51
|
Guan J, Ge L, Yu Q, Ouyang B, Deng Y, Li H. Unraveling the Structural Evolution of Cobalt Sulfides in Electrocatalytic NO 3RR: the Inescapable Influence of Cl . Inorg Chem 2025; 64:2787-2794. [PMID: 39915902 DOI: 10.1021/acs.inorgchem.4c04780] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/18/2025]
Abstract
Electrochemical nitrate reduction (NO3RR) to ammonia is an attractive approach for mitigating NO3- pollution and producing valuable NH3. Cobalt-sulfur compounds are widely considered to be potential electrocatalysts for NO3RR. However, there is still a lack of research on the probable structural evolution, long-term stability, and reactive sites of cobalt-based sulfides during catalysis. Herein, we have employed three cobalt sulfides (CoSx, where x = 8/9, 2, 1.097) with different sulfur contents as catalysts for electrocatalytic NO3RR under alkaline conditions. At -0.8 V vs RHE, all these CoSx show promising performances that Faradaic efficiencies of >80% and a high yield of >1780 mmol h-1 gcat-1 for NH3 production are achieved. Through a combination of X-ray diffraction (XRD), transmission electron microscopy (TEM), and other characterizations, it is revealed that all these cobalt sulfides are easily converted into cobalt hydroxide during the NO3RR. This phenomenon is seemingly contradictory to the thermodynamic prediction that, according to the Pourbaix diagram, these CoSx compounds should be stable even under the catalytic condition. We suggest that this is due to the presence of Cl- ions in the electrolyte that promote the transformation of CoSx toward Co(OH)2. Chloride ions are commonly found in both industrial settings and natural water bodies and are challenging to remove. The evolved Co(OH)2 species is proposed to be responsible for catalyzing NO3RR, especially during a long-term catalytic process. This study highlights the inevitable structural evolution of CoSx catalysts under current alkaline electrocatalytic NO3RR conditions, offering theoretical guidance for the judicious selection and design of future catalysts.
Collapse
Affiliation(s)
- Jiexin Guan
- Institute for Energy Research, Jiangsu University, Zhenjiang 212013, China
| | - Lihong Ge
- Institute for Energy Research, Jiangsu University, Zhenjiang 212013, China
| | - Qing Yu
- Institute for Energy Research, Jiangsu University, Zhenjiang 212013, China
| | - Bo Ouyang
- Department of Applied Physics and Institution of Energy and Microstructure, Nanjing University of Science and Technology, Nanjing 210094, China
| | - Yilin Deng
- Institute for Energy Research, Jiangsu University, Zhenjiang 212013, China
| | - Huaming Li
- Institute for Energy Research, Jiangsu University, Zhenjiang 212013, China
| |
Collapse
|
52
|
Guo X, Wu T, Li H, Chai L, Liu M. Enhancing Low-Concentration Electroreduction of NO to NH 3 via Potential-Controlled Active Site-Intermediate Interactions. Angew Chem Int Ed Engl 2025; 64:e202420346. [PMID: 39567259 DOI: 10.1002/anie.202420346] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2024] [Revised: 11/18/2024] [Accepted: 11/20/2024] [Indexed: 11/22/2024]
Abstract
Electronic defect states in catalysts are recognized as highly effective active sites for enhancing the low-concentration electroreduction of NO to NH3 (NORR). Their structures dynamically evolve with applied electrode potentials, allowing the active sites to adjust interactions with intermediates, thereby improving electrocatalytic performance. However, the dynamic changes in these interactions under applied potentials remain poorly understood, hindering the design of more diverse electrocatalytic systems. Herein, we developed a strategy that unitizes electrode potential to control the interactions between active sites and intermediates over oxygen vacancy-modified TiO2 (VO-TiO2-x) to enhance NORR performance. By combining state-of-the-art constant inner potential (CIP) DFT calculations with in situ (spectro)electrochemical measurements, we investigated how the electrode potential influences these interactions in NORR. The results clearly demonstrate that applying an external potential alters the spatial symmetry of degenerate orbitals of Ti3+ to facilitate the generation of key intermediates for NO-to-NH3 conversion. Therefore, the VO-TiO2-x catalyst exhibited superior NORR performance with a NH3 Faradaic efficiency up to 76.4 % and a high NH3 yield rate of 632.9 μg h-1 mgcat. -1 under 1.0 vol % NO atmosphere, which is competitive with those of previously reported works under higher NO concentration (above 10 vol %). Remarkably, the NORR process achieved a record-breaking NH3 yield of 2292.7 μg h-1 mgcat. -1 in a membrane electrode assembly (MEA) electrolyzer under the same conditions. This study opens a new avenue for enhancing electrocatalytic activity by adjusting operating conditions, thereby transcending the limitations of material design.
Collapse
Affiliation(s)
- Xiaoxi Guo
- Hunan Joint International Research Center for Carbon Dioxide Resource Utilization, State Key Laboratory of Powder Metallurgy, School of Physics, Central South University, 410083, Changsha, Hunan, P. R. China
- School of Materials Science and Engineering, Central South University, 410083, Changsha, Hunan, P. R. China
| | - Tongwei Wu
- Institute of Fundamental and Frontier Sciences, University of Electronic Science and Technology of China, 610054, Chengdu, Sichuan, P. R. China
| | - Hengfeng Li
- School of Materials Science and Engineering, Central South University, 410083, Changsha, Hunan, P. R. China
| | - Liyuan Chai
- School of Metallurgy and Environment, Central South University, 410083, Changsha, Hunan, P. R. China
| | - Min Liu
- Hunan Joint International Research Center for Carbon Dioxide Resource Utilization, State Key Laboratory of Powder Metallurgy, School of Physics, Central South University, 410083, Changsha, Hunan, P. R. China
- School of Metallurgy and Environment, Central South University, 410083, Changsha, Hunan, P. R. China
| |
Collapse
|
53
|
Li Y, Bai Y, Wang Y, Lu S, Fang L. Precise structural regulation of copper-based electrocatalysts for sustainable nitrate reduction to ammonia. ENVIRONMENTAL RESEARCH 2025; 266:120422. [PMID: 39581256 DOI: 10.1016/j.envres.2024.120422] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/10/2024] [Revised: 11/21/2024] [Accepted: 11/21/2024] [Indexed: 11/26/2024]
Abstract
The electrocatalytic reduction of nitrate to ammonia (NRA) technology not only achieves the effective removal of nitrates in the environment but also produces value-added products-NH3. In recent years, copper-based materials have shown tremendous application prospects in this field due to their excellent conductivity, moderate cost, and their proximity of d orbital energy levels to the LUMO π∗ molecular orbitals of nitrate. This review starts with copper-based catalysts to elucidate the reaction mechanisms of NRA and its influencing factors, while summarizing and analyzing the principles and pros and cons of various modification strategies. Then, we will explore the impact of different modification strategies on improving NRA performance and the underlying theoretical mechanisms. Finally, this review proposes the current challenges and prospects of copper-based materials, aiming to provide a reference for the further development and industrial application of copper-based catalysts.
Collapse
Affiliation(s)
- Yaxuan Li
- Hunan Province Key Laboratory of Materials Surface & Interface Science and Technology, College of Material Science and Engineering, Central South University of Forestry and Technology, Changsha, 410004, China; Chongqing Institute of Green and Intelligent Technology, Chinese Academy of Sciences, No. 266, Fangzheng Avenue, Beibei District, Chongqing, 400714, China
| | - Yuanjuan Bai
- Hunan Province Key Laboratory of Materials Surface & Interface Science and Technology, College of Material Science and Engineering, Central South University of Forestry and Technology, Changsha, 410004, China.
| | - Yanwei Wang
- Xuzhou College of Industrial Technology, NO. 1 Xiangwang Road, Gulou District, Xuzhou, 221140, Jiangsu Province, China
| | - Shun Lu
- Chongqing Institute of Green and Intelligent Technology, Chinese Academy of Sciences, No. 266, Fangzheng Avenue, Beibei District, Chongqing, 400714, China
| | - Ling Fang
- Chongqing Institute of Green and Intelligent Technology, Chinese Academy of Sciences, No. 266, Fangzheng Avenue, Beibei District, Chongqing, 400714, China.
| |
Collapse
|
54
|
Bai Y, Fang Z, Jia K, Jiang X, Gao Y, Lin C, Ma D, Li J, Bai H, Fan W. Cascade Design and Facile Fabrication of Cu/Cu 2O/CuAl-Layered Double Hydroxides as Efficient Nitrate Reduction Electrocatalysts. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2025; 21:e2408546. [PMID: 39676347 DOI: 10.1002/smll.202408546] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/19/2024] [Revised: 11/21/2024] [Indexed: 12/17/2024]
Abstract
Nitrate (NO3¯) reduction reaction (NITRR) presents a promising pathway for the production of renewable NH3 while concurrently decontaminating NO3¯ wastewater. However, the multi-electron transfer sequence and complex reaction network involved in NO3¯ conversion pose significant challenges to achieving high Faradaic efficiency (FE). Herein, this work presents ternary Cu/Cu2O/CuAl-layered double hydroxides (LDHs) catalysts designed through a cascade approach and synthesized via a straightforward one-step electrodeposition method. The resulting catalysts demonstrate peak activity at -0.4 V versus RHE, achieving an impressiveF E N H 3 $F{{E}_{N{{H}_3}}}$ of 92.0%, which significantly surpasses most reported binary and ternary catalysts. Density functional theory calculations and atomic force microscopy reveal that the Cu/Cu2O/CuAl-LDHs exploit cascade design by integrating three distinct functions essential for efficient NO3¯ reduction: CuAl-LDH initiates NO3¯ adsorption, Cu(111) and Cu₂O(111) cooperatively facilitate NO3¯ activation, and Cu(111) promotes NH3 desorption. Durability tests further confirm that both NH3 yield andF E N H 3 $F{{E}_{N{{H}_3}}}$ remain stable after 10 cycles, indicating the excellent stability of the Cu/Cu2O/CuAl-LDHs catalysts. These findings underscore the critical role of cascade design strategies in enhancing the performance of electrocatalysts for NO3¯ reduction to NH3, providing a transformative approach for sustainable ammonia synthesis.
Collapse
Affiliation(s)
- Yajie Bai
- College of New Energy, Ningbo University of Technology, Ningbo, 315336, P. R. China
| | - Zhenyuan Fang
- School of Chemistry, Beihang University, Beijing, 100191, P. R. China
| | - Kangkang Jia
- School of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang, 212013, P. R. China
| | - Xianlei Jiang
- College of New Energy, Ningbo University of Technology, Ningbo, 315336, P. R. China
| | - Yiwei Gao
- College of New Energy, Ningbo University of Technology, Ningbo, 315336, P. R. China
| | - Chenxiao Lin
- College of New Energy, Ningbo University of Technology, Ningbo, 315336, P. R. China
| | - Denghui Ma
- College of New Energy, Ningbo University of Technology, Ningbo, 315336, P. R. China
| | - Jianming Li
- College of New Energy, Ningbo University of Technology, Ningbo, 315336, P. R. China
| | - Hongye Bai
- School of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang, 212013, P. R. China
| | - Weiqiang Fan
- School of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang, 212013, P. R. China
| |
Collapse
|
55
|
Wan Y, Pei M, Tang Y, Liu Y, Yan W, Zhang J, Lv R. Interfacial Water Regulation for Nitrate Electroreduction to Ammonia at Ultralow Overpotentials. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2025; 37:e2417696. [PMID: 39780550 DOI: 10.1002/adma.202417696] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/14/2024] [Revised: 12/20/2024] [Indexed: 01/11/2025]
Abstract
Nitrate electroreduction is promising for achieving effluent waste-water treatment and ammonia production with respect to the global nitrogen balance. However, due to the impeded hydrogenation process, high overpotentials need to be surmounted during nitrate electroreduction, causing intensive energy consumption. Herein, a hydroxide regulation strategy is developed to optimize the interfacial H2O behavior for accelerating the hydrogenation conversion of nitrate to ammonia at ultralow overpotentials. The well-designed Ru─Ni(OH)2 electrocatalyst shows a remarkable energy efficiency of 44.6% at +0.1 V versus RHE and a nearly 100% Faradaic efficiency for NH3 synthesis at 0 V versus RHE. In situ characterizations and theoretical calculations indicate that Ni(OH)2 can regulate the interfacial H2O structure with a promoted H2O dissociation process and contribute to the spontaneous hydrogen spillover process for boosting NO3 - electroreduction to NH3 at Ru sites. Furthermore, the assembled rechargeable Zn-NO3 -/ethanol battery system exhibits an outstanding long-term cycling stability during the charge-discharge tests with the production of high-value-added ammonium acetate, showing great potential for simultaneously achieving nitrate removal, energy conversion, and chemical synthesis. This work can not only provide a guidance for interfacial H2O regulation in extensive hydrogenation reactions but also inspire the design of a novel hybrid flow battery with multiple functions.
Collapse
Affiliation(s)
- Yuchi Wan
- Institute of New Energy Materials and Engineering, Fujian Engineering Research Center of High Energy Batteries and New Energy Equipment & Systems, School of Materials Science and Engineering, Fuzhou University, Fuzhou, 350108, China
| | - Maojun Pei
- Institute of New Energy Materials and Engineering, Fujian Engineering Research Center of High Energy Batteries and New Energy Equipment & Systems, School of Materials Science and Engineering, Fuzhou University, Fuzhou, 350108, China
| | - Yixiang Tang
- Institute of New Energy Materials and Engineering, Fujian Engineering Research Center of High Energy Batteries and New Energy Equipment & Systems, School of Materials Science and Engineering, Fuzhou University, Fuzhou, 350108, China
| | - Yao Liu
- Institute of New Energy Materials and Engineering, Fujian Engineering Research Center of High Energy Batteries and New Energy Equipment & Systems, School of Materials Science and Engineering, Fuzhou University, Fuzhou, 350108, China
| | - Wei Yan
- Institute of New Energy Materials and Engineering, Fujian Engineering Research Center of High Energy Batteries and New Energy Equipment & Systems, School of Materials Science and Engineering, Fuzhou University, Fuzhou, 350108, China
| | - Jiujun Zhang
- Institute of New Energy Materials and Engineering, Fujian Engineering Research Center of High Energy Batteries and New Energy Equipment & Systems, School of Materials Science and Engineering, Fuzhou University, Fuzhou, 350108, China
| | - Ruitao Lv
- State Key Laboratory of New Ceramics and Fine Processing, School of Materials Science and Engineering, Tsinghua University, Beijing, 100084, China
| |
Collapse
|
56
|
Mo Z, Ma Z, Ran Y, Wang Y, Li T, Sun W, Hu W. NiO-Incorporated Cu/Cu 2O Nanowires for Highly Efficient Electrochemical Nitrate Reduction to Ammonia. CHEMSUSCHEM 2025; 18:e202401607. [PMID: 39212323 DOI: 10.1002/cssc.202401607] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/20/2024] [Revised: 08/23/2024] [Accepted: 08/30/2024] [Indexed: 09/04/2024]
Abstract
Electrochemical nitrate reduction to ammonia (NRA) is a promising sustainable way to synthesize ammonia (NH3) from nitrate (NO3 -) contaminants. Cu-based electrocatalysts are frequently utilized for NRA due to their strong NO3 - adsorption and de-oxygenation ability. However, this kind of catalyst usually possesses the weak water dissociation ability, resulting in insufficient proton supply in alkaline media to retard the following hydrogenation step of O-containing intermediates (*NOx, typically NO2 -) to target NH3. Herein, NiO-incorporated Cu/Cu2O nanowires grown on nickel foam (p-CuNi@NF, p refers to plasma treatment) were synthesized via hydrothermal growth and subsequent O2 plasma treatment for efficient NRA electrocatalysis. On this p-CuNi@NF catalyst, NiO is able to accelerate the hydrogenation step by promoting the water dissociation to provide protons, ultimately facilitating efficient NRA. p-CuNi@NF exhibits excellent NH3 selectivity and yield in a wide potential range and reaches a high Faradaic efficiency (FENH3) of 97.5 % and a yield (YNH3) of 470 μmol h-1 cm-2 at -0.6 V, both of which largely surpass the Cu/Cu2O catalyst.
Collapse
Affiliation(s)
- Zuohong Mo
- School of Materials and Energy, Southwest University, Chongqing Key Laboratory of Battery Materials and Technology, Chongqing, 400715, P. R. China
| | - Zhihui Ma
- School of Materials and Energy, Southwest University, Chongqing Key Laboratory of Battery Materials and Technology, Chongqing, 400715, P. R. China
| | - Yinjun Ran
- School of Materials and Energy, Southwest University, Chongqing Key Laboratory of Battery Materials and Technology, Chongqing, 400715, P. R. China
| | - Yage Wang
- School of Materials and Energy, Southwest University, Chongqing Key Laboratory of Battery Materials and Technology, Chongqing, 400715, P. R. China
| | - Tianhao Li
- School of Materials and Energy, Southwest University, Chongqing Key Laboratory of Battery Materials and Technology, Chongqing, 400715, P. R. China
| | - Wei Sun
- Key Laboratory of Laser Technology and Optoelectronic Functional Materials of Hainan Province, Key Laboratory of Functional Materials and Photoelectrochemistry of Haikou, College of Chemistry and Chemical Engineering, Hainan Normal University, Haikou, 571158, P. R. China
| | - Weihua Hu
- School of Materials and Energy, Southwest University, Chongqing Key Laboratory of Battery Materials and Technology, Chongqing, 400715, P. R. China
| |
Collapse
|
57
|
Guo H, Zhou Y, Chu K, Cao X, Qin J, Zhang N, Roeffaers MBJ, Zbořil R, Hofkens J, Müllen K, Lai F, Liu T. Improved Ammonia Synthesis and Energy Output from Zinc-Nitrate Batteries by Spin-State Regulation in Perovskite Oxides. J Am Chem Soc 2025; 147:3119-3128. [PMID: 39818850 PMCID: PMC11783523 DOI: 10.1021/jacs.4c12240] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2024] [Revised: 12/19/2024] [Accepted: 01/03/2025] [Indexed: 01/19/2025]
Abstract
Electrocatalytic nitrate reduction to ammonia (eNRA) is a promising route toward environmental sustainability and clean energy. However, its efficiency is often limited by the slow conversion of intermediates due to spin-forbidden processes. Here, we introduce a novel A-site high-entropy strategy to develop a new perovskite oxide (La0.2Pr0.2Nd0.2Ba0.2Sr0.2)CoO3-δ (LPNBSC) for eNRA. The LPNBSC possesses a higher concentration of high-spin (HS) cobalt-active centers, resulting from an increased concentration of [CoO5] structural motifs compared to conventional LaCoO3. Consequently, this material exhibits a significantly improved electrocatalytic performance toward ammonia (NH3) production, resulting in a 3-fold increase in yield rate (129 μmol h-1 mgcat.-1) and a 2-fold increase in Faradaic efficiency (FE, 76%) compared to LaCoO3 at the optimal potential. Furthermore, the LPNBSC-based Zn-nitrate battery reaches a maximum FE of 82% and an NH3 yield rate of 57 μmol h-1 cm-2. Density functional theory calculations reveal that A-site high-entropy management in perovskites facilitates nitrate activation and potentially optimizes the thermodynamic rate-determining step of the eNRA process, namely, *HNO3 + H+ + e- → *NO2 + H2O. This work presents an efficient concept for modulating the spin state of the B-site metal in perovskites and offers valuable insights for the design of high-performance eNRA catalysts.
