion ability, leads to poor prognosis and easy recurrence, so effectively curbing the invasion of TNBC is the key to obtaining the ideal therapeutic effect. Herein, a therapeutic strategy is developed that curbs high invasions of TNBC by inhibiting cell physiological activity and disrupting tumor cell structural function to achieve the time and space dual-blockade. The time blockade is caused by the breakthrough of the tumor-reducing blockade based on the ferroptosis process and the oxidation-toxic free radicals generated by enhanced sonodynamic therapy (SDT). Meanwhile, alkyl radicals from 2,2'-azobis[2-(2-imidazolin-2-yl)propane] dihydrochloride (AIPH) and 1O2 attacked the organelles of tumor cells under ultrasound (US), reducing the physiological activity of the cells. The attack of free radicals on the cytoskeleton, especially on the proteins of F-actin and its assembly pathway, achieves precise space blockade of TNBC. The damage to the cytoskeleton and the suppression of the repair process leads to a significant decline in the ability of tumor cells to metastasize and invade other organs. In summary, the FTM@AM nanoplatforms have a highly effective killing and invasion inhibition effect on invasive TNBC mediated by ultrasound, showcasing promising clinical transformation potential.
Collapse
Affiliation(s)
- Cheng Cao
- Institute of Nano Biomedicine and Engineering, Shanghai Engineering Research Centre for Intelligent Diagnosis and Treatment Instrument, School of Sensing Science and Engineering, School of Electronic Information and Electrical Engineering, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai, 200240, P. R. China
| | - Yi Lu
- Institute of Nano Biomedicine and Engineering, Shanghai Engineering Research Centre for Intelligent Diagnosis and Treatment Instrument, School of Sensing Science and Engineering, School of Electronic Information and Electrical Engineering, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai, 200240, P. R. China
| | - Xinni Pan
- Department of radiology, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200235, P. R. China
| | - Yuwan Lin
- Pediatric Translational Medicine Institute, Shanghai Children's Medical Center, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200127, P. R. China
| | - Shanshan Fan
- Department of radiology, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200235, P. R. China
| | - Jiaqi Niu
- Institute of Nano Biomedicine and Engineering, Shanghai Engineering Research Centre for Intelligent Diagnosis and Treatment Instrument, School of Sensing Science and Engineering, School of Electronic Information and Electrical Engineering, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai, 200240, P. R. China
| | - Shujing Lin
- Institute of Nano Biomedicine and Engineering, Shanghai Engineering Research Centre for Intelligent Diagnosis and Treatment Instrument, School of Sensing Science and Engineering, School of Electronic Information and Electrical Engineering, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai, 200240, P. R. China
| | - Haisong Tan
- Institute of Nano Biomedicine and Engineering, Shanghai Engineering Research Centre for Intelligent Diagnosis and Treatment Instrument, School of Sensing Science and Engineering, School of Electronic Information and Electrical Engineering, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai, 200240, P. R. China
| | - You Wang
- State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200127, P. R. China
| | - Shengsheng Cui
- Institute of Nano Biomedicine and Engineering, Shanghai Engineering Research Centre for Intelligent Diagnosis and Treatment Instrument, School of Sensing Science and Engineering, School of Electronic Information and Electrical Engineering, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai, 200240, P. R. China
| | - Yanlei Liu
- Institute of Nano Biomedicine and Engineering, Shanghai Engineering Research Centre for Intelligent Diagnosis and Treatment Instrument, School of Sensing Science and Engineering, School of Electronic Information and Electrical Engineering, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai, 200240, P. R. China
| |
Collapse
|
92
|
Huang X, Zhu J, Dong C, Li Y, Yu Q, Wang X, Chen Z, Li J, Yang Y, Wang H. Polyvalent Aptamer-Functionalized NIR-II Quantum Dots for Targeted Theranostics in High PD-L1-Expressing Tumors. ACS APPLIED MATERIALS & INTERFACES 2024; 16:21571-21581. [PMID: 38636085 DOI: 10.1021/acsami.4c01486] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/20/2024]
Abstract
Ag2S quantum dots (QDs) show superior optical properties in the NIR-II region and display significant clinical potential with favorable biocompatibility. However, inherent defects of low targeting and poor solubility necessitate practical modification methods to achieve the theranostics of Ag2S QDs. Herein, we used rolling circle amplification (RCA) techniques to obtain long single-stranded DNA containing the PD-L1 aptamer and C-rich DNA palindromic sequence. The C-rich DNA palindromic sequences can specifically chelate Ag2+ and thus serve as a template to result in biomimetic mineralization and formation of pApt-Ag2S QDs. These QDs enable specific targeting and illuminate hot tumors with high PD-L1 expression effectively, serving as excellent molecular targeted probes. In addition, due to the high NIR-II absorption of Ag2S QDs, pApt-Ag2S QDs exhibit remarkable photothermal properties. And besides, polyvalent PD-L1 aptamers can recognize PD-L1 protein and effectively block the inhibitory signal of PD-L1 on T cells, enabling efficient theranostics through the synergistic effect of photothermal therapy and immune checkpoint blocking therapy. Summary, we enhance the biological stability and antibleaching ability of Ag2S QDs using long single-stranded DNA as a template, thereby establishing a theranostic platform that specifically targets PD-L1 high-expressing inflamed tumors and demonstrates excellent performance both in vitro and in vivo.
