51
|
Ali SA, Sindi AM, Mair YH, Khallaf RA. Oral gel loaded by ethotransfersomes of antifungal drug for oral thrush: Preparation, characterization, and assessment of antifungal activity. J Drug Deliv Sci Technol 2021. [DOI: 10.1016/j.jddst.2021.102841] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
52
|
Liu N, Zhang N, Zhang S, Zhang L, Liu Q. Phloretin inhibited the pathogenicity and virulence factors against Candida albicans. Bioengineered 2021; 12:2420-2431. [PMID: 34167447 PMCID: PMC8806719 DOI: 10.1080/21655979.2021.1933824] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2021] [Accepted: 05/19/2021] [Indexed: 11/02/2022] Open
Abstract
Oral candidiasis is one of the most common types of fungal infection caused by Candida albicans (C. albicans). The present study aims to investigate the antifungal effects of phloretin (a dihydrochalcone flavonoid) against the C. albicans pathogenicity. In this work, we treated C. albicans SC5314 with 37.28, 74.55, or 149.10 μg/mL (equivalent to 0.5×, 1× or 2× MIC) phloretin in vitro. Besides, we established a mice model of oral candidiasis by a sublingual infection of C. albicans suspension (1 × 107 colony-forming unit/mL), and mice were treated with phloretin (3.73 or 7.46 mg/mL, which were equivalent to 50× or 100× MIC) twice a day starting on day one post-infection. The results showed that the MIC of phloretin against C. albicans was 74.55 μg/mL. Phloretin exerted antifungal activity by inhibiting the biofilm formation and suppressing the yeast-to-hyphae transition upon the downregulation of hypha-associated genes including enhanced adherence to polystyrene 1, the extent of cell elongation gene 1, hyphal wall protein 1 gene, and agglutinin-like sequence gene 3. Next, phloretin repressed the secretion of proteases and phospholipases via reducing the expression of protease-encoding genes secreted aspartyl proteases (SAP)1 and SAP2, as well as phospholipase B1. Subsequently, the in vivo antifungal activity of phloretin was testified by the reverse of the enhanced lesion severity, inflammatory infiltration, and the increased colony-forming unit counts caused by C. albicans of tongue tissues in oral candidiasis mice. In conclusion, phloretin suppressed the pathogenicity and virulence factors against C. albicans both in vivo and in vitro.
Collapse
Affiliation(s)
- Na Liu
- Hebei Key Laboratory of Stomatology, Hebei Clinical Research Center for Oral Diseases, School and Hospital of Stomatology, Hebei Medical University, Shijiazhuang, P.R. China
| | - Nan Zhang
- Department of Stomatology, The Third Hospital of Shanxi Medical University, Taiyuan, P.R. China
| | - Shengrong Zhang
- Hebei Key Laboratory of Stomatology, Hebei Clinical Research Center for Oral Diseases, School and Hospital of Stomatology, Hebei Medical University, Shijiazhuang, P.R. China
| | - Lifang Zhang
- Hebei Key Laboratory of Stomatology, Hebei Clinical Research Center for Oral Diseases, School and Hospital of Stomatology, Hebei Medical University, Shijiazhuang, P.R. China
| | - Qing Liu
- Hebei Key Laboratory of Stomatology, Hebei Clinical Research Center for Oral Diseases, School and Hospital of Stomatology, Hebei Medical University, Shijiazhuang, P.R. China
| |
Collapse
|
53
|
Effect of Cold Atmospheric Plasma Jet Associated to Polyene Antifungals on Candida albicans Biofilms. Molecules 2021; 26:molecules26195815. [PMID: 34641359 PMCID: PMC8510435 DOI: 10.3390/molecules26195815] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2021] [Revised: 09/15/2021] [Accepted: 09/16/2021] [Indexed: 11/16/2022] Open
Abstract
The increasing incidence of antifungal resistance represents a great challenge in the medical area and, for this reason, new therapeutic alternatives for the treatment of fungal infections are urgently required. Cold atmospheric plasma (CAP) has been proposed as a promising alternative technique for the treatment of superficial candidiasis, with inhibitory effect both in vitro and in vivo. However, little is known on the association of CAP with conventional antifungals. The aim of this study was to evaluate the effects of the association between CAP and conventional polyene antifungals on Candida albicans biofilms. C. albicans SC 5314 and a clinical isolate were used to grow 24 or 48 h biofilms, under standardized conditions. After that, the biofilms were exposed to nystatin, amphotericin B and CAP, separately or in combination. Different concentrations of the antifungals and sequences of treatment were evaluated to establish the most effective protocol. Biofilms viability after the treatments was compared to negative control. Data were compared by One-way ANOVA and post hoc Tukey (5%). The results demonstrate that 5 min exposure to CAP showed more effective antifungal effect on biofilms when compared to nystatin and amphotericin B. Additionally, it was detected that CAP showed similar (but smaller in magnitude) effects when applied in association with nystatin and amphotericin B at 40 µg/mL and 60 µg/mL. Therefore, it can be concluded that the application of CAP alone was more effective against C. albicans biofilms than in combination with conventional polyene antifungal agents.
Collapse
|
54
|
The Role of Respiratory Flora in the Pathogenesis of Chronic Respiratory Diseases. BIOMED RESEARCH INTERNATIONAL 2021; 2021:6431862. [PMID: 34435047 PMCID: PMC8382525 DOI: 10.1155/2021/6431862] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/13/2021] [Revised: 07/20/2021] [Accepted: 07/31/2021] [Indexed: 12/13/2022]
Abstract
Large quantities of bacteria, including Firmicutes, Actinobacteria, and Bacteroidetes, colonize the surface of the respiratory mucosa of healthy people. They interact and coexist with the local mucosal immune system of the human airway, maintaining the immune stability and balance of the respiratory system. While suffering from chronic respiratory diseases, the microbial population in the airway changes and the proportion of Proteobacteria is increased in patients with asthma. The abundance of the microbial population in patients with chronic obstructive pulmonary disease (COPD) is decreased, and conversely, the proportion of Firmicutes and Proteobacteria increased. The diversity of airway microorganisms in cystic fibrosis (CF) patients is decreased, while pathogenic bacteria and conditional pathogenic bacteria are proliferated in large numbers. The proportion of Firmicutes and Proteobacteria is increased in patients with upper airway cough syndrome (UACS), which replaces the dominance of Streptococcus and Neisseria in the pharynx of a normal population. Therefore, a clear understanding of the immune process of the airway flora and the immune dysfunction of the flora on the pathogenesis of chronic respiratory diseases can provide new ideas for the prevention and treatment of human respiratory diseases.