Collapse
Affiliation(s)
- Hele Guo
- The
Key Laboratory of Synthetic and Biological Colloids, Ministry of Education,
School of Chemical and Material Engineering, Jiangnan University, Wuxi 214122, China
- Department
of Chemistry, KU Leuven, Celestijnenlaan 200F, Leuven 3001, Belgium
| | - Yazhou Zhou
- Max
Planck Institute for Polymer Research, Ackermannweg 10, Mainz 55128, Germany
- Nanotechnology
Centre, Centre for Energy and Environmental Technologies (CEET), VŠB−Technical University of Ostrava, 17. listopadu 2172/15, Ostrava-Poruba 708 00, Czech Republic
| | - Kaibin Chu
- The
Key Laboratory of Synthetic and Biological Colloids, Ministry of Education,
School of Chemical and Material Engineering, Jiangnan University, Wuxi 214122, China
- Department
of Chemistry, KU Leuven, Celestijnenlaan 200F, Leuven 3001, Belgium
| | - Xueying Cao
- Key
Laboratory for Colloid and Interface Chemistry, Ministry of Education,
School of Chemistry and Chemical Engineering, Shandong University, Jinan 250100, P. R. China
| | - Jingjing Qin
- The
Key Laboratory of Synthetic and Biological Colloids, Ministry of Education,
School of Chemical and Material Engineering, Jiangnan University, Wuxi 214122, China
| | - Nan Zhang
- The
Key Laboratory of Synthetic and Biological Colloids, Ministry of Education,
School of Chemical and Material Engineering, Jiangnan University, Wuxi 214122, China
| | - Maarten B. J. Roeffaers
- cMACS,
Department
of Microbial and Molecular Systems, KU Leuven, Celestijnenlaan 200F, Leuven 3001, Belgium
| | - Radek Zbořil
- Nanotechnology
Centre, Centre for Energy and Environmental Technologies (CEET), VŠB−Technical University of Ostrava, 17. listopadu 2172/15, Ostrava-Poruba 708 00, Czech Republic
- Regional
Centre of Advanced Technologies and Materials, Czech Advanced Technology
and Research Institute (CATRIN), Palacký
University Olomouc, Šlechtitelů 241/27, Olomouc 779 00, Czech Republic
| | - Johan Hofkens
- Department
of Chemistry, KU Leuven, Celestijnenlaan 200F, Leuven 3001, Belgium
- Max
Planck Institute for Polymer Research, Ackermannweg 10, Mainz 55128, Germany
| | - Klaus Müllen
- Max
Planck Institute for Polymer Research, Ackermannweg 10, Mainz 55128, Germany
| | - Feili Lai
- Department
of Chemistry, KU Leuven, Celestijnenlaan 200F, Leuven 3001, Belgium
- State
Key Laboratory of Metal Matrix Composites, School of Materials Science
and Engineering, Shanghai Jiao Tong University, Shanghai 200240, P. R. China
| | - Tianxi Liu
- The
Key Laboratory of Synthetic and Biological Colloids, Ministry of Education,
School of Chemical and Material Engineering, Jiangnan University, Wuxi 214122, China
| |
Collapse
|
58
|
Han C, Sun L, Han S, Liu B. Stabilizing Hydrogen Radicals in Two-Dimensional Cobalt-Copper Mesoporous Nanoplates for Complete Nitrate Reduction Electrocatalysis to Ammonia. Angew Chem Int Ed Engl 2025; 64:e202416910. [PMID: 39319605 DOI: 10.1002/anie.202416910] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2024] [Revised: 09/25/2024] [Accepted: 09/25/2024] [Indexed: 09/26/2024]
Abstract
Ambient electrochemical reduction of waste nitrate (NO3 -) represents an alternative green route for sustainable ammonia (NH3) electrosynthesis in water. Despites some encouraged achievements, sluggish eight electron and nine proton reduction routes that involve multi-step hydrogenation pathways have severely hindered their NH3 Faradaic efficiency (FENH3) and yield rate. Herein, we develop a robust two-dimensional mesoporous cobalt-copper (meso-CoCu) nanoplate electrocatalyst that delivers excellent performance of complete NO3 - reduction reaction (NO3RR), including superior FENH3 of 98.8 %, high NH3 yield rate of 3.39 mol h-1 g-1 and energy efficiency of 49.8 %, and good cycling stability. Mechanism investigations unveil that active hydrogen (*H) radicals produced from water splitting on Co sites spillover to adjacent Cu sites and further stabilize within confined mesopores, which kinetically promote its coupling hydrogenation reactions of nitrogen intermediates and thus facilitate complete NO3RR for favorable NH3 electrosynthesis. Moreover, meso-CoCu nanoplates perform well as a bifunctional electrocatalyst in the two-electrode coupling system that concurrently synthesizes NH3 from NO3 - at cathode and 2,5-furanedicarboxylic acid from 5-hydroxymethylfurfural at anode. This work in stabilizing *H radicals in mesoporous microenvironment provides some insights applied to various hydrogenation reactions for selective electrosynthesis of high value-added chemicals in water.
Collapse
Affiliation(s)
- Chenyu Han
- Key Laboratory of Green Chemistry and Technology of Ministry of Education, College of Chemistry, Sichuan University, Chengdu, 610064, China
| | - Lizhi Sun
- Key Laboratory of Green Chemistry and Technology of Ministry of Education, College of Chemistry, Sichuan University, Chengdu, 610064, China
| | - Shu Han
- Key Laboratory of Green Chemistry and Technology of Ministry of Education, College of Chemistry, Sichuan University, Chengdu, 610064, China
| | - Ben Liu
- Key Laboratory of Green Chemistry and Technology of Ministry of Education, College of Chemistry, Sichuan University, Chengdu, 610064, China
| |
Collapse
|
59
|
Li Y, Liu Y, Zhang M, Li L, Jiang Z, Han B, Wang B, Li J. Reversible Hydrogen Acceptor-Donor Enables Relay Mechanism for Nitrate-to-Ammonia Electrocatalysis. Angew Chem Int Ed Engl 2025; 64:e202417631. [PMID: 39431499 DOI: 10.1002/anie.202417631] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2024] [Revised: 10/14/2024] [Accepted: 10/21/2024] [Indexed: 10/22/2024]
Abstract
Electrocatalytic nitrate reduction is a crucial process for sustainable ammonia production. However, to maximize ammonia yield efficiency, this technology inevitably operates at the potentials more negative than 0 V vs. RHE, leading to high energy consumption and competitive hydrogen evolution. To eradicate this issue, hydrogen tungsten bronze (HxWO3) as reversible hydrogen donor-acceptor is partnered with copper (Cu) to enable a relay mechanism at potentials positive than 0 V vs. RHE, which involves rapid intercalation of H into HxWO3 lattice, prompt de-intercalation of the lattice H and transfer onto Cu, and spontaneous H-mediated nitrate-to-ammonia conversion on Cu. The resulting catalysts demonstrated a high ammonia yield rate of 3332.9±34.1 mmol gcat -1 h-1 and a Faraday efficiency of ~100 % at 0.10 V vs. RHE, displaying a record-low estimated energy consumption of 17.6 kWh kgammonia -1. Using these catalysts, we achieve continuous ammonia production in an enlarged flow cell at a real energy consumption of 17.0 kWh kgammonia -1.
Collapse
Affiliation(s)
- Yuefei Li
- Key Laboratory of Special Functional and Smart Polymer Materials of Ministry of Industry and Information Technology, School of Chemistry and Chemical Engineering, Northwestern Polytechnical University, Youyi Road No. 127, Xi'an, 710072, China
| | - Ye Liu
- State Key Laboratory of Clean and Efficient Coal Utilization, Taiyuan University of Technology, Taiyuan, 030024, China
| | - Mingkai Zhang
- School of Science, Xi'an University of Technology, Xi'an, 710048, China
| | - Linsen Li
- School of Chemical Engineering, Xi'an Jiaotong University, Xianning West Road No. 28, Xi'an, 710048, China
| | - Zhao Jiang
- School of Chemical Engineering, Xi'an Jiaotong University, Xianning West Road No. 28, Xi'an, 710048, China
| | - Bingying Han
- State Key Laboratory of Clean and Efficient Coal Utilization, Taiyuan University of Technology, Taiyuan, 030024, China
| | - Baojun Wang
- State Key Laboratory of Clean and Efficient Coal Utilization, Taiyuan University of Technology, Taiyuan, 030024, China
| | - Jiayuan Li
- Key Laboratory of Special Functional and Smart Polymer Materials of Ministry of Industry and Information Technology, School of Chemistry and Chemical Engineering, Northwestern Polytechnical University, Youyi Road No. 127, Xi'an, 710072, China
| |
Collapse
|
60
|
Shigemoto A, Sekine Y. Recent advances in low-temperature nitrogen oxide reduction: effects of electric field application. Chem Commun (Camb) 2025; 61:1559-1573. [PMID: 39698954 DOI: 10.1039/d4cc05135a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2024]
Abstract
This article presents a review of catalytic processes used at low temperatures to reduce emissions of nitrogen oxides (NOx) and nitrous oxide (N2O), which are exceedingly important in terms of their environmental impacts on the Earth. With conventional purification technologies, it has been difficult to remove these compounds under low-temperature conditions. By applying a catalytic process in an electric field for the three reactions of three-way catalysts (TWC), NOx storage reduction catalysts (NSR), and direct decomposition of N2O, we have achieved high catalytic activity even at low temperatures. By promoting ion migration on the catalyst surface, we have filled in the gaps in conventional catalytic technology and have opened the way to more efficient conversion of NOx and N2O.
Collapse
Affiliation(s)
- Ayaka Shigemoto
- Waseda University, 3-4-1, Okubo, Shinjuku, Tokyo 1698555, Japan.
| | - Yasushi Sekine
- Waseda University, 3-4-1, Okubo, Shinjuku, Tokyo 1698555, Japan.
| |
Collapse
|
61
|
Wang Y, Wang S, Fu Y, Sang J, Wei P, Li R, Gao D, Wang G, Bao X. Ammonia electrosynthesis from nitrate using a stable amorphous/crystalline dual-phase Cu catalyst. Nat Commun 2025; 16:897. [PMID: 39837843 PMCID: PMC11751377 DOI: 10.1038/s41467-025-55889-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2024] [Accepted: 01/03/2025] [Indexed: 01/23/2025] Open
Abstract
Renewable energy-driven electrocatalytic nitrate reduction reaction presents a low-carbon and sustainable route for ammonia synthesis under mild conditions. Yet, the practical application of this process is currently hindered by unsatisfactory electrocatalytic activity and long-term stability. Herein we achieve high-rate ammonia electrosynthesis using a stable amorphous/crystalline dual-phase Cu catalyst. The ammonia partial current density and formation rate reach 3.33 ± 0.005 A cm-2 and 15.5 ± 0.02 mmol h-1 cm-2 at a low cell voltage of 2.6 ± 0.01 V, respectively. Remarkably, the dual-phase Cu catalyst can maintain stable ammonia production with a Faradaic efficiency of around 90% at a high current density of 1.5 A cm-2 for up to 300 h. A scale-up demonstration with an electrode size of 100 cm2 achieves an ammonia formation rate as high as 11.9 ± 0.5 g h-1 at a total current of 160 A. The impressive electrocatalytic performance is ascribed to the presence of stable amorphous Cu domains which promote the adsorption and hydrogenation of nitrogen-containing intermediates, thus improving reaction kinetics for ammonia formation. This work underscores the importance of stabilizing metastable amorphous structures for improving electrocatalytic reactivity and long-term stability.
Collapse
Affiliation(s)
- Yi Wang
- State Key Laboratory of Catalysis, Dalian National Laboratory for Clean Energy, iChEM (Collaborative Innovation Center of Chemistry for Energy Materials), Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Shuo Wang
- State Key Laboratory of Catalysis, Dalian National Laboratory for Clean Energy, iChEM (Collaborative Innovation Center of Chemistry for Energy Materials), Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, China
| | - Yunfan Fu
- State Key Laboratory of Catalysis, Dalian National Laboratory for Clean Energy, iChEM (Collaborative Innovation Center of Chemistry for Energy Materials), Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Jiaqi Sang
- State Key Laboratory of Catalysis, Dalian National Laboratory for Clean Energy, iChEM (Collaborative Innovation Center of Chemistry for Energy Materials), Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Pengfei Wei
- State Key Laboratory of Catalysis, Dalian National Laboratory for Clean Energy, iChEM (Collaborative Innovation Center of Chemistry for Energy Materials), Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, China
| | - Rongtan Li
- State Key Laboratory of Catalysis, Dalian National Laboratory for Clean Energy, iChEM (Collaborative Innovation Center of Chemistry for Energy Materials), Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, China
| | - Dunfeng Gao
- State Key Laboratory of Catalysis, Dalian National Laboratory for Clean Energy, iChEM (Collaborative Innovation Center of Chemistry for Energy Materials), Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, China.
| | - Guoxiong Wang
- State Key Laboratory of Catalysis, Dalian National Laboratory for Clean Energy, iChEM (Collaborative Innovation Center of Chemistry for Energy Materials), Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, China.
| | - Xinhe Bao
- State Key Laboratory of Catalysis, Dalian National Laboratory for Clean Energy, iChEM (Collaborative Innovation Center of Chemistry for Energy Materials), Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, China
| |
Collapse
|
62
|
Yu J, Gao RT, Guo X, Truong Nguyen N, Wu L, Wang L. Electrochemical Nitrate Reduction to Ammonia on AuCu Single-Atom Alloy Aerogels under Wide Potential Window. Angew Chem Int Ed Engl 2025; 64:e202415975. [PMID: 39264141 DOI: 10.1002/anie.202415975] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2024] [Revised: 09/12/2024] [Accepted: 09/12/2024] [Indexed: 09/13/2024]
Abstract
Electrocatalytic nitrate reduction to ammonia (NO3RR) is very attractive for nitrate removal and ammonia production in industrial processes. However, the nitrate reduction reaction is characterized by intense hydrogen competition at strong reduction potentials, which greatly limits the Faraday efficiency at strong reduction potentials. Herein, we reported an AuxCu single-atom alloy aerogels (AuxCu SAAs) with three-dimensional network structure with significant nitrate reduction performance of Faraday efficiency (FE) higher than 90 % over a wide potential range (0 ~ -1 V RHE). The FE of the catalyst was close to 100 % at a high reduction potential of -0.8 VRHE, accompanying with NH3 yield reaching 6.21 mmol h1 cm2. More importantly, the catalyst maintained a long-term operation over 400 h at 400 mA cm2 for the NO3RR using a continuous flow system in a H-cell. Experimental and theoretical analysis demonstrate that the catalyst can lower the energy barrier for the hydrogenation reaction of *NO2, leading to a rapid consumption of the generated *H, facilitate the hydrogenation process of NO3RR, and inhibit the competitive HER at high overpotentials, which efficiently promotes the nitrate reduction reaction, especially in industrial applications.
Collapse
Affiliation(s)
- Jidong Yu
- College of Chemistry and Chemical Engineering, College of Energy Material and Chemistry, Inner Mongolia University, Hohhot, 010021, China
| | - Rui-Ting Gao
- College of Chemistry and Chemical Engineering, College of Energy Material and Chemistry, Inner Mongolia University, Hohhot, 010021, China
| | - Xiaotian Guo
- College of Chemistry and Chemical Engineering, College of Energy Material and Chemistry, Inner Mongolia University, Hohhot, 010021, China
| | - Nhat Truong Nguyen
- Department of Chemical and Materials Engineering, Gina Cody School of Engineering and Computer Science, Concordia University, Montreal, QC, H3G 2W1, Canada
| | - Limin Wu
- College of Chemistry and Chemical Engineering, College of Energy Material and Chemistry, Inner Mongolia University, Hohhot, 010021, China
- Department of Materials Science, State Key Laboratory of Molecular Engineering of Polymers, Fudan University, Shanghai, 200433, China
| | - Lei Wang
- College of Chemistry and Chemical Engineering, College of Energy Material and Chemistry, Inner Mongolia University, Hohhot, 010021, China
| |
Collapse
|
63
|
Fang Y, Li M, Gao Y, Wen Y, Shan B. Static Organic p-n Junctions in Photoelectrodes for Solar Ammonia Production with 86 % Internal Quantum Efficiency. Angew Chem Int Ed Engl 2025; 64:e202415729. [PMID: 39294096 DOI: 10.1002/anie.202415729] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2024] [Revised: 09/09/2024] [Accepted: 09/18/2024] [Indexed: 09/20/2024]
Abstract
For photoelectrocatalytic cells, a limitation exists in finding appropriate photoelectrode configurations that couple efficient extraction of high-energy electrons from absorbed photons and selective catalysis. Here we report an organic p-n junction approach to fabricate molecular photoelectrodes for conversion of solar energy and nitrate into valuable ammonia product. Solar irradiation of the photoelectrode generates charge-separated states with electrons and holes spatially separated at the n-type and p-type components, as revealed by surface photovoltage mapping, at a quantum yield of 90 %. The high-flux photogenerated electrons are rapidly transferred to the catalyst for solar ammonia production from nitrate reduction at an external quantum efficiency (EQE) and an internal quantum efficiency (IQE) of 57 % and 86 %, respectively. Time-resolved spectroscopic studies reveal that the large IQE originates from the combined high efficiencies for photoelectron generation, catalyst activation and dark catalysis. In a flow-cell setup coupled with a silicon solar cell, the photoelectrode without bias generates photocurrent of 57 mA cm-2 and ammonia at an EQE of 52 %.
Collapse
Affiliation(s)
- Yanjie Fang
- Department of Chemistry, Zhejiang University, Hangzhou, 310058, China
| | - Mengjie Li
- Department of Chemistry, Zhejiang University, Hangzhou, 310058, China
| | - Yifan Gao
- Department of Chemistry, Zhejiang University, Hangzhou, 310058, China
| | - Yingke Wen
- Department of Chemistry, Zhejiang University, Hangzhou, 310058, China
| | - Bing Shan
- Department of Chemistry, Zhejiang University, Hangzhou, 310058, China
- Zhejiang Key Laboratory of Excited-State Energy Conversion and Energy Storage, Hangzhou, 310058, China
| |
Collapse
|
64
|
Zheng Y, Sun P, Liu S, Nie W, Bao H, Men L, Li Q, Su Z, Wan Y, Xia C, Xie H. Solar energy powered electrochemical reduction of CO 2 on In 2O 3 nanosheets with high energy conversion efficiency at a large current density. J Colloid Interface Sci 2025; 678:722-731. [PMID: 39217688 DOI: 10.1016/j.jcis.2024.08.177] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2024] [Revised: 07/22/2024] [Accepted: 08/22/2024] [Indexed: 09/04/2024]
Abstract
Electrochemical CO2 reduction (ECO2R) to value-added chemicals offers a promising approach to both mitigate CO2 emission and facilitate renewable energy conversion. We demonstrate a solar energy powered ECO2R system operating at a relatively large current density (57 mA cm-2) using In2O3 nanosheets (NSs) as the cathode and a commercial perovskite solar cell as the electricity generator, which achieves the high solar to formate energy conversion efficiency of 6.6 %. The significantly enhanced operative current density with a fair solar energy conversion efficiency on In2O3 NSs can be ascribed to their high activity and selectivity for formate production, as well as the fast kinetics for ECO2R. The Faradic efficiencies (FEs) of formate In2O3 NSs are all above 93 %, with the partial current density of formate ranging from 2.3 to 342 mA cm-2 in a gas diffusion flow cell, which is among the widest for formate production on In-based catalysts. In-situ Raman spectroscopy and density functional theory simulations reveal that the exceptional performances of formate production on In2O3 NSs originates from the presence of abundant low coordinated edge sites, which effectively promote the selective adsorption of *OCHO while inhibiting *H adsorption.
