51
|
Khramenkova EV, Venkatraman H, Soethout V, Pidko EA. Global optimization of extraframework ensembles in zeolites: structural analysis of extraframework aluminum species in MOR and MFI zeolites. Phys Chem Chem Phys 2022; 24:27047-27054. [PMID: 36321744 PMCID: PMC9673684 DOI: 10.1039/d2cp03603g] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2022] [Accepted: 10/09/2022] [Indexed: 05/02/2024]
Abstract
Metal-modified zeolites are versatile catalytic materials with a wide range of industrial applications. Their catalytic behaviour is determined by the nature of externally introduced cationic species, i.e., its geometry, chemical composition, and location within the zeolite pores. Superior catalyst designs can be unlocked by understanding the confinement effect and spatial limitations of the zeolite framework and its influence on the geometry and location of such cationic active sites. In this study, we employ the genetic algorithm (GA) global optimization method to investigate extraframework aluminum species and their structural variations in different zeolite matrices. We focus on extraframework aluminum (EFAl) as a model system because it greatly influences the product selectivity and catalytic stability in several zeolite catalyzed processes. Specifically, the GA was used to investigate the configurational possibilities of EFAl within the mordenite (MOR) and ZSM-5 frameworks. The xTB semi-empirical method within the GA was employed for an automated sampling of the EFAl-zeolite space. Furthermore, geometry refinement at the density functional theory (DFT) level of theory allowed us to improve the most stable configurations obtained from the GA and elaborate on the limitations of the xTB method. A subsequent ab initio thermodynamics analysis (aiTA) was chosen to predict the most favourable EFAl structure(s) under the catalytically relevant operando conditions.
Collapse
Affiliation(s)
- Elena V Khramenkova
- Inorganic Systems Engineering group, Department of Chemical Engineering, Faculty of Applied Sciences, Delft University of Technology, Van der Maasweg 9, 2629 HZ, Delft, The Netherlands.
| | - Harshini Venkatraman
- Inorganic Systems Engineering group, Department of Chemical Engineering, Faculty of Applied Sciences, Delft University of Technology, Van der Maasweg 9, 2629 HZ, Delft, The Netherlands.
| | - Victor Soethout
- Inorganic Systems Engineering group, Department of Chemical Engineering, Faculty of Applied Sciences, Delft University of Technology, Van der Maasweg 9, 2629 HZ, Delft, The Netherlands.
| | - Evgeny A Pidko
- Inorganic Systems Engineering group, Department of Chemical Engineering, Faculty of Applied Sciences, Delft University of Technology, Van der Maasweg 9, 2629 HZ, Delft, The Netherlands.
| |
Collapse
|
52
|
Shao Q, Wei S, Hu X, Dong H, Wen T, Gao L, Long C. Tuning the Micro-coordination Environment of Al in Dealumination Y Zeolite to Enhance Electron Transfer at the Cu-Mn Oxides Interface for Highly Efficient Catalytic Ozonation of Toluene at Low Temperatures. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2022; 56:15449-15459. [PMID: 36254461 DOI: 10.1021/acs.est.2c05766] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
The development of stable, highly active, and inexpensive catalysts for the ozone catalytic oxidation of volatile organic compounds (VOCs) is challenging but of great significance. Herein, the micro-coordination environment of Al in commercial Y zeolite was regulated by a specific dealumination method and then the dealuminated Y zeolite was used as the support of Cu-Mn oxides. The optimized catalyst Cu-Mn/DY exhibited excellent performance with around 95% of toluene removal at 30 °C. Besides, the catalyst delivered satisfactory stability in both high-humidity conditions and long-term reactions, which is attributed to more active oxygen vacancies and acidic sites, especially the strong Lewis acid sites newly formed in the catalyst. The decrease in the electron cloud density around aluminum species enhanced electron transfer at the interface between Cu-Mn oxides. Moreover, extra-framework octahedrally coordinated Al in the support promoted the electronic metal-support interaction (EMSI). Compared with single Mn catalysts, the incorporation of the Cu component changed the degradation pathway of toluene. Benzoic acid, as the intermediate of toluene oxidation, can directly ring-open on Cu-doped catalysts rather than being further oxidized to other byproducts, which increased the rate of the catalytic reaction. This work provides a new insight and theoretical guidance into the rational design of efficient catalysts for the catalytic ozonation of VOCs.
Collapse
Affiliation(s)
- Qi Shao
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, 163 Xianlin Avenue, Nanjing 210023, China
| | - Shuangshuang Wei
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, 163 Xianlin Avenue, Nanjing 210023, China
| | - Xueyu Hu
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, 163 Xianlin Avenue, Nanjing 210023, China
| | - Hao Dong
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, 163 Xianlin Avenue, Nanjing 210023, China
| | - Tiancheng Wen
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, 163 Xianlin Avenue, Nanjing 210023, China
| | - Lei Gao
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, 163 Xianlin Avenue, Nanjing 210023, China
| | - Chao Long
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, 163 Xianlin Avenue, Nanjing 210023, China
- Quanzhou Institute for Environmental Protection Industry, Nanjing University, Beifeng Road, Quanzhou 362000, China
| |
Collapse
|
53
|
Yang W, Duk Kim K, O'Dell LA, Wang L, Xu H, Ruan M, Wang W, Ryoo R, Jiang Y, Huang J. Brønsted acid sites formation through penta-coordinated aluminum species on alumina-boria for phenylglyoxal conversion. J Catal 2022. [DOI: 10.1016/j.jcat.2022.11.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
|
54
|
Zachariou A, Hawkins AP, Howe RF, Skakle JMS, Barrow N, Collier P, Nye DW, Smith RI, Stenning GBG, Parker SF, Lennon D. Counting the Acid Sites in a Commercial ZSM-5 Zeolite Catalyst. ACS PHYSICAL CHEMISTRY AU 2022; 3:74-83. [PMID: 36718264 PMCID: PMC9881239 DOI: 10.1021/acsphyschemau.2c00040] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/29/2022] [Revised: 10/19/2022] [Accepted: 10/19/2022] [Indexed: 01/26/2023]
Abstract
This work investigates the acid sites in a commercial ZSM-5 zeolite catalyst by a combination of spectroscopic and physical methods. The Brønsted acid sites in such catalysts are associated with the aluminum substituted into the zeolite lattice, which may not be identical to the total aluminum content of the zeolite. Inelastic neutron scattering spectroscopy (INS) directly quantifies the concentrations of Brønsted acid protons, silanol groups, and hydroxyl groups associated with extra-framework aluminum species. The INS measurements show that ∼50% of the total aluminum content of this particular zeolite is extra framework, a conclusion supported by solid-state NMR and ammonia temperature-programmed desorption (TPD) measurements. Evidence for the presence of extra-framework aluminum oxide species is also seen in neutron powder diffraction data from proton- and deuterium-exchanged samples. The differences between results from the different analytical methods are discussed, and the novelty of direct proton counting by INS in this typical commercial catalyst is emphasized.
Collapse
Affiliation(s)
- Andrea Zachariou
- School
of Chemistry, University of Glasgow, Joseph Black Building, GlasgowG12 8QQ, U.K.,UK
Catalysis Hub, Research Complex at Harwell, STFC Rutherford Appleton Laboratory, ChiltonOX11 0FA, Oxon, U.K.
| | - Alexander P. Hawkins
- School
of Chemistry, University of Glasgow, Joseph Black Building, GlasgowG12 8QQ, U.K.,UK
Catalysis Hub, Research Complex at Harwell, STFC Rutherford Appleton Laboratory, ChiltonOX11 0FA, Oxon, U.K.
| | - Russell F. Howe
- Department
of Chemistry, University of Aberdeen, AberdeenAB24 3UE, U.K.
| | - Janet M. S. Skakle
- Department
of Chemistry, University of Aberdeen, AberdeenAB24 3UE, U.K.,Department
of Physics, University of Aberdeen, AberdeenAB24 3UE, U.K.
| | - Nathan Barrow
- Johnson
Matthey Technology Centre, Blounts Court, Sonning Common, Reading, BerkshireRG4 9NH, U.K.
| | - Paul Collier
- Johnson
Matthey Technology Centre, Blounts Court, Sonning Common, Reading, BerkshireRG4 9NH, U.K.
| | - Daniel W. Nye
- ISIS Facility, STFC Rutherford Appleton Laboratory, ChiltonOX11 0QX, Oxon, U.K.
| | - Ronald I. Smith
- ISIS Facility, STFC Rutherford Appleton Laboratory, ChiltonOX11 0QX, Oxon, U.K.