Collapse
|
55
|
de Barros PP, Rossoni RD, Garcia MT, Kaminski VDL, Loures FV, Fuchs BB, Mylonakis E, Junqueira JC. The Anti-Biofilm Efficacy of Caffeic Acid Phenethyl Ester (CAPE) In Vitro and a Murine Model of Oral Candidiasis. Front Cell Infect Microbiol 2021; 11:700305. [PMID: 34408988 PMCID: PMC8366685 DOI: 10.3389/fcimb.2021.700305] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2021] [Accepted: 07/06/2021] [Indexed: 12/20/2022] Open
Abstract
Candida albicans is the main fungal species associated with the development of oral candidiasis. Currently, therapeutic options for these infections are limited by the adverse effects of antifungal drugs and by the emergence of drug resistant strains. Thus, the development of new antifungal agents is needed for the prevention and treatment of oral Candida infections. Caffeic acid phenethyl ester (CAPE) is a natural compound from propolis polyphenolic groups that exhibits many pharmacological properties. In this study, we investigated whether CAPE can have antifungal and immunomodulatory effects on oral candidiasis. Preliminary tests to assess the antifungal activity of CAPE were performed using the Minimum Inhibitory Concentration (MIC) assay that demonstrated inhibition in a range from 16 to 32 μg/mL, confirming its antifungal activity on several C. albicans strains isolated from the oral cavity. Subsequently, we analyzed Candida spp biofilms formed in vitro, in which CAPE treatment at 5 x MIC caused a reduction of 68.5% in the total biomass and ~2.60 Log in the viable cell count (CFU/mL) in relation to the untreated biofilm (p<0.0001). Next, RNA was extracted from untreated and CAPE-treated biofilms and analyzed by real-time qPCR. A series of genes analyzed (ALS1, ECE1, EPA1, HWP1, YWP1, BCR1, BGR1, CPH1, EFG1, NDT80, ROB1, TEC1, UME6, SAP2, SAP5, PBL2, and LIP9) were downregulated by CAPE compared to the untreated control group (p<0.0001). In in vivo studies using Galleria mellonella, the treatment with CAPE prolonged survival of larvae infected by C. albicans by 44.5% (p < 0.05) and accompanied by a 2.07-fold increase in the number of hemocytes. Flow cytometry revealed the most prominent increases were in types P2 and P3 hemocytes, granular cells, which phagocytize pathogens. In addition, CAPE treatment decreased the fungal load in the hemolymph and stimulated the expression of antifungal peptide genes such as galiomicin and gallerimycin. The antifungal and immunomodulatory activities observed in G. mellonella were extended to a murine model of oral candidiasis, in which CAPE decreased the levels of C. albicans colonization (~2 log CFU/mL) in relation to the untreated control group. In addition, CAPE treatment significantly reduced pseudomembranous lesions, invasion of hyphae on epithelium surfaces, tissue damage and inflammatory infiltrate (p < 0.05). CAPE was also able to increase the expression of β-defensin 3 compared to the infected and untreated group by 3.91-fold (p < 0.0001). Taken together, these results show that CAPE has both antifungal and immunomodulatory effects, making it a promising natural antifungal agent for the treatment and prevention of candidiasis and shows impact to oral candidiasis.
Collapse
Affiliation(s)
- Patrícia Pimentel de Barros
- Department of Biosciences and Oral Diagnosis, Institute of Science and Technology, São Paulo State University (UNESP), São José dos Campos, Brazil.,Multicampi School of Medical Sciences, Federal University of Rio Grande do Norte (UFRN), Caico, Brazil
| | - Rodnei Dennis Rossoni
- Department of Biosciences and Oral Diagnosis, Institute of Science and Technology, São Paulo State University (UNESP), São José dos Campos, Brazil
| | - Maíra Terra Garcia
- Department of Biosciences and Oral Diagnosis, Institute of Science and Technology, São Paulo State University (UNESP), São José dos Campos, Brazil
| | - Valéria de Lima Kaminski
- Applied Immunology Laboratory, Institute of Science and Technology, Federal University of São Paulo (UNIFESP), São José dos Campos, Brazil
| | - Flávio Vieira Loures
- Applied Immunology Laboratory, Institute of Science and Technology, Federal University of São Paulo (UNIFESP), São José dos Campos, Brazil
| | - Beth Burgwyn Fuchs
- Division of Infectious Diseases, Rhode Island Hospital, Warren Alpert Medical School at Brown University, Providence, RI, United States
| | - Eleftherios Mylonakis
- Division of Infectious Diseases, Rhode Island Hospital, Warren Alpert Medical School at Brown University, Providence, RI, United States
| | - Juliana Campos Junqueira
- Department of Biosciences and Oral Diagnosis, Institute of Science and Technology, São Paulo State University (UNESP), São José dos Campos, Brazil
| |
Collapse
|
56
|
Kinkela Devcic M, Simonic-Kocijan S, Prpic J, Paskovic I, Cabov T, Kovac Z, Glazar I. Oral Candidal Colonization in Patients with Different Prosthetic Appliances. J Fungi (Basel) 2021; 7:jof7080662. [PMID: 34436202 PMCID: PMC8399303 DOI: 10.3390/jof7080662] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2021] [Revised: 08/08/2021] [Accepted: 08/12/2021] [Indexed: 01/08/2023] Open
Abstract
Oral infections caused by Candida species are becoming more common, which may be related to an increase in the number of immunologically compromised patients as well as favorable conditions in the oral cavity that often include removable prosthetic appliances. The purpose of this study was to determine the presence of a particular Candida species in patients with PMMA and Cr-Co prosthetic appliances, as well as the salivary flow rate, and oral signs and symptoms. This investigation included a total of 120 subjects with different kinds of removable dentures. A sample of concentrated oral rinse was collected from all subjects in order to detect Candida colonization and identify the Candida species, a quantum of salivation was measured, and subjects were examined clinically. Candida spp. was predominant among the subjects who were denture wearers (p < 0.0001). In all subjects, the most frequently detected species was C.albicans. A statistically significant difference was found between the prevalence of C.albicans (p < 0.001) and C.krusei (p < 0.001) in denture wearers. Subjects with PMMA-based removable prosthetic appliances mostly demonstrated a significant decrease in salivation (p < 0.001), an increase in burning sensations (p < 0.001), and dry mouth (p < 0.001) compared to the subjects who wore partial dentures with Co–Cr metallic frameworks. Red oral lesions were more frequently found among the subjects with partial dentures with Co–Cr metallic frameworks (p < 0.001). Regardless of the material used for the denture, patients must be regularly checked by their dentists in order to prevent the development of oral lesions.