Collapse
Affiliation(s)
- Yan Zheng
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, College of Materials Science and Engineering, Nanjing Forestry University, Nanjing, Jiangsu 210037, China
| | - Pengting Sun
- Institute for Advanced Materials, School of Materials Science and Engineering, Jiangsu University, Zhenjiang, Jiangsu 212013, China
| | - Shuxia Liu
- State Key Laboratory of Material Processing and Die & Mould Technology, School of Materials Science and Engineering, Huazhong University of Science and Technology, Wuhan, Hubei 430074, China
| | - Wenzheng Nie
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, College of Materials Science and Engineering, Nanjing Forestry University, Nanjing, Jiangsu 210037, China
| | - Huihui Bao
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, College of Materials Science and Engineering, Nanjing Forestry University, Nanjing, Jiangsu 210037, China
| | - Linglan Men
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, College of Materials Science and Engineering, Nanjing Forestry University, Nanjing, Jiangsu 210037, China
| | - Qing Li
- State Key Laboratory of Material Processing and Die & Mould Technology, School of Materials Science and Engineering, Huazhong University of Science and Technology, Wuhan, Hubei 430074, China
| | - Zhongti Su
- Institute for Advanced Materials, School of Materials Science and Engineering, Jiangsu University, Zhenjiang, Jiangsu 212013, China
| | - Yangyang Wan
- Institute for Advanced Materials, School of Materials Science and Engineering, Jiangsu University, Zhenjiang, Jiangsu 212013, China.
| | - Changlei Xia
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, College of Materials Science and Engineering, Nanjing Forestry University, Nanjing, Jiangsu 210037, China.
| | - Huan Xie
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, College of Materials Science and Engineering, Nanjing Forestry University, Nanjing, Jiangsu 210037, China.
| |
Collapse
|
65
|
Li H, Song X, Zhang N, Chu K, Zhao J. Construction of dual sites on FeS 2 surface for enhanced electrocatalytic reduction of nitrite to ammonia. J Colloid Interface Sci 2025; 678:242-250. [PMID: 39298975 DOI: 10.1016/j.jcis.2024.09.120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2024] [Revised: 09/02/2024] [Accepted: 09/12/2024] [Indexed: 09/22/2024]
Abstract
Cost-effective iron sulfides (FeS2) hold great potential as high-performance catalysts for NO2- electroreduction to NH3 (NO2ER), which is hindered by the weak NO2 activation. Herein, the design of nonmetal-doped FeS2 electrocatalysts was initially conducted by density functional theory (DFT) computations. We found that doping with different nonmetal atoms effectively not only regulates the electronic structures of the d-electrons of Fe atoms but also creates the unique p-d hybridized dual active sites, thereby boosting the efficient NO2 activation. Owing to the optimal NO2 adsorption strength, N-doped FeS2 demonstrates a low limiting potential for the NO2--to-NH3 conversion, thus significantly improving NO2ER activity. Direct experimental evidence was provided afterward: an NH3 yield rate of 424.5 μmol/hcm-2 with a 92.4 % Faradaic efficiency was achieved. Our findings not only suggest a promising NO2ER catalyst through theoretical computations to guide experiments but also provide a comprehensive understanding of the structure-properties relationship.
Collapse
Affiliation(s)
- Heying Li
- Key Laboratory of Photonic and Electronic Bandgap Materials, Ministry of Education, Harbin Normal University, Harbin 150025, China
| | - Xueshi Song
- Key Laboratory of Photonic and Electronic Bandgap Materials, Ministry of Education, Harbin Normal University, Harbin 150025, China
| | - Nana Zhang
- School of Materials Science and Engineering, Lanzhou Jiaotong University, Lanzhou 730070, China
| | - Ke Chu
- School of Materials Science and Engineering, Lanzhou Jiaotong University, Lanzhou 730070, China.
| | - Jingxiang Zhao
- Key Laboratory of Photonic and Electronic Bandgap Materials, Ministry of Education, Harbin Normal University, Harbin 150025, China.
| |
Collapse
|
66
|
Li Q, Luo L, Guo X, Wang R, Liu J, Fan W, Feng Z, Zhang F. Modulation of the Second-Beyond Coordination Structure in Single-Atom Electrocatalysts for Confirmed Promotion of Ammonia Synthesis. J Am Chem Soc 2025; 147:1884-1892. [PMID: 39812081 DOI: 10.1021/jacs.4c14498] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2025]
Abstract
Although microenvironments surrounding single-atom catalysts (SACs) have been widely demonstrated to have a remarkable effect on their catalytic performances, it remains unclear whether the local structure beyond the secondary coordination shells works as well or not. Herein, we employed a series of metal-organic frameworks (MOFs) with well-defined and tunable second-beyond coordination spheres as model SAC electrocatalysts to discuss the influence of long-distance structure on the ammonia synthesis from nitrate, which were synthesized and denoted as Cu12-NDI-X (X = NMe2, H, F). It is first experimentally confirmed that the remote substitution of function groups beyond the secondary coordination sphere can remarkably affect the activity of ammonia synthesis. Meanwhile, the -H endowed Cu12-NND-H exhibits a superior ammonia yield (35.1 mg·h-1·mgcat-1) and FE (98.7%) to those modified with -NMe2 and -F, which also shows good stability at 100 mA·cm-2. The remarkable promotion of the modulated second-beyond coordination structure is unraveled to result from the adjustable d-band center of the Cu active site leading to promoted adsorption of the NO3- and protonation of key intermediates. Encouraged by its extraordinary ammonia yield, we employed the Cu12-NND-H electrode as a cathode to assemble one rechargeable Zn-nitrate battery that exhibits an impressive power density of 34.0 mW·cm-2, demonstrating its promising application in energy conversion and storage.
Collapse
Affiliation(s)
- Qinglin Li
- State Key Laboratory of Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
| | - Lin Luo
- State Key Laboratory of Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xiangyang Guo
- State Key Laboratory of Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
| | - Rong Wang
- State Key Laboratory of Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
- School of Metallurgy and Materials Engineering, Chongqing University of Science & Technology, Chongqing 401331, China
| | - Jinfeng Liu
- State Key Laboratory of Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
| | - Wenjun Fan
- State Key Laboratory of Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
| | - Zhaochi Feng
- State Key Laboratory of Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
| | - Fuxiang Zhang
- State Key Laboratory of Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
| |
Collapse
|
67
|
Liu P, Cheng X, Zhao H, Bai F, Wang YQ. Cu 3P/CoP Heterostructure for Efficient Electrosynthesis of Ammonia from Nitrate Reduction Reaction. ACS APPLIED MATERIALS & INTERFACES 2025; 17:980-990. [PMID: 39693253 DOI: 10.1021/acsami.4c16144] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/20/2024]
Abstract
Electrocatalytic nitrate reduction (ENO3RR) for ammonia production is one of the potential alternatives to Haber-Bosch technology for the realization of artificial ammonia synthesis. However, efficient ammonia production remains challenging due to the complex electron transfer process in ENO3RR. In this study, we fabricated a Cu3P/CoP heterostructure on carbon cloth (CC) by electrodeposition and vapor deposition, which exhibits an exceptional ENO3RR performance in alkaline medium, and showcases a Faradaic efficiency of ammonia (FENH3) and an ammonia yield rate as high as 97.95% and 17,637.3 μg h-1 cm-2 at -0.9 V vs RHE. Moreover, Cu3P/CoP also has excellent catalytic activity for nitrite reduction to ammonia, with an FENH3 up to 98.31% at -0.7 V vs RHE. The experimental and theoretical calculations reveal and confirm that the formation of a heterogeneous interface between Cu3P and CoP effectively promotes the electron transfer, where Cu3P as an electron donor induces the decrease of electron density around Cu and results in an enhancement of NO2- adsorption, thereby accelerating the ENO3RR process while inhibiting the competitive hydrogen evolution reaction (HER). Moreover, the metal phosphide catalyst facilitates the water dissociation, which accelerates the abundant *H generation, thus enhancing the subsequent hydrogenation process toward ENO3RR.
Collapse
Affiliation(s)
- Pengfei Liu
- Inner Mongolia Key Laboratory of Rare Earth Catalysis College of Chemistry and Chemical Engineering Inner Mongolia University Hohhot 010021, P. R. China
| | - Xuetao Cheng
- Inner Mongolia Key Laboratory of Rare Earth Catalysis College of Chemistry and Chemical Engineering Inner Mongolia University Hohhot 010021, P. R. China
| | - Huilin Zhao
- Inner Mongolia Key Laboratory of Rare Earth Catalysis College of Chemistry and Chemical Engineering Inner Mongolia University Hohhot 010021, P. R. China
| | - Fenghua Bai
- Inner Mongolia Key Laboratory of Rare Earth Catalysis College of Chemistry and Chemical Engineering Inner Mongolia University Hohhot 010021, P. R. China
| | - Yan-Qin Wang
- Inner Mongolia Key Laboratory of Rare Earth Catalysis College of Chemistry and Chemical Engineering Inner Mongolia University Hohhot 010021, P. R. China
| |
Collapse
|
68
|
Zhang S, Hong H, Zhang R, Wei Z, Wang Y, Chen D, Li C, Li P, Cui H, Hou Y, Wang S, Ho JC, Guo Y, Huang Z, Zhi C. Modulating the Leverage Relationship in Nitrogen Fixation Through Hydrogen-Bond-Regulated Proton Transfer. Angew Chem Int Ed Engl 2025; 64:e202412830. [PMID: 39157915 DOI: 10.1002/anie.202412830] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2024] [Revised: 08/08/2024] [Accepted: 08/18/2024] [Indexed: 08/20/2024]
Abstract
In the electrochemical nitrogen reduction reaction (NRR), a leverage relationship exists between NH3-producing activity and selectivity because of the competing hydrogen evolution reaction (HER), which means that high activity with strong protons adsorption causes low product selectivity. Herein, we design a novel metal-organic hydrogen bonding framework (MOHBF) material to modulate this leverage relationship by a hydrogen-bond-regulated proton transfer pathway. The MOHBF material was composited with reduced graphene oxide (rGO) to form a Ni-N2O2 molecular catalyst (Ni-N2O2/rGO). The unique structure of O atoms in Ni-O-C and N-O-H could form hydrogen bonds with H2O molecules to interfere with protons being directly adsorbed onto Ni active sites, thus regulating the proton transfer mechanism and slowing the HER kinetics, thereby modulating the leverage relationship. Moreover, this catalyst has abundant Ni-single-atom sites enriched with Ni-N/O coordination, conducive to the adsorption and activation of N2. The Ni-N2O2/rGO exhibits simultaneously enhanced activity and selectivity of NH3 production with a maximum NH3 yield rate of 209.7 μg h-1 mgcat. -1 and a Faradaic efficiency of 45.7 %, outperforming other reported single-atom NRR catalysts.
Collapse
Affiliation(s)
- Shaoce Zhang
- Department of Materials Science and Engineering, City University of Hong Kong, 83 Tat Chee Avenue, Kowloon, Hong Kong, 999077, China
- Hong Kong Center for Cerebro-Cardiovascular Health Engineering (COCHE), Shatin, NT, HKSAR, China
| | - Hu Hong
- Department of Materials Science and Engineering, City University of Hong Kong, 83 Tat Chee Avenue, Kowloon, Hong Kong, 999077, China
| | - Rong Zhang
- Department of Materials Science and Engineering, City University of Hong Kong, 83 Tat Chee Avenue, Kowloon, Hong Kong, 999077, China
- Hong Kong Center for Cerebro-Cardiovascular Health Engineering (COCHE), Shatin, NT, HKSAR, China
| | - Zhiquan Wei
- Department of Materials Science and Engineering, City University of Hong Kong, 83 Tat Chee Avenue, Kowloon, Hong Kong, 999077, China
| | - Yiqiao Wang
- Department of Materials Science and Engineering, City University of Hong Kong, 83 Tat Chee Avenue, Kowloon, Hong Kong, 999077, China
| | - Dong Chen
- Department of Materials Science and Engineering, City University of Hong Kong, 83 Tat Chee Avenue, Kowloon, Hong Kong, 999077, China
| | - Chuan Li
- Department of Materials Science and Engineering, City University of Hong Kong, 83 Tat Chee Avenue, Kowloon, Hong Kong, 999077, China
| | - Pei Li
- Department of Materials Science and Engineering, City University of Hong Kong, 83 Tat Chee Avenue, Kowloon, Hong Kong, 999077, China
- Hong Kong Center for Cerebro-Cardiovascular Health Engineering (COCHE), Shatin, NT, HKSAR, China
| | - Huilin Cui
- Department of Materials Science and Engineering, City University of Hong Kong, 83 Tat Chee Avenue, Kowloon, Hong Kong, 999077, China
- Hong Kong Center for Cerebro-Cardiovascular Health Engineering (COCHE), Shatin, NT, HKSAR, China
| | - Yue Hou
- Department of Materials Science and Engineering, City University of Hong Kong, 83 Tat Chee Avenue, Kowloon, Hong Kong, 999077, China
- Hong Kong Center for Cerebro-Cardiovascular Health Engineering (COCHE), Shatin, NT, HKSAR, China
| | - Shengnan Wang
- Department of Materials Science and Engineering, City University of Hong Kong, 83 Tat Chee Avenue, Kowloon, Hong Kong, 999077, China
| | - Johnny C Ho
- Department of Materials Science and Engineering, City University of Hong Kong, 83 Tat Chee Avenue, Kowloon, Hong Kong, 999077, China
| | - Ying Guo
- College of Materials Science and Engineering, Shenzhen University, 518061, Shenzhen, China
| | - Zhaodong Huang
- Department of Materials Science and Engineering, City University of Hong Kong, 83 Tat Chee Avenue, Kowloon, Hong Kong, 999077, China
- Hong Kong Center for Cerebro-Cardiovascular Health Engineering (COCHE), Shatin, NT, HKSAR, China
| | - Chunyi Zhi
- Department of Materials Science and Engineering, City University of Hong Kong, 83 Tat Chee Avenue, Kowloon, Hong Kong, 999077, China
- Hong Kong Center for Cerebro-Cardiovascular Health Engineering (COCHE), Shatin, NT, HKSAR, China
- Centre for Functional Photonics, City University of Hong Kong, Kowloon, Hong Kong
- Hong Kong Institute for Clean Energy, City University of Hong Kong, Kowloon, 999077, Hong Kong
| |
Collapse
|
69
|
Chen Y, Luo J, Ling L, Zhan Z, Liu J, Gao Z, Lam JCH, Feng C, Lei Y. In situ evolution of electrocatalysts for enhanced electrochemical nitrate reduction under realistic conditions. ENVIRONMENTAL SCIENCE AND ECOTECHNOLOGY 2025; 23:100492. [PMID: 39398413 PMCID: PMC11470436 DOI: 10.1016/j.ese.2024.100492] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/14/2024] [Revised: 09/10/2024] [Accepted: 09/11/2024] [Indexed: 10/15/2024]
Abstract
Electrochemical nitrate reduction to ammonia (ENRA) is gaining attention for its potential in water remediation and sustainable ammonia production, offering a greener alternative to the energy-intensive Haber-Bosch process. Current research on ENRA is dedicated to enhancing ammonia selectively and productivity with sophisticated catalysts. However, the performance of ENRA and the change of catalytic activity in more complicated solutions (i.e., nitrate-polluted groundwater) are poorly understood. Here we first explored the influence of Ca2+ and bicarbonate on ENRA using commercial cathodes. We found that the catalytic activity of used Ni or Cu foam cathodes significantly outperforms their pristine ones due to the in situ evolution of new catalytic species on used cathodes during ENRA. In contrast, the nitrate conversion performance with nonactive Ti or Sn cathode is less affected by Ca2+ or bicarbonate because of their original poor activity. In addition, the coexistence of Ca2+ and bicarbonate inhibits nitrate conversion by forming scales (CaCO3) on the in situ-formed active sites. Likewise, ENRA is prone to fast performance deterioration in treating actual groundwater over continuous flow operation due to the presence of hardness ions and possible organic substances that quickly block the active sites toward nitrate reduction. Our work suggests that more work is required to ensure the long-term stability of ENRA in treating natural nitrate-polluted water bodies and to leverage the environmental relevance of ENRA in more realistic conditions.
Collapse
Affiliation(s)
- Yingkai Chen
- School of Environment and Energy, South China University of Technology, Guangzhou, 510006, China
- Shenzhen Key Laboratory of Precision Measurement and Early Warning Technology for Urban Environmental Health Risks, School of Environmental Science and Engineering, Southern University of Science and Technology, Shenzhen, 518055, China
| | - Jiayu Luo
- Shenzhen Key Laboratory of Precision Measurement and Early Warning Technology for Urban Environmental Health Risks, School of Environmental Science and Engineering, Southern University of Science and Technology, Shenzhen, 518055, China
| | - Li Ling
- Shenzhen Key Laboratory of Precision Measurement and Early Warning Technology for Urban Environmental Health Risks, School of Environmental Science and Engineering, Southern University of Science and Technology, Shenzhen, 518055, China
| | - Zhengshuo Zhan
- Shenzhen Key Laboratory of Precision Measurement and Early Warning Technology for Urban Environmental Health Risks, School of Environmental Science and Engineering, Southern University of Science and Technology, Shenzhen, 518055, China
| | - Jiutan Liu
- College of Earth Science and Engineering, Shandong University of Science and Technology, Qingdao, Shandong, 266590, China
| | - Zongjun Gao
- College of Earth Science and Engineering, Shandong University of Science and Technology, Qingdao, Shandong, 266590, China
| | - Jason Chun-Ho Lam
- School of Energy and Environment and State Key Laboratory of Marine Pollution, City University of Hong Kong, 999077, Hong Kong, China
| | - Chunhua Feng
- School of Environment and Energy, South China University of Technology, Guangzhou, 510006, China
| | - Yang Lei
- Shenzhen Key Laboratory of Precision Measurement and Early Warning Technology for Urban Environmental Health Risks, School of Environmental Science and Engineering, Southern University of Science and Technology, Shenzhen, 518055, China
| |
Collapse
|
70
|
Liu Z, Huang X, Liu X, Liu J, Wang M, Ding T, Yan L, Zhang Z, Shi G. Electrochemical Synthesis of Metasequoia-Like Reduced Graphene Oxide Coated Cobalt-Silver Catalyst for Stable and Efficient Electrocatalytic Nitrate Reduction to Ammonia. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2025; 21:e2408566. [PMID: 39498700 DOI: 10.1002/smll.202408566] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/20/2024] [Revised: 10/28/2024] [Indexed: 11/07/2024]
Abstract
Electrocatalytic nitrate (NO3 -) reduction to ammonia (NH3) is a green and efficient NH3 synthesis technology. Metallic silver (Ag) is one of the well-known electrocatalysts for NO3 - reduction. However, under alkaline conditions, its poor water-splitting ability fails to provide sufficient protonic hydrogen required for NH3 synthesis, resulting in low NH3 selectivity. Additionally, metal catalysts are prone to leaching and oxidation during electrocatalysis, resulting in poor stability. Herein, cobalt (Co) into Ag (CoAg) catalyst is doped, which not only increases the NH3 selectivity by 34.4%, but also reduces the reduction potential by 0.1 V. Meanwhile, reduced graphene oxide (rGO) as a protective "armor" is used to encapsulate the CoAg catalyst (rGO2.92@CoAg). The rGO2.92@CoAg catalyst shows excellent stability for over 300 hours (h) of continuous reaction. The Co and Ag contents in the rGO2.92@CoAg catalyst after continuous tests decreases by only 4.3% and 3.1%, respectively, which are much lower than those of the CoAg catalyst without the rGO (90.8%, 52.6%). Moreover, the rGO2.92@CoAg catalyst shows high Faradaic efficiency (99.3%) and NH3 yield rate (1.47 mmol h-1 cm-2). Therefore, a high performance and strong stability rGO2.92@CoAg catalyst is obtained by Co doping and rGO coating, which provides theoretical basis for practical industrial application.