Collapse
Affiliation(s)
- Xin Huang
- Institute of Nanochemistry and Nanobiology, Shanghai University, Shanghai 200444, China
- Institute of Molecular Medicine (IMM), Shanghai Key Laboratory for Nucleic Acid Chemistry and Nanomedicine, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, P. R. China
| | - Jiawei Zhu
- Institute of Molecular Medicine (IMM), Shanghai Key Laboratory for Nucleic Acid Chemistry and Nanomedicine, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, P. R. China
| | - Chuhuang Dong
- Institute of Molecular Medicine (IMM), Shanghai Key Laboratory for Nucleic Acid Chemistry and Nanomedicine, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, P. R. China
| | - Yuqing Li
- Institute of Molecular Medicine (IMM), Shanghai Key Laboratory for Nucleic Acid Chemistry and Nanomedicine, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, P. R. China
| | - Qing Yu
- Institute of Molecular Medicine (IMM), Shanghai Key Laboratory for Nucleic Acid Chemistry and Nanomedicine, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, P. R. China
| | - Xuan Wang
- Institute of Molecular Medicine (IMM), Shanghai Key Laboratory for Nucleic Acid Chemistry and Nanomedicine, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, P. R. China
| | - Zhejie Chen
- Institute of Molecular Medicine (IMM), Shanghai Key Laboratory for Nucleic Acid Chemistry and Nanomedicine, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, P. R. China
| | - Jiabei Li
- Institute of Molecular Medicine (IMM), Shanghai Key Laboratory for Nucleic Acid Chemistry and Nanomedicine, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, P. R. China
| | - Yu Yang
- Institute of Molecular Medicine (IMM), Shanghai Key Laboratory for Nucleic Acid Chemistry and Nanomedicine, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, P. R. China
| | - Haifang Wang
- Institute of Nanochemistry and Nanobiology, Shanghai University, Shanghai 200444, China
| |
Collapse
|
93
|
Sun L, Zhao Y, Peng H, Zhou J, Zhang Q, Yan J, Liu Y, Guo S, Wu X, Li B. Carbon dots as a novel photosensitizer for photodynamic therapy of cancer and bacterial infectious diseases: recent advances. J Nanobiotechnology 2024; 22:210. [PMID: 38671474 PMCID: PMC11055261 DOI: 10.1186/s12951-024-02479-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Accepted: 04/15/2024] [Indexed: 04/28/2024] Open
Abstract
Carbon dots (CDs) are novel carbon-based nanomaterials that have been used as photosensitizer-mediated photodynamic therapy (PDT) in recent years due to their good photosensitizing activity. Photosensitizers (PSs) are main components of PDT that can produce large amounts of reactive oxygen species (ROS) when stimulated by light source, which have the advantages of low drug resistance and high therapeutic efficiency. CDs can generate ROS efficiently under irradiation and therefore have been extensively studied in disease local phototherapy. In tumor therapy, CDs can be used as PSs or PS carriers to participate in PDT and play an extremely important role. In bacterial infectious diseases, CDs exhibit high bactericidal activity as CDs are effective in disrupting bacterial cell membranes leading to bacterial death upon photoactivation. We focus on recent advances in the therapy of cancer and bacteria with CDs, and also briefly summarize the mechanisms and requirements for PSs in PDT of cancer, bacteria and other diseases. We also discuss the role CDs play in combination therapy and the potential for future applications against other pathogens.