| | | | - Stewart F. Parker
- School
of Chemistry, University of Glasgow, Joseph Black Building, GlasgowG12 8QQ, U.K.,UK
Catalysis Hub, Research Complex at Harwell, STFC Rutherford Appleton Laboratory, ChiltonOX11 0FA, Oxon, U.K.,ISIS Facility, STFC Rutherford Appleton Laboratory, ChiltonOX11 0QX, Oxon, U.K.,
| | - David Lennon
- School
of Chemistry, University of Glasgow, Joseph Black Building, GlasgowG12 8QQ, U.K.,
| |
Collapse
|
55
|
Hu M, Wang C, Chu Y, Wang Q, Li S, Xu J, Deng F. Unravelling the Reactivity of Framework Lewis Acid Sites towards Methanol Activation on H‐ZSM‐5 Zeolite with Solid‐State NMR Spectroscopy. Angew Chem Int Ed Engl 2022; 61:e202207400. [DOI: 10.1002/anie.202207400] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2022] [Indexed: 11/07/2022]
Affiliation(s)
- Min Hu
- National Center for Magnetic Resonance in Wuhan State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics Wuhan Institute of Physics and Mathematics Innovation Academy for Precision Measurement Science and Technology Chinese Academy of Sciences Wuhan 430071 P. R. China
- University of Chinese Academy of Sciences Beijing 100049 P. R. China
| | - Chao Wang
- National Center for Magnetic Resonance in Wuhan State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics Wuhan Institute of Physics and Mathematics Innovation Academy for Precision Measurement Science and Technology Chinese Academy of Sciences Wuhan 430071 P. R. China
- University of Chinese Academy of Sciences Beijing 100049 P. R. China
| | - Yueying Chu
- National Center for Magnetic Resonance in Wuhan State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics Wuhan Institute of Physics and Mathematics Innovation Academy for Precision Measurement Science and Technology Chinese Academy of Sciences Wuhan 430071 P. R. China
- University of Chinese Academy of Sciences Beijing 100049 P. R. China
| | - Qiang Wang
- National Center for Magnetic Resonance in Wuhan State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics Wuhan Institute of Physics and Mathematics Innovation Academy for Precision Measurement Science and Technology Chinese Academy of Sciences Wuhan 430071 P. R. China
- University of Chinese Academy of Sciences Beijing 100049 P. R. China
| | - Shenhui Li
- National Center for Magnetic Resonance in Wuhan State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics Wuhan Institute of Physics and Mathematics Innovation Academy for Precision Measurement Science and Technology Chinese Academy of Sciences Wuhan 430071 P. R. China
- University of Chinese Academy of Sciences Beijing 100049 P. R. China
| | - Jun Xu
- National Center for Magnetic Resonance in Wuhan State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics Wuhan Institute of Physics and Mathematics Innovation Academy for Precision Measurement Science and Technology Chinese Academy of Sciences Wuhan 430071 P. R. China
- University of Chinese Academy of Sciences Beijing 100049 P. R. China
| | - Feng Deng
- National Center for Magnetic Resonance in Wuhan State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics Wuhan Institute of Physics and Mathematics Innovation Academy for Precision Measurement Science and Technology Chinese Academy of Sciences Wuhan 430071 P. R. China
- University of Chinese Academy of Sciences Beijing 100049 P. R. China
| |
Collapse
|
56
|
Abstract
Zeolites with ordered microporous systems, distinct framework topologies, good spatial nanoconfinement effects, and superior (hydro)thermal stability are an ideal scaffold for planting diverse active metal species, including single sites, clusters, and nanoparticles in the framework and framework-associated sites and extra-framework positions, thus affording the metal-in-zeolite catalysts outstanding activity, unique shape selectivity, and enhanced stability and recyclability in the processes of Brønsted acid-, Lewis acid-, and extra-framework metal-catalyzed reactions. Especially, thanks to the advances in zeolite synthesis and characterization techniques in recent years, zeolite-confined extra-framework metal catalysts (denoted as metal@zeolite composites) have experienced rapid development in heterogeneous catalysis, owing to the combination of the merits of both active metal sites and zeolite intrinsic properties. In this review, we will present the recent developments of synthesis strategies for incorporating and tailoring of active metal sites in zeolites and advanced characterization techniques for identification of the location, distribution, and coordination environment of metal species in zeolites. Furthermore, the catalytic applications of metal-in-zeolite catalysts are demonstrated, with an emphasis on the metal@zeolite composites in hydrogenation, dehydrogenation, and oxidation reactions. Finally, we point out the current challenges and future perspectives on precise synthesis, atomic level identification, and practical application of the metal-in-zeolite catalyst system.
Collapse
Affiliation(s)
- Qiang Zhang
- State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, College of Chemistry, Jilin University, 2699 Qianjin Street, Changchun 130012, P. R. China.,International Center of Future Science, Jilin University, 2699 Qianjin Street, Changchun 130012, P. R. China
| | - Shiqin Gao
- State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, College of Chemistry, Jilin University, 2699 Qianjin Street, Changchun 130012, P. R. China.,International Center of Future Science, Jilin University, 2699 Qianjin Street, Changchun 130012, P. R. China
| | - Jihong Yu
- State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, College of Chemistry, Jilin University, 2699 Qianjin Street, Changchun 130012, P. R. China.,International Center of Future Science, Jilin University, 2699 Qianjin Street, Changchun 130012, P. R. China
| |
Collapse
|
57
|
Wang W, Xu J, Deng F. Recent advances in solid-state NMR of zeolite catalysts. Natl Sci Rev 2022; 9:nwac155. [PMID: 36131885 PMCID: PMC9486922 DOI: 10.1093/nsr/nwac155] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2022] [Revised: 07/05/2022] [Accepted: 07/17/2022] [Indexed: 11/23/2022] Open
Abstract
Zeolites are important inorganic crystalline microporous materials with a broad range of applications in the areas of catalysis, ion exchange, and adsorption/separations. Solid-state nuclear magnetic resonance (NMR) spectroscopy has proven to be a powerful tool in the study of zeolites and relevant catalytic reactions because of its advantage in providing atomic-level insights into molecular structure and dynamic behavior. In this review, we provide a brief discussion on the recent progress in exploring framework structures, catalytically active sites and intermolecular interactions in zeolites and metal-containing ones by using various solid-state NMR methods. Advances in the mechanistic understanding of zeolite-catalysed reactions including methanol and ethanol conversions are presented as selected examples. Finally, we discuss the prospect of the solid-state NMR technique for its application in zeolites.
Collapse
Affiliation(s)
- Weiyu Wang
- National Center for Magnetic Resonance in Wuhan, State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, Wuhan Institute of Physics and Mathematics, Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences, Wuhan 430071, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jun Xu
- National Center for Magnetic Resonance in Wuhan, State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, Wuhan Institute of Physics and Mathematics, Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences, Wuhan 430071, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Feng Deng
- National Center for Magnetic Resonance in Wuhan, State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, Wuhan Institute of Physics and Mathematics, Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences, Wuhan 430071, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
58
|
Hu M, Wang C, Chu Y, Wang Q, Li S, Xu J, Deng F. Unravelling the Reactivity of Framework Lewis Acid Sites towards Methanol Activation on H‐ZSM‐5 Zeolite with Solid‐State NMR Spectroscopy. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202207400] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Min Hu
- Innovation Academy for Precision Measurement Science and Technology CAS: Chinese Academy of Sciences Innovation Academy for Precision Measurement Science and Technology State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics CHINA
| | - Chao Wang
- Innovation Academy for Precision Measurement Science and Technology CAS: Chinese Academy of Sciences Innovation Academy for Precision Measurement Science and Technology State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics CHINA
| | - Yueying Chu
- Innovation Academy for Precision Measurement Science and Technology CAS: Chinese Academy of Sciences Innovation Academy for Precision Measurement Science and Technology State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics CHINA
| | - Qiang Wang
- Innovation Academy for Precision Measurement Science and Technology CAS: Chinese Academy of Sciences Innovation Academy for Precision Measurement Science and Technology State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics CHINA
| | - Shenhui Li
- Innovation Academy for Precision Measurement Science and Technology CAS: Chinese Academy of Sciences Innovation Academy for Precision Measurement Science and Technology State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics CHINA
| | - Jun Xu
- wuhan institute of physics and mathematics state key laboratory of magnetic resonance and atomic and molecular physics West No.30 Xiao Hong Shan 430071 Wuhan CHINA
| | - Feng Deng
- Innovation Academy for Precision Measurement Science and Technology CAS: Chinese Academy of Sciences Innovation Academy for Precision Measurement Science and Technology State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics CHINA
| |
Collapse
|
59
|
Ma Q, Fu T, Ren K, Li H, Jia L, Li Z. Controllable Orientation Growth of ZSM-5 for Methanol to Hydrocarbon Conversion: Cooperative Effects of Seed Induction and Medium pH Control. Inorg Chem 2022; 61:13802-13816. [PMID: 36001749 DOI: 10.1021/acs.inorgchem.2c01628] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The growth orientation of ZSM-5 zeolites strongly affects product selectivity in methanol conversion reaction. Here, we proposed a versatile synthetic strategy by introducing seeds and controlling medium pH to achieve controllable orientation growth of ZSM-5. The systematic analysis of the crystallization process indicated that the introduction of seeds ensured successful crystallization in a quasi-neutral solution and the dissolution rate of seeds and aluminosilicate determined the growth orientation of ZSM-5. In the quasi-neutral solution, the slow dissolution of seeds and aluminosilicate enhanced growth advantages along the c axis. The ratio between the length of the c axis and b axis (Lc/Lb) of the obtained ZSM-5 at pH of 7 could reach 8.1, much higher than 1.8 obtained at pH of 11. No obvious impact of seed added amount on growth orientation was found, while with increasing seed crystal size, the obtained ZSM-5 showed preferred growth along the c axis. The Lc/Lb of the sample adding seeds with a size of 355 nm reached 7.9, much higher than 2.1 of the sample adding seeds with a size of 70 nm. The obtained ZSM-5 with specific growth orientation exhibited potential shape selectivity in methanol to aromatics and olefin reaction. This work opens new possibilities to tailor the orientation growth of ZSM-5 based on the seed-induced strategy under mild conditions.