Collapse
Affiliation(s)
- Zhengyang Liu
- Shanghai Applied Radiation Institute, State Key Lab, Shanghai University, No. 99 Shangda Road, Baoshan, Shanghai, 200444, China
| | - Xiaohan Huang
- Shanghai Applied Radiation Institute, State Key Lab, Shanghai University, No. 99 Shangda Road, Baoshan, Shanghai, 200444, China
| | - Xing Liu
- Shanghai Applied Radiation Institute, State Key Lab, Shanghai University, No. 99 Shangda Road, Baoshan, Shanghai, 200444, China
| | - Jie Liu
- Shanghai Applied Radiation Institute, State Key Lab, Shanghai University, No. 99 Shangda Road, Baoshan, Shanghai, 200444, China
| | - Mengting Wang
- Department of Chemical & Biological Engineering, Monash University, Wellington Road, Clayton, VC3800, Australia
| | - Tao Ding
- Shanghai Applied Radiation Institute, State Key Lab, Shanghai University, No. 99 Shangda Road, Baoshan, Shanghai, 200444, China
| | - Linghui Yan
- Shanghai Applied Radiation Institute, State Key Lab, Shanghai University, No. 99 Shangda Road, Baoshan, Shanghai, 200444, China
| | - Zehui Zhang
- Shanghai Applied Radiation Institute, State Key Lab, Shanghai University, No. 99 Shangda Road, Baoshan, Shanghai, 200444, China
| | - Guosheng Shi
- Shanghai Applied Radiation Institute, State Key Lab, Shanghai University, No. 99 Shangda Road, Baoshan, Shanghai, 200444, China
- University of Chinese Academy of Sciences, China National Nuclear Corporation, Wenzhou, 325001, China
| |
Collapse
|
71
|
Zhang Z, Wang F, Zaman M, Zhu B, Qin Y, Shen Q, Shi J, Li Y, Wang Z, Liu Q, Liu S, Li G, Zhang X. Mechanistic insights on the preparation of 5-methyl-2-hexanone by hydrogenation of 5-methyl-3-hexen-2-one using Pd/Al 2O 3 catalysts. J Colloid Interface Sci 2025; 677:895-908. [PMID: 39126808 DOI: 10.1016/j.jcis.2024.07.251] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2024] [Revised: 07/13/2024] [Accepted: 07/30/2024] [Indexed: 08/12/2024]
Abstract
5-methyl-2-hexanone is used as a versatile polymerization solvent for industrial preparation processes of bulk and fine chemicals. An efficient catalyst, Pd/γ-Al2O3, is reported for the preparation of 5-methyl-2-hexanone by selective hydrogenation of 5-methyl-3-hexen-2-one. The catalyst exhibits remarkable activity and selectivity even at atmospheric pressure and low temperature (1 atm, 80 °C). The influence weight of reaction conditions on the reaction process was obtained through the Artificial Neural Network model, which were reaction pressure, reaction temperature and liquid hourly space velocity in order. The reaction kinetics and mechanism of 5-methyl-2-hexanone preparation by hydrogenation over Pd/γ-Al2O3 catalyst were investigated. The hydrogenation reaction pathway of 5-methyl-3-hexen-2-one was obtained by using Density functional theory calculations, and the mechanism of selective hydrogenation of CC double bonds and CO double bonds was revealed. A kinetic model based on the LHHW model assumption was also proposed and compared with experimental results demonstrating good predictability.
Collapse
Affiliation(s)
- Zhiwei Zhang
- School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China
| | - Fumin Wang
- School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China
| | - Muhammad Zaman
- Department of Chemical Engineering, Pakistan Institute of Engineering and Applied Sciences (PIEAS), Islamabad 45650, Pakistan
| | - Bingxin Zhu
- School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China
| | - Yang Qin
- School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China
| | - Qi Shen
- School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China
| | - Jinhua Shi
- School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China
| | - Yongwang Li
- School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China
| | - Zheng Wang
- School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China
| | - Qingzhao Liu
- School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China
| | - Shuai Liu
- School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China
| | - Guobing Li
- School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China.
| | - Xubin Zhang
- School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China.
| |
Collapse
|
72
|
Liu J, Li Y, Jia X, Shen J, Zhu Y, Li C. Enrichment of Active Hydrogen at Amorphous CoO/Cu 2O Heterojunction Interfaces Enhances Electrocatalytic Nitrate Reduction to Ammonia. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2025; 21:e2408279. [PMID: 39444058 DOI: 10.1002/smll.202408279] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/12/2024] [Revised: 10/14/2024] [Indexed: 10/25/2024]
Abstract
The reduction of nitrate into valuable ammonia via electrocatalysis offers a green and sustainable synthetic pathway for ammonia. The electrocatalytic nitrate reduction reaction (NO3RR) encompasses two crucial reaction steps: nitrate deoxygenation and nitrite hydrogenation. Notably, the nitrite hydrogenation reaction is regarded as the rate-determining step of the process. Herein, the amorphous CoO support introduced for the construction of the a-CoO/Cu2O tandem catalyst provides sufficient active hydrogen and synergistically catalyzes the NO3RR. The a-CoO/Cu2O catalyst showed excellent performance with a maximum NH3 Faradaic efficiency of 95.72% and a maximum yield rate of 0.96 mmol h-1 mgcat -1 at -0.4 V. In the flow cell, the maximum NH3 yield rate of 12.14 mmol h-1 mgcat -1 is achieved at -800 mA. The high NO3RR activity of a-CoO/Cu2O is attributed to the synergistic cascade effect of amorphous CoO and Cu2O at the heterojunction interface, where Cu2O serves as the adsorption site for NO3 -, while the accelerated active hydrogen generation of amorphous CoO promotes the nitrite hydrogenation reaction. This work provides a strategy for designing multi-site cascade catalysts centered on amorphous structures to achieve efficient NO3RR.
Collapse
Affiliation(s)
- Jiahao Liu
- Shanghai Engineering Research Center of Hierarchical Nanomaterials, Key Laboratory for Ultrafine Materials of Ministry of Education, Frontiers Science Center for Materiobiology and Dynamic Chemistry, School of Materials Science and Engineering, East China University of Science and Technology, Shanghai, 200237, China
| | - Yufeng Li
- Shanghai Engineering Research Center of Hierarchical Nanomaterials, Key Laboratory for Ultrafine Materials of Ministry of Education, Frontiers Science Center for Materiobiology and Dynamic Chemistry, School of Materials Science and Engineering, East China University of Science and Technology, Shanghai, 200237, China
| | - Xiaojie Jia
- Shanghai Engineering Research Center of Hierarchical Nanomaterials, Key Laboratory for Ultrafine Materials of Ministry of Education, Frontiers Science Center for Materiobiology and Dynamic Chemistry, School of Materials Science and Engineering, East China University of Science and Technology, Shanghai, 200237, China
| | - Jianhua Shen
- Shanghai Engineering Research Center of Hierarchical Nanomaterials, Key Laboratory for Ultrafine Materials of Ministry of Education, Frontiers Science Center for Materiobiology and Dynamic Chemistry, School of Materials Science and Engineering, East China University of Science and Technology, Shanghai, 200237, China
| | - Yihua Zhu
- Shanghai Engineering Research Center of Hierarchical Nanomaterials, Key Laboratory for Ultrafine Materials of Ministry of Education, Frontiers Science Center for Materiobiology and Dynamic Chemistry, School of Materials Science and Engineering, East China University of Science and Technology, Shanghai, 200237, China
| | - Chunzhong Li
- School of Chemical Engineering, East China University of Science and Technology, Shanghai, 200237, China
| |
Collapse
|
73
|
Zhang K, Xu Y, Liu F, Wang Q, Zou X, Tang M, Leung MK, Ao Z, Zhao X, Zhang X, An L. Leveraging Interfacial Electric Field for Smart Modulation of Electrode Surface in Nitrate to Ammonia Conversion. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2025; 12:e2410763. [PMID: 39621532 PMCID: PMC11775551 DOI: 10.1002/advs.202410763] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/04/2024] [Revised: 10/26/2024] [Indexed: 01/30/2025]
Abstract
The efficiency of nitrate reduction reaction (NO3RR) at low nitrate concentration is predominantly hindered by the poor affinity of nitrate ions and competitive hydrogen evolution reaction (HER), particularly in neutral and acidic media. Here, an innovative strategy to leverage the interfacial electric field (IEF) is introduced to boost the NO3RR performance. By in situ constructing tannic acid-metal ion (TA-M2+) crosslinked structure on the electrode surface, the TA-M2+-CuO NW/Cu foam sample exhibits an exceptional Faraday efficiency of 99.4% at -0.2 V versus reversible hydrogen electrode (RHE) and 83.9% at 0.0 V versus RHE under neutral and acidic conditions, respectively. The computational studies unveil that the TA-Cu2+ complex on the CuO (111) plane induces the increasing concentration of nitrate at the interface, accelerating NO3RR kinetics over HER via the IEF effect. This interfacial modulation strategy also contributes the enhanced ammonia production performance when it is employed on commercial electrode materials and flow reactors, exhibiting great potential in practical application. Overall, combined results illustrated multiple merits of the IEF effect, paving the way for future commercialization of NO3RR in the ammonia production industry.
Collapse
Affiliation(s)
- Kouer Zhang
- Department of Mechanical EngineeringThe Hong Kong Polytechnic UniversityHung HomKowloonHong Kong SAR999077China
| | - Yifan Xu
- Ability R&D Energy Research CentreSchool of Energy and EnvironmentCity University of Hong KongKowloonHong Kong SAR999077China
| | - Fatang Liu
- Department of Mechanical EngineeringThe Hong Kong Polytechnic UniversityHung HomKowloonHong Kong SAR999077China
- College of Chemistry and Chemical EngineeringNortheast Petroleum UniversityDaqing163318China
| | - Qing Wang
- Department of Mechanical EngineeringThe Hong Kong Polytechnic UniversityHung HomKowloonHong Kong SAR999077China
| | - Xiaohong Zou
- Department of Mechanical EngineeringThe Hong Kong Polytechnic UniversityHung HomKowloonHong Kong SAR999077China
| | - Mingcong Tang
- Department of Mechanical EngineeringThe Hong Kong Polytechnic UniversityHung HomKowloonHong Kong SAR999077China
| | - Michael K.H. Leung
- Ability R&D Energy Research CentreSchool of Energy and EnvironmentCity University of Hong KongKowloonHong Kong SAR999077China
- State Key Laboratory of Marine PollutionCity University of Hong KongKowloonHong Kong SARChina
| | - Zhimin Ao
- Advanced Interdisciplinary Institute of Environment and EcologyGuangdong Provincial Key Laboratory of Wastewater Information Analysis and Early WarningBeijing Normal UniversityZhuhai519087China
| | - Xunhua Zhao
- Key Laboratory of Quantum Materials and Devices of Ministry of Education School of PhysicsSoutheast UniversityNanjing211189China
| | - Xiao Zhang
- Department of Mechanical EngineeringThe Hong Kong Polytechnic UniversityHung HomKowloonHong Kong SAR999077China
- Research Institute for Smart EnergyThe Hong Kong Polytechnic UniversityHung HomKowloonHong Kong SAR999077China
| | - Liang An
- Department of Mechanical EngineeringThe Hong Kong Polytechnic UniversityHung HomKowloonHong Kong SAR999077China
- Research Institute for Smart EnergyThe Hong Kong Polytechnic UniversityHung HomKowloonHong Kong SAR999077China
| |
Collapse
|
74
|
Zhang SN, Gao P, Liu QY, Zhang Z, Leng BL, Chen JS, Li XH. Ampere-level reduction of pure nitrate by electron-deficient Ru with K + ions repelling effect. Nat Commun 2024; 15:10877. [PMID: 39738159 DOI: 10.1038/s41467-024-55230-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2024] [Accepted: 12/04/2024] [Indexed: 01/01/2025] Open
Abstract
Electrochemical nitrate reduction reaction offers a sustainable and efficient pathway for ammonia synthesis. Maintaining satisfactory Faradaic efficiency for long-term nitrate reduction under ampere-level current density remains challenging due to the inevitable hydrogen evolution, particularly in pure nitrate solutions. Herein, we present the application of electron deficiency of Ru metals to boost the repelling effect of counter K+ ions via the electric-field-dependent synergy of interfacial water and cations, and thus largely promote nitrate reduction reaction with a high yield and well-maintained Faradaic efficiency under ampere-level current density. The pronounced electron deficiency of Ru metals boosts the repelling effect on hydrated K+ ions, as indicated by the distance of K+ ions to catalyst surface, which can loosen the water layer to depress hydrogen evolution and accelerate nitrate conversion. Consequently, the optimized electrode loaded with electron-deficient Ru atomic layers can directly produce 0.26 M ammonia solution in pure nitrate solution in 6 h, providing a high yield (74.8 mg mgcat-1 h-1) and well-maintained the Faradaic efficiency for over 120 h under ampere-level reduction.
Collapse
Affiliation(s)
- Shi-Nan Zhang
- School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules, Shanghai Jiao Tong University, Shanghai, 200240, P. R. China
| | - Peng Gao
- School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules, Shanghai Jiao Tong University, Shanghai, 200240, P. R. China
| | - Qian-Yu Liu
- School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules, Shanghai Jiao Tong University, Shanghai, 200240, P. R. China
| | - Zhao Zhang
- School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules, Shanghai Jiao Tong University, Shanghai, 200240, P. R. China
| | - Bing-Liang Leng
- School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules, Shanghai Jiao Tong University, Shanghai, 200240, P. R. China
| | - Jie-Sheng Chen
- School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules, Shanghai Jiao Tong University, Shanghai, 200240, P. R. China
| | - Xin-Hao Li
- School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules, Shanghai Jiao Tong University, Shanghai, 200240, P. R. China.
| |
Collapse
|
75
|
Zhang J, Lan J, Xie F, Luo M, Peng M, Palaniyandy N, Tan Y. Nanoporous copper titanium tin (np-Cu 2TiSn) Heusler alloy prepared by dealloying-induced phase transformation for electrocatalytic nitrate reduction to ammonia. J Colloid Interface Sci 2024; 676:323-330. [PMID: 39033673 DOI: 10.1016/j.jcis.2024.07.125] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2024] [Revised: 07/06/2024] [Accepted: 07/15/2024] [Indexed: 07/23/2024]
Abstract
Heusler alloys are a series of well-established intermetallic compounds with abundant structure and elemental substitutions, which are considered as potentially valuable catalysts for integrating multiple reactions owing to the features of ordered atomic arrangement and optimized electronic structure. Herein, a nanoporous copper titanium tin (np-Cu2TiSn) Heusler alloy is successfully prepared by the (electro)chemical dealloying transformation method, which exhibits high nitrate (NO3-) reduction performance with an NH3 Faradaic efficiency of 77.14 %, an NH3 yield rate of 11.90 mg h-1 mg-1cat, and a stability for 100 h under neutral condition. Significantly, we also convert NO3- to high-purity ammonium phosphomolybdate with NH4+ collection efficiency of 83.8 %, which suggests a practical approach to convert wastewater nitrate into value-added ammonia products. Experiments and theoretical calculations reveal that the electronic structure of Cu sites is modulated by the ligand effect of surrounding Ti and Sn atoms, which can simultaneously enhance the activation of NO3-, facilitate the desorption of NH3, and reduce the energy barriers, thereby boosting the electrochemical nitrate reduction reaction.
Collapse
Affiliation(s)
- Junfeng Zhang
- College of Materials Science and Engineering, State Key Laboratory of Advanced Design and Manufacturing Technology for Vehicle, Hunan University, Changsha 410082, Hunan Province, China
| | - Jiao Lan
- College of Materials Science and Engineering, State Key Laboratory of Advanced Design and Manufacturing Technology for Vehicle, Hunan University, Changsha 410082, Hunan Province, China
| | - Feng Xie
- College of Materials Science and Engineering, State Key Laboratory of Advanced Design and Manufacturing Technology for Vehicle, Hunan University, Changsha 410082, Hunan Province, China
| | - Min Luo
- Shanghai Technical Institute of Electronics & Information, Shanghai 201411, China.
| | - Ming Peng
- College of Materials Science and Engineering, State Key Laboratory of Advanced Design and Manufacturing Technology for Vehicle, Hunan University, Changsha 410082, Hunan Province, China; Greater Bay Area Institute for Innovation, Hunan University, Guangzhou 511300, Guangdong Province, China.
| | - Nithyadharseni Palaniyandy
- Institute for Catalysis and Energy Solutions (ICES), College of Science, Engineering, and Technology (CSET), University of South Africa, Florida Science Campus, Roodepoort 1709, South Africa
| | - Yongwen Tan
- College of Materials Science and Engineering, State Key Laboratory of Advanced Design and Manufacturing Technology for Vehicle, Hunan University, Changsha 410082, Hunan Province, China.
| |
Collapse
|
76
|
Yang C, Tang Y, Yang Q, Wang B, Liu X, Li Y, Yang W, Zhao K, Wang G, Wang Z, Yu F. Copper-nickel-MOF/nickel foam catalysts grown in situ for efficient electrochemical nitrate reduction to ammonia. JOURNAL OF HAZARDOUS MATERIALS 2024; 480:136036. [PMID: 39366050 DOI: 10.1016/j.jhazmat.2024.136036] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/12/2024] [Revised: 09/25/2024] [Accepted: 10/01/2024] [Indexed: 10/06/2024]
Abstract
Reducing nitrate (NO3-) in an aqueous solution to ammonia under ambient conditions can provide a green and sustainable NH3-synthesis technology and mitigate global energy and pollution issues. In this work, a CuNi0.75-1,3,5-benzenetricarboxylic acid/nickel foam (CuNi0.75-MOF/NF) catalyst grown in situ was prepared via a one-pot method as an efficient cathode material for electrocatalytic nitrate reduction reaction (NO3RR). The CuNi0.75-MOF/NF catalyst exhibited excellent electrocatalytic NO3RR performance at -1.0 V versus a reversible hydrogen electrode, achieving an outstanding faradaic efficiency of 95.88 % and an NH3 yield of 51.78 mg h-1 cm-2. The 15N isotope labeling experiments confirmed that the sole source of N in the electrocatalytic NO3RR was the NO3- in the electrolyte. The reaction pathway for the electrocatalytic NO3RR was derived by in situ Fourier transform infrared spectroscopy and in situ differential electrochemical mass spectrometry. Density functional theory calculations revealed that the Ni element in the CuNi0.75-MOF/NF catalyst had excellent O-H activation ability and strong *H adsorption capacity. These *H species were transferred from the Ni sites to the *NO adsorption intermediates located on the Cu sites, providing a continuous supply of *H to Cu, thereby promoting the formation of *NOH intermediates and enhancing the hydrogenation process of the electrocatalytic NO3RR.
Collapse
Affiliation(s)
- Chenxia Yang
- Key Laboratory for Green Processing of Chemical Engineering of Xinjiang Bingtuan, School of Chemistry and Chemical Engineering, Shihezi University, Shihezi 832003, China
| | - Ying Tang
- Key Laboratory for Green Processing of Chemical Engineering of Xinjiang Bingtuan, School of Chemistry and Chemical Engineering, Shihezi University, Shihezi 832003, China
| | - Qian Yang
- Key Laboratory for Green Processing of Chemical Engineering of Xinjiang Bingtuan, School of Chemistry and Chemical Engineering, Shihezi University, Shihezi 832003, China
| | - Bo Wang
- Key Laboratory for Green Processing of Chemical Engineering of Xinjiang Bingtuan, School of Chemistry and Chemical Engineering, Shihezi University, Shihezi 832003, China
| | - Xianghao Liu
- Key Laboratory for Green Processing of Chemical Engineering of Xinjiang Bingtuan, School of Chemistry and Chemical Engineering, Shihezi University, Shihezi 832003, China
| | - Yuxiang Li
- Key Laboratory for Green Processing of Chemical Engineering of Xinjiang Bingtuan, School of Chemistry and Chemical Engineering, Shihezi University, Shihezi 832003, China
| | - Weixia Yang
- Key Laboratory for Green Processing of Chemical Engineering of Xinjiang Bingtuan, School of Chemistry and Chemical Engineering, Shihezi University, Shihezi 832003, China; Carbon Neutralization and Environmental Catalytic Technology Laboratory (CN&ECT Lab), Bingtuan Industrial Technology Research Institute, Shihezi University, Shihezi 832003, China
| | - Kunxuan Zhao
- Key Laboratory for Green Processing of Chemical Engineering of Xinjiang Bingtuan, School of Chemistry and Chemical Engineering, Shihezi University, Shihezi 832003, China
| | - Gang Wang
- Key Laboratory for Green Processing of Chemical Engineering of Xinjiang Bingtuan, School of Chemistry and Chemical Engineering, Shihezi University, Shihezi 832003, China.
| | - Zongyuan Wang
- Key Laboratory for Green Processing of Chemical Engineering of Xinjiang Bingtuan, School of Chemistry and Chemical Engineering, Shihezi University, Shihezi 832003, China.
| | - Feng Yu
- Key Laboratory for Green Processing of Chemical Engineering of Xinjiang Bingtuan, School of Chemistry and Chemical Engineering, Shihezi University, Shihezi 832003, China; Carbon Neutralization and Environmental Catalytic Technology Laboratory (CN&ECT Lab), Bingtuan Industrial Technology Research Institute, Shihezi University, Shihezi 832003, China.
| |
Collapse
|
77
|
Zhang H, Ma C, Wang YC, Zhu X, Qu K, Ma X, He C, Han S, Liu AH, Wang Q, Cao W, Lin W, Xia J, Zhu L, Gu L, Yun Q, Wang AL, Lu Q. Transition Metal-Gallium Intermetallic Compounds with Tailored Active Site Configurations for Electrochemical Ammonia Synthesis. Angew Chem Int Ed Engl 2024; 63:e202409515. [PMID: 39228207 DOI: 10.1002/anie.202409515] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2024] [Revised: 09/03/2024] [Accepted: 09/03/2024] [Indexed: 09/05/2024]
Abstract
Gallium (Ga) with a low melting point can serve as a unique metallic solvent in the synthesis of intermetallic compounds (IMCs). The negative formation enthalpy of transition metal-Ga IMCs endows them with high catalytic stability. Meanwhile, their tunable crystal structures offer the possibility to tailor the configurations of active sites to meet the requirements for specific catalytic applications. Herein, we present a general method for preparing a range of transition metal-Ga IMCs, including Co-Ga, Ni-Ga, Pt-Ga, Pd-Ga, and Rh-Ga IMCs. The structurally ordered CoGa IMCs with body-centered cubic (bcc) structure are uniformly dispersed on the nitrogen-doped reduced graphene oxide substrate (O-CoGa/NG) and deliver outstanding nitrate reduction reaction (NO3RR) performance, making them excellent catalysts to construct highly efficient rechargeable Zn-NO3 - battery. Operando studies and theoretical simulations demonstrate that the electron-rich environments around the Co atoms enhance the adsorption strength of *NO3 intermediate and simultaneously suppress the formation of hydrogen, thus improving the NO3RR activity and selectivity.