Collapse
Affiliation(s)
- Lingxiang Sun
- School and Hospital of Stomatology, Shanxi Medical University, Taiyuan, China
- Shanxi Province Key Laboratory of Oral Diseases Prevention and New Materials, Taiyuan, China
| | - Yifan Zhao
- School and Hospital of Stomatology, Shanxi Medical University, Taiyuan, China
- Shanxi Province Key Laboratory of Oral Diseases Prevention and New Materials, Taiyuan, China
| | - Hongyi Peng
- School and Hospital of Stomatology, Shanxi Medical University, Taiyuan, China
- Shanxi Province Key Laboratory of Oral Diseases Prevention and New Materials, Taiyuan, China
| | - Jian Zhou
- Laboratory for Oral and General Health Integration and Translation, Beijing Tiantan Hospital, Capital Medical University, Beijing, 100069, China
| | - Qingmei Zhang
- Taiyuan University of Science and Technology, Taiyuan, China
| | - Jingyu Yan
- School and Hospital of Stomatology, Shanxi Medical University, Taiyuan, China
- Shanxi Province Key Laboratory of Oral Diseases Prevention and New Materials, Taiyuan, China
| | - Yingyu Liu
- School and Hospital of Stomatology, Shanxi Medical University, Taiyuan, China
- Shanxi Province Key Laboratory of Oral Diseases Prevention and New Materials, Taiyuan, China
| | - Susu Guo
- School and Hospital of Stomatology, Shanxi Medical University, Taiyuan, China
- Shanxi Province Key Laboratory of Oral Diseases Prevention and New Materials, Taiyuan, China
| | - Xiuping Wu
- School and Hospital of Stomatology, Shanxi Medical University, Taiyuan, China.
- Shanxi Province Key Laboratory of Oral Diseases Prevention and New Materials, Taiyuan, China.
| | - Bing Li
- School and Hospital of Stomatology, Shanxi Medical University, Taiyuan, China.
- Shanxi Province Key Laboratory of Oral Diseases Prevention and New Materials, Taiyuan, China.
| |
Collapse
|
94
|
Geng C, He S, Yu S, Johnson HM, Shi H, Chen Y, Chan YK, He W, Qin M, Li X, Deng Y. Achieving Clearance of Drug-Resistant Bacterial Infection and Rapid Cutaneous Wound Regeneration Using an ROS-Balancing-Engineered Heterojunction. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2310599. [PMID: 38300795 DOI: 10.1002/adma.202310599] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Revised: 01/04/2024] [Indexed: 02/03/2024]
Abstract
Intractable infected microenvironments caused by drug-resistant bacteria stalls the normal course of wound healing. Sono-piezodynamic therapy (SPT) is harnessed to combat pathogenic bacteria, but the superabundant reactive oxygen species (ROS) generated during SPT inevitably provoke severe inflammatory response, hindering tissue regeneration. Consequently, an intelligent nanocatalytic membrane composed of poly(lactic-co-glycolic acid) (PLGA) and black phosphorus /V2C MXene bio-heterojunctions (2D2-bioHJs) is devised. Under ultrasonication, 2D2-bioHJs effectively eliminate drug-resistant bacteria by disrupting metabolism and electron transport chain (ETC). When ultrasonication ceases, they enable the elimination of SPT-generated ROS. The 2D2-bioHJs act as a "lever" that effectively achieves a balance between ROS generation and annihilation, delivering both antibacterial and anti-inflammatory properties to the engineered membrane. More importantly, in vivo assays corroborate that the nanocatalytic membranes transform the stalled chronic wound environment into a regenerative one by eradicating the bacterial population, dampening the NF-κB inflammatory pathway and promoting angiogenesis. As envisaged, this work demonstrates a novel tactic to arm membranes with programmed antibacterial and anti-inflammatory effects to remedy refractory infected wounds from drug-fast bacteria.