Collapse
Affiliation(s)
- Qian Ma
- Key Laboratory of Coal Science and Technology of Ministry of Education and Shanxi Province, Institute of Coal Chemical Engineering, Taiyuan University of Technology, Taiyuan030024, Shanxi, China
| | - Tingjun Fu
- Key Laboratory of Coal Science and Technology of Ministry of Education and Shanxi Province, Institute of Coal Chemical Engineering, Taiyuan University of Technology, Taiyuan030024, Shanxi, China
| | - Kun Ren
- Key Laboratory of Coal Science and Technology of Ministry of Education and Shanxi Province, Institute of Coal Chemical Engineering, Taiyuan University of Technology, Taiyuan030024, Shanxi, China
| | - Han Li
- Key Laboratory of Coal Science and Technology of Ministry of Education and Shanxi Province, Institute of Coal Chemical Engineering, Taiyuan University of Technology, Taiyuan030024, Shanxi, China
| | - Lihan Jia
- Key Laboratory of Coal Science and Technology of Ministry of Education and Shanxi Province, Institute of Coal Chemical Engineering, Taiyuan University of Technology, Taiyuan030024, Shanxi, China
| | - Zhong Li
- Key Laboratory of Coal Science and Technology of Ministry of Education and Shanxi Province, Institute of Coal Chemical Engineering, Taiyuan University of Technology, Taiyuan030024, Shanxi, China
| |
Collapse
|
60
|
Liu R, Fan B, Zhi Y, Liu C, Xu S, Yu Z, Liu Z. Dynamic Evolution of Aluminum Coordination Environments in Mordenite Zeolite and Their Role in the Dimethyl Ether (DME) Carbonylation Reaction. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202210658] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Rongsheng Liu
- Chinese Academy of Sciences Dalian Institute of Chemical Physics Dalian National Laboratoty for Clean Energy CHINA
| | - Benhan Fan
- Chinese Academy of Sciences Dalian Institute of Chemical Physics Dalian National Laboratoty for Clean Energy CHINA
| | - Yuchun Zhi
- DICP: Chinese Academy of Sciences Dalian Institute of Chemical Physics Dalian National Laboratoty for Clean Energy CHINA
| | - Chong Liu
- DICP: Chinese Academy of Sciences Dalian Institute of Chemical Physics Dalian National Laboratoty for Clean Energy CHINA
| | - Shutao Xu
- DICP: Chinese Academy of Sciences Dalian Institute of Chemical Physics Dalian National Laboratoty for Clean Energy CHINA
| | - Zhengxi Yu
- DICP: Chinese Academy of Sciences Dalian Institute of Chemical Physics Dalian National Laboratoty for Clean Energy CHINA
| | - Zhongmin Liu
- Dalian Institute of Chemical Physics, Chinese Academy of Science Dalian National Laboratory for Clean Energy Zhongshan Road #457 116023 Dalian CHINA
| |
Collapse
|
61
|
Ni-H-Beta Catalysts for Ethylene Oligomerization: Impact of Parent Cation on Ni Loading, Speciation, and Siting. Catalysts 2022. [DOI: 10.3390/catal12080824] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Ni-H-Beta catalysts for ethylene oligomerization (EO) were prepared by ion exchange of NH4-Beta and H-Beta zeolites with aqueous Ni(NO3)2 and characterized by H2-temperature-programmed reduction (TPR), NH3-temperature-programmed desorption (TPD), and diffuse-reflectance infrared Fourier-transform spectroscopy (DRIFTS). Quadruple exchange of NH4-Beta at 70 °C resulted in 2.5 wt.% Ni loading corresponding to a Ni2+/framework aluminum (FAl) molar ratio of 0.52. [NiOH]+ and H+ are the primary charge-compensating cations in the uncalcined catalyst, as evidenced by TPR and DRIFTS. Subsequent calcination at 550 °C in air yielded a Ni-H-Beta catalyst containing primarily bare Ni2+ ions bonded to framework oxygens. Quadruple exchange of H-Beta at 70 °C gave 2.0 wt.% Ni loading (Ni2+/FAl = 0.41). After calcination at 550 °C, the resulting Ni-H-Beta catalyst comprises a mixture of bare Ni2+ ions: [NiOH]+ and NiO species. The relative abundance of [NiOH]+ increases with the number of exchanges. In situ pretreatment at 500 °C in flowing He converted the [NiOH]+ species to bare Ni2+ ions via dehydration. The bare Ni2+ ions interact strongly with the Beta framework as evidenced by a perturbed antisymmetric T-O-T vibration at 945 cm−1. DRIFT spectra of CO adsorbed at 20 °C indicate that the Ni2+ ions occupy two distinct exchange positions. The results of EO testing at 225 °C and 11 bar (ethylene) suggested that the specific Ni2+ species initially presented (e.g., bare Ni2+, [NiOH]+) did not significantly affect the catalytic performance.
Collapse
|
62
|
de Macedo V, de Lima ROP, Piva DH. Efficient Dry Impregnation of Zirconium into H‐ZSM‐5 Zeolites. Eur J Inorg Chem 2022. [DOI: 10.1002/ejic.202200240] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Vinícius de Macedo
- Graduate Program of Chemical Engineering Federal University of São Carlos Washington Luis Highway, km 235 13565-905 Sao Carlos SP Brazil
| | - Rafael O. P. de Lima
- Research Centre on Advanced Materials and Energy Federal University of São Carlos Washington Luis Highway, km 235 13565-905 Sao Carlos SP Brazil
| | - Diogenes H. Piva
- Laboratoire Catalyse et Spectrochimie Université de Caen 6 boulevard du Maréchal Juin 14050 Caen France
| |
Collapse
|
63
|
Li G, Yoskamtorn T, Chen W, Foo C, Zheng J, Tang C, Day S, Zheng A, Li MM, Tsang SCE. Thermal Alteration in Adsorption Sites over SAPO-34 Zeolite. Angew Chem Int Ed Engl 2022; 61:e202204500. [PMID: 35471635 PMCID: PMC9322573 DOI: 10.1002/anie.202204500] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2022] [Indexed: 11/08/2022]
Abstract
Zeolites have found tremendous applications in the chemical industry. However, the dynamic nature of their active sites under the flow of adsorbate molecules for adsorption and catalysis is unclear, especially in operando conditions, which could be different from the as-synthesized structures. In the present study, we report a structural transformation of the adsorptive active sites in SAPO-34 zeolite by using acetone as a probe molecule under various temperatures. The combination of solid-state nuclear magnetic resonance, in situ variable-temperature synchrotron X-ray diffraction, and in situ diffuse-reflectance infrared Fourier-transform spectroscopy allow a clear identification and quantification that the chemisorption of acetone can convert the classical Brønsted acid site adsorption mode to an induced Frustrated Lewis Pairs adsorption mode at increasing temperatures. Such facile conversion is also supported by the calculations of ab-initio molecular-dynamics simulations. This work sheds new light on the importance of the dynamic structural alteration of active sites in zeolites with adsorbates at elevated temperatures.
Collapse
Affiliation(s)
- Guangchao Li
- Wolfson Catalysis CentreDepartment of ChemistryUniversity of OxfordOxfordOX1 3QRUK
- Department of Applied PhysicsThe Hong Kong Polytechnic UniversityHong Kong
| | | | - Wei Chen
- State Key Laboratory of Magnetic Resonance and Atomic and Molecular PhysicsNational Center for Magnetic Resonance in WuhanWuhan Institute of Physics and MathematicsInnovation Academy for Precision Measurement Science and TechnologyChinese Academy of SciencesWuhan430071China
| | - Christopher Foo
- Wolfson Catalysis CentreDepartment of ChemistryUniversity of OxfordOxfordOX1 3QRUK
| | - Jianwei Zheng
- Wolfson Catalysis CentreDepartment of ChemistryUniversity of OxfordOxfordOX1 3QRUK
| | - Chiu Tang
- Diamond Light Source Ltd.DidcotOX11 0DEUK
| | - Sarah Day
- Diamond Light Source Ltd.DidcotOX11 0DEUK
| | - Anmin Zheng
- State Key Laboratory of Magnetic Resonance and Atomic and Molecular PhysicsNational Center for Magnetic Resonance in WuhanWuhan Institute of Physics and MathematicsInnovation Academy for Precision Measurement Science and TechnologyChinese Academy of SciencesWuhan430071China
| | - Molly Meng‐Jung Li
- Department of Applied PhysicsThe Hong Kong Polytechnic UniversityHong Kong
| | - Shik Chi Edman Tsang
- Wolfson Catalysis CentreDepartment of ChemistryUniversity of OxfordOxfordOX1 3QRUK
| |
Collapse
|
64
|
Yakimov AV, Ravi M, Verel R, Sushkevich VL, van Bokhoven JA, Copéret C. Structure and Framework Association of Lewis Acid Sites in MOR Zeolite. J Am Chem Soc 2022; 144:10377-10385. [DOI: 10.1021/jacs.2c02212] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Alexander V. Yakimov
- ETH Zurich, Department of Chemistry and Applied Biosciences, Vladimir-Prelog Weg 1-5/10, CH-8093 Zurich, Switzerland
| | - Manoj Ravi
- ETH Zurich, Department of Chemistry and Applied Biosciences, Vladimir-Prelog Weg 1-5/10, CH-8093 Zurich, Switzerland
| | - René Verel
- ETH Zurich, Department of Chemistry and Applied Biosciences, Vladimir-Prelog Weg 1-5/10, CH-8093 Zurich, Switzerland
| | - Vitaly L. Sushkevich
- Laboratory for Catalysis and Sustainable Chemistry, Paul Scherrer Institute, CH-5232, Villigen, Switzerland
| | - Jeroen A. van Bokhoven
- ETH Zurich, Department of Chemistry and Applied Biosciences, Vladimir-Prelog Weg 1-5/10, CH-8093 Zurich, Switzerland
- Laboratory for Catalysis and Sustainable Chemistry, Paul Scherrer Institute, CH-5232, Villigen, Switzerland
| | - Christophe Copéret
- ETH Zurich, Department of Chemistry and Applied Biosciences, Vladimir-Prelog Weg 1-5/10, CH-8093 Zurich, Switzerland
| |
Collapse
|
65
|
Modulating inherent lewis acidity at the intergrowth interface of mortise-tenon zeolite catalyst. Nat Commun 2022; 13:2924. [PMID: 35614036 PMCID: PMC9133034 DOI: 10.1038/s41467-022-30538-7] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2021] [Accepted: 05/05/2022] [Indexed: 11/21/2022] Open
Abstract
The acid sites of zeolite are important local structures to control the products in the chemical conversion. However, it remains a great challenge to precisely design the structures of acid sites, since there are still lack the controllable methods to generate and identify them with a high resolution. Here, we use the lattice mismatch of the intergrown zeolite to enrich the inherent Lewis acid sites (LASs) at the interface of a mortise-tenon ZSM-5 catalyst (ZSM-5-MT) with a 90° intergrowth structure. ZSM-5-MT is formed by two perpendicular blocks that are atomically resolved by integrated differential phase contrast scanning transmission electron microscopy (iDPC-STEM). It can be revealed by various methods that novel framework-associated Al (AlFR) LASs are generated in ZSM-5-MT. Combining the iDPC-STEM results with other characterizations, we demonstrate that the partial missing of O atoms at interfaces results in the formation of inherent AlFR LASs in ZSM-5-MT. As a result, the ZSM-5-MT catalyst shows a higher selectivity of propylene and butene than the single-crystal ZSM-5 in the steady conversion of methanol. These results provide an efficient strategy to design the Lewis acidity in zeolite catalysts for tailored functions via interface engineering. The acid sites are important local structures to determine catalytic performances of zeolites. Here, the authors expand the interface engineering to the field of porous zeolites through the lattice mismatch of the intergrown zeolite to enrich the inherent Lewis acid sites at the interface of a mortise-tenon ZSM-5 catalyst.