Collapse
Affiliation(s)
- Huaifang Zhang
- School of Materials Science and Engineering, University of Science and Technology Beijing, Beijing, 100083, China
- Shunde Innovation School, University of Science and Technology Beijing, Foshan, 528399, China
| | - Chaoqun Ma
- School of Materials Science and Engineering, University of Science and Technology Beijing, Beijing, 100083, China
- Shunde Innovation School, University of Science and Technology Beijing, Foshan, 528399, China
| | - Yi-Chi Wang
- Beijing National Center for Electron Microscopy and Laboratory of Advanced Materials, School of Materials Science and Engineering, Tsinghua University, Beijing, 100084, China
| | - Xiaojuan Zhu
- School of Chemistry and Chemical Engineering, Shandong University, Jinan, 250100, China
| | - Kaiyu Qu
- School of Chemistry and Chemical Engineering, Shandong University, Jinan, 250100, China
| | - Xiao Ma
- School of Materials Science and Engineering, University of Science and Technology Beijing, Beijing, 100083, China
- Shunde Innovation School, University of Science and Technology Beijing, Foshan, 528399, China
| | - Caihong He
- School of Materials Science and Engineering, University of Science and Technology Beijing, Beijing, 100083, China
- Shunde Innovation School, University of Science and Technology Beijing, Foshan, 528399, China
| | - Sumei Han
- School of Materials Science and Engineering, University of Science and Technology Beijing, Beijing, 100083, China
- Shunde Innovation School, University of Science and Technology Beijing, Foshan, 528399, China
| | - Ai-Hua Liu
- School of Materials Science and Engineering, University of Science and Technology Beijing, Beijing, 100083, China
- Shunde Innovation School, University of Science and Technology Beijing, Foshan, 528399, China
| | - Qi Wang
- School of Materials Science and Engineering, University of Science and Technology Beijing, Beijing, 100083, China
| | - Wenbin Cao
- School of Materials Science and Engineering, University of Science and Technology Beijing, Beijing, 100083, China
| | - Wei Lin
- Institute for Advanced Materials and Technology, University of Science and Technology Beijing, Beijing, 100083, China
| | - Jing Xia
- Key Laboratory of Photochemical Conversion and Optoelectronic Materials, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing, 100190, China
| | - Lijie Zhu
- School of Instrument Science and Opto-Electronics Engineering, Beijing Information Science and Technology University, Beijing, 100192, China
| | - Lin Gu
- Beijing National Center for Electron Microscopy and Laboratory of Advanced Materials, School of Materials Science and Engineering, Tsinghua University, Beijing, 100084, China
| | - Qinbai Yun
- Department of Chemical and Biological Engineering & Energy Institute, The Hong Kong University of Science and Technology, Hong Kong, China
- Guangzhou HKUST Fok Ying Tung Research Institute, Nansha, Guangzhou, 511458, China
| | - An-Liang Wang
- School of Chemistry and Chemical Engineering, Shandong University, Jinan, 250100, China
| | - Qipeng Lu
- School of Materials Science and Engineering, University of Science and Technology Beijing, Beijing, 100083, China
- Shunde Innovation School, University of Science and Technology Beijing, Foshan, 528399, China
- State Key Laboratory of Nuclear Power Safety Technology and Equipment, University of Science and Technology Beijing, Beijing, 100083, China
| |
Collapse
|
78
|
Cong Y, Kang X, Wu Z, Gu L, Wu C, Duan X, Chen J, Yang J. Self-Reconstruction Induced Electronic Metal-Support Interaction for Modulated Cu + Sites on TiO 2 Nanofibers in Electrocatalytic Nitrate Conversion. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2407554. [PMID: 39388507 DOI: 10.1002/smll.202407554] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/26/2024] [Revised: 09/23/2024] [Indexed: 10/12/2024]
Abstract
The Cu+ active sites have gained great attention in electrochemical nitrate reduction, offering a highly promising method for nitrate removal from water bodies. However, challenges arise from the instability of the Cu+ state and microscopic structure over prolonged operation, limiting the selectivity and durability of Cu+-based electrodes. Herein, a self-reconstructed Cu2O/TiO2 nanofibers (Cu2O/TiO2 NFs) catalyst, demonstrating exceptional stability over 50 cycles (12 h per cycle), a high NO3 --N removal rate of 90.2%, and N2 selectivity of 98.7% is reported. The in situ electrochemical reduction contributes to the self-reconstruction of Cu2O/TiO2 nanofibers with stabilized Cu+ sites via the electronic metal-support interaction between TiO2 substrates, as evidenced by in situ characterizations and theoretical simulations. Additionally, density functional theory (DFT) calculations also indicate that the well-retained Cu+ sites enhance catalytic capability by inhibiting the hydrogen evolution reaction and optimizing the binding energy of *NO on the Cu2O/TiO2 NFs heterostructure surface. This work proposes an effective strategy for preserving low-valence-state Cu-based catalysts with high intrinsic activity for nitrate reduction reaction (NO3RR), thereby advancing the prospects for sustainable nitrate remediation technologies.
Collapse
Affiliation(s)
- Yuting Cong
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Donghua University, Shanghai, 201620, China
| | - Xuxin Kang
- School of Physical Science and Technology, Ningbo University, Ningbo, 315211, China
| | - Ziyang Wu
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Donghua University, Shanghai, 201620, China
| | - Lin Gu
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Donghua University, Shanghai, 201620, China
| | - Chang Wu
- Chemical and Process Engineering, MacDiarmid Institute for Advanced Materials and Nanotechnology, University of Canterbury, Christchurch, 8041, New Zealand
| | - Xiangmei Duan
- School of Physical Science and Technology, Ningbo University, Ningbo, 315211, China
| | - Jun Chen
- ARC Centre of Excellence for Electromaterials Science, Intelligent Polymer Research Institute, Australian Institute of Innovative Materials, Innovation Campus, University of Wollongong, Wollongong, NSW, 2522, Australia
| | - Jianping Yang
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Donghua University, Shanghai, 201620, China
| |
Collapse
|
79
|
Ren S, Gao RT, Yu J, Yang Y, Liu X, Wu L, Wang L. Enhanced Charge-Carrier Dynamics and Efficient Photoelectrochemical Nitrate-to-Ammonia Conversion on Antimony Sulfide-Based Photocathodes. Angew Chem Int Ed Engl 2024; 63:e202409693. [PMID: 38993073 DOI: 10.1002/anie.202409693] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2024] [Revised: 06/27/2024] [Accepted: 07/11/2024] [Indexed: 07/13/2024]
Abstract
The photoelectrochemical reduction of nitrate to ammonia (PEC NO3RR) has emerged as a promising pathway for facilitating the natural nitrogen cycle. The PEC NO3RR can lower the reduction potential needed for ammonia synthesis through photogenerated voltage, showcasing the significant potential for merging abundant solar energy with sustainable nitrogen fixation. However, it is influenced by the selective photocathodes with poor carrier kinetics, low catalytic selectivity, and ammonia yields. There are few reports on suitable photoelectrodes owning efficient charge transport on PEC NO3RR at low overpotentials. Herein, we rationally constructed the CuSn alloy co-catalysts on the antimony sulfides with a highly selective PEC ammonia and an ultra-low onset potential (0.62 VRHE). CuSn/TiO2/Sb2S3 photoelectrodes achieved an ammonia faradic efficiency of 97.82 % at a low applied potential of 0.4 VRHE, and an ammonia yield of 16.96 μmol h-1 cm-2 at 0 VRHE under one sun illumination. Dynamics experiments and theoretical calculations have demonstrated that CuSn/TiO2/Sb2S3 has an enhanced charge separation and transfer efficiency, facilitating photogenerated electrons to participate in PEC NO3RR quickly. Meanwhile, moderate NO2* adsorption on this photocathode optimizes the catalytic activity and increases the NH4 + yield. This work opens an avenue for designing sulfide-based photocathodes for the efficient route of solar-to-ammonia conversion.
Collapse
Affiliation(s)
- Shijie Ren
- College of Chemistry and Chemical Engineering, College of Energy Material and Chemistry, Inner Mongolia University, Hohhot, 010021, China
| | - Rui-Ting Gao
- College of Chemistry and Chemical Engineering, College of Energy Material and Chemistry, Inner Mongolia University, Hohhot, 010021, China
| | - Jidong Yu
- College of Chemistry and Chemical Engineering, College of Energy Material and Chemistry, Inner Mongolia University, Hohhot, 010021, China
| | - Yang Yang
- NanoScience Technology Center, Department of Materials Science and Engineering, Department of Chemistry, Renewable Energy and Chemical Transformation Cluster, The Stephen W. Hawking Center for Microgravity Research and Education, University of Central Florida, Orlando, Florida, 32826, United States
| | - Xianhu Liu
- State Key Laboratory of Structural Analysis, Optimization and CAE Software for Industrial Equipment, National Engineering Research Center for Advanced Polymer Processing Technology, Zhengzhou University, Wenhua Road 97-1, Zhengzhou, 450002, China
| | - Limin Wu
- College of Chemistry and Chemical Engineering, College of Energy Material and Chemistry, Inner Mongolia University, Hohhot, 010021, China
- Department of Materials Science and State Key Laboratory of Molecular Engineering of Polymers, Fudan University, Shanghai, 200433, China
| | - Lei Wang
- College of Chemistry and Chemical Engineering, College of Energy Material and Chemistry, Inner Mongolia University, Hohhot, 010021, China
| |
Collapse
|
80
|
Tang Y, Jiang Z, Yuan Y, Xu L, Jin C, Chen B, Lin Z, Zao J, Du J, Zhang X, Gao X, Liang Y. Selective electrosynthesis of hydroxylamine from aqueous nitrate/nitrite by suppressing further reduction. Nat Commun 2024; 15:9800. [PMID: 39532869 PMCID: PMC11557954 DOI: 10.1038/s41467-024-54204-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2024] [Accepted: 11/01/2024] [Indexed: 11/16/2024] Open
Abstract
The electrocatalytic reduction of nitrogenous waste offers a sustainable approach to producing nitrogen-containing chemicals. The selective synthesis of high-value hydroxylamine (NH2OH) is challenging due to the instability of NH2OH as an intermediate. Here, we present a rational electrocatalyst design strategy for promoting NH2OH electrosynthesis by suppressing the competing pathways of further reduction. We screen zinc phthalocyanines (ZnPc) with a high energy barrier for NH2OH reduction by regulating their intrinsic activity. Additionally, we discover that carbon nanotube substrates exhibit significant NH3-producing activity, which can be effectively inhibited by the high coverage of ZnPc molecules. In-situ characterizations reveal that NH2OH and HNO are generated as intermediates in nitrate reduction to NH3, and NH2OH can be enriched in the ZnPc electrode. In the H-cell, the optimized ZnPc catalyst demonstrates a Faradaic efficiency (FE) of 53 ± 1.7% for NH2OH with a partial current density exceeding 270 mA cm-2 and a turnover frequency of 7.5 ± 0.2 s-1. It also enables the rapid electrosynthesis of cyclohexanone oxime from nitrite with a FE of 64 ± 1.0%.
Collapse
Affiliation(s)
- Yirong Tang
- Department of Materials Science and Engineering, Southern University of Science and Technology, Shenzhen, 518055, China
| | - Zhan Jiang
- Department of Materials Science and Engineering, Southern University of Science and Technology, Shenzhen, 518055, China.
- State Environmental Protection Key Laboratory of Water Environmental Simulation and Pollution Control, South China Institute of Environmental Sciences, Ministry of Ecology and Environment, Guangzhou, 510655, China.
| | - Yubo Yuan
- Department of Materials Science and Engineering, Southern University of Science and Technology, Shenzhen, 518055, China
| | - Li Xu
- State Key Laboratory of Clean Energy Utilization, State Environmental Protection Center for Coal-Fired Air Pollution Control, Zhejiang University, Hangzhou, 310027, China
| | - Chuyao Jin
- State Key Laboratory of Clean Energy Utilization, State Environmental Protection Center for Coal-Fired Air Pollution Control, Zhejiang University, Hangzhou, 310027, China
| | - Bulin Chen
- Department of Materials Science and Engineering, Southern University of Science and Technology, Shenzhen, 518055, China
| | - Zhichao Lin
- Department of Materials Science and Engineering, Southern University of Science and Technology, Shenzhen, 518055, China
| | - Jie Zao
- Department of Materials Science and Engineering, Southern University of Science and Technology, Shenzhen, 518055, China
| | - Jianwei Du
- State Environmental Protection Key Laboratory of Water Environmental Simulation and Pollution Control, South China Institute of Environmental Sciences, Ministry of Ecology and Environment, Guangzhou, 510655, China
| | - Xiao Zhang
- State Key Laboratory of Clean Energy Utilization, State Environmental Protection Center for Coal-Fired Air Pollution Control, Zhejiang University, Hangzhou, 310027, China.
| | - Xiang Gao
- State Key Laboratory of Clean Energy Utilization, State Environmental Protection Center for Coal-Fired Air Pollution Control, Zhejiang University, Hangzhou, 310027, China.
| | - Yongye Liang
- Department of Materials Science and Engineering, Southern University of Science and Technology, Shenzhen, 518055, China.
| |
Collapse
|
81
|
Liu Z, Huang X, Yan L, Zhang Z, Ding T, Shi G. A GO regulated bimetallic CoFe catalyst for efficient electrochemical nitrate reduction to ammonia under acidic conditions. Chem Commun (Camb) 2024; 60:13231-13234. [PMID: 39445415 DOI: 10.1039/d4cc04897k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2024]
Abstract
Electrocatalytic nitrate reduction to ammonia (ENRA) in acidic media is currently a challenge. Herein, we presented a CoFe2O4/GO catalyst that exhibited a high faradaic efficiency (95.51%) and ammonia yield rate (1268.04 μmol h-1 cm-2) for ENRA under acidic conditions. The ENRA reaction mechanism was investigated through in situ ATR-FTIR spectroscopy and isotope labeling experiments.
Collapse
Affiliation(s)
- Zhengyang Liu
- Shanghai Applied Radiation Institute, State Key Lab, Advanced Special Steel, Shanghai University, Shanghai 200444, China.
| | - Xiaohan Huang
- Shanghai Applied Radiation Institute, State Key Lab, Advanced Special Steel, Shanghai University, Shanghai 200444, China.
| | - Linghui Yan
- Shanghai Applied Radiation Institute, State Key Lab, Advanced Special Steel, Shanghai University, Shanghai 200444, China.
| | - Zehui Zhang
- Shanghai Applied Radiation Institute, State Key Lab, Advanced Special Steel, Shanghai University, Shanghai 200444, China.
| | - Tao Ding
- Shanghai Applied Radiation Institute, State Key Lab, Advanced Special Steel, Shanghai University, Shanghai 200444, China.
| | - Guosheng Shi
- Shanghai Applied Radiation Institute, State Key Lab, Advanced Special Steel, Shanghai University, Shanghai 200444, China.
- Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou 325001, China
| |
Collapse
|
82
|
Zhang J, Huang L, Tjiu WW, Wu C, Zhang M, Bin Dolmanan S, Wang S, Wang M, Xi S, Aabdin Z, Lum Y. Evidence for Distinct Active Sites on Oxide-Derived Cu for Electrochemical Nitrate Reduction. J Am Chem Soc 2024; 146:30708-30714. [PMID: 39440633 DOI: 10.1021/jacs.4c13219] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2024]
Abstract
Cu is a promising catalyst for electrochemical nitrate (NO3-) reduction. However, desorption of the nitrite (NO2-) intermediate can occur, leading to lowered ammonia productivity and Faradaic efficiency. Here, we discovered that this does not occur with oxide-derived Cu due to the presence of at least two distinct types of cooperative active sites: one for NO3- → NO2- and another for NO2- → NH3. As a result, oxide-derived Cu exhibits enhanced ammonia productivity with a mixed NO3-/NO2- feed relative to pure NO3- or NO2-. In contrast, this was not observed with a standard Cu sample, implying the presence of only a single type of active site. Our dual-site hypothesis was supported by attenuated total reflection surface enhanced infrared absorption spectroscopy and isotopic labeling experiments involving co-reduction of 15NO3-/14NO2-. We also successfully simulated our experimental results using a mathematical model involving two different adsorption sites. These findings motivate the need for further study and rational design of such active sites.
Collapse
Affiliation(s)
- Jiguang Zhang
- Department of Chemical and Biomolecular Engineering, National University of Singapore, Singapore 117585 ,Republic of Singapore
- Institute of Materials Research and Engineering,Agency for Science, Technology and Research (A*STAR), 2 Fusionopolis Way, Innovis #08-03, Singapore 138634, Republic of Singapore
| | - Linrong Huang
- Department of Chemical and Biomolecular Engineering, National University of Singapore, Singapore 117585 ,Republic of Singapore
| | - Weng Weei Tjiu
- Institute of Materials Research and Engineering,Agency for Science, Technology and Research (A*STAR), 2 Fusionopolis Way, Innovis #08-03, Singapore 138634, Republic of Singapore
| | - Chao Wu
- Institute of Sustainability for Chemicals, Energy and Environment (ISCE2),Agency for Science, Technology and Research (A*STAR), 1 Pesek Road, Singapore 627833, Republic of Singapore
| | - Mingsheng Zhang
- Institute of Materials Research and Engineering,Agency for Science, Technology and Research (A*STAR), 2 Fusionopolis Way, Innovis #08-03, Singapore 138634, Republic of Singapore
| | - Surani Bin Dolmanan
- Institute of Materials Research and Engineering,Agency for Science, Technology and Research (A*STAR), 2 Fusionopolis Way, Innovis #08-03, Singapore 138634, Republic of Singapore
| | - Sibo Wang
- Department of Chemical and Biomolecular Engineering, National University of Singapore, Singapore 117585 ,Republic of Singapore
| | - Meng Wang
- Department of Chemical and Biomolecular Engineering, National University of Singapore, Singapore 117585 ,Republic of Singapore
- Institute of Materials Research and Engineering,Agency for Science, Technology and Research (A*STAR), 2 Fusionopolis Way, Innovis #08-03, Singapore 138634, Republic of Singapore
| | - Shibo Xi
- Institute of Sustainability for Chemicals, Energy and Environment (ISCE2),Agency for Science, Technology and Research (A*STAR), 1 Pesek Road, Singapore 627833, Republic of Singapore
| | - Zainul Aabdin
- Institute of Materials Research and Engineering,Agency for Science, Technology and Research (A*STAR), 2 Fusionopolis Way, Innovis #08-03, Singapore 138634, Republic of Singapore
| | - Yanwei Lum
- Department of Chemical and Biomolecular Engineering, National University of Singapore, Singapore 117585 ,Republic of Singapore
- Institute of Materials Research and Engineering,Agency for Science, Technology and Research (A*STAR), 2 Fusionopolis Way, Innovis #08-03, Singapore 138634, Republic of Singapore
- Centre for Hydrogen Innovations, National University of Singapore, Singapore 117580, Republic of Singapore
| |
Collapse
|
83
|
Feng X, Liu J, Kong Y, Zhang Z, Zhang Z, Li S, Tong L, Gao X, Zhang J. Cu/Cu xO/Graphdiyne Tandem Catalyst for Efficient Electrocatalytic Nitrate Reduction to Ammonia. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2405660. [PMID: 38884637 DOI: 10.1002/adma.202405660] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/21/2024] [Revised: 05/23/2024] [Indexed: 06/18/2024]
Abstract
The electrocatalytic reduction reaction of nitrate (NO3 -) to ammonia (NH3) is a feasible way to achieve artificial nitrogen cycle. However, the low yield rate and poor selectivity toward NH3 product is a technical challenge. Here a graphdiyne (GDY)-based tandem catalyst featuring Cu/CuxO nanoparticles anchored to GDY support (termed Cu/CuxO/GDY) for efficient electrocatalytic NO3 - reduction is presented. A high NH3 yield rate of 25.4 mg h-1 mgcat. -1 (25.4 mg h-1 cm-2) with a Faradaic efficiency of 99.8% at an applied potential of -0.8 V versus RHE using the designed catalyst is achieved. These performance metrics outperform most reported NO3 - to NH3 catalysts in the alkaline media. Electrochemical measurements and density functional theory reveal that the NO3 - preferentially attacks Cu/CuxO, and the GDY can effectively catalyze the reduction of NO2 - to NH3. This work highlights the efficacy of GDY as a new class of tandem catalysts for the artificial nitrogen cycle and provides powerful guidelines for the design of tandem electrocatalysts.