Collapse
Affiliation(s)
- Maja Kinkela Devcic
- Department of Oral Surgery, Faculty of Dental Medicine, University of Rijeka, Kresimirova 40/42, 51000 Rijeka, Croatia; (M.K.D.); (T.C.)
| | - Suncana Simonic-Kocijan
- Department of Prosthodontics, Faculty of Dental Medicine, University of Rijeka, Kresimirova 40/42, 51000 Rijeka, Croatia;
- Correspondence: (S.S.-K.); (I.G.)
| | - Jelena Prpic
- Department of Oral Medicine and Periodontology, Faculty of Dental Medicine, University of Rijeka, Kresimirova 40/42, 51000 Rijeka, Croatia;
| | - Igor Paskovic
- Department of Agriculture and Nutrition, Institute of Agriculture and Tourism, K. Huguesa 8, 52440 Porec, Croatia;
| | - Tomislav Cabov
- Department of Oral Surgery, Faculty of Dental Medicine, University of Rijeka, Kresimirova 40/42, 51000 Rijeka, Croatia; (M.K.D.); (T.C.)
| | - Zoran Kovac
- Department of Prosthodontics, Faculty of Dental Medicine, University of Rijeka, Kresimirova 40/42, 51000 Rijeka, Croatia;
| | - Irena Glazar
- Department of Oral Medicine and Periodontology, Faculty of Dental Medicine, University of Rijeka, Kresimirova 40/42, 51000 Rijeka, Croatia;
- Correspondence: (S.S.-K.); (I.G.)
| |
Collapse
|
57
|
Williams A, Rogers H, Williams D, Wei XQ, Farnell D, Wozniak S, Jones A. Higher Number of EBI3 Cells in Mucosal Chronic Hyperplastic Candidiasis May Serve to Regulate IL-17-Producing Cells. J Fungi (Basel) 2021; 7:jof7070533. [PMID: 34209407 PMCID: PMC8306506 DOI: 10.3390/jof7070533] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2021] [Revised: 06/25/2021] [Accepted: 06/25/2021] [Indexed: 11/16/2022] Open
Abstract
Previous research into the inflammatory cell infiltrate of chronic hyperplastic candidosis (CHC) determined that the immune response is primarily composed of T cells, the majority of which are T helper (CD4+) cells. This present investigation used immunohistochemistry to further delineate the inflammatory cell infiltrate in CHC. Cells profiled were those expressing IL-17A cytokine, EBI3 and IL-12A subunits of the IL-35 cytokine, and FoxP3+ cells. Squamous cell papilloma (with Candida infection) and oral lichen planus tissues served as comparative controls to understand the local immune responses to Candida infection. The results demonstrated that Candida-induced inflammation and immune regulation co-exist in the oral mucosa of CHC and that high prevalence of cells expressing the EBI3 cytokine subunit may play an important role in this regulation. This balance between inflammation and immune tolerance toward invading Candida in the oral mucosa may be critical in determining progress of infection.
Collapse
Affiliation(s)
- Ailish Williams
- School of Dentistry, Cardiff University, Heath Park, Cardiff CF14 4XY, UK; (A.W.); (X.-Q.W.); (D.F.)
| | - Helen Rogers
- Bristol Dental School, Lower Maudlin Street, Bristol BS1 3NU, UK;
| | - David Williams
- School of Dentistry, Cardiff University, Heath Park, Cardiff CF14 4XY, UK; (A.W.); (X.-Q.W.); (D.F.)
- Correspondence:
| | - Xiao-Qing Wei
- School of Dentistry, Cardiff University, Heath Park, Cardiff CF14 4XY, UK; (A.W.); (X.-Q.W.); (D.F.)
| | - Damian Farnell
- School of Dentistry, Cardiff University, Heath Park, Cardiff CF14 4XY, UK; (A.W.); (X.-Q.W.); (D.F.)
| | - Sue Wozniak
- Dental Hospital, University Hospital of Wales, Heath Park, Cardiff CF14 4XY, UK; (S.W.); (A.J.)
| | - Adam Jones
- Dental Hospital, University Hospital of Wales, Heath Park, Cardiff CF14 4XY, UK; (S.W.); (A.J.)