Collapse
Affiliation(s)
- Chong Geng
- Laboratory of Gastroenterology and Hepatology & Department of Gastroenterology, West China Hospital, School of Chemical Engineering, Sichuan University, Chengdu, 610041, China
| | - Shuai He
- Laboratory of Gastroenterology and Hepatology & Department of Gastroenterology, West China Hospital, School of Chemical Engineering, Sichuan University, Chengdu, 610041, China
| | - Sheng Yu
- Department of Chemistry, Washington State University, Pullman, WA, 99164, USA
| | - Hannah M Johnson
- Department of Chemistry, Washington State University, Pullman, WA, 99164, USA
| | - Hongxing Shi
- Laboratory of Gastroenterology and Hepatology & Department of Gastroenterology, West China Hospital, School of Chemical Engineering, Sichuan University, Chengdu, 610041, China
| | - Yanbai Chen
- Laboratory of Gastroenterology and Hepatology & Department of Gastroenterology, West China Hospital, School of Chemical Engineering, Sichuan University, Chengdu, 610041, China
| | - Yau Kei Chan
- Department of Ophthalmology, The University of Hong Kong, Hong Kong, 999077, China
| | - Wenxuan He
- Laboratory of Gastroenterology and Hepatology & Department of Gastroenterology, West China Hospital, School of Chemical Engineering, Sichuan University, Chengdu, 610041, China
| | - Miao Qin
- Department of Biomedical Engineering, Taiyuan University of Technology, Taiyuan, 030024, China
| | - Xiao Li
- Department of Gastroenterology, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Yi Deng
- Laboratory of Gastroenterology and Hepatology & Department of Gastroenterology, West China Hospital, School of Chemical Engineering, Sichuan University, Chengdu, 610041, China
- State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu, 610065, China
- Department of Mechanical Engineering, The University of Hong Kong, Hong Kong, 999077, China
| |
Collapse
|
95
|
Wu X, Zhou Z, Li K, Liu S. Nanomaterials-Induced Redox Imbalance: Challenged and Opportunities for Nanomaterials in Cancer Therapy. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2308632. [PMID: 38380505 PMCID: PMC11040387 DOI: 10.1002/advs.202308632] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/11/2023] [Revised: 01/24/2024] [Indexed: 02/22/2024]
Abstract
Cancer cells typically display redox imbalance compared with normal cells due to increased metabolic rate, accumulated mitochondrial dysfunction, elevated cell signaling, and accelerated peroxisomal activities. This redox imbalance may regulate gene expression, alter protein stability, and modulate existing cellular programs, resulting in inefficient treatment modalities. Therapeutic strategies targeting intra- or extracellular redox states of cancer cells at varying state of progression may trigger programmed cell death if exceeded a certain threshold, enabling therapeutic selectivity and overcoming cancer resistance to radiotherapy and chemotherapy. Nanotechnology provides new opportunities for modulating redox state in cancer cells due to their excellent designability and high reactivity. Various nanomaterials are widely researched to enhance highly reactive substances (free radicals) production, disrupt the endogenous antioxidant defense systems, or both. Here, the physiological features of redox imbalance in cancer cells are described and the challenges in modulating redox state in cancer cells are illustrated. Then, nanomaterials that regulate redox imbalance are classified and elaborated upon based on their ability to target redox regulations. Finally, the future perspectives in this field are proposed. It is hoped this review provides guidance for the design of nanomaterials-based approaches involving modulating intra- or extracellular redox states for cancer therapy, especially for cancers resistant to radiotherapy or chemotherapy, etc.
Collapse
Affiliation(s)
- Xumeng Wu
- School of Life Science and TechnologyHarbin Institute of TechnologyHarbin150006China
- Zhengzhou Research InstituteHarbin Institute of TechnologyZhengzhou450046China
| | - Ziqi Zhou
- Zhengzhou Research InstituteHarbin Institute of TechnologyZhengzhou450046China
- School of Medicine and HealthHarbin Institute of TechnologyHarbin150006China
| | - Kai Li
- Zhengzhou Research InstituteHarbin Institute of TechnologyZhengzhou450046China
- School of Medicine and HealthHarbin Institute of TechnologyHarbin150006China
| | - Shaoqin Liu
- School of Life Science and TechnologyHarbin Institute of TechnologyHarbin150006China
- Zhengzhou Research InstituteHarbin Institute of TechnologyZhengzhou450046China
- School of Medicine and HealthHarbin Institute of TechnologyHarbin150006China
| |
Collapse
|
96
|
Guo Q, Wang S, Xu R, Tang Y, Xia X. Cancer cell membrane-coated nanoparticles: a promising anti-tumor bionic platform. RSC Adv 2024; 14:10608-10637. [PMID: 38567339 PMCID: PMC10985588 DOI: 10.1039/d4ra01026d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2024] [Accepted: 03/24/2024] [Indexed: 04/04/2024] Open
Abstract
Nanoparticle (NP) drug delivery systems have shown promise in tumor therapy. However, limitations such as susceptibility to immune clearance and poor targeting in a complex intercellular environment still exist. Recently, cancer cell membrane-encapsulated nanoparticles (CCM-NPs) constructed using biomimetic nanotechnology have been developed to overcome these problems. Proteins on the membrane surface of cancer cells can provide a wide range of activities for CCM-NPs, including immune escape and homologous cell recognition properties. Meanwhile, the surface of the cancer cell membrane exhibits obvious antigen enrichment, so that CCM-NPs can transmit tumor-specific antigen, activate a downstream immune response, and produce an effective anti-tumor effect. In this review, we first provided an overview of the functions of cancer cell membranes and summarized the preparation techniques and characterization methods of CCM-NPs. Then, we focused on the application of CCM-NPs in tumor therapy. In addition, we summarized the functional modifications of cancer cell membranes and compiled the patent applications related to CCM-NPs in recent years. Finally, we proposed the future challenges and directions of this technology in order to provide guidance for researchers in this field.