Collapse
Affiliation(s)
- Xueting Feng
- Beijing National Laboratory for Molecular Sciences, Beijing Science and Engineering Center for Nanocarbons, College of Chemistry and Molecular Engineering, School of Materials Science and Engineering, Peking University, Beijing, 100871, P. R. China
| | - Jiyuan Liu
- School of Materials Science and Engineering, Nanyang Technological University, Singapore, 639798, Singapore
| | - Ya Kong
- Beijing National Laboratory for Molecular Sciences, Beijing Science and Engineering Center for Nanocarbons, College of Chemistry and Molecular Engineering, School of Materials Science and Engineering, Peking University, Beijing, 100871, P. R. China
| | - Zixuan Zhang
- Beijing National Laboratory for Molecular Sciences, Beijing Science and Engineering Center for Nanocarbons, College of Chemistry and Molecular Engineering, School of Materials Science and Engineering, Peking University, Beijing, 100871, P. R. China
| | - Zedong Zhang
- Beijing National Laboratory for Molecular Sciences, Beijing Science and Engineering Center for Nanocarbons, College of Chemistry and Molecular Engineering, School of Materials Science and Engineering, Peking University, Beijing, 100871, P. R. China
- Department of Chemistry, Tsinghua University, Beijing, 100084, P. R. China
| | - Shuzhou Li
- School of Materials Science and Engineering, Nanyang Technological University, Singapore, 639798, Singapore
| | - Lianming Tong
- Beijing National Laboratory for Molecular Sciences, Beijing Science and Engineering Center for Nanocarbons, College of Chemistry and Molecular Engineering, School of Materials Science and Engineering, Peking University, Beijing, 100871, P. R. China
| | - Xin Gao
- Beijing National Laboratory for Molecular Sciences, Beijing Science and Engineering Center for Nanocarbons, College of Chemistry and Molecular Engineering, School of Materials Science and Engineering, Peking University, Beijing, 100871, P. R. China
| | - Jin Zhang
- Beijing National Laboratory for Molecular Sciences, Beijing Science and Engineering Center for Nanocarbons, College of Chemistry and Molecular Engineering, School of Materials Science and Engineering, Peking University, Beijing, 100871, P. R. China
| |
Collapse
|
84
|
Xiong Y, Wang Y, Sun M, Chen J, Zhou J, Hao F, Liu F, Lu P, Meng X, Guo L, Liu Y, Xi S, Zhang Q, Huang B, Fan Z. Regulating the Electrochemical Nitrate Reduction Performance with Controllable Distribution of Unconventional Phase Copper on Alloy Nanostructures. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2407889. [PMID: 39240011 DOI: 10.1002/adma.202407889] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/03/2024] [Revised: 08/07/2024] [Indexed: 09/07/2024]
Abstract
Electrochemical nitrate reduction reaction (NO3RR) is emerging as a promising strategy for nitrate removal and ammonia (NH3) production using renewable electricity. Although great progresses have been achieved, the crystal phase effect of electrocatalysts on NO3RR remains rarely explored. Here, the epitaxial growth of unconventional 2H Cu on hexagonal close-packed (hcp) IrNi template, resulting in the formation of three IrNiCu@Cu nanostructures, is reported. IrNiCu@Cu-20 shows superior catalytic performance, with NH3 Faradaic efficiency (FE) of 86% at -0.1 (vs reversible hydrogen electrode [RHE]) and NH3 yield rate of 687.3 mmol gCu -1 h-1, far better than common face-centered cubic Cu. In sharp contrast, IrNiCu@Cu-30 and IrNiCu@Cu-50 covered by hcp Cu shell display high selectivity toward nitrite (NO2 -), with NO2 - FE above 60% at 0.1 (vs RHE). Theoretical calculations have demonstrated that the IrNiCu@Cu-20 has the optimal electronic structures for NO3RR due to the highest d-band center and strongest reaction trend with the lowest energy barriers. The high electroactivity of IrNiCu@Cu-20 originates from the abundant low coordination of Cu sites on the surface, which guarantees the fast electron transfer to accelerate the intermediate conversions. This work provides a feasible tactic to regulate the product distribution of NO3RR by crystal phase engineering of electrocatalysts.
Collapse
Affiliation(s)
- Yuecheng Xiong
- Department of Chemistry, City University of Hong Kong, Kowloon, Hong Kong SAR, 999077, China
- Hong Kong Branch of National Precious Metals Material Engineering Research Center (NPMM), City University of Hong Kong, Kowloon, Hong Kong SAR, 999077, China
| | - Yunhao Wang
- Department of Chemistry, City University of Hong Kong, Kowloon, Hong Kong SAR, 999077, China
| | - Mingzi Sun
- Department of Applied Biology and Chemical Technology, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong SAR, 999077, China
| | - Jing Chen
- Institute of Physics, Beijing National Laboratory for Condensed Matter Physics, Chinese Academy of Sciences, Beijing, 100190, China
| | - Jingwen Zhou
- Department of Chemistry, City University of Hong Kong, Kowloon, Hong Kong SAR, 999077, China
- Hong Kong Branch of National Precious Metals Material Engineering Research Center (NPMM), City University of Hong Kong, Kowloon, Hong Kong SAR, 999077, China
| | - Fengkun Hao
- Department of Chemistry, City University of Hong Kong, Kowloon, Hong Kong SAR, 999077, China
| | - Fu Liu
- Department of Chemistry, City University of Hong Kong, Kowloon, Hong Kong SAR, 999077, China
| | - Pengyi Lu
- Department of Chemistry, City University of Hong Kong, Kowloon, Hong Kong SAR, 999077, China
- Hong Kong Branch of National Precious Metals Material Engineering Research Center (NPMM), City University of Hong Kong, Kowloon, Hong Kong SAR, 999077, China
| | - Xiang Meng
- Department of Chemistry, City University of Hong Kong, Kowloon, Hong Kong SAR, 999077, China
- Hong Kong Branch of National Precious Metals Material Engineering Research Center (NPMM), City University of Hong Kong, Kowloon, Hong Kong SAR, 999077, China
| | - Liang Guo
- Department of Chemistry, City University of Hong Kong, Kowloon, Hong Kong SAR, 999077, China
- Hong Kong Branch of National Precious Metals Material Engineering Research Center (NPMM), City University of Hong Kong, Kowloon, Hong Kong SAR, 999077, China
| | - Yuqian Liu
- Department of Chemistry, City University of Hong Kong, Kowloon, Hong Kong SAR, 999077, China
- Hong Kong Branch of National Precious Metals Material Engineering Research Center (NPMM), City University of Hong Kong, Kowloon, Hong Kong SAR, 999077, China
| | - Shibo Xi
- Institute of Chemical and Engineering Sciences, A*STAR, 1 Pesek Road, Jurong Island, Singapore, 627833, Singapore
| | - Qinghua Zhang
- Institute of Physics, Beijing National Laboratory for Condensed Matter Physics, Chinese Academy of Sciences, Beijing, 100190, China
| | - Bolong Huang
- Department of Applied Biology and Chemical Technology, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong SAR, 999077, China
| | - Zhanxi Fan
- Department of Chemistry, City University of Hong Kong, Kowloon, Hong Kong SAR, 999077, China
- Hong Kong Branch of National Precious Metals Material Engineering Research Center (NPMM), City University of Hong Kong, Kowloon, Hong Kong SAR, 999077, China
- Hong Kong Institute for Clean Energy, City University of Hong Kong, Kowloon, Hong Kong SAR, 999077, China
- City University of Hong Kong Shenzhen Research Institute, Shenzhen, 518057, China
| |
Collapse
|
85
|
Yan Q, Zhao R, Yu L, Zhao Z, Liu L, Xi J. Enhancing Compatibility of Two-Step Tandem Catalytic Nitrate Reduction to Ammonia Over P-Cu/Co(OH) 2. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2408680. [PMID: 39258370 DOI: 10.1002/adma.202408680] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/18/2024] [Revised: 09/02/2024] [Indexed: 09/12/2024]
Abstract
Electrochemical nitrate reduction reaction (NO3RR) is a promising approach to realize ammonia generation and wastewater treatment. However, the transformation from NO3 - to NH3 involves multiple proton-coupled electron transfer processes and by-products (NO2 -, H2, etc.), making high ammonia selectivity a challenge. Herein, a two-phase nanoflower P-Cu/Co(OH)2 electrocatalyst consisting of P-Cu clusters and P-Co(OH)2 nanosheets is designed to match the two-step tandem process (NO3 - to NO2 - and NO2 - to NH3) more compatible, avoiding excessive NO2 - accumulation and optimizing the whole tandem reaction. Focusing on the initial 2e- process, the inhibited *NO2 desorption on Cu sites in P-Cu gives rise to the more appropriate NO2 - released in electrolyte. Subsequently, P-Co(OH)2 exhibits a superior capacity for trapping and transforming the desorbed NO2 - during the latter 6e- process due to the thermodynamic advantage and contributions of active hydrogen. In 1 m KOH + 0.1 m NO3 -, P-Cu/Co(OH)2 leads to superior NH3 yield rate of 42.63 mg h- 1 cm- 2 and NH3 Faradaic efficiency of 97.04% at -0.4 V versus the reversible hydrogen electrode. Such a well-matched two-step process achieves remarkable NH3 synthesis performance from the perspective of optimizing the tandem catalytic reaction, offering a novel guideline for the design of NO3RR electrocatalysts.
Collapse
Affiliation(s)
- Qiuyu Yan
- Institute of Materials Research, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen, 518055, China
| | - Rundong Zhao
- Institute of Materials Research, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen, 518055, China
| | - Lihong Yu
- School of Materials and Environmental Engineering, Shenzhen Polytechnic, Shenzhen, 518055, China
| | - Zongyan Zhao
- Faculty of Materials Science and Engineering, Kunming University of Science and Technology, Kunming, 650093, China
| | - Le Liu
- Institute of Materials Research, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen, 518055, China
| | - Jingyu Xi
- Institute of Materials Research, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen, 518055, China
| |
Collapse
|
86
|
Liu Y, Zhuang Z, Liu Y, Liu N, Li Y, Cheng Y, Yu J, Yu R, Wang D, Li H. Shear-Strained Pd Single-Atom Electrocatalysts for Nitrate Reduction to Ammonia. Angew Chem Int Ed Engl 2024; 63:e202411396. [PMID: 39010646 DOI: 10.1002/anie.202411396] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2024] [Revised: 07/15/2024] [Accepted: 07/15/2024] [Indexed: 07/17/2024]
Abstract
Electrochemical nitrate reduction method (NitRR) is a low-carbon, environmentally friendly, and efficient method for synthesizing ammonia, which has received widespread attention in recent years. Copper-based catalysts have a leading edge in nitrate reduction due to their good adsorption of *NO3. However, the formation of active hydrogen (*H) on Cu surfaces is difficult and insufficient, resulting in a large amount of the by-product NO2 -. In this work, Pd single atoms suspended on the interlayer unsaturated bonds of CuO atoms formed due to dislocations (Pd-CuO) were prepared by low temperature treatment, and the Pd single atoms located on the dislocations were subjected to shear stress and the dynamic effect of support formation to promote the conversion of nitrate into ammonia. The catalysis had an ammonia yield of 4.2 mol. gcat -1. h-1, and a Faraday efficiency of 90 % for ammonia production at -0.5 V vs. RHE. Electrochemical in situ characterization and theoretical calculations indicate that the dynamic effects of Pd single atoms and carriers under shear stress obviously promote the production of active hydrogen, reduce the reaction energy barrier of the decision-making step for nitrate conversion to ammonia, further promote ammonia generation.
Collapse
Affiliation(s)
- Yunliang Liu
- Institute for Energy Research, Jiangsu University, 212013, Zhenjiang, China
| | - Zechao Zhuang
- Department of Chemistry, Tsinghua University, 100084, Beijing, China
- Department of Chemical Engineering, Columbia University, 10027, New York, USA
| | - Yixian Liu
- Institute for Energy Research, Jiangsu University, 212013, Zhenjiang, China
| | - Naiyun Liu
- Institute for Energy Research, Jiangsu University, 212013, Zhenjiang, China
| | - Yaxi Li
- Institute for Energy Research, Jiangsu University, 212013, Zhenjiang, China
| | - Yuanyuan Cheng
- Institute for Energy Research, Jiangsu University, 212013, Zhenjiang, China
| | - Jingwen Yu
- Institute for Energy Research, Jiangsu University, 212013, Zhenjiang, China
| | - Ruohan Yu
- The Sanya Science and Education Innovation Park, Wuhan University of Technology, 572000, Sanya, China
| | - Dingsheng Wang
- Department of Chemistry, Tsinghua University, 100084, Beijing, China
| | - Haitao Li
- Institute for Energy Research, Jiangsu University, 212013, Zhenjiang, China
| |
Collapse
|
87
|
Hao J, Wang T, Yu R, Cai J, Gao G, Zhuang Z, Kang Q, Lu S, Liu Z, Wu J, Wu G, Du M, Wang D, Zhu H. Integrating few-atom layer metal on high-entropy alloys to catalyze nitrate reduction in tandem. Nat Commun 2024; 15:9020. [PMID: 39424628 PMCID: PMC11489584 DOI: 10.1038/s41467-024-53427-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2024] [Accepted: 10/11/2024] [Indexed: 10/21/2024] Open
Abstract
While high-entropy alloy (HEA) catalysts seem to have the potential to break linear scaling relationships (LSRs) due to their structural complexity, the weighted averaging of properties among multiple principal components actually makes it challenging to diverge from the symmetry dependencies imposed by the LSRs. Herein, we develop a 'surface entropy reduction' method to induce the exsolution of a component with weak affinity for others, resulting in the formation of few-atom-layer metal (FL-M) on the surface of HEAs. These exsolved FL-M surpass the confines of the original configurational space of conventional HEAs, and collaborate with the HEA substrate, serving as geometrically separated active sites for multiple intermediates in a complex reaction. This FL-M-covered HEA shows an outstanding performance for electrocatalytic reduction of nitrate to ammonia (NH3) with a Faradaic efficiency of 92.7%, an NH3 yield rate of 2.45 mmol h-1 mgcat.-1, and high long-term stability (>200 h). Our work achieves the precise manipulation of atomic arrangement, thereby expanding both the chemical space occupied by known HEA catalysts and their potential application scenarios.
Collapse
Affiliation(s)
- Jiace Hao
- Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, School of Chemical and Material Engineering, Jiangnan University, Wuxi, China
| | - Tongde Wang
- Shanghai Key Laboratory of Special Artificial Microstructure Materials and Technology, Key Laboratory of Road and Traffic Engineering of the Ministry of Education, Tongji University, Shanghai, China
| | - Ruohan Yu
- Nanostructure Research Centre, Wuhan University of Technology, Wuhan, P. R. China
| | - Jian Cai
- Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, School of Chemical and Material Engineering, Jiangnan University, Wuxi, China
| | - Guohua Gao
- Shanghai Key Laboratory of Special Artificial Microstructure Materials and Technology, Key Laboratory of Road and Traffic Engineering of the Ministry of Education, Tongji University, Shanghai, China.
| | - Zechao Zhuang
- Department of Chemistry, Tsinghua University, Beijing, P. R. China.
- Department of Chemical Engineering, Columbia University, New York, NY, USA.
| | - Qi Kang
- Institute of New Energy for Vehicles, School of Materials Science and Engineering, Tongji University, Shanghai, China
| | - Shuanglong Lu
- Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, School of Chemical and Material Engineering, Jiangnan University, Wuxi, China
| | - Zhenhui Liu
- College of Material Science and Engineering, Nanjing University of Aeronautics and Astronautics, Nanjing, P. R. China
| | - Jinsong Wu
- Nanostructure Research Centre, Wuhan University of Technology, Wuhan, P. R. China
| | - Guangming Wu
- Shanghai Key Laboratory of Special Artificial Microstructure Materials and Technology, Key Laboratory of Road and Traffic Engineering of the Ministry of Education, Tongji University, Shanghai, China
| | - Mingliang Du
- Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, School of Chemical and Material Engineering, Jiangnan University, Wuxi, China
| | - Dingsheng Wang
- Department of Chemistry, Tsinghua University, Beijing, P. R. China.
| | - Han Zhu
- Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, School of Chemical and Material Engineering, Jiangnan University, Wuxi, China.
| |
Collapse
|
88
|
Yin S, Guan Z, Zhu Y, Guo D, Chen X, Wang S. Highly Efficient Electrocatalytic Nitrate Reduction to Ammonia: Group VIII-Based Catalysts. ACS NANO 2024; 18:27833-27852. [PMID: 39365283 DOI: 10.1021/acsnano.4c09247] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/05/2024]
Abstract
The accumulation of nitrates in the environment causes serious health and environmental problems. The electrochemical nitrate reduction reaction (e-NO3RR) has received attention for its ability to convert nitrate to value-added ammonia with renewable energy. The key to effective catalytic efficiency is the choice of materials. Group VIII-based catalysts demonstrate great potential for application in e-NO3RR because of their high activity, low cost, and good electron transfer capability. This review summarizes the Group VIII catalysts, including monatomic, bimetallic, oxides, phosphides, and other composites. On this basis, strategies to enhance the intrinsic activity of the catalysts through coordination environment modulation, synergistic effects, defect engineering and hybridization are discussed. Meanwhile, the ammonia recovery process is summarized. Finally, the current research status in this field is prospected and summarized. This review aims to realize the large-scale application of nitrate electrocatalytic reduction in industrial wastewater.
Collapse
Affiliation(s)
- Shiyue Yin
- Key Laboratory of Carbon Materials of Zhejiang Province, College of Chemistry and Materials Engineering, Wenzhou University, Wenzhou 325035, China
| | - Zhixi Guan
- Key Laboratory of Carbon Materials of Zhejiang Province, College of Chemistry and Materials Engineering, Wenzhou University, Wenzhou 325035, China
| | - Yuchuan Zhu
- Key Laboratory of Carbon Materials of Zhejiang Province, College of Chemistry and Materials Engineering, Wenzhou University, Wenzhou 325035, China
| | - Daying Guo
- Key Laboratory of Carbon Materials of Zhejiang Province, College of Chemistry and Materials Engineering, Wenzhou University, Wenzhou 325035, China
| | - Xi'an Chen
- Key Laboratory of Carbon Materials of Zhejiang Province, College of Chemistry and Materials Engineering, Wenzhou University, Wenzhou 325035, China
| | - Shun Wang
- Key Laboratory of Carbon Materials of Zhejiang Province, College of Chemistry and Materials Engineering, Wenzhou University, Wenzhou 325035, China
| |
Collapse
|
89
|
Lei F, Huai R, Zhang M, Wang Y, Yu J, Hou Y, Xie J, Hao P, Tang B. Accelerated ammonia electrosynthesis of cobalt hydroxide through electronic modulation with ultralow noble metal doping. Chem Commun (Camb) 2024; 60:12000-12003. [PMID: 39354870 DOI: 10.1039/d4cc04109g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/03/2024]
Abstract
This study introduces an innovative method to ammonia production through electrocatalytic reduction of nitrate using Ru-doped Co(OH)2. The incorporation of Ru into the Co(OH)2 was found to markedly enhance the catalytic activity by optimizing the electronic structure and increasing the number of active sites.