| |
Collapse
|
58
|
Molkenthin F, Hertel M, Neumann K, Schmidt-Westhausen AM. Factors influencing the presence of Candida dubliniensis and other non-albicans species in patients with oral lichen planus: a retrospective observational study. Clin Oral Investig 2021; 26:333-342. [PMID: 34142239 PMCID: PMC8791885 DOI: 10.1007/s00784-021-04004-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2021] [Accepted: 05/20/2021] [Indexed: 11/24/2022]
Abstract
Objectives The epidemiologic distribution of non-albicans species in the oral cavity of oral lichen planus (OLP) patients remains uncertain. Therefore, the aim of this study was to identify factors associated with the presence of C. dubliniensis and other non-albicans species. Furthermore, independent risk factors for Candida superinfection in OLP should be identified. Material and methods Epidemiologic data and microbiological findings from 268 symptomatic OLP patients who underwent continuous oral swab culture over a 5-year period (2015–2019) were retrospectively reviewed. Candida species identification and semi-quantification were obtained by culture on CHROMagar Candida, followed by matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF MS). Results C. albicans was the most frequently isolated species (72.3%), followed by C. glabrata (7.3%), C. dubliniensis (5.8%), C. krusei and C. parapsilosis (both 2.6%). The presence of C. dubliniensis was significantly associated with tobacco smoking. Other non-albicans spp. were significantly more often detected in patients using removable dentures. Increasing age and the intake of psychotropic drugs were identified as independent risk factors of Candida superinfection in OLP. Conclusion In OLP patients, certain local and systemic factors increase the risk of carrying potentially drug-resistant Candida species and the development of Candida superinfection of OLP lesions. Clinical relevance Due to the frequent detection of non-albicans species in OLP, resistance or at least reduced sensitivity to azole antifungals should be expected, especially in smokers and patients using removable dentures. In the case of oral complaints, a superinfection with Candida should be considered, whereby older patients and patients taking psychotropic drugs have an increased risk for oral infection with Candida.
Collapse
Affiliation(s)
- Florian Molkenthin
- CharitéCentre 3, Department of Periodontology, Oral Medicine and Oral Surgery, Charité - Universitätsmedizin Berlin, Aßmannshauser Str. 4, 14197, Berlin, Germany.
| | - Moritz Hertel
- CharitéCentre 3, Department of Periodontology, Oral Medicine and Oral Surgery, Charité - Universitätsmedizin Berlin, Aßmannshauser Str. 4, 14197, Berlin, Germany
| | - Konrad Neumann
- Institute of Medical Biometrics and Clinical Epidemiology, Charité - Universitätsmedizin Berlin, Charitéplatz 1, 10117, Berlin, Germany
| | - Andrea Maria Schmidt-Westhausen
- CharitéCentre 3, Department of Periodontology, Oral Medicine and Oral Surgery, Charité - Universitätsmedizin Berlin, Aßmannshauser Str. 4, 14197, Berlin, Germany
| |
Collapse
|
59
|
Maia CMDA, Pasetto S, Nonaka CFW, Costa EMMDB, Murata RM. Yeast-Host Interactions: Anadenanthera colubrina Modulates Virulence Factors of C. albicans and Inflammatory Response In Vitro. Front Pharmacol 2021; 12:629778. [PMID: 34168555 PMCID: PMC8217765 DOI: 10.3389/fphar.2021.629778] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2020] [Accepted: 05/25/2021] [Indexed: 01/08/2023] Open
Abstract
Oral candidiasis is one of the most common fungal infections in humans. Its incidence has increased widely, as well as the antifungal resistance, demanding for the search for novel antifungal therapeutic agents. Anadenanthera colubrina (Vell.) Brenan is a plant species that has been proven to possess pharmacological effects, including antifungal and anti-inflammatory activities. This study evaluated in vitro the effects of standardized A. colubrina extract on virulence factors of Candida albicans and its regulation on immune response through C. albicans-host interaction. Antifungal activity was evaluated by Broth Microdilution Method against reference Candida strains (C. albicans, C. glabrata, C. tropicalis; C. dubliniensis). Anti-biofilm effect was performed on C. albicans mature biofilm and quantified by CFU/mL/g of biofilm dry weight. Proleotlytic enzymatic activities of proteinase and phospholipase were assessed by Azocasein and Phosphatidylcholine assays, respectively. Cytotoxicity effect was determined by Cell Titer Blue Viability Assay on Human Gingival Fibroblasts. Co-cultured model was used to analyze C. albicans coexisting with HGF by Scanning Electron Microscopy and fluorescence microscopies; gene expression was assessed by RT-PCR of C. albicans enzymes (SAP-1, PLB-1) and of host inflammatory cytokines (IL-6, IL-8, IL-1β, IL-10). Cytokines secretion was analysed by Luminex. The extract presented antifungal effect with MIC<15.62 μg/ml against Candida strains. Biofilm and proteolytic activity were significant reduced at 312.4 μg/ml (20 × 15.62 μg/ml) extract concentration. Cell viability was maintained higher than 70% in concentrations up to 250 μg/ml (LD50 = 423.3 μg/ml). Co-culture microscopies demonstrated a substantial decreased in C. albicans growth and minimal toxicity against host cells. Gene expressions of SAP-1/PLB-1 were significantly down-regulated and host immune response was modulated by a significant decreased on IL-6 and IL-8 cytokines secretion. A. colubrina had antifungal activity on Candida strains, antibiofilm, and anti-proteolytic enzyme effects against C. albicans. Presented low cytotoxicity to the host cells and modulatory effects on the host immune response.