Collapse
Affiliation(s)
- Qiuyan Guo
- School of Pharmacy, Hunan University of Chinese Medicine Changsha Hunan 410208 China
| | - Shengmei Wang
- School of Pharmacy, Hunan University of Chinese Medicine Changsha Hunan 410208 China
| | - Rubing Xu
- School of Pharmacy, Hunan University of Chinese Medicine Changsha Hunan 410208 China
| | - Yingnan Tang
- School of Pharmacy, Hunan Vocational College of Science and Technology Changsha Hunan 410208 China
| | - Xinhua Xia
- School of Pharmacy, Hunan University of Chinese Medicine Changsha Hunan 410208 China
| |
Collapse
|
97
|
Tang Y, Li Y, Li B, Song W, Qi G, Tian J, Huang W, Fan Q, Liu B. Oxygen-independent organic photosensitizer with ultralow-power NIR photoexcitation for tumor-specific photodynamic therapy. Nat Commun 2024; 15:2530. [PMID: 38514624 PMCID: PMC10957938 DOI: 10.1038/s41467-024-46768-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2023] [Accepted: 03/08/2024] [Indexed: 03/23/2024] Open
Abstract
Photodynamic therapy (PDT) is a promising cancer treatment but has limitations due to its dependence on oxygen and high-power-density photoexcitation. Here, we report polymer-based organic photosensitizers (PSs) through rational PS skeleton design and precise side-chain engineering to generate •O2- and •OH under oxygen-free conditions using ultralow-power 808 nm photoexcitation for tumor-specific photodynamic ablation. The designed organic PS skeletons can generate electron-hole pairs to sensitize H2O into •O2- and •OH under oxygen-free conditions with 808 nm photoexcitation, achieving NIR-photoexcited and oxygen-independent •O2- and •OH production. Further, compared with commonly used alkyl side chains, glycol oligomer as the PS side chain mitigates electron-hole recombination and offers more H2O molecules around the electron-hole pairs generated from the hydrophobic PS skeletons, which can yield 4-fold stronger •O2- and •OH production, thus allowing an ultralow-power photoexcitation to yield high PDT effect. Finally, the feasibility of developing activatable PSs for tumor-specific photodynamic therapy in female mice is further demonstrated under 808 nm irradiation with an ultralow-power of 15 mW cm-2. The study not only provides further insights into the PDT mechanism but also offers a general design guideline to develop an oxygen-independent organic PS using ultralow-power NIR photoexcitation for tumor-specific PDT.