Collapse
Affiliation(s)
- Fengcai Lei
- College of Chemistry, Chemical Engineering and Materials Science, Key Laboratory of Molecular and Nano Probes (Ministry of Education), Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong, Institute of Molecular and Nano Science, Shandong Normal University, Jinan, Shandong, 250014, P. R. China.
| | - Ruixue Huai
- College of Chemistry, Chemical Engineering and Materials Science, Key Laboratory of Molecular and Nano Probes (Ministry of Education), Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong, Institute of Molecular and Nano Science, Shandong Normal University, Jinan, Shandong, 250014, P. R. China.
| | - Menghan Zhang
- College of Chemistry, Chemical Engineering and Materials Science, Key Laboratory of Molecular and Nano Probes (Ministry of Education), Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong, Institute of Molecular and Nano Science, Shandong Normal University, Jinan, Shandong, 250014, P. R. China.
| | - Ying Wang
- College of Chemistry, Chemical Engineering and Materials Science, Key Laboratory of Molecular and Nano Probes (Ministry of Education), Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong, Institute of Molecular and Nano Science, Shandong Normal University, Jinan, Shandong, 250014, P. R. China.
| | - Jing Yu
- School of Physics and Electronics, Collaborative Innovation Center of Light Manipulations and Applications, Shandong Normal University, Jinan 250014, P. R. China
| | - Yuhan Hou
- College of Chemistry, Chemical Engineering and Materials Science, Key Laboratory of Molecular and Nano Probes (Ministry of Education), Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong, Institute of Molecular and Nano Science, Shandong Normal University, Jinan, Shandong, 250014, P. R. China.
| | - Junfeng Xie
- College of Chemistry, Chemical Engineering and Materials Science, Key Laboratory of Molecular and Nano Probes (Ministry of Education), Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong, Institute of Molecular and Nano Science, Shandong Normal University, Jinan, Shandong, 250014, P. R. China.
| | - Pin Hao
- College of Chemistry, Chemical Engineering and Materials Science, Key Laboratory of Molecular and Nano Probes (Ministry of Education), Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong, Institute of Molecular and Nano Science, Shandong Normal University, Jinan, Shandong, 250014, P. R. China.
| | - Bo Tang
- College of Chemistry, Chemical Engineering and Materials Science, Key Laboratory of Molecular and Nano Probes (Ministry of Education), Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong, Institute of Molecular and Nano Science, Shandong Normal University, Jinan, Shandong, 250014, P. R. China.
- Laoshan Laboratory, Qingdao 266237, Shandong, P. R. China
| |
Collapse
|
90
|
Li D, Zhang XY, Xie JF, Chen JJ, Zhao QB, Liu L, Wang WK, Li WW, Yu HQ. Ultrathin cobalt-based nanosheets containing surface oxygen promoted near-complete nitrate removal. J Colloid Interface Sci 2024; 672:383-391. [PMID: 38848622 DOI: 10.1016/j.jcis.2024.06.020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2024] [Revised: 05/28/2024] [Accepted: 06/03/2024] [Indexed: 06/09/2024]
Abstract
Electrocatalytic nitrate removal offers a sustainable approach to alleviate nitrate pollution and to boost the anthropogenic nitrogen cycle, but it still suffers from limited removal efficiency at high rates, especially at low levels of nitrate. Herein, we report the near-complete removal of low-level nitrate (10-200 ppm) within 2 h using ultrathin cobalt-based nanosheets (CoNS) containing surface oxygen, which was fabricated from in-situ electrochemical reconstruction of conventional nanosheets. The average nitrate removal of 99.7 % with ammonia selectivity of 98.2 % in 9 cyclic runs ranked in the best of reported catalysts. Powered by a solar cell under the winter sun, the full-cell nitrate electrolysis system, equipped with ultrathin CoNS, achieved 100 % nitrogen gas selectivity and 99.6 % total nitrogen removal. The in-situ Fourier Transform Infrared included experiments and theoretical computations revealed that in-situ electrochemical reconstruction not only increased electrochemical active surface area but also constructed surface oxygen in active sites, leading to enhanced stabilization of nitrate adsorption in a symmetry breaking configuration and charge transfer, contributing to near-complete nitrate removal on ultrathin CoNS. This work provides a strategy to design ultrathin nanocatalysts for nitrate removal.
Collapse
Affiliation(s)
- Ding Li
- CAS Key Laboratory of Urban Pollutant Conversion, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xin-Yu Zhang
- CAS Key Laboratory of Urban Pollutant Conversion, Department of Environmental Science and Technology, University of Science and Technology of China, Hefei 230026, China
| | - Jia-Fang Xie
- CAS Key Laboratory of Urban Pollutant Conversion, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China; University of Chinese Academy of Sciences, Beijing 100049, China; Research Center of Urban Carbon Neutrality, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China.
| | - Jie-Jie Chen
- CAS Key Laboratory of Urban Pollutant Conversion, Department of Environmental Science and Technology, University of Science and Technology of China, Hefei 230026, China
| | - Quan-Bao Zhao
- CAS Key Laboratory of Urban Pollutant Conversion, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Lin Liu
- CAS Key Laboratory of Urban Pollutant Conversion, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Wei-Kang Wang
- Shanghai Key Lab for Urban Ecological Processes and Eco-Restoration, Shanghai Engineering Research Center of Biotransformation of Organic Solid Waste, School of Ecological and Environmental Sciences, East China Normal University, Shanghai 200241, China
| | - Wen-Wei Li
- CAS Key Laboratory of Urban Pollutant Conversion, Department of Environmental Science and Technology, University of Science and Technology of China, Hefei 230026, China
| | - Han-Qing Yu
- CAS Key Laboratory of Urban Pollutant Conversion, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China; CAS Key Laboratory of Urban Pollutant Conversion, Department of Environmental Science and Technology, University of Science and Technology of China, Hefei 230026, China.
| |
Collapse
|
91
|
Qiao M, Zhu D, Guo C. Advances in designing efficient electrocatalysts for nitrate reduction from a theoretical perspective. Chem Commun (Camb) 2024; 60:11642-11654. [PMID: 39292122 DOI: 10.1039/d4cc04046e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/19/2024]
Abstract
Ammonia (NH3), an important raw material for producing fertilizers and useful chemicals, plays a crucial role in modern human society. As the Haber-Bosch process is energy- and emission-intensive, it is critical to develop a green and energy-efficient route for massive NH3 production under ambient conditions. The electrochemical nitrate reduction reaction to ammonia (eNO3-RR) is a potential way for producing NH3 while harmonizing the nitrogen cycle. In this feature article, we summarize the advances in designing eNO3-RR electrocatalysts from a theoretical perspective. First, the mechanisms and pathways of the eNO3-RR are summarized. Then, the recently developed electrocatalysts, including Cu-based catalysts, single-atom catalysts (SACs), dual-atom catalysts (DACs), and MXene catalysts, are categorically discussed. Finally, the challenges and prospects of designing highly efficient eNO3-RR catalysts through theoretical simulations are discussed. This feature article will provide valuable guidance for the future development of advanced eNO3-RR electrocatalysts for NH3 production.
Collapse
Affiliation(s)
- Man Qiao
- School of Chemistry and Materials Science, Institute of Advanced Materials and Flexible Electronics (IAMFE), Nanjing University of Information Science and Technology, Nanjing 210044, China.
| | - Dongdong Zhu
- School of Chemistry and Materials Science, Institute of Advanced Materials and Flexible Electronics (IAMFE), Nanjing University of Information Science and Technology, Nanjing 210044, China.
| | - Chunxian Guo
- Institute of Materials Science and Devices, School of Materials Science and Engineering, Suzhou University of Science and Technology, Suzhou 215009, China.
| |
Collapse
|
92
|
Jang W, Oh D, Lee J, Kim J, Matthews JE, Kim H, Lee SW, Lee S, Xu Y, Yu JM, Hwang SW, Jaramillo TF, Jang JW, Cho S. Homogeneously Mixed Cu-Co Bimetallic Catalyst Derived from Hydroxy Double Salt for Industrial-Level High-Rate Nitrate-to-Ammonia Electrosynthesis. J Am Chem Soc 2024; 146:27417-27428. [PMID: 39177778 DOI: 10.1021/jacs.4c07061] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/24/2024]
Abstract
Electrocatalytic nitrate reduction reaction (NO3RR) presents an innovative approach for sustainable NH3 production. However, selective NH3 production is hindered by the multiple intermediates involved in the NO3RR process and the competitive hydrogen evolution reaction. Hence, the development of highly efficient NO3RR catalysts is paramount. Herein, we report highly efficient bimetallic catalysts derived from hydroxy double salt (HDS). Under NO3RR conditions, Cu1Co1-HDS undergoes in situ reconstruction, forming nanocomposites of homogeneously distributed metallic Cu0 and Co(OH)2. Reconstruction-induced Cu0 rapidly converts NO3- to NO2-, which is further hydrogenated to NH3 by Co(OH)2. Homogeneously mixed Cu and Co species maximize this synergistic effect, achieving outstanding NO3RR performance including the highest NH3 yield rate (4.625 mmol h-1 cm-2) reported for powder-type NO3RR catalysts. Integration of Cu1Co1-HDS with a commercial Si solar cell attained 4.53% solar-to-ammonia efficiency from industrial wastewater-level concentrations of NO3- (2000 ppm), demonstrating practical application potential for solar-driven NH3 production. This study provides a strategy for enhancing the NH3 yield rate by optimizing the compositions and distributions of Cu and Co.
Collapse
Affiliation(s)
- Wonsik Jang
- Department of Materials Science and Engineering, Ulsan National Institute of Science and Technology (UNIST), Ulsan 44919, Republic of Korea
| | - Dongrak Oh
- School of Energy and Chemical Engineering, Ulsan National Institute of Science and Technology (UNIST), Ulsan 44919, Republic of Korea
- Department of Chemical Engineering, Stanford University, Stanford, California 94305, United States
- SUNCAT Center for Interface Science and Catalysis, SLAC National Accelerator Laboratory, Menlo Park, California 94025, United States
| | - Jinyoung Lee
- School of Energy and Chemical Engineering, Ulsan National Institute of Science and Technology (UNIST), Ulsan 44919, Republic of Korea
| | - Jongkyoung Kim
- Department of Materials Science and Engineering, Ulsan National Institute of Science and Technology (UNIST), Ulsan 44919, Republic of Korea
| | - Jesse E Matthews
- Department of Chemical Engineering, Stanford University, Stanford, California 94305, United States
- SUNCAT Center for Interface Science and Catalysis, SLAC National Accelerator Laboratory, Menlo Park, California 94025, United States
| | - Hyoseok Kim
- Department of Materials Science and Engineering, Ulsan National Institute of Science and Technology (UNIST), Ulsan 44919, Republic of Korea
| | - Sang-Won Lee
- Department of Chemical Engineering, Stanford University, Stanford, California 94305, United States
- SUNCAT Center for Interface Science and Catalysis, SLAC National Accelerator Laboratory, Menlo Park, California 94025, United States
| | - Seunghyun Lee
- Department of Materials Science and Engineering, Ulsan National Institute of Science and Technology (UNIST), Ulsan 44919, Republic of Korea
| | - Yi Xu
- Department of Chemical Engineering, Stanford University, Stanford, California 94305, United States
- SUNCAT Center for Interface Science and Catalysis, SLAC National Accelerator Laboratory, Menlo Park, California 94025, United States
| | - Je Min Yu
- School of Energy and Chemical Engineering, Ulsan National Institute of Science and Technology (UNIST), Ulsan 44919, Republic of Korea
| | - Seon Woo Hwang
- School of Energy and Chemical Engineering, Ulsan National Institute of Science and Technology (UNIST), Ulsan 44919, Republic of Korea
| | - Thomas F Jaramillo
- Department of Chemical Engineering, Stanford University, Stanford, California 94305, United States
- SUNCAT Center for Interface Science and Catalysis, SLAC National Accelerator Laboratory, Menlo Park, California 94025, United States
| | - Ji-Wook Jang
- School of Energy and Chemical Engineering, Ulsan National Institute of Science and Technology (UNIST), Ulsan 44919, Republic of Korea
| | - Seungho Cho
- Department of Materials Science and Engineering, Ulsan National Institute of Science and Technology (UNIST), Ulsan 44919, Republic of Korea
| |
Collapse
|
93
|
Liu J, Zhang S, Jiang Y, Li W, Jin M, Ding J, Zhang Y, Wang G, Zhang H. Ambient electrosynthesis of urea with nitrate and carbon dioxide over a CuRu alloy catalyst. Chem Commun (Camb) 2024; 60:11592-11595. [PMID: 39318166 DOI: 10.1039/d4cc04024d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/26/2024]
Abstract
Urea synthesis under mild conditions starting from the electrocatalytic coupling of carbon dioxide (CO2) and nitrate represents a promising alternative experimentally to conquer the huge energy consumption in the industrial Haber-Bosch process. Herein, an electrocatalyst consisting of CuRu alloy nanoparticles on carbonized cellulose (CuRu-CBC) is designed and realizes the urea yield rate of 394.85 ± 16.19 μg h-1 mgcat-1 and an ultrahigh faradaic efficiency (FE) of 68.94 ± 3.05% at -0.55 V (vs. RHE) under ambient conditions. Further XAS analyses indicated that the favored internal electron transfer between Cu and Ru dual active sites significantly improved the C-N coupling activity. Various characterizations, including in situ ATR-SEIRAS and DEMS analysis highlighted the favorable generation of key intermediates *CO and *NH, making CuRu-CBC a promising catalyst for urea synthesis.
Collapse
Affiliation(s)
- Jiafang Liu
- Key Laboratory of Materials Physics, Centre for Environmental and Energy Nanomaterials, Anhui Key Laboratory of Nanomaterials and Nanotechnology, CAS Center for Excellence in Nanoscience Institute of Solid State Physics, HFIPS, Chinese Academy of Sciences, Hefei 230031, P. R. China.
- University of Science and Technology of China, P. R. China
| | - Shengbo Zhang
- Key Laboratory of Materials Physics, Centre for Environmental and Energy Nanomaterials, Anhui Key Laboratory of Nanomaterials and Nanotechnology, CAS Center for Excellence in Nanoscience Institute of Solid State Physics, HFIPS, Chinese Academy of Sciences, Hefei 230031, P. R. China.
- University of Science and Technology of China, P. R. China
| | - Yong Jiang
- Shanghai Synchrotron Radiation Facility, Shanghai Advanced Research Institute, Chinese Academy of Sciences, Shanghai 201800, P. R. China
| | - Wenyi Li
- Key Laboratory of Materials Physics, Centre for Environmental and Energy Nanomaterials, Anhui Key Laboratory of Nanomaterials and Nanotechnology, CAS Center for Excellence in Nanoscience Institute of Solid State Physics, HFIPS, Chinese Academy of Sciences, Hefei 230031, P. R. China.
- University of Science and Technology of China, P. R. China
| | - Meng Jin
- Key Laboratory of Materials Physics, Centre for Environmental and Energy Nanomaterials, Anhui Key Laboratory of Nanomaterials and Nanotechnology, CAS Center for Excellence in Nanoscience Institute of Solid State Physics, HFIPS, Chinese Academy of Sciences, Hefei 230031, P. R. China.
- University of Science and Technology of China, P. R. China
| | - Jun Ding
- Key Laboratory of Materials Physics, Centre for Environmental and Energy Nanomaterials, Anhui Key Laboratory of Nanomaterials and Nanotechnology, CAS Center for Excellence in Nanoscience Institute of Solid State Physics, HFIPS, Chinese Academy of Sciences, Hefei 230031, P. R. China.
- University of Science and Technology of China, P. R. China
| | - Yunxia Zhang
- Key Laboratory of Materials Physics, Centre for Environmental and Energy Nanomaterials, Anhui Key Laboratory of Nanomaterials and Nanotechnology, CAS Center for Excellence in Nanoscience Institute of Solid State Physics, HFIPS, Chinese Academy of Sciences, Hefei 230031, P. R. China.
- University of Science and Technology of China, P. R. China
| | - Guozhong Wang
- Key Laboratory of Materials Physics, Centre for Environmental and Energy Nanomaterials, Anhui Key Laboratory of Nanomaterials and Nanotechnology, CAS Center for Excellence in Nanoscience Institute of Solid State Physics, HFIPS, Chinese Academy of Sciences, Hefei 230031, P. R. China.
- University of Science and Technology of China, P. R. China
| | - Haimin Zhang
- Key Laboratory of Materials Physics, Centre for Environmental and Energy Nanomaterials, Anhui Key Laboratory of Nanomaterials and Nanotechnology, CAS Center for Excellence in Nanoscience Institute of Solid State Physics, HFIPS, Chinese Academy of Sciences, Hefei 230031, P. R. China.
- University of Science and Technology of China, P. R. China
| |
Collapse
|
94
|
Liu XB, Zhao R, Xu MM, Wei SX, Cheng XF, He JH. Conversion of Nitrate to Ammonia by Amidinothiourea-Coordinated Metal Molecular Electrocatalysts with d-π Conjugation. ACS APPLIED MATERIALS & INTERFACES 2024. [PMID: 39365186 DOI: 10.1021/acsami.4c11747] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/05/2024]
Abstract
The electrochemical reduction of nitrate to ammonia (NO3RR) provides a desired alternative of the traditional Haber-Bosch route for ammonia production, igniting a research boom in the development of electrocatalysts with high activity. Among them, molecular electrocatalysts hold considerable promise for the NO3RR, suppressing the competing hydrogen evolution reaction. However, the complicated synthesis procedure, usage of environmentally unfriendly organic solvents, and poor stability of Cu-based molecular electrocatalysts greatly limit their employment in NO3RR, and the development of desired Cu-based molecular catalysts remains challenging. Herein, a simple nonorganic solvent involving a one-step strategy was proposed to synthesize d-π-conjugated molecular electrocatalysts metal-amidinothiourea (M-ATU). Cu-ATU is composed of Cu coordinated with two S and two N atoms, whereas Ni-ATU is formed by Ni with four N atoms from two ATU ligands. Remarkably, Cu-ATU with a Cu-N2S2 coordination configuration exhibits superior NO3RR activity with a NH3 yield rate of 159.8 mg h-1 mgcat-1 (-1.54 V) and Faradaic efficiency of 91.7% (-1.34 V), outperforming previously reported molecular catalysts. Compared to Ni-ATU, Cu-ATU transfers more electrons to the *NO intermediate, effectively breaking the strong sp2 hybridization system and weakening the energy of N═O bonds. The increase in free energy of *NO reduced the energy barriers of the rate-determining step, facilitating the further hydrogenation process over Cu-ATU. Our work opened up a new horizon for exploring molecular electrocatalysts for nitrate activation and paved a way for the in-depth understanding of catalytic behaviors, aligning more closely with industrial demands.
Collapse
Affiliation(s)
- Xue-Bo Liu
- College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou, Jiangsu 215123, P. R. China
| | - Rui Zhao
- College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou, Jiangsu 215123, P. R. China
| | - Min-Min Xu
- College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou, Jiangsu 215123, P. R. China
| | - Shang-Xiong Wei
- College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou, Jiangsu 215123, P. R. China
| | - Xue-Feng Cheng
- College of Chemistry and Chemical Engineering, Huaiyin Normal University, Huaian, Jiangsu 223000, P. R. China
| | - Jing-Hui He
- College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou, Jiangsu 215123, P. R. China
| |
Collapse
|
95
|
Zheng S, Yang X, Shi ZZ, Ding H, Pan F, Li JF. The Loss of Interfacial Water-Adsorbate Hydrogen Bond Connectivity Position Surface-Active Hydrogen as a Crucial Intermediate to Enhance Nitrate Reduction Reaction. J Am Chem Soc 2024; 146:26965-26974. [PMID: 39303080 DOI: 10.1021/jacs.4c08256] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/22/2024]
Abstract
The electrochemical nitrate reduction reaction (NO3RR) offers a promising solution for remediating nitrate-polluted wastewater while enabling the sustainable production of ammonia. The control strategy of surface-active hydrogen (*H) is extensively employed to enhance the kinetics of the NO3RR, but atomic understanding lags far behind the experimental observations. Here, we decipher the cation-water-adsorbate interactions in regulating the NO3RR kinetics at the Cu (111) electrode/electrolyte interface using AIMD simulations with a slow-growth approach. We demonstrate that the key oxygen-containing intermediates of the NO3RR (e.g., *NO, *NO2, and *NO3) will stably coordinate with the cations, impeding their integration with the hydrogen bond network and further their hydrogenation by interfacial water molecules due to steric hindrance. The *H can migrate across the interface with a low energy barrier, and its hydrogenation barrier with oxygen-containing species remains unaffected by cations, offering a potent supplement to the hydrogenation process, playing the predominant factor by which the *H facilitates NO3RR reaction kinetic. This study provides valuable insights for understanding the reaction mechanism of NO3RR by fully considering the cation-water-adsorbate interactions, which can aid in the further development of the electrolyte and electrocatalysts for efficient NO3RR.