Collapse
Affiliation(s)
- Carolina Medeiros de Almeida Maia
- Department of Dentistry, Postgraduate Program in Dentistry, State University of Paraiba, Campina Grande, Brazil
- Department of Foundational Sciences, School of Dental Medicine, East Carolina University, Greenville, NC, United States
| | - Silvana Pasetto
- Department of Foundational Sciences, School of Dental Medicine, East Carolina University, Greenville, NC, United States
| | | | | | - Ramiro Mendonça Murata
- Department of Foundational Sciences, School of Dental Medicine, East Carolina University, Greenville, NC, United States
| |
Collapse
|
60
|
Du M, Xuan W, Zhen X, He L, Lan L, Yang S, Wu N, Qin J, Zhao R, Qin J, Lan J, Lu H, Liang C, Li Y, R Hamblin M, Huang L. Antimicrobial photodynamic therapy for oral Candida infection in adult AIDS patients: A pilot clinical trial. Photodiagnosis Photodyn Ther 2021; 34:102310. [PMID: 33901690 DOI: 10.1016/j.pdpdt.2021.102310] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2021] [Revised: 03/30/2021] [Accepted: 04/19/2021] [Indexed: 01/11/2023]
Abstract
BACKGROUND Antimicrobial photodynamic therapy (aPDT) using methylene blue (MB) plus potassium iodide (KI) has been shown to be effective in killing Candida albicans in many in vitro and in vivo studies, however, there are limited reports of clinical investigations. This study aimed to explore the clinical application of aPDT with MB plus KI for the treatment of oral infection caused by C. albicans in adult acquired immune deficiency syndrome (AIDS) patients. METHODS A total of 21 adult AIDS patients with C. albicans oral candidiasis were divided into two groups according to MB concentration and received two consecutive aPDT treatments. Immediately before and after the aPDT treatments, C. albicans yeast isolates were recovered to measure the colony-forming units per mL (CFU/mL), biofilm formation, and to analyze the 25S rDNA genotype. Patients were assessed for the clinical recovery of oral lesions and improvement of symptoms. RESULTS The Log10 CFU/mL of C. albicans decreased significantly after the second aPDT but not the first aPDT. There was no significant difference between the two MB concentrations. Both aPDT protocols decreased the oral lesions and clinical symptoms with no significant difference after 2-fraction aPDT. The biofilm formation of C. albicans isolates did not change before and after aPDT. The killing efficiency of 2-fraction-aPDT was not associated with either biofilm formation or 25S rDNA genotype. CONCLUSIONS Two-fraction-aPDT with MB plus KI could reduce the number of viable C. albicans fungal cells and improve the clinical symptoms of oral candidiasis in adult AIDS patients, regardless of the biofilm formation or 25S rDNA genotype of infected C. albicans isolates.
Collapse
Affiliation(s)
- Meixia Du
- Department of Infectious Diseases, First Affiliated Hospital, Guangxi Medical University, Nanning, Guangxi, 530021, China; Guangxi Key Laboratory of AIDS Prevention and Treatment, Guangxi Medical University, Nanning, Guangxi, 530021, China
| | - Weijun Xuan
- Department of Otorhinolaryngology, Guangxi International Zhuang Medical Hospital, Guangxi University of Chinese Medicine, Nanning, Guangxi, 530201, China
| | - Xiumei Zhen
- Department of Infectious Diseases, First Affiliated Hospital, Guangxi Medical University, Nanning, Guangxi, 530021, China
| | - Lixia He
- Department of Infectious Diseases, First Affiliated Hospital, Guangxi Medical University, Nanning, Guangxi, 530021, China
| | - Lina Lan
- Department of Infectious Diseases, First Affiliated Hospital, Guangxi Medical University, Nanning, Guangxi, 530021, China; Guangxi Key Laboratory of AIDS Prevention and Treatment, Guangxi Medical University, Nanning, Guangxi, 530021, China
| | - Shanlin Yang
- Department of Infectious Diseases, First Affiliated Hospital, Guangxi Medical University, Nanning, Guangxi, 530021, China; Guangxi Key Laboratory of AIDS Prevention and Treatment, Guangxi Medical University, Nanning, Guangxi, 530021, China
| | - Nianning Wu
- Fourth People's Hospital of Nanning, Nanning, Guangxi, 530023, China
| | - Jinmei Qin
- Fourth People's Hospital of Nanning, Nanning, Guangxi, 530023, China
| | - Rui Zhao
- Fourth People's Hospital of Nanning, Nanning, Guangxi, 530023, China
| | - Jianglong Qin
- Fourth People's Hospital of Nanning, Nanning, Guangxi, 530023, China
| | - Jian Lan
- Fourth People's Hospital of Nanning, Nanning, Guangxi, 530023, China
| | - Huan Lu
- Fourth People's Hospital of Nanning, Nanning, Guangxi, 530023, China
| | - Cuijin Liang
- Fourth People's Hospital of Nanning, Nanning, Guangxi, 530023, China
| | - Yanjun Li
- Fourth People's Hospital of Nanning, Nanning, Guangxi, 530023, China
| | - Michael R Hamblin
- Laser Research Centre, Faculty of Health Science, University of Johannesburg, Doornfontein, 2028, South Africa
| | - Liyi Huang
- Department of Infectious Diseases, First Affiliated Hospital, Guangxi Medical University, Nanning, Guangxi, 530021, China; Guangxi Key Laboratory of AIDS Prevention and Treatment, Guangxi Medical University, Nanning, Guangxi, 530021, China.