Collapse
|
66
|
Li G, Yoskamtorn T, Chen W, Foo C, Zheng J, Tang C, Day S, Zheng A, Li MM, Tsang SCE. Thermal Alteration in Adsorption Sites over SAPO‐34 Zeolite. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202204500] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Guangchao Li
- Wolfson Catalysis Centre Department of Chemistry University of Oxford Oxford OX1 3QR UK
- Department of Applied Physics The Hong Kong Polytechnic University Hong Kong
| | | | - Wei Chen
- State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics National Center for Magnetic Resonance in Wuhan Wuhan Institute of Physics and Mathematics Innovation Academy for Precision Measurement Science and Technology Chinese Academy of Sciences Wuhan 430071 China
| | - Christopher Foo
- Wolfson Catalysis Centre Department of Chemistry University of Oxford Oxford OX1 3QR UK
| | - Jianwei Zheng
- Wolfson Catalysis Centre Department of Chemistry University of Oxford Oxford OX1 3QR UK
| | - Chiu Tang
- Diamond Light Source Ltd. Didcot OX11 0DE UK
| | - Sarah Day
- Diamond Light Source Ltd. Didcot OX11 0DE UK
| | - Anmin Zheng
- State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics National Center for Magnetic Resonance in Wuhan Wuhan Institute of Physics and Mathematics Innovation Academy for Precision Measurement Science and Technology Chinese Academy of Sciences Wuhan 430071 China
| | - Molly Meng‐Jung Li
- Department of Applied Physics The Hong Kong Polytechnic University Hong Kong
| | - Shik Chi Edman Tsang
- Wolfson Catalysis Centre Department of Chemistry University of Oxford Oxford OX1 3QR UK
| |
Collapse
|
67
|
Badran I, Sahar Riyaz N, Shraim AM, Nassar NN. Density functional theory study on the catalytic dehydrogenation of methane on MoO3 (0 1 0) surface. COMPUT THEOR CHEM 2022. [DOI: 10.1016/j.comptc.2022.113689] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
68
|
Moura P, Rodríguez-Aguado E, Maia D, Melo D, Singh R, Valencia S, Webley P, Rey F, Bastos-Neto M, Rodríguez-Castellón E, Azevedo D. Water adsorption and hydrothermal stability of CHA zeolites with different Si/Al ratios and compensating cations. Catal Today 2022. [DOI: 10.1016/j.cattod.2021.11.042] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
69
|
Dib E, Clatworthy EB, Cruchade H, Medeiros-Costa IC, Nesterenko N, Gilson JP, Mintova S. Exploration, explanation and exploitation of hydroxyls in zeolites. Natl Sci Rev 2022; 9:nwac081. [PMID: 36128452 PMCID: PMC9477191 DOI: 10.1093/nsr/nwac081] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2022] [Revised: 04/21/2022] [Accepted: 04/27/2022] [Indexed: 11/13/2022] Open
Affiliation(s)
- Eddy Dib
- Laboratory of Catalysis and Spectrochemistry (LCS), Normandy University, National Graduate School of Engineering of Caen (ENSICAEN), French National Center for Scientific Research (CNRS), France
| | - Edwin B Clatworthy
- Laboratory of Catalysis and Spectrochemistry (LCS), Normandy University, National Graduate School of Engineering of Caen (ENSICAEN), French National Center for Scientific Research (CNRS), France
| | - Hugo Cruchade
- Laboratory of Catalysis and Spectrochemistry (LCS), Normandy University, National Graduate School of Engineering of Caen (ENSICAEN), French National Center for Scientific Research (CNRS), France
| | | | | | - Jean-Pierre Gilson
- Laboratory of Catalysis and Spectrochemistry (LCS), Normandy University, National Graduate School of Engineering of Caen (ENSICAEN), French National Center for Scientific Research (CNRS), France
| | - Svetlana Mintova
- Laboratory of Catalysis and Spectrochemistry (LCS), Normandy University, National Graduate School of Engineering of Caen (ENSICAEN), French National Center for Scientific Research (CNRS), France
| |
Collapse
|
70
|
Liu R, Fan B, Zhang W, Wang L, Qi L, Wang Y, Xu S, Yu Z, Wei Y, Liu Z. Increasing the Number of Aluminum Atoms in T 3 Sites of a Mordenite Zeolite by Low-Pressure SiCl 4 Treatment to Catalyze Dimethyl Ether Carbonylation. Angew Chem Int Ed Engl 2022; 61:e202116990. [PMID: 35192218 DOI: 10.1002/anie.202116990] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2021] [Indexed: 11/07/2022]
Abstract
Controlling the location of aluminum atoms in a zeolite framework is critical for understanding structure-performance relationships of catalytic reaction systems and tailoring catalyst design. Herein, we report a strategy to preferentially relocate mordenite (MOR) framework Al atoms into the desired T3 sites by low-pressure SiCl4 treatment (LPST). High-field 27 Al NMR was used to identify the exact location of framework Al for the MOR samples. The results indicate that 73 % of the framework Al atoms were at the T3 sites after LPST under optimal conditions, which leads to controllably generating and intensifying active sites in MOR zeolite for the dimethyl ether (DME) carbonylation reaction with higher methyl acetate (MA) selectivity and much longer lifetime (25 times). Further research reveals that the Al relocation mechanism involves simultaneous extraction, migration, and reinsertion of Al atoms from and into the parent MOR framework. This unique method is potentially applicable to other zeolites to control Al location.
Collapse
Affiliation(s)
- Rongsheng Liu
- National Engineering Laboratory for Methanol to Olefins, Dalian National Laboratory for Clean Energy, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 116023, China.,University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Benhan Fan
- National Engineering Laboratory for Methanol to Olefins, Dalian National Laboratory for Clean Energy, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 116023, China.,University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Wenna Zhang
- National Engineering Laboratory for Methanol to Olefins, Dalian National Laboratory for Clean Energy, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 116023, China
| | - Linying Wang
- National Engineering Laboratory for Methanol to Olefins, Dalian National Laboratory for Clean Energy, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 116023, China
| | - Liang Qi
- National Engineering Laboratory for Methanol to Olefins, Dalian National Laboratory for Clean Energy, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 116023, China
| | - Yingli Wang
- National Engineering Laboratory for Methanol to Olefins, Dalian National Laboratory for Clean Energy, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 116023, China
| | - Shutao Xu
- National Engineering Laboratory for Methanol to Olefins, Dalian National Laboratory for Clean Energy, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 116023, China
| | - Zhengxi Yu
- National Engineering Laboratory for Methanol to Olefins, Dalian National Laboratory for Clean Energy, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 116023, China
| | - Yingxu Wei
- National Engineering Laboratory for Methanol to Olefins, Dalian National Laboratory for Clean Energy, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 116023, China
| | - Zhongmin Liu
- National Engineering Laboratory for Methanol to Olefins, Dalian National Laboratory for Clean Energy, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 116023, China.,University of Chinese Academy of Sciences, Beijing, 100049, China
| |
Collapse
|
71
|
Hu ZP, Han J, Wei Y, Liu Z. Dynamic Evolution of Zeolite Framework and Metal-Zeolite Interface. ACS Catal 2022. [DOI: 10.1021/acscatal.2c01233] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Affiliation(s)
- Zhong-Pan Hu
- National Engineering Laboratory for Methanol to Olefins, Dalian National Laboratory for Clean Energy, iChEM (Collaborative Innovation Center of Chemistry for Energy Materials), Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, People’s Republic of China
| | - Jingfeng Han
- National Engineering Laboratory for Methanol to Olefins, Dalian National Laboratory for Clean Energy, iChEM (Collaborative Innovation Center of Chemistry for Energy Materials), Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, People’s Republic of China
| | - Yingxu Wei
- National Engineering Laboratory for Methanol to Olefins, Dalian National Laboratory for Clean Energy, iChEM (Collaborative Innovation Center of Chemistry for Energy Materials), Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, People’s Republic of China
| | - Zhongmin Liu
- National Engineering Laboratory for Methanol to Olefins, Dalian National Laboratory for Clean Energy, iChEM (Collaborative Innovation Center of Chemistry for Energy Materials), Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, People’s Republic of China
- State Key Laboratory of Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, People’s Republic of China
- University of Chinese Academy of Sciences, Beijing 100049, People’s Republic of China
| |
Collapse
|
72
|