Collapse
Affiliation(s)
- Shisheng Zheng
- State Key Laboratory of Physical Chemistry of Solid Surfaces, iChEM, College of Chemistry and Chemical Engineering, College of Materials, College of Energy, College of Electronic Science and Engineering, College of Physical Science and Technology, Fujian Key Laboratory of Ultrafast Laser Technology and Applications, Xiamen University, Xiamen 361000, China
| | - Xinzhe Yang
- School of Advanced Materials, Peking University, Shenzhen Graduate School, Shenzhen 518000, China
| | - Zhong-Zhang Shi
- State Key Laboratory of Physical Chemistry of Solid Surfaces, iChEM, College of Chemistry and Chemical Engineering, College of Materials, College of Energy, College of Electronic Science and Engineering, College of Physical Science and Technology, Fujian Key Laboratory of Ultrafast Laser Technology and Applications, Xiamen University, Xiamen 361000, China
| | - Haowen Ding
- School of Advanced Materials, Peking University, Shenzhen Graduate School, Shenzhen 518000, China
| | - Feng Pan
- School of Advanced Materials, Peking University, Shenzhen Graduate School, Shenzhen 518000, China
| | - Jian-Feng Li
- State Key Laboratory of Physical Chemistry of Solid Surfaces, iChEM, College of Chemistry and Chemical Engineering, College of Materials, College of Energy, College of Electronic Science and Engineering, College of Physical Science and Technology, Fujian Key Laboratory of Ultrafast Laser Technology and Applications, Xiamen University, Xiamen 361000, China
- Innovation Laboratory for Sciences and Technologies of Energy Materials of Fujian Province (IKKEM), Xiamen 361000, China
| |
Collapse
|
96
|
Ge X, Pan R, Xie H, Hu S, Yuan J. Regulating Ru xMo y Nanoalloys Anchored on Porous Nitrogen-Doped Carbon via Domain-Confined Etching Strategy for Neutral Efficient Ammonia Electrosynthesis. NANO LETTERS 2024; 24:12218-12225. [PMID: 39263891 DOI: 10.1021/acs.nanolett.4c03319] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/13/2024]
Abstract
Neutral electrochemical nitrate (NO3-) reduction to ammonia involves sluggish and complex kinetics, so developing efficient electrocatalysts at low potential remains challenging. Here, we report a domain-confined etching strategy to construct RuxMoy nanoalloys on porous nitrogen-doped carbon by optimizing the Ru-to-Mo ratio, achieving efficient neutral NH3 electrosynthesis. Combining in situ spectroscopy and theoretical simulations demonstrated a rational synergic effect between Ru and Mo in nanoalloys that reinforces *H adsorption and lowers the energy barrier of NO3- hydrodeoxygenation for NH3 production. The resultant Ru5Mo5-NC surpasses 92.8% for NH3 selectivity at the potential range from -0.25 to -0.45 V vs RHE under neutral electrolyte, particularly achieving a high NH3 selectivity of 98.3% and a corresponding yield rate of 1.3 mg h-1 mgcat-1 at -0.4 V vs RHE. This work provides a synergic strategy that sheds light on a new avenue for developing efficient multicomponent heterogeneous catalysts.
Collapse
Affiliation(s)
- Xin Ge
- Department of Polymer Materials and Engineering, College of Materials & Metallurgy, Guizhou University, Huaxi District, Guiyang 550025, P.R. China
| | - Ronglan Pan
- Department of Polymer Materials and Engineering, College of Materials & Metallurgy, Guizhou University, Huaxi District, Guiyang 550025, P.R. China
| | - Haibo Xie
- Department of Polymer Materials and Engineering, College of Materials & Metallurgy, Guizhou University, Huaxi District, Guiyang 550025, P.R. China
| | - Shiwei Hu
- Institute of Mechanics, Chinese Academy of Sciences, Beijing 100190, P.R. China
| | - Jili Yuan
- Department of Polymer Materials and Engineering, College of Materials & Metallurgy, Guizhou University, Huaxi District, Guiyang 550025, P.R. China
- College of Big Data and Information Engineering, Guizhou University, Huaxi District, Guiyang 550025, P.R. China
| |
Collapse
|
97
|
Wu G, Zhang W, Yu R, Yang Y, Jiang J, Sun M, Du A, He W, Dai L, Mao X, Chen Z, Qin Q. p-d Orbital Hybridization in Ag-based Electrocatalysts for Enhanced Nitrate-to-Ammonia Conversion. Angew Chem Int Ed Engl 2024; 63:e202410251. [PMID: 38973470 DOI: 10.1002/anie.202410251] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2024] [Revised: 07/05/2024] [Accepted: 07/05/2024] [Indexed: 07/09/2024]
Abstract
Considering the substantial role of ammonia, developing highly efficient electrocatalysts for nitrate-to-ammonia conversion has attracted increasing interest. Herein, we proposed a feasible strategy of p-d orbital hybridization via doping p-block metals in an Ag host, which drastically promotes the performance of nitrate adsorption and disassociation. Typically, a Sn-doped Ag catalyst (SnAg) delivers a maximum Faradaic efficiency (FE) of 95.5±1.85 % for NH3 at -0.4 V vs. RHE and reaches the highest NH3 yield rate to 482.3±14.1 mg h-1 mgcat. -1. In a flow cell, the SnAg catalyst achieves a FE of 90.2 % at an ampere-level current density of 1.1 A cm-2 with an NH3 yield of 78.6 mg h-1 cm-2, during which NH3 can be further extracted to prepare struvite as high-quality fertilizer. A mechanistic study reveals that a strong p-d orbital hybridization effect in SnAg is beneficial for nitrite deoxygenation, a rate-determining step for NH3 synthesis, which as a general principle, can be further extended to Bi- and In-doped Ag catalysts. Moreover, when integrated into a Zn-nitrate battery, such a SnAg cathode contributes to a superior energy density of 639 Wh L-1, high power density of 18.1 mW cm-2, and continuous NH3 production.
Collapse
Affiliation(s)
- Guanzheng Wu
- The Key Laboratory of Functional Molecular Solids, Ministry of Education, The Key Laboratory of Electrochemical Clean Energy of Anhui Higher Education Institutes, College of Chemistry and Materials Science, Anhui Normal University, Wuhu, 241002, P. R. China
| | - Wuyong Zhang
- Key Laboratory of Advanced Fuel Cells and Electrolyzers Technology of Zhejiang Province, Qianwan Institute of CNITECH, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo, Zhejiang, 315201, P. R. China
| | - Rui Yu
- The Key Laboratory of Functional Molecular Solids, Ministry of Education, The Key Laboratory of Electrochemical Clean Energy of Anhui Higher Education Institutes, College of Chemistry and Materials Science, Anhui Normal University, Wuhu, 241002, P. R. China
| | - Yidong Yang
- The Key Laboratory of Functional Molecular Solids, Ministry of Education, The Key Laboratory of Electrochemical Clean Energy of Anhui Higher Education Institutes, College of Chemistry and Materials Science, Anhui Normal University, Wuhu, 241002, P. R. China
| | - Jiadi Jiang
- The Key Laboratory of Functional Molecular Solids, Ministry of Education, The Key Laboratory of Electrochemical Clean Energy of Anhui Higher Education Institutes, College of Chemistry and Materials Science, Anhui Normal University, Wuhu, 241002, P. R. China
| | - Mengmiao Sun
- The Key Laboratory of Functional Molecular Solids, Ministry of Education, The Key Laboratory of Electrochemical Clean Energy of Anhui Higher Education Institutes, College of Chemistry and Materials Science, Anhui Normal University, Wuhu, 241002, P. R. China
| | - Aijun Du
- School of Chemistry and Physics and Centre for Material Science, Faculty of Science, Queensland University of Technology, Gardens Point Campus, Brisbane, QLD 4001, Australia
| | - Wenhui He
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, P. R. China
| | - Lei Dai
- Key Laboratory for Special Functional Materials of Ministry of Education, School of Materials Science and Engineering, Academy for Advanced Interdisciplinary Studies, Henan University, Kaifeng, 475004, P. R. China
| | - Xin Mao
- School of Chemistry and Physics and Centre for Material Science, Faculty of Science, Queensland University of Technology, Gardens Point Campus, Brisbane, QLD 4001, Australia
| | - Zhening Chen
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian, 350002, P.R. China
| | - Qing Qin
- The Key Laboratory of Functional Molecular Solids, Ministry of Education, The Key Laboratory of Electrochemical Clean Energy of Anhui Higher Education Institutes, College of Chemistry and Materials Science, Anhui Normal University, Wuhu, 241002, P. R. China
| |
Collapse
|
98
|
Zhang S, Zhao W, Liu J, Tao Z, Zhang Y, Zhao S, Zhang Z, Du M. Spin Manipulation of Co sites in Co 9S 8/Nb 2CT x Mott-Schottky Heterojunction for Boosting the Electrocatalytic Nitrogen Reduction Reaction. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2407301. [PMID: 39225309 PMCID: PMC11516103 DOI: 10.1002/advs.202407301] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/30/2024] [Revised: 08/13/2024] [Indexed: 09/04/2024]
Abstract
Regulating the adsorption of an intermediate on an electrocatalyst by manipulating the electron spin state of the transition metal is of great significance for promoting the activation of inert nitrogen molecules (N2) during the electrocatalytic nitrogen reduction reaction (eNRR). However, achieving this remains challenging. Herein, a novel 2D/2D Mott-Schottky heterojunction, Co9S8/Nb2CTx-P, is developed as an eNRR catalyst. This is achieved through the in situ growth of cobalt sulfide (Co9S8) nanosheets over a Nb2CTx MXene using a solution plasma modification method. Transformation of the Co spin state from low (t2g 6eg 1) to high (t2g 5eg 2) is achieved by adjusting the interface electronic structure and sulfur vacancy of Co9S8/Nb2CTx-P. The adsorption ability of N2 is optimized through high spin Co(II) with more unpaired electrons, significantly accelerating the *N2→*NNH kinetic process. The Co9S8/Nb2CTx-P exhibits a high NH3 yield of 62.62 µg h-1 mgcat. -1 and a Faradaic efficiency (FE) of 30.33% at -0.40 V versus the reversible hydrogen electrode (RHE) in 0.1 m HCl. Additionally, it achieves an NH3 yield of 41.47 µg h-1 mgcat. -1 and FE of 23.19% at -0.60 V versus RHE in 0.1 m Na2SO4. This work demonstrates a promising strategy for constructing heterojunction electrocatalysts for efficient eNRR.
Collapse
Affiliation(s)
- Shuai Zhang
- College of Material and Chemical EngineeringInstitute of New Energy Science and TechnologySchool of Future Hydrogen Energy TechnologyZhengzhou University of Light IndustryZhengzhou450001P. R. China
| | - Weihua Zhao
- College of Material and Chemical EngineeringInstitute of New Energy Science and TechnologySchool of Future Hydrogen Energy TechnologyZhengzhou University of Light IndustryZhengzhou450001P. R. China
| | - Jiameng Liu
- School of Medical EngineeringXinxiang Medical UniversityXinxiang453003P. R. China
| | - Zheng Tao
- College of Material and Chemical EngineeringInstitute of New Energy Science and TechnologySchool of Future Hydrogen Energy TechnologyZhengzhou University of Light IndustryZhengzhou450001P. R. China
| | - Yinpeng Zhang
- College of Material and Chemical EngineeringInstitute of New Energy Science and TechnologySchool of Future Hydrogen Energy TechnologyZhengzhou University of Light IndustryZhengzhou450001P. R. China
| | - Shuangrun Zhao
- College of Material and Chemical EngineeringInstitute of New Energy Science and TechnologySchool of Future Hydrogen Energy TechnologyZhengzhou University of Light IndustryZhengzhou450001P. R. China
| | - Zhihong Zhang
- College of Material and Chemical EngineeringInstitute of New Energy Science and TechnologySchool of Future Hydrogen Energy TechnologyZhengzhou University of Light IndustryZhengzhou450001P. R. China
| | - Miao Du
- College of Material and Chemical EngineeringInstitute of New Energy Science and TechnologySchool of Future Hydrogen Energy TechnologyZhengzhou University of Light IndustryZhengzhou450001P. R. China
| |
Collapse
|
99
|
Zhang W, Zhou Y, Zhu Y, Guo Y, Zhang B, Zhang LH, Li F, Yu F. Boosting Electrochemical Nitrate Reduction at Low Concentrations Through Simultaneous Electronic States Regulation and Proton Provision. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2404792. [PMID: 38923291 DOI: 10.1002/smll.202404792] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/11/2024] [Revised: 06/13/2024] [Indexed: 06/28/2024]
Abstract
Electrochemically converting nitrate (NO3 -) into ammonia (NH3) has emerged as an alternative strategy for NH3 production and effluent treatment. Nevertheless, the electroreduction of dilute NO3 - is still challenging due to the competitive adsorption between various aqueous species and NO3 -, and unfavorable water dissociation providing *H. Herein, a new tandem strategy is proposed to boost the electrochemical nitrate reduction reaction (NO3RR) performance of Cu nanoparticles supported on single Fe atoms dispersed N-doped carbon (Cu@Fe1-NC) at dilute NO3 - concentrations (≤100 ppm NO3 --N). The optimized Cu@Fe1-NC presents a FENH3 of 97.7% at -0.4 V versus RHE, and a significant NH3 yield of 1953.9 mmol h-1 gCu -1 at 100 ppm NO3 --N, a record-high activity for dilute NO3RR. The metal/carbon heterojunctions in Cu@Fe1-NC enable a spontaneous electron transfer from Cu to carbon substrate, resulting in electron-deficient Cu. As a result, the electron-deficient Cu facilitates the adsorption of NO3 - compared with the pristine Cu. The adjacent atomic Fe sites efficiently promote water dissociation, providing abundant *H for the hydrogenation of *NOx e at Cu sites. The synergistic effects between Cu and single Fe atom sites simultaneously decrease the energy barrier for NO3 - adsorption and hydrogenation, thereby enhancing the overall activity of NO3 - reduction.
Collapse
Affiliation(s)
- Wenlin Zhang
- National-Local Joint Engineering Laboratory for Energy Conservation in Chemical Process Integration and Resources Utilization, School of Chemical Engineering and Technology, Hebei University of Technology, Tianjin, 300130, P. R. China
| | - Yuzhuo Zhou
- National-Local Joint Engineering Laboratory for Energy Conservation in Chemical Process Integration and Resources Utilization, School of Chemical Engineering and Technology, Hebei University of Technology, Tianjin, 300130, P. R. China
| | - Yong Zhu
- State Key Laboratory of Fine Chemicals, School of Chemical Engineering, Dalian University of Technology, Dalian, 116024, P. R. China
| | - Yabo Guo
- National-Local Joint Engineering Laboratory for Energy Conservation in Chemical Process Integration and Resources Utilization, School of Chemical Engineering and Technology, Hebei University of Technology, Tianjin, 300130, P. R. China
| | - Bo Zhang
- National-Local Joint Engineering Laboratory for Energy Conservation in Chemical Process Integration and Resources Utilization, School of Chemical Engineering and Technology, Hebei University of Technology, Tianjin, 300130, P. R. China
| | - Lu-Hua Zhang
- National-Local Joint Engineering Laboratory for Energy Conservation in Chemical Process Integration and Resources Utilization, School of Chemical Engineering and Technology, Hebei University of Technology, Tianjin, 300130, P. R. China
| | - Fei Li
- State Key Laboratory of Fine Chemicals, School of Chemical Engineering, Dalian University of Technology, Dalian, 116024, P. R. China
| | - Fengshou Yu
- National-Local Joint Engineering Laboratory for Energy Conservation in Chemical Process Integration and Resources Utilization, School of Chemical Engineering and Technology, Hebei University of Technology, Tianjin, 300130, P. R. China
| |
Collapse
|
100
|
Geng Z, Feng Z, Kong H, Su J, Zhang K, Li J, Sun X, Liu X, Ge L, Gai P, Li F. Ruthenium Anchored Laser-Induced Graphene as Binder-Free and Free-Standing Electrode for Selective Electrosynthesis of Ammonia from Nitrate. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2406843. [PMID: 39136290 PMCID: PMC11497038 DOI: 10.1002/advs.202406843] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/20/2024] [Revised: 07/19/2024] [Indexed: 10/25/2024]
Abstract
Developing effective electrocatalysts for the nitrate reduction reaction (NO3RR) is a promising alternative to conventional industrial ammonia (NH3) synthesis. Herein, starting from a flexible laser-induced graphene (LIG) film with hierarchical and interconnected macroporous architecture, a binder-free and free-standing Ru-modified LIG electrode (Ru-LIG) is fabricated for electrocatalytic NO3RR via a facile electrodeposition method. The relationship between the laser-scribing parameters and the NO3RR performance of Ru-LIG electrodes is studied in-depth. At -0.59 VRHE, the Ru-LIG electrode exhibited the optimal and stable NO3RR performance (NH3 yield rate of 655.9 µg cm-2 h-1 with NH3 Faradaic efficiency of up to 93.7%) under a laser defocus setting of +2 mm and an applied laser power of 4.8 W, outperforming most of the reported NO3RR electrodes operated under similar conditions. The optimized laser-scribing parameters promoted the surface properties of LIG with increased graphitization degree and decreased charge-transfer resistance, leading to synergistically improved Ru electrodeposition with more exposed NO3RR active sites. This work not only provides a new insight to enhance the electrocatalytic NO3RR performance of LIG-based electrodes via the coordination with metal electrocatalysts as well as identification of the critical laser-scribing parameters but also will inspire the rational design of future advanced laser-induced electrocatalysts for NO3RR.
Collapse
Affiliation(s)
- Zekun Geng
- College of Chemistry and Pharmaceutical SciencesQingdao Agricultural UniversityQingdao266109China
| | - Zhiliang Feng
- College of Chemistry and Pharmaceutical SciencesQingdao Agricultural UniversityQingdao266109China
| | - Haoran Kong
- College of Chemistry and Pharmaceutical SciencesQingdao Agricultural UniversityQingdao266109China
| | - Jiaqi Su
- College of Chemistry and Pharmaceutical SciencesQingdao Agricultural UniversityQingdao266109China
| | - Kaiyan Zhang
- College of Chemistry and Pharmaceutical SciencesQingdao Agricultural UniversityQingdao266109China
| | - Jiaxin Li
- College of Chemistry and Pharmaceutical SciencesQingdao Agricultural UniversityQingdao266109China
| | - Xinzhi Sun
- College of Chemistry and Pharmaceutical SciencesQingdao Agricultural UniversityQingdao266109China
| | - Xiaojuan Liu
- College of Chemistry and Pharmaceutical SciencesQingdao Agricultural UniversityQingdao266109China
| | - Lei Ge
- College of Chemistry and Pharmaceutical SciencesQingdao Agricultural UniversityQingdao266109China
- Key Laboratory of Advanced Energy Materials Chemistry (Ministry of Education)Nankai UniversityTianjin300071China
| | - Panpan Gai
- College of Chemistry and Pharmaceutical SciencesQingdao Agricultural UniversityQingdao266109China
| | - Feng Li
- College of Chemistry and Pharmaceutical SciencesQingdao Agricultural UniversityQingdao266109China
| |
Collapse
|