| |
Collapse
|
61
|
Wiench R, Skaba D, Matys J, Grzech-Leśniak K. Efficacy of Toluidine Blue-Mediated Antimicrobial Photodynamic Therapy on Candida spp. A Systematic Review. Antibiotics (Basel) 2021; 10:antibiotics10040349. [PMID: 33806003 PMCID: PMC8064486 DOI: 10.3390/antibiotics10040349] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2021] [Revised: 03/19/2021] [Accepted: 03/21/2021] [Indexed: 12/13/2022] Open
Abstract
The effectiveness of antimicrobial photodynamic therapy (aPDT) in the treatment of oral yeast infections was examined many times in recent years. The authors of this review tried to address the question: "Should TBO (toluidine blue ortho)-mediated aPDT be considered a possible alternative treatment for oral candidiasis?". PubMed/Medline and the Cochrane Central Register of Controlled Trials (CEN-TRAL) databases were searched from 1997 up to the 27th of October 2020 using a combination of the following keywords: (Candida OR Candidiasis oral OR Candidosis oral OR denture stomatitis) AND (toluidine blue OR photodynamic therapy OR aPDT OR photodynamic antimicrobial chemotherapy OR PACT OR photodynamic inactivation OR PDI). Animal studies or in vitro studies involving Candida albicans (C. albicans) and/or nonalbicans stain, randomized clinical trials (RCT) involving patients with oral candidiasis or denture stomatitis published solely in English language were included. Candida elimination method in animal, in vitro studies and RCT used was TBO-mediated aPDT. Exactly 393 studies were taken into consideration. Then, after analyzing titles and abstracts of said studies, 361 were excluded. Only 32 studies ended up being selected for in-depth screening, after which 21 of them were included in this study. All studies reported the antifungal effectiveness of aPDT with TBO against C. albicans and non-albicans Candida. In studies conducted with planktonic cells, only one study showed eradication of C. albicans. All others showed partial elimination and only one of them was not statistically significant. Experiments on yeast biofilms, in all cases, showed partial, statistically significant cell growth inhibition and weight reduction (a reduction in the number of cells-mainly hyphae) and the mass of extracellular polymeric substance (EPS). In vivo aPDT mediated by TBO exhibits antifungal effects against oral Candida spp.; however, its clinical effectiveness as a potent therapeutic strategy for oral yeast infections requires further investigation.
Collapse
Affiliation(s)
- Rafał Wiench
- Department of Periodontal Diseases and Oral Mucosa Diseases, Faculty of Medical Sciences in Zabrze, Medical University of Silesia, 40-055 Katowice, Poland; (R.W.); (D.S.)
| | - Dariusz Skaba
- Department of Periodontal Diseases and Oral Mucosa Diseases, Faculty of Medical Sciences in Zabrze, Medical University of Silesia, 40-055 Katowice, Poland; (R.W.); (D.S.)
| | - Jacek Matys
- Laser Laboratory Dental Surgery Department, Medical University of Wroclaw, 50-425 Wroclaw, Poland;
| | - Kinga Grzech-Leśniak
- Laser Laboratory Dental Surgery Department, Medical University of Wroclaw, 50-425 Wroclaw, Poland;
- Department of Periodontics, School of Dentistry, Virginia Commonwealth University, Richmond, VA 23284, USA
- Correspondence:
| |
Collapse
|
62
|
Zhou Y, Cheng L, Liao B, Shi Y, Niu Y, Zhu C, Ye X, Zhou X, Ren B. Candida albicans CHK1 gene from two-component system is essential for its pathogenicity in oral candidiasis. Appl Microbiol Biotechnol 2021; 105:2485-2496. [PMID: 33635358 DOI: 10.1007/s00253-021-11187-0] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2021] [Revised: 02/08/2021] [Accepted: 02/17/2021] [Indexed: 02/05/2023]
Abstract
The roles of Candida albicans CHK1, a key gene from two-component system, in oral mucosal infection are not clear. This study evaluated the key roles of CHK1 gene in vitro and in vivo. The expression of CHK1 and its regulated virulence factors were tested during the oral epithelial cell infection. The production of lactate dehydrogenase, ROS, and IL-1α combined with the confocal and scanning electron microscope observation was employed to identify the capability of CHK1 in damaging the epithelial cells. Both immunocompetent and immunodeficient mice oropharyngeal infection models were involved to confirm the roles of CHK1 gene in vivo. The expression of CHK1 gene was significantly increased during the oral epithelial cell infection. The chk1Δ/Δ mutant failed to damage the epithelial cells or induce IL-α and ROS production. Interestingly, chk1Δ/Δ can also form the similar hyphae with WT and complementary strains. Accordingly, chk1Δ/Δ did not affect the adhesion and invasion rates of C. albicans to oral epithelial cells. However, chk1Δ/Δ significantly decreased the expression levels of the virulence factors, including ALS2, SAP6, and YWP1. The chk1Δ/Δ also failed to cause oral candidiasis in both immunocompetent and immunodeficient mice indicating that CHK1 gene from the two-component system is essential for the pathogenicity of C. albicans. KEY POINTS: • CHK1gene is essential for C. albicans in oral candidiasis • C. albicans without CHK1 gene can form "non-pathogenic" hyphae. • CHK1 gene regulates the virulence of C. albicans.
Collapse
Affiliation(s)
- Yujie Zhou
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases, Sichuan University, Chengdu, 610041, Sichuan, China
- Department of Operative Dentistry and Endodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, Sichuan, China
| | - Lei Cheng
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases, Sichuan University, Chengdu, 610041, Sichuan, China
- Department of Operative Dentistry and Endodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, Sichuan, China
| | - Binyou Liao
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases, Sichuan University, Chengdu, 610041, Sichuan, China
| | - Yangyang Shi
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases, Sichuan University, Chengdu, 610041, Sichuan, China
- Department of Operative Dentistry and Endodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, Sichuan, China
| | - Yulong Niu
- Key Laboratory of Bio-resources and Eco-environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, 610041, Sichuan, China
| | - Chengguang Zhu
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases, Sichuan University, Chengdu, 610041, Sichuan, China
- Department of Operative Dentistry and Endodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, Sichuan, China
| | - Xingchen Ye
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases, Sichuan University, Chengdu, 610041, Sichuan, China
- Department of Operative Dentistry and Endodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, Sichuan, China
| | - Xuedong Zhou
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases, Sichuan University, Chengdu, 610041, Sichuan, China.