Collapse
Affiliation(s)
- Yufu Tang
- Department of Chemical and Biomolecular Engineering, National University of Singapore, Singapore, Singapore
| | - Yuanyuan Li
- Key Laboratory for Organic Electronics and Information Displays and Jiangsu Key Laboratory for Biosensors, Jiangsu National Synergetic Innovation Center for Advanced Materials, Institute of Advanced Materials, Nanjing University of Posts and Telecommunications, Nanjing, China
| | - Bowen Li
- Department of Chemical and Biomolecular Engineering, National University of Singapore, Singapore, Singapore
| | - Wentao Song
- Department of Chemical and Biomolecular Engineering, National University of Singapore, Singapore, Singapore
| | - Guobin Qi
- Department of Chemical and Biomolecular Engineering, National University of Singapore, Singapore, Singapore
| | - Jianwu Tian
- Department of Chemical and Biomolecular Engineering, National University of Singapore, Singapore, Singapore
| | - Wei Huang
- Key Laboratory for Organic Electronics and Information Displays and Jiangsu Key Laboratory for Biosensors, Jiangsu National Synergetic Innovation Center for Advanced Materials, Institute of Advanced Materials, Nanjing University of Posts and Telecommunications, Nanjing, China
| | - Quli Fan
- Key Laboratory for Organic Electronics and Information Displays and Jiangsu Key Laboratory for Biosensors, Jiangsu National Synergetic Innovation Center for Advanced Materials, Institute of Advanced Materials, Nanjing University of Posts and Telecommunications, Nanjing, China.
| | - Bin Liu
- Department of Chemical and Biomolecular Engineering, National University of Singapore, Singapore, Singapore.
| |
Collapse
|
98
|
Zheng GS, Shen CL, Niu CY, Lou Q, Jiang TC, Li PF, Shi XJ, Song RW, Deng Y, Lv CF, Liu KK, Zang JH, Cheng Z, Dong L, Shan CX. Photooxidation triggered ultralong afterglow in carbon nanodots. Nat Commun 2024; 15:2365. [PMID: 38491012 PMCID: PMC10943204 DOI: 10.1038/s41467-024-46668-z] [Citation(s) in RCA: 15] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2023] [Accepted: 03/06/2024] [Indexed: 03/18/2024] Open
Abstract
It remains a challenge to obtain biocompatible afterglow materials with long emission wavelengths, durable lifetimes, and good water solubility. Herein we develop a photooxidation strategy to construct near-infrared afterglow carbon nanodots with an extra-long lifetime of up to 5.9 h, comparable to that of the well-known rare-earth or organic long-persistent luminescent materials. Intriguingly, size-dependent afterglow lifetime evolution from 3.4 to 5.9 h has been observed from the carbon nanodots systems in aqueous solution. With structural/ultrafast dynamics analysis and density functional theory simulations, we reveal that the persistent luminescence in carbon nanodots is activated by a photooxidation-induced dioxetane intermediate, which can slowly release and convert energy into luminous emission via the steric hindrance effect of nanoparticles. With the persistent near-infrared luminescence, tissue penetration depth of 20 mm can be achieved. Thanks to the high signal-to-background ratio, biological safety and cancer-specific targeting ability of carbon nanodots, ultralong-afterglow guided surgery has been successfully performed on mice model to remove tumor tissues accurately, demonstrating potential clinical applications. These results may facilitate the development of long-lasting luminescent materials for precision tumor resection.
Collapse
Affiliation(s)
- Guang-Song Zheng
- Henan Key Laboratory of Diamond Optoelectronic Materials and Devices, Key Laboratory of Material Physics, Ministry of Education, and School of Physics and Microelectronics, Zhengzhou University, Zhengzhou, 450052, China
| | - Cheng-Long Shen
- Henan Key Laboratory of Diamond Optoelectronic Materials and Devices, Key Laboratory of Material Physics, Ministry of Education, and School of Physics and Microelectronics, Zhengzhou University, Zhengzhou, 450052, China
| | - Chun-Yao Niu
- Henan Key Laboratory of Diamond Optoelectronic Materials and Devices, Key Laboratory of Material Physics, Ministry of Education, and School of Physics and Microelectronics, Zhengzhou University, Zhengzhou, 450052, China
| | - Qing Lou
- Henan Key Laboratory of Diamond Optoelectronic Materials and Devices, Key Laboratory of Material Physics, Ministry of Education, and School of Physics and Microelectronics, Zhengzhou University, Zhengzhou, 450052, China.