Liu R, Fan B, Zhang W, Wang L, Qi L, Wang Y, Xu S, Yu Z, Wei Y, Liu Z. Increasing the Number of Aluminum Atoms in T
3
Sites of a Mordenite Zeolite by Low‐Pressure SiCl
4
Treatment to Catalyze Dimethyl Ether Carbonylation. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202116990] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Rongsheng Liu
- National Engineering Laboratory for Methanol to Olefins Dalian National Laboratory for Clean Energy Dalian Institute of Chemical Physics Chinese Academy of Sciences Dalian 116023 China
- University of Chinese Academy of Sciences Beijing 100049 China
| | - Benhan Fan
- National Engineering Laboratory for Methanol to Olefins Dalian National Laboratory for Clean Energy Dalian Institute of Chemical Physics Chinese Academy of Sciences Dalian 116023 China
- University of Chinese Academy of Sciences Beijing 100049 China
| | - Wenna Zhang
- National Engineering Laboratory for Methanol to Olefins Dalian National Laboratory for Clean Energy Dalian Institute of Chemical Physics Chinese Academy of Sciences Dalian 116023 China
| | - Linying Wang
- National Engineering Laboratory for Methanol to Olefins Dalian National Laboratory for Clean Energy Dalian Institute of Chemical Physics Chinese Academy of Sciences Dalian 116023 China
| | - Liang Qi
- National Engineering Laboratory for Methanol to Olefins Dalian National Laboratory for Clean Energy Dalian Institute of Chemical Physics Chinese Academy of Sciences Dalian 116023 China
| | - Yingli Wang
- National Engineering Laboratory for Methanol to Olefins Dalian National Laboratory for Clean Energy Dalian Institute of Chemical Physics Chinese Academy of Sciences Dalian 116023 China
| | - Shutao Xu
- National Engineering Laboratory for Methanol to Olefins Dalian National Laboratory for Clean Energy Dalian Institute of Chemical Physics Chinese Academy of Sciences Dalian 116023 China
| | - Zhengxi Yu
- National Engineering Laboratory for Methanol to Olefins Dalian National Laboratory for Clean Energy Dalian Institute of Chemical Physics Chinese Academy of Sciences Dalian 116023 China
| | - Yingxu Wei
- National Engineering Laboratory for Methanol to Olefins Dalian National Laboratory for Clean Energy Dalian Institute of Chemical Physics Chinese Academy of Sciences Dalian 116023 China
| | - Zhongmin Liu
- National Engineering Laboratory for Methanol to Olefins Dalian National Laboratory for Clean Energy Dalian Institute of Chemical Physics Chinese Academy of Sciences Dalian 116023 China
- University of Chinese Academy of Sciences Beijing 100049 China
| |
Collapse
|
73
|
Salvadori E, Fusco E, Chiesa M. Long-Range Spatial Distribution of Single Aluminum Sites in Zeolites. J Phys Chem Lett 2022; 13:1283-1289. [PMID: 35099984 PMCID: PMC8842299 DOI: 10.1021/acs.jpclett.1c03554] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2021] [Accepted: 01/25/2022] [Indexed: 06/14/2023]
Abstract
How aluminum distributes during synthesis and rearranges after processing within the zeolite framework is a central question in heterogeneous catalysis, as it determines the structure and location of the catalytically active sites of the one of the most important classes of industrial catalysts. Here, exploiting the dipolar interaction between paramagnetic metal ions, we derive the spatial distribution of single aluminum sites within the ZSM-5 zeolite framework in the nanometer range, in polycrystalline samples lacking long-range order. We use a Monte Carlo approach to validate the findings on a pristine ZSM-5 sample and demonstrate that the method is sensitive enough to monitor aluminum redistribution induced in the framework by chemical stress.
Collapse
|
74
|
Rabia BS, Sushkevich VL, van Bokhoven JA. Correlating Lewis Acid Activity to Extra-Framework Aluminum species in Zeolite Y Introduced by Ion-Exchange. J Catal 2022. [DOI: 10.1016/j.jcat.2022.02.010] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
|
75
|
Renewable bio-based routes to γ-valerolactone in the presence of hafnium nanocrystalline or hierarchical microcrystalline zeotype catalysts. J Catal 2022. [DOI: 10.1016/j.jcat.2021.12.022] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
|
76
|
Prodinger S, Kvande K, Arstad B, Borfecchia E, Beato P, Svelle S. Synthesis–Structure–Activity Relationship in Cu-MOR for Partial Methane Oxidation: Al Siting via Inorganic Structure-Directing Agents. ACS Catal 2022. [DOI: 10.1021/acscatal.1c05091] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Affiliation(s)
- Sebastian Prodinger
- Center for Materials Science and Nanotechnology (SMN), Department of Chemistry, University of Oslo, 1033 Blindern, 0315 Oslo, Norway
| | - Karoline Kvande
- Center for Materials Science and Nanotechnology (SMN), Department of Chemistry, University of Oslo, 1033 Blindern, 0315 Oslo, Norway
| | | | - Elisa Borfecchia
- Department of Chemistry, NIS Center and INSTM Reference Center, University of Turin, 10125 Turin, Italy
| | - Pablo Beato
- Haldor Topsøe A/S, Haldor Topsøes Allé 1, 2800 Kongens Lyngby, Denmark
| | - Stian Svelle
- Center for Materials Science and Nanotechnology (SMN), Department of Chemistry, University of Oslo, 1033 Blindern, 0315 Oslo, Norway
| |
Collapse
|
77
|
Erdmann P, Greb L. What Distinguishes the Strength and the Effect of a Lewis Acid: Analysis of the Gutmann-Beckett Method. Angew Chem Int Ed Engl 2022; 61:e202114550. [PMID: 34757692 PMCID: PMC9299668 DOI: 10.1002/anie.202114550] [Citation(s) in RCA: 72] [Impact Index Per Article: 24.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2021] [Indexed: 01/03/2023]
Abstract
IUPAC defines Lewis acidity as the thermodynamic tendency for Lewis pair formation. This strength property was recently specified as global Lewis acidity (gLA), and is gauged for example by the fluoride ion affinity. Experimentally, Lewis acidity is usually evaluated by the effect on a bound molecule, such as the induced 31 P NMR shift of triethylphosphine oxide in the Gutmann-Beckett (GB) method. This type of scaling was called effective Lewis acidity (eLA). Unfortunately, gLA and eLA often correlate poorly, but a reason for this is unknown. Hence, the strength and the effect of a Lewis acid are two distinct properties, but they are often granted interchangeably. The present work analyzes thermodynamic, NMR specific, and London dispersion effects on GB numbers for 130 Lewis acids by theory and experiment. The deformation energy of a Lewis acid is identified as the prime cause for the critical deviation between gLA and eLA but its correction allows a unification for the first time.
Collapse
Affiliation(s)
- Philipp Erdmann
- Anorganisch-Chemisches InstitutRuprecht-Karls-Universität HeidelbergIm Neuenheimer Feld 27069120HeidelbergGermany
| | - Lutz Greb
- Anorganisch-Chemisches InstitutRuprecht-Karls-Universität HeidelbergIm Neuenheimer Feld 27069120HeidelbergGermany
- Department of Chemistry and Biochemistry—Inorganic ChemistryFreie Universität BerlinFabeckstr. 34/3614195BerlinGermany
| |
Collapse
|
78
|
Erdmann P, Greb L. What Distinguishes the Strength and the Effect of a Lewis Acid: Analysis of the Gutmann–Beckett Method. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202114550] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Affiliation(s)
- Philipp Erdmann
- Anorganisch-Chemisches Institut Ruprecht-Karls-Universität Heidelberg Im Neuenheimer Feld 270 69120 Heidelberg Germany
| | - Lutz Greb
- Anorganisch-Chemisches Institut Ruprecht-Karls-Universität Heidelberg Im Neuenheimer Feld 270 69120 Heidelberg Germany
- Department of Chemistry and Biochemistry—Inorganic Chemistry Freie Universität Berlin Fabeckstr. 34/36 14195 Berlin Germany
| |
Collapse
|
79
|
Korde A, Min B, Kapaca E, Knio O, Nezam I, Wang Z, Leisen J, Yin X, Zhang X, Sholl DS, Zou X, Willhammar T, Jones CW, Nair S. Single-walled zeolitic nanotubes. Science 2022; 375:62-66. [PMID: 34990247 DOI: 10.1126/science.abg3793] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
We report the synthesis and structure of single-walled aluminosilicate nanotubes with microporous zeolitic walls. This quasi-one-dimensional zeolite is assembled by a bolaform structure-directing agent (SDA) containing a central biphenyl group connected by C10 alkyl chains to quinuclidinium end groups. High-resolution electron microscopy and diffraction, along with other supporting methods, revealed a unique wall structure that is a hybrid of characteristic building layers from two zeolite structure types, beta and MFI. This hybrid structure arises from minimization of strain energy during the formation of a curved nanotube wall. Nanotube formation involves the early appearance of a mesostructure due to self-assembly of the SDA molecules. The biphenyl core groups of the SDA molecules show evidence of π stacking, whereas the peripheral quinuclidinium groups direct the microporous wall structure.