- Department of Operative Dentistry and Endodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, Sichuan, China.
| | - Biao Ren
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases, Sichuan University, Chengdu, 610041, Sichuan, China.
| |
Collapse
|
63
|
Abstract
In the last decades, Candida albicans has served as the leading causal agent of life-threatening invasive infections with mortality rates approaching 40% despite treatment. Candida albicans (C. albicans) exists in three biological phases: yeast, pseudohyphae, and hyphae. Hyphae, which represent an important phase in the disease process, can cause tissue damage by invading mucosal epithelial cells then leading to blood infection. In this review, we summarized recent results from different fields of fungal cell biology that are instrumental in understanding hyphal growth. This includes research on the differences among C. albicans phases; the regulatory mechanism of hyphal growth, extension, and maintaining cutting-edge polarity; cross regulations of hyphal development and the virulence factors that cause serious infection. With a better understanding of the mechanism on mycelium formation, this review provides a theoretical basis for the identification of targets in candidiasis treatment. It also gives some reference to the study of antifungal drugs.
Collapse
Affiliation(s)
- Hui Chen
- State Key Laboratory of Oral Diseases, Sichuan University, Chengdu, China.,Department of Operative Dentistry and Endodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Xuedong Zhou
- State Key Laboratory of Oral Diseases, Sichuan University, Chengdu, China.,Department of Operative Dentistry and Endodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Biao Ren
- State Key Laboratory of Oral Diseases, Sichuan University, Chengdu, China
| | - Lei Cheng
- State Key Laboratory of Oral Diseases, Sichuan University, Chengdu, China.,Department of Operative Dentistry and Endodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| |
Collapse
|
64
|
Adam RZ, Khan SB. Antimicrobial efficacy of silver nanoparticles against Candida albicans: A systematic review protocol. PLoS One 2021; 16:e0245811. [PMID: 33493167 PMCID: PMC7833133 DOI: 10.1371/journal.pone.0245811] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2020] [Accepted: 01/08/2021] [Indexed: 12/21/2022] Open
Abstract
INTRODUCTION Denture-induced stomatitis is one form of candidiasis. It is characterised as inflammation and erythema of the oral mucosa underneath the denture-bearing areas and clinically classified into three types according to severity. Denture hygiene, appropriate mouth rinses and the use of antifungal therapy are commonly used to treat the condition, but new technologies are emerging that may assist in its treatment. AIM The aim of this systematic review is to determine if silver nanoparticles inhibit the growth of Candida Albicans when included in acrylic dentures and in different denture liners. METHODOLOGY A protocol was developed and published on PROSPERO (Registration No: CRD42019145542) and with the institutional ethics committee (Registration No: BM20/4/1). The protocol includes all aspects of a systematic review namely: selection criteria, search strategy, selection methods using predetermined eligibility criteria, data collection, data extraction, critical appraisal of included studies, and the intended statistical analyses such as calculating risk ratios (RR) for dichotomous outcomes and presented at 95% confidence intervals, a meta-analysis, if possible or a narrative report as needed. EXPECTED RESULTS With rigorous inclusion criteria set and databases identified for searching, appropriate clinical and laboratory studies may be obtained but the results and its interpretation and translation into clinical practice may be a challenge as these depend on the quality of the research.
Collapse
Affiliation(s)
- Razia Z. Adam
- Department of Restorative Dentistry, Faculty of Dentistry, University of the Western Cape, Cape Town, South Africa
| | - Saadika B. Khan
- Department of Restorative Dentistry, Faculty of Dentistry, University of the Western Cape, Cape Town, South Africa
| |
Collapse
|
65
|
Talapko J, Juzbašić M, Matijević T, Pustijanac E, Bekić S, Kotris I, Škrlec I. Candida albicans-The Virulence Factors and Clinical Manifestations of Infection. J Fungi (Basel) 2021; 7:79. [PMID: 33499276 PMCID: PMC7912069 DOI: 10.3390/jof7020079] [Citation(s) in RCA: 305] [Impact Index Per Article: 76.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2021] [Revised: 01/17/2021] [Accepted: 01/21/2021] [Indexed: 02/06/2023] Open
Abstract
Candida albicans is a common commensal fungus that colonizes the oropharyngeal cavity, gastrointestinal and vaginal tract, and healthy individuals' skin. In 50% of the population, C. albicans is part of the normal flora of the microbiota. The various clinical manifestations of Candida species range from localized, superficial mucocutaneous disorders to invasive diseases that involve multiple organ systems and are life-threatening. From systemic and local to hereditary and environmental, diverse factors lead to disturbances in Candida's normal homeostasis, resulting in a transition from normal flora to pathogenic and opportunistic infections. The transition in the pathophysiology of the onset and progression of infection is also influenced by Candida's virulence traits that lead to the development of candidiasis. Oral candidiasis has a wide range of clinical manifestations, divided into primary and secondary candidiasis. The main supply of C. albicans in the body is located in the gastrointestinal tract, and the development of infections occurs due to dysbiosis of the residential microbiota, immune dysfunction, and damage to the muco-intestinal barrier. The presence of C. albicans in the blood is associated with candidemia-invasive Candida infections. The commensal relationship exists as long as there is a balance between the host immune system and the virulence factors of C. albicans. This paper presents the virulence traits of Candida albicans and clinical manifestations of specific candidiasis.
Collapse
Affiliation(s)
- Jasminka Talapko
- Faculty of Dental Medicine and Health, Josip Juraj Strossmayer University of Osijek, HR-31000 Osijek, Croatia; (J.T.); (M.J.)
| | - Martina Juzbašić
- Faculty of Dental Medicine and Health, Josip Juraj Strossmayer University of Osijek, HR-31000 Osijek, Croatia; (J.T.); (M.J.)
| | - Tatjana Matijević
- Department of Dermatology and Venereology, Clinical Hospital Center Osijek, HR-31000 Osijek, Croatia;
| | - Emina Pustijanac
- Faculty of Natural Sciences, Juraj Dobrila University of Pula, HR-52100 Pula, Croatia;
| | - Sanja Bekić
- Family Medicine Practice, HR-31000 Osijek, Croatia;
- Faculty of Medicine, Josip Juraj Strossmayer University of Osijek, HR-31000 Osijek, Croatia
| | - Ivan Kotris
- Department of Internal Medicine, General County Hospital Vukovar, HR-3200 Vukovar, Croatia;
| | - Ivana Škrlec
- Faculty of Dental Medicine and Health, Josip Juraj Strossmayer University of Osijek, HR-31000 Osijek, Croatia; (J.T.); (M.J.)