| | - Tian-Ci Jiang
- Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China
- Henan Key Laboratory for Pharmacology of Liver Diseases, Institute of Medical and Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, 450052, China
| | - Peng-Fei Li
- Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China
- Henan Key Laboratory for Pharmacology of Liver Diseases, Institute of Medical and Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, 450052, China
| | - Xiao-Jing Shi
- Academy of Medical Sciences, Zhengzhou University, Zhengzhou, 450052, China
| | - Run-Wei Song
- Henan Key Laboratory of Diamond Optoelectronic Materials and Devices, Key Laboratory of Material Physics, Ministry of Education, and School of Physics and Microelectronics, Zhengzhou University, Zhengzhou, 450052, China
| | - Yuan Deng
- Henan Key Laboratory of Diamond Optoelectronic Materials and Devices, Key Laboratory of Material Physics, Ministry of Education, and School of Physics and Microelectronics, Zhengzhou University, Zhengzhou, 450052, China
| | - Chao-Fan Lv
- Henan Key Laboratory of Diamond Optoelectronic Materials and Devices, Key Laboratory of Material Physics, Ministry of Education, and School of Physics and Microelectronics, Zhengzhou University, Zhengzhou, 450052, China
| | - Kai-Kai Liu
- Henan Key Laboratory of Diamond Optoelectronic Materials and Devices, Key Laboratory of Material Physics, Ministry of Education, and School of Physics and Microelectronics, Zhengzhou University, Zhengzhou, 450052, China
| | - Jin-Hao Zang
- Henan Key Laboratory of Diamond Optoelectronic Materials and Devices, Key Laboratory of Material Physics, Ministry of Education, and School of Physics and Microelectronics, Zhengzhou University, Zhengzhou, 450052, China
| | - Zhe Cheng
- Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China
- Henan Key Laboratory for Pharmacology of Liver Diseases, Institute of Medical and Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, 450052, China
| | - Lin Dong
- Henan Key Laboratory of Diamond Optoelectronic Materials and Devices, Key Laboratory of Material Physics, Ministry of Education, and School of Physics and Microelectronics, Zhengzhou University, Zhengzhou, 450052, China
| | - Chong-Xin Shan
- Henan Key Laboratory of Diamond Optoelectronic Materials and Devices, Key Laboratory of Material Physics, Ministry of Education, and School of Physics and Microelectronics, Zhengzhou University, Zhengzhou, 450052, China.
| |
Collapse
|
99
|
Su Y, Hu J, Wang Y, Li Y, Xiao L, He X, Zhang Z, Cai J, Pan D, Chen Y, Geng B, Li P, Shen L. N-Heterocycle Modified Graphene Quantum Dots as Topoisomerase Targeted Nanoantibiotics for Combating Microbial Infections. Adv Healthc Mater 2024; 13:e2302659. [PMID: 38011489 DOI: 10.1002/adhm.202302659] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Revised: 10/26/2023] [Indexed: 11/29/2023]
Abstract
Developing next-generation antibiotics to eliminate multidrug-resistant (MDR) bacteria/fungi and stubborn biofilms is challenging, because of the excessive use of currently available antibiotics. Herein, the fabrication of anti-infection graphene quantum dots (GQDs) is reported, as a new class of topoisomerase (Topo) targeting nanoantibiotics, by modification of rich N-heterocycles (pyridinic N) at edge sites. The membrane-penetrating, nucleus-localizing, DNA-binding GQDs not only damage the cell walls/membranes of bacteria or fungi, but also inhibit DNA-binding proteins, such as Topo I, thereby affecting DNA replication, transcription, and recombination. The obtained GQDs exhibit excellent broad-spectrum antimicrobial activity against non-MDR bacteria, MDR bacteria, endospores, and fungi. Beyond combating planktonic microorganisms, GQDs inhibit the formation of biofilms and can kill live bacteria inside biofilms. RNA-seq further demonstrates the upregulation of riboflavin biosynthesis genes, DNA repair related genes, and transport proteins related genes in methicillin-resistant S. aureus (MRSA) in response to the stress induced by GQDs. In vivo animal experiments indicate that the biocompatible GQDs promote wound healing in MRSA or C. albicans-infected skin wound models. Thus, GQDs may be a promising antibacterial and antifungal candidate for clinical applications in treating infected wounds and eliminating already-formed biofilms.