Collapse
Affiliation(s)
- Akshay Korde
- School of Chemical & Biomolecular Engineering, Georgia Institute of Technology, Atlanta, GA 30332, USA
| | - Byunghyun Min
- School of Chemical & Biomolecular Engineering, Georgia Institute of Technology, Atlanta, GA 30332, USA
| | - Elina Kapaca
- Department of Materials and Environmental Chemistry, Stockholm University, 10691 Stockholm, Sweden
| | - Omar Knio
- School of Chemical & Biomolecular Engineering, Georgia Institute of Technology, Atlanta, GA 30332, USA
| | - Iman Nezam
- School of Chemical & Biomolecular Engineering, Georgia Institute of Technology, Atlanta, GA 30332, USA
| | - Ziyuan Wang
- School of Chemical & Biomolecular Engineering, Georgia Institute of Technology, Atlanta, GA 30332, USA
| | - Johannes Leisen
- School of Chemistry and Biochemistry, Georgia Institute of Technology, Atlanta, GA 30332, USA
| | - Xinyang Yin
- Department of Chemical Engineering, The Pennsylvania State University, University Park, PA 16802, USA
| | - Xueyi Zhang
- Department of Chemical Engineering, The Pennsylvania State University, University Park, PA 16802, USA
| | - David S Sholl
- School of Chemical & Biomolecular Engineering, Georgia Institute of Technology, Atlanta, GA 30332, USA
| | - Xiaodong Zou
- Department of Materials and Environmental Chemistry, Stockholm University, 10691 Stockholm, Sweden
| | - Tom Willhammar
- Department of Materials and Environmental Chemistry, Stockholm University, 10691 Stockholm, Sweden
| | - Christopher W Jones
- School of Chemical & Biomolecular Engineering, Georgia Institute of Technology, Atlanta, GA 30332, USA.,School of Chemistry and Biochemistry, Georgia Institute of Technology, Atlanta, GA 30332, USA
| | - Sankar Nair
- School of Chemical & Biomolecular Engineering, Georgia Institute of Technology, Atlanta, GA 30332, USA
| |
Collapse
|
80
|
Abstract
Catalysis is at the core of chemistry and has been essential to make all the goods surrounding us, including fuels, coatings, plastics and other functional materials. In the near future, catalysis will also be an essential tool in making the shift from a fossil-fuel-based to a more renewable and circular society. To make this reality, we have to better understand the fundamental concept of the active site in catalysis. Here, we discuss the physical meaning - and deduce the validity and, therefore, usefulness - of some common approaches in heterogeneous catalysis, such as linking catalyst activity to a 'turnover frequency' and explaining catalytic performance in terms of 'structure sensitivity' or 'structure insensitivity'. Catalytic concepts from the fields of enzymatic and homogeneous catalysis are compared, ultimately realizing that the struggle that one encounters in defining the active site in most solid catalysts is likely the one we must overcome to reach our end goal: tailoring the precise functioning of the active sites with respect to many different parameters to satisfy our ever-growing needs. This article ends with an outlook of what may become feasible within the not-too-distant future with modern experimental and theoretical tools at hand.
Collapse
|
81
|
Kokuryo S, Tamura K, Miyake K, Uchida Y, Mizusawa A, Kubo T, Nishiyama N. LDPE cracking over mono- and divalent metal-doped beta zeolites. Catal Sci Technol 2022. [DOI: 10.1039/d2cy00407k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
This study evaluates the effect of loading various mono and divalent metals in Beta zeolite on low-density polyethylene (LDPE) cracking. We revealed that Tl and Ba ions enhanced Lewis acidity, leading to higher catalytic activity on LDPE cracking.
Collapse
Affiliation(s)
- Shinya Kokuryo
- Division of Chemical Engineering, Graduate School of Engineering Science, Osaka University, 1-3 Machikaneyama, Toyonaka, Osaka 560-8531, Japan
| | - Kazuya Tamura
- Division of Chemical Engineering, Graduate School of Engineering Science, Osaka University, 1-3 Machikaneyama, Toyonaka, Osaka 560-8531, Japan
| | - Koji Miyake
- Division of Chemical Engineering, Graduate School of Engineering Science, Osaka University, 1-3 Machikaneyama, Toyonaka, Osaka 560-8531, Japan
| | - Yoshiaki Uchida
- Division of Chemical Engineering, Graduate School of Engineering Science, Osaka University, 1-3 Machikaneyama, Toyonaka, Osaka 560-8531, Japan
| | - Atsushi Mizusawa
- AC Biode Co., Ltd., 498-6 Iwakura Hanazono, Sakyo, Kyoto, 606-0024, Japan
| | - Tadashi Kubo
- AC Biode Co., Ltd., 498-6 Iwakura Hanazono, Sakyo, Kyoto, 606-0024, Japan
| | - Norikazu Nishiyama
- Division of Chemical Engineering, Graduate School of Engineering Science, Osaka University, 1-3 Machikaneyama, Toyonaka, Osaka 560-8531, Japan
| |
Collapse
|
82
|
Kiani D, Xi Y, Ottinger N, Liu ZG. Revisiting NH 3–catalyst interactions in Cu-SSZ-13 SCR catalysts: an in situ spectro-kinetics study. Catal Sci Technol 2022. [DOI: 10.1039/d2cy00805j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
At low surface coverages, NH3 consumption was found to occur during adsorption at 120 °C over both Cu-SSZ-13, and H-SSZ-13; albeit much faster on Cu-SSZ-13.
Collapse
Affiliation(s)
- Daniyal Kiani
- Cummins Emission Solutions, 1801 US Hwy 51/138, Stoughton, WI, 53589, USA
| | - Yuanzhou Xi
- Cummins Emission Solutions, 1801 US Hwy 51/138, Stoughton, WI, 53589, USA
| | - Nathan Ottinger
- Cummins Emission Solutions, 1801 US Hwy 51/138, Stoughton, WI, 53589, USA
| | - Z. Gerald Liu
- Cummins Emission Solutions, 1801 US Hwy 51/138, Stoughton, WI, 53589, USA
| |
Collapse
|
83
|
Okonsky ST, Krishna JVJ, Toraman HE. Catalytic co-pyrolysis of LDPE and PET with HZSM-5, H-beta, and HY: experiments and kinetic modelling. REACT CHEM ENG 2022. [DOI: 10.1039/d2re00144f] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
This study determines interaction effects and conducts kinetic modeling for catalytic co-pyrolysis of LDPE and PET with multiple zeolite frameworks.
Collapse
Affiliation(s)
- Sean Timothy Okonsky
- Department of Chemical Engineering, Pennsylvania State University, University Park, PA-16801, USA
| | - J. V. Jayarama Krishna
- Department of Energy and Mineral Engineering, Pennsylvania State University, University Park, PA-16801, USA
| | - Hilal Ezgi Toraman
- Department of Chemical Engineering, Pennsylvania State University, University Park, PA-16801, USA
- Department of Energy and Mineral Engineering, Pennsylvania State University, University Park, PA-16801, USA
- Institutes of Energy and the Environment, Pennsylvania State University, University Park, PA-16801, USA
| |
Collapse
|
84
|
Zhang H, Samsudin IB, Jaenicke S, Chuah GK. Zeolites in catalysis: sustainable synthesis and its impact on properties and applications. Catal Sci Technol 2022. [DOI: 10.1039/d2cy01325h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Zeolites are versatile catalysts not only for large scale petrochemical processes but also in applications related to fine chemicals synthesis, biomass conversion and CO2 utilization. Introduction of mesopores and heteroatoms...
Collapse
|
85
|
Zhou W, Ogiwara N, Weng Z, Zhao C, Yan L, Kikukawa Y, Uchida S. Vanadium-substituted polycationic Al-oxo cluster in a porous ionic crystal exhibiting Lewis acidity. Chem Commun (Camb) 2022; 58:12548-12551. [DOI: 10.1039/d2cc03545f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A vanadium-substituted polycationic Al-oxo cluster (Al28V4) in an all-inorganic porous ionic crystal exhibits Lewis acidity.
Collapse
Affiliation(s)
- Wei Zhou
- Department of Basic Science, School of Arts and Sciences, The University of Tokyo, Komaba, Meguro-ku, Tokyo 153-8902, Japan
| | - Naoki Ogiwara
- Department of Basic Science, School of Arts and Sciences, The University of Tokyo, Komaba, Meguro-ku, Tokyo 153-8902, Japan
| | - Zhewei Weng
- Department of Basic Science, School of Arts and Sciences, The University of Tokyo, Komaba, Meguro-ku, Tokyo 153-8902, Japan
| | - Congcong Zhao
- Institute of Functional Material Chemistry, Faculty of Chemistry, Northeast Normal University, Changchun 130024, P. R. China
| | - Likai Yan
- Institute of Functional Material Chemistry, Faculty of Chemistry, Northeast Normal University, Changchun 130024, P. R. China
| | - Yuji Kikukawa
- Department of Chemistry, Graduate School of Natural Science and Technology, Kanazawa University, Kakuma-machi, Kanazawa, Ishikawa 920-1192, Japan
| | - Sayaka Uchida
- Department of Basic Science, School of Arts and Sciences, The University of Tokyo, Komaba, Meguro-ku, Tokyo 153-8902, Japan
| |
Collapse
|
86
|
Zhang J, Ding G, Wang Y, Wang F, Wang H, Liu Y, Zhu Y, Li Y. Regulation of Brønsted acid sites to enhance the decarburization of hexoses to furfural. Catal Sci Technol 2022. [DOI: 10.1039/d1cy02342j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
H-Beta zeolites were employed for hexose decarburization to furfural. Excellent performance was achieved over high-Si H-Beta zeolite due to its high B/(B + L) ratio. The synergetic mechanism between *BEA channel and framework-Al is decisive.
Collapse
Affiliation(s)
- Junbo Zhang
- State Key Laboratory of Coal Conversion, Institute of Coal Chemistry, Chinese Academy of Sciences, Taiyuan 030001, PR China
- University of Chinese Academy of Sciences, Beijing 100049, PR China
| | | | - Yueqing Wang
- School of Energy and Power Engineering, North University of China, Taiyuan 030051, Shanxi, China
| | - Fei Wang
- State Key Laboratory of Coal Conversion, Institute of Coal Chemistry, Chinese Academy of Sciences, Taiyuan 030001, PR China
| | - Hongxing Wang
- State Key Laboratory of Coal Conversion, Institute of Coal Chemistry, Chinese Academy of Sciences, Taiyuan 030001, PR China
- University of Chinese Academy of Sciences, Beijing 100049, PR China
| | - Yubo Liu
- State Key Laboratory of Coal Conversion, Institute of Coal Chemistry, Chinese Academy of Sciences, Taiyuan 030001, PR China
- University of Chinese Academy of Sciences, Beijing 100049, PR China
| | - Yulei Zhu
- State Key Laboratory of Coal Conversion, Institute of Coal Chemistry, Chinese Academy of Sciences, Taiyuan 030001, PR China
- Synfuels China Co. Ltd, Beijing 101407, PR China
| | - Yongwang Li
- State Key Laboratory of Coal Conversion, Institute of Coal Chemistry, Chinese Academy of Sciences, Taiyuan 030001, PR China
- Synfuels China Co. Ltd, Beijing 101407, PR China
| |
Collapse
|
87
|
Batalha N, Comparot JD, Le Valant A, Pinard L. In situ FTIR spectroscopy to unravel the bifunctional nature of aromatics hydrogenation synergy on zeolite/metal catalysts. Catal Sci Technol 2022. [DOI: 10.1039/d1cy01724a] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The hydrogenation of pyridine adsorbed on zeolite is dependent on the distance between acid and metal sites. Hydrogen species produced in the metal diffuse into pyridine and promote hydrogenation, suggesting a bifunctional mechanism is occurring.
Collapse
Affiliation(s)
- Nuno Batalha
- Institut de Recherche sur la Catalyse et l'Environnement de Lyon (IRCELYON), UMR 7285 CNRS, Univ. Lyon, UMR 5256 CNRS-Univ. Claude Bernard, 2 av. Einstein, 69626 Villeurbanne cedex, France
- Institut de Chimie des Milieux et Matériaux de Poitiers (IC2MP), UMR 7285 CNRS, 4 rue Michel Brunet, Bâtiment B27, TSA 51106, 86073, Poitiers Cedex 9, France
| | - Jean-Dominique Comparot
- Institut de Chimie des Milieux et Matériaux de Poitiers (IC2MP), UMR 7285 CNRS, 4 rue Michel Brunet, Bâtiment B27, TSA 51106, 86073, Poitiers Cedex 9, France
| | - Anthony Le Valant
- Institut de Chimie des Milieux et Matériaux de Poitiers (IC2MP), UMR 7285 CNRS, 4 rue Michel Brunet, Bâtiment B27, TSA 51106, 86073, Poitiers Cedex 9, France
| | - Ludovic Pinard
- University of Poitiers, B 27, 4 rue Michel Brunet, Poitiers, France
| |
Collapse
|
88
|
Dai H, Lee C, Liu W, Yang T, Claret J, Zou X, Dauenhauer PJ, Li X, Rimer JD. Enhanced Selectivity and Stability of Finned Ferrierite Catalysts in Butene Isomerization. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202113077] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Affiliation(s)
- Heng Dai
- Department of Chemical and Biomolecular Engineering University of Houston Houston TX 77204 USA
| | - Choongsze Lee
- Department of Chemical Engineering and Materials Science University of Minnesota Minneapolis MN 55455 USA
| | - Wen Liu
- State Key Laboratory of Catalysis Dalian Institute of Chemical Physics Dalian 116023 China
| | - Taimin Yang
- Department of Materials and Environmental Chemistry Stockholm University 10691 Stockholm Sweden
| | - Jakob Claret
- Department of Chemical and Biomolecular Engineering University of Houston Houston TX 77204 USA
| | - Xiaodong Zou
- Department of Materials and Environmental Chemistry Stockholm University 10691 Stockholm Sweden
| | - Paul J. Dauenhauer
- Department of Chemical Engineering and Materials Science University of Minnesota Minneapolis MN 55455 USA
| | - Xiujie Li
- State Key Laboratory of Catalysis Dalian Institute of Chemical Physics Dalian 116023 China
| | - Jeffrey D. Rimer
- Department of Chemical and Biomolecular Engineering University of Houston Houston TX 77204 USA
| |
Collapse
|
89
|
Comparative Study on the Catalytic Performance of a 13X Zeolite and its Dealuminated Derivative for Biodiesel Production. BULLETIN OF CHEMICAL REACTION ENGINEERING & CATALYSIS 2021. [DOI: 10.9767/bcrec.16.4.11436.763-772] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Natural kaolin clay was used to successfully prepare 13X zeolite catalysts, which were modified by dealumination with citric acid. Acid leaching eliminates impurities and aluminum, and improves the Si/Al ratio of the zeolite framework. The X-ray diffraction (XRD) patterns of both the original and modified 13X zeolites were the same, indicating that the crystalline frameworks were not destroyed during the dealumination process. X-ray fluorescence data of the dealuminated 13X zeolite showed an improved Si/Al ratio. Also, Atomic Force Microscopy (AFM) was used for the characterization of the catalysts. The catalytic performance of the original and modified catalysts was tested in the esterification reaction of oleic acid in a batch reactor. A higher conversion of oleic acid was obtained using the modified 13X zeolite. The resulting experimental data from the esterification reactions were fitted to the heterogeneous Langmuir-Hinshelwood-Hougen-Watson (LHHW) kinetic model to determine the rates of reaction. The results of the reaction kinetics showed an increase in the rate of reaction velocity and a distinct decrease in the activation energy when using the modified zeolite, indicating that employing the modified catalyst will give a higher conversion over a shorter time through a reaction with less sensitivity to temperature. Copyright © 2021 by Authors, Published by BCREC Group. This is an open access article under the CC BY-SA License (https://creativecommons.org/licenses/by-sa/4.0).
Collapse
|
90
|
Dai H, Lee C, Liu W, Yang T, Claret J, Zou X, Dauenhauer PJ, Li X, Rimer JD. Enhanced Selectivity and Stability of Finned Ferrierite Catalysts in Butene Isomerization. Angew Chem Int Ed Engl 2021; 61:e202113077. [PMID: 34877748 DOI: 10.1002/anie.202113077] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2021] [Indexed: 11/09/2022]
Abstract
Designing zeolite catalysts with improved mass transport properties is crucial for restrictive networks of either one- or two-dimensional pore topologies. Here, we demonstrate the synthesis of finned ferrierite (FER), a commercial zeolite with two-dimensional pores, where protrusions on crystal surfaces behave as pseudo nanoparticles. Catalytic tests of 1-butene isomerization reveal a 3-fold enhancement of catalyst lifetime and an increase of 12 % selectivity to isobutene for finned samples compared to corresponding seeds. Electron tomography was used to confirm the identical crystallographic registry of fins and seeds. Time-resolved titration of Brønsted acid sites confirmed the improved mass transport properties of finned ferrierite compared to conventional analogues. These findings highlight the advantages of introducing fins through facile and tunable post-synthesis modification to impart material properties that are otherwise unattainable by conventional synthesis methods.
Collapse
Affiliation(s)
- Heng Dai
- Department of Chemical and Biomolecular Engineering, University of Houston, Houston, TX 77204, USA
| | - Choongsze Lee
- Department of Chemical Engineering and Materials Science, University of Minnesota, Minneapolis, MN 55455, USA
| | - Wen Liu
- State Key Laboratory of Catalysis, Dalian Institute of Chemical Physics, Dalian, 116023, China
| | - Taimin Yang
- Department of Materials and Environmental Chemistry, Stockholm University, 10691, Stockholm, Sweden
| | - Jakob Claret
- Department of Chemical and Biomolecular Engineering, University of Houston, Houston, TX 77204, USA
| | - Xiaodong Zou
- Department of Materials and Environmental Chemistry, Stockholm University, 10691, Stockholm, Sweden
| | - Paul J Dauenhauer
- Department of Chemical Engineering and Materials Science, University of Minnesota, Minneapolis, MN 55455, USA
| | - Xiujie Li
- State Key Laboratory of Catalysis, Dalian Institute of Chemical Physics, Dalian, 116023, China
| | - Jeffrey D Rimer
- Department of Chemical and Biomolecular Engineering, University of Houston, Houston, TX 77204, USA
| |
Collapse
|
91
|
A bifunctional zeolitic porous liquid with incompatible Lewis pairs for antagonistic cascade catalysis. Chem 2021. [DOI: 10.1016/j.chempr.2021.08.022] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
|
92
|
Taylor CN, Urban-Klaehn J, Le TT, Zaleski R, Rimer JD, Gering KL. Catalyst Deactivation Probed by Positron Annihilation Spectroscopy. ACS Catal 2021. [DOI: 10.1021/acscatal.1c04521] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Chase N. Taylor
- Idaho National Laboratory, Idaho Falls, Idaho 83401, United States
| | | | - Thuy T. Le
- Chemical and Biomolecular Engineering, University of Houston, Houston, Texas 77204, United States
| | - Radoslaw Zaleski
- Maria Curie-Sklodowska University, Institute of Physics, Lublin 20-031, Poland
| | - Jeffrey D. Rimer
- Chemical and Biomolecular Engineering, University of Houston, Houston, Texas 77204, United States
| | - Kevin L. Gering
- Idaho National Laboratory, Idaho Falls, Idaho 83401, United States
| |
Collapse
|
93
|
Decker GE, Bloch ED. Using Helium Pycnometry to Study the Apparent Densities of Metal-Organic Frameworks. ACS APPLIED MATERIALS & INTERFACES 2021; 13:51925-51932. [PMID: 34156822 DOI: 10.1021/acsami.1c07304] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
When investigating the gas storage capacities of metal-organic frameworks, volumetric values are often reported based on crystallographic densities. Although it is widely accepted that Langmuir and BET surface areas of a given MOF can vary depending on the exact synthetic conditions used to prepare the materials, it is rare that deviations in density from the optimal crystallographic density are considered. The actual (apparent) densities of these materials are highly variable depending on the presence of defects, impurities, or multiple phases that arise during synthesis. The apparent density of specific samples, which represent an experimentally determined crystallographic density, can be measured with helium pycnometry where the skeletal density measured via pycnometry is easily converted to an apparent density. In the work reported here, apparent density was measured for 46 samples across a series of different structure types where experimentally measured density was consistently lower than crystallographic density, up to 30% in some cases. Subsequently, use of this technique allows for quantification of densities for those materials whose structures have not been crystallographically determined.