Collapse
Affiliation(s)
- Yan Su
- Department of Orthopedic Surgery, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200233, China
| | - Jinyan Hu
- School of Environmental and Chemical Engineering, Shanghai University, Shanghai, 200444, China
| | - Yang Wang
- Department of Orthopedic Surgery, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200233, China
| | - Yuan Li
- School of Life Sciences, Shanghai University, Shanghai, 200444, China
| | - Longfei Xiao
- Department of Orthopedic Surgery, Sheyang County People's Hospital, Yancheng, Jiangsu, 224300, China
| | - Xialing He
- School of Environmental and Chemical Engineering, Shanghai University, Shanghai, 200444, China
| | - Zhenlin Zhang
- School of Environmental and Chemical Engineering, Shanghai University, Shanghai, 200444, China
| | - Jinming Cai
- School of Environmental and Chemical Engineering, Shanghai University, Shanghai, 200444, China
| | - Dengyu Pan
- School of Environmental and Chemical Engineering, Shanghai University, Shanghai, 200444, China
| | - Yu Chen
- School of Life Sciences, Shanghai University, Shanghai, 200444, China
| | - Bijiang Geng
- School of Environmental and Chemical Engineering, Shanghai University, Shanghai, 200444, China
| | - Ping Li
- School of Life Sciences, Shanghai University, Shanghai, 200444, China
| | - Longxiang Shen
- Department of Orthopedic Surgery, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200233, China
- Department of Orthopedic Surgery, Sheyang County People's Hospital, Yancheng, Jiangsu, 224300, China
| |
Collapse
|
100
|
Deng R, Zhou H, Qin Q, Ding L, Song X, Chang M, Chen Y, Zhou Y. Palladium-Catalyzed Hydrogenation of Black Barium Titanate for Multienzyme-Piezoelectric Synergetic Tumor Therapy. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2307568. [PMID: 37796929 DOI: 10.1002/adma.202307568] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Revised: 09/27/2023] [Indexed: 10/07/2023]
Abstract
Piezocatalytic tumor therapy is an emerging reactive oxygen species (ROS)-generating therapeutic approach that relies on piezoelectric polarization under ultrasound (US) irradiation. Optimizing ROS production is a primary objective for enhancing treatment efficiency. In this study, oxygen-vacancy-rich Pd-integrated black barium titanate (BTO) nanoparticles are rationally engineered to boost the ROS generation efficiency via the introduction of Pd. Pd-catalyzed hydrogenation at low temperatures narrows the bandgap of BTO and reduces the recombination rate of electron-hole pairs. Furthermore, Pd has dual-enzyme-mimicking characteristics, including peroxidase- and catalase-mimicking activities, which further heighten the therapeutic efficacy by enhancing ROS production and reversing the hypoxic tumor microenvironment. Importantly, the dual enzymatic activity of Pd can be amplified by multiple redox processes sparked by the piezoelectric potential under US stimulation, resulting in bilaterally enhanced multienzyme-piezoelectric synergetic therapy. In vitro and in vivo results confirm high tumor inhibition in murine breast cancer cells. This work stresses the critical effects of defect engineering-optimized piezodynamic tumor therapy.
Collapse
Affiliation(s)
- Ruxi Deng
- Department of Ultrasound, Affiliated Hospital of Southwest Jiaotong University, The Third People's Hospital of Chengdu, Chengdu, Sichuan, 610031, China
| | - Hong Zhou
- Department of Ultrasound, Affiliated Hospital of Southwest Jiaotong University, The Third People's Hospital of Chengdu, Chengdu, Sichuan, 610031, China
| | - Qiaoxi Qin
- Department of Ultrasound, Affiliated Hospital of Southwest Jiaotong University, The Third People's Hospital of Chengdu, Chengdu, Sichuan, 610031, China
| | - Li Ding
- Department of Medical Ultrasound, Shanghai Tenth People's Hospital, Ultrasound Research and Education Institute, Shanghai Engineering Research Center of Ultrasound Diagnosis and Treatment, Tongji University Cancer Center, School of Medicine, Tongji University, Shanghai, 200072, P. R. China
| | - Xinran Song
- Materdicine Lab, School of Life Sciences, Shanghai University, Shanghai, 200444, P. R. China
| | - Meiqi Chang
- Laboratory Center, Shanghai Municipal Hospital of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, 200071, P. R. China
| | - Yu Chen
- Materdicine Lab, School of Life Sciences, Shanghai University, Shanghai, 200444, P. R. China
- Oujiang Laboratory (Zhejiang Lab for Regenerative Medicine, Vision and Brain Health), Wenzhou Institute of Shanghai University, Wenzhou, Zhejiang, 325088, P. R. China
| | - Yang Zhou
- Department of Ultrasound, Affiliated Hospital of Southwest Jiaotong University, The Third People's Hospital of Chengdu, Chengdu, Sichuan, 610031, China
| |
Collapse
|