Collapse
Affiliation(s)
- Gerald E Decker
- Department of Chemistry and Biochemistry, University of Delaware, Newark, Delaware 19716 United States
| | - Eric D Bloch
- Department of Chemistry and Biochemistry, University of Delaware, Newark, Delaware 19716 United States
| |
Collapse
|
94
|
Yamazaki H, Hasegawa H, Tanaka C, Takamiya Y, Mitsui T, Mizuno T. Al ion-exchanged USY in FCC catalyst for high LPG yield. CATAL COMMUN 2021. [DOI: 10.1016/j.catcom.2021.106354] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022] Open
|
95
|
Le TT, Shilpa K, Lee C, Han S, Weiland C, Bare SR, Dauenhauer PJ, Rimer JD. Core-shell and egg-shell zeolite catalysts for enhanced hydrocarbon processing. J Catal 2021. [DOI: 10.1016/j.jcat.2021.11.004] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
|
96
|
Whajah B, da Silva Moura N, Blanchard J, Wicker S, Gandar K, Dorman JA, Dooley KM. Catalytic Depolymerization of Waste Polyolefins by Induction Heating: Selective Alkane/Alkene Production. Ind Eng Chem Res 2021; 60:15141-15150. [PMID: 34720395 PMCID: PMC8554762 DOI: 10.1021/acs.iecr.1c02674] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2021] [Revised: 09/28/2021] [Accepted: 09/30/2021] [Indexed: 11/28/2022]
Abstract
Low- and high-density polyethylene (LDPE/HDPE) have been selectively depolymerized, without added H2, to C2-C20 + alkanes/alkenes via energy-efficient radio frequency induction heating, coupled with dual-functional heterogeneous Fe3O4 and Ni- or Pt-based catalysts. Fe3O4 was used to locally generate heat when exposed to magnetic fields. Initial results indicate that zeolite-based Ni catalysts are more selective to light olefins, while Ni supported on ceria catalysts are more selective to C7-C14 alkanes/alkenes. LDPE conversions up to 94% were obtained with minimal aromatic, coke, or methane formation which are typically observed with thermal heating. Two depolymerization mechanisms, a reverse Cossee-Arlman mechanism or a random cleavage process, were proposed to account for the different selectivities. The depolymerization process was also tested on commercial LDPE (grocery bags), polystyrene, and virgin HDPE using the Ni on Fe3O4 catalyst, with the LDPE resulting in similar product conversion (∼48%) and selectivity as for virgin LDPE.
Collapse
Affiliation(s)
- Bernard Whajah
- Cain
Department of Chemical Engineering, Louisiana
State University, Baton
Rouge, Louisiana 70803, United States
| | - Natalia da Silva Moura
- Cain
Department of Chemical Engineering, Louisiana
State University, Baton
Rouge, Louisiana 70803, United States
| | - Justin Blanchard
- Cain
Department of Chemical Engineering, Louisiana
State University, Baton
Rouge, Louisiana 70803, United States
| | - Scott Wicker
- Department
of Chemistry, Rhodes College, Memphis, Tennessee 38112, United States
| | - Karleigh Gandar
- Science
Department, Baton Rouge Community College, Baton Rouge, Louisiana 70806, United States
| | - James A. Dorman
- Cain
Department of Chemical Engineering, Louisiana
State University, Baton
Rouge, Louisiana 70803, United States
| | - Kerry M. Dooley
- Cain
Department of Chemical Engineering, Louisiana
State University, Baton
Rouge, Louisiana 70803, United States
| |
Collapse
|
97
|
Tatiana García‐Sánchez J, Darío Mora‐Vergara I, Molina‐Velasco DR, Antonio Henao‐Martínez J, Gabriel Baldovino‐Medrano V. Key Factors During the Milling Stage of the Seed‐assisted and Solvent‐free Synthesis of MFI and Catalytic Behavior in the Alkylation of Phenol with Tert‐butyl Alcohol. ChemCatChem 2021. [DOI: 10.1002/cctc.202100479] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Julieth Tatiana García‐Sánchez
- Centro de Investigaciones en Catálisis (CICAT) Universidad Industrial de Santander Parque Tecnológico Guatiguará km 2 vía El Refugio Universidad Industrial de Santander Piedecuesta (Santander) 681011 Colombia
| | - Iván Darío Mora‐Vergara
- Centro de Investigaciones en Catálisis (CICAT) Universidad Industrial de Santander Parque Tecnológico Guatiguará km 2 vía El Refugio Universidad Industrial de Santander Piedecuesta (Santander) 681011 Colombia
| | - Daniel Ricardo Molina‐Velasco
- Laboratorio de Resonancia Magnética Nuclear Universidad Industrial de Santander Parque Tecnológico Guatiguará km 2 vía El Refugio Universidad Industrial de Santander Piedecuesta (Santander) 681011 Colombia
| | - José Antonio Henao‐Martínez
- Laboratorio de Rayos-X Universidad Industrial de Santander Parque Tecnológico Guatiguará km 2 vía El Refugio Universidad Industrial de Santander Piedecuesta (Santander) 681011 Colombia
| | - Víctor Gabriel Baldovino‐Medrano
- Centro de Investigaciones en Catálisis (CICAT) Universidad Industrial de Santander Parque Tecnológico Guatiguará km 2 vía El Refugio Universidad Industrial de Santander Piedecuesta (Santander) 681011 Colombia
- Laboratorio de Ciencia de Superficies (SurfLab) Universidad Industrial de Santander Parque Tecnológico Guatiguará km 2 vía El Refugio Universidad Industrial de Santander Piedecuesta (Santander) 681011 Colombia
| |
Collapse
|
98
|
Hydrophobicity and co-solvent effects on Meerwein-Ponndorf-Verley reduction/dehydration cascade reactions over Zr-zeolite catalysts. J Catal 2021. [DOI: 10.1016/j.jcat.2021.05.011] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
99
|
Zhang J, Wegener EC, Samad NR, Harris JW, Unocic KA, Allard LF, Purdy S, Adhikari S, Cordon MJ, Miller JT, Krause TR, Cheng S, Liu D, Li M, Jiang X, Wu Z, Li Z. Isolated Metal Sites in Cu–Zn–Y/Beta for Direct and Selective Butene-Rich C 3+ Olefin Formation from Ethanol. ACS Catal 2021. [DOI: 10.1021/acscatal.1c02177] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Affiliation(s)
- Junyan Zhang
- Oak Ridge National Laboratory, Oak Ridge, Tennessee 37830, United States
- University of Maryland, College Park, Maryland 20742, United States
| | - Evan C. Wegener
- Argonne National Laboratory, Lemont, Illinois 60439, United States
| | | | - James W. Harris
- The University of Alabama, Tuscaloosa, Alabama 35487, United States
| | - Kinga A. Unocic
- Oak Ridge National Laboratory, Oak Ridge, Tennessee 37830, United States
| | - Lawrence F. Allard
- Oak Ridge National Laboratory, Oak Ridge, Tennessee 37830, United States
| | - Stephen Purdy
- Oak Ridge National Laboratory, Oak Ridge, Tennessee 37830, United States
| | - Shiba Adhikari
- Oak Ridge National Laboratory, Oak Ridge, Tennessee 37830, United States
| | - Michael J. Cordon
- Oak Ridge National Laboratory, Oak Ridge, Tennessee 37830, United States
| | | | | | - Sichao Cheng
- University of Maryland, College Park, Maryland 20742, United States
| | - Dongxia Liu
- University of Maryland, College Park, Maryland 20742, United States
| | - Meijun Li
- Oak Ridge National Laboratory, Oak Ridge, Tennessee 37830, United States
| | - Xiao Jiang
- Oak Ridge National Laboratory, Oak Ridge, Tennessee 37830, United States
| | - Zili Wu
- Oak Ridge National Laboratory, Oak Ridge, Tennessee 37830, United States
| | - Zhenglong Li
- Oak Ridge National Laboratory, Oak Ridge, Tennessee 37830, United States
| |
Collapse
|
100
|
Xu D, Yin J, Gao Y, Zhu D, Wang S. Atomic-Scale Designing of Zeolite Based Catalysts by Atomic Layer Deposition. Chemphyschem 2021; 22:1287-1301. [PMID: 33844400 DOI: 10.1002/cphc.202100116] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2021] [Revised: 04/12/2021] [Indexed: 12/15/2022]
Abstract
Zeolite-supported catalysts have been widely used in the field of heterogeneous catalysis. Atomic-scale governing the metal or acid sites on zeolites still encounters great challenge in controllable synthesis and developing of novel catalysts. Atomic layer deposition (ALD), owing to its unique character of self-limiting surface reactions, becomes one of the most promising and controllable strategies to tailor the metallic deposition sites in atomic scale precisely. In this review, we present a comprehensive summary and viewpoint of recent research in designing and engineering the structural of zeolite-based catalysts via ALD method. A prior focus is laid on the deposition of metals on the zeolites with emphasis on the isolated states of metals, followed by introducing the selected metals into channels of zeolites associates with identifying the location of metals in and/or out of the channels. Subsequently, detailed analysis of tailoring the acid sites of different zeolites is provided. Assisted synthesis of zeolite and the regioselective deposition of metal on special sites to modify the structures of zeolites are also critically discussed. We further summarize the challenges of ALD with respect to engineering the active sites in heterogeneous zeolite-based catalysts and provide the perspectives on the development in this field.
Collapse
Affiliation(s)
- Dan Xu
- Energy Research Institute, School of Energy and Power Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan, 250014, People's Republic of China
| | - Junqing Yin
- State Key Laboratory of Coal Conversion, Institute of Coal Chemistry, Chinese Academy of Sciences, Taiyuan, 030001, People's Republic of China
| | - Ya Gao
- Energy Research Institute, School of Energy and Power Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan, 250014, People's Republic of China
| | - Di Zhu
- Energy Research Institute, School of Energy and Power Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan, 250014, People's Republic of China
| | - Shuyuan Wang
- Energy Research Institute, School of Energy and Power Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan, 250014, People's Republic of China
| |
Collapse
|