| |
Collapse
|
66
|
Ré ACS, Martins JF, Cunha-Filho M, Gelfuso GM, Aires CP, Gratieri T. New perspectives on the topical management of recurrent candidiasis. Drug Deliv Transl Res 2021; 11:1568-1585. [PMID: 33469892 DOI: 10.1007/s13346-021-00901-0] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/06/2021] [Indexed: 12/24/2022]
Abstract
Candidiasis is a common opportunistic infection caused by fungi of the Candida genus that affects mainly mucocutaneous tissues (e.g., vaginal, oral, and mammary). This condition has been known for a long time; thus, innumerous topical and systemic treatments are already available on the market worldwide. Yet, recurrent superficial candidiasis (RSC) is an expected outcome, still lacking effective and convenient treatments. Although several individual conditions may contribute to disease recurrence, biofilms' presence seems to be the main etiological factor contributing to antifungal resistance. More than proposing novel antifungal agents, current research seems to be focusing on improving the pharmaceutical technology aspects of formulations to address such a challenge. These include extending and improving intimate contact of drug delivery systems with the mucocutaneous tissues, increasing drug loading dose, and enhancing topical drug permeation. This review discusses the current understanding of the RSC and the use of pharmaceutical technology tools in obtaining better results. Even though several drawbacks of conventional formulations have been circumvented with the help of nano- or microencapsulation techniques and with the use of mucoadhesive formulation excipients, many challenges remain. In particular, the need to mask the unpalatable taste of formulations for the treatment of oral candidiasis, and the necessity of formulations with a "dryer" sensorial feeling and improved performances in providing higher bioavailability for the treatment of mammary and vaginal candidiasis.
Collapse
Affiliation(s)
- Ana Carolina S Ré
- Department of Biomolecular Sciences, School of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo, Ribeirao Preto, SP, 14040-903, Brazil
| | - Jayanaraian F Martins
- Laboratory of Food, Drugs and Cosmetics (LTMAC), University of Brasilia, Brasilia, DF, 70910-900, Brazil
| | - Marcílio Cunha-Filho
- Laboratory of Food, Drugs and Cosmetics (LTMAC), University of Brasilia, Brasilia, DF, 70910-900, Brazil
| | - Guilherme M Gelfuso
- Laboratory of Food, Drugs and Cosmetics (LTMAC), University of Brasilia, Brasilia, DF, 70910-900, Brazil
| | - Carolina P Aires
- Department of Biomolecular Sciences, School of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo, Ribeirao Preto, SP, 14040-903, Brazil
| | - Taís Gratieri
- Laboratory of Food, Drugs and Cosmetics (LTMAC), University of Brasilia, Brasilia, DF, 70910-900, Brazil. .,Campus Universitário Darcy Ribeiro, Asa Norte, Brasilia, DF, 70910-900, Brazil.
| |
Collapse
|
67
|
Matsui H, Higashide M, Hanaki H. Evaluation of a rapid immunochromatographic test for the detection of Candida species from oropharyngeal samples. J Microbiol Methods 2020; 179:106090. [PMID: 33129918 DOI: 10.1016/j.mimet.2020.106090] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2020] [Revised: 10/26/2020] [Accepted: 10/26/2020] [Indexed: 01/04/2023]
Abstract
Oropharyngeal candidiasis is the most common opportunistic fungal infectious disease. Culture methods and microscopy are used to detect the presence of Candida species in clinical specimens. We have previously developed an immunochromatographic test (ICT) to enable the simple and rapid diagnosis of candidiasis. In this study, we evaluated the performance of the ICT for the detection of Candida species from pharyngeal swabs and compared the results with those of the culture method. The isolated Candida species were identified using polymerase chain reaction-restriction fragment length polymorphism, and viable cell counts were determined using selective chromogenic agar. The detection rate of C. albicans was 63.3% and 0% among ≤102 and ≥ 106 colony-forming units (CFU)/mL of viable Candida cells from pharyngeal swabs, respectively. The detection rate of nonC. albicans Candida species, especially C. glabrata, increased commensurately from 16.7% at ≤102 CFU/mL to 75.0% at ≥106 CFU/mL. Among the 300 pharyngeal swabs analyzed, 59 cultures detected Candida species at a count of >103 CFU/mL (53 were ICT-positive). Of the remaining 241 culture-negative specimens, 219 were ICT-negative. The sensitivity, specificity, and accuracy of the ICT were 89.8%, 90.9%, and 90.7%, respectively. Taken together, the ICT evaluated can be made readily available for clinical use in detecting Candida.
Collapse
Affiliation(s)
- Hidehito Matsui
- Ōmura Satoshi Memorial Institute, Kitasato University, 5-9-1 Shirokane, Minato-Ku, Tokyo 108-8641, Japan
| | - Masato Higashide
- Kotobiken Medical Laboratories, Inc., 445-1, Kamiyokoba, Ibaraki 305-0854, Japan
| | - Hideaki Hanaki
- Ōmura Satoshi Memorial Institute, Kitasato University, 5-9-1 Shirokane, Minato-Ku, Tokyo 108-8641, Japan.
| |
Collapse
|
68
|
Araujo VHS, Duarte JL, Carvalho GC, Silvestre ALP, Fonseca-Santos B, Marena GD, Ribeiro TDC, Dos Santos Ramos MA, Bauab TM, Chorilli M. Nanosystems against candidiasis: a review of studies performed over the last two decades. Crit Rev Microbiol 2020; 46:508-547. [PMID: 32795108 DOI: 10.1080/1040841x.2020.1803208] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The crescent number of cases of candidiasis and the increase in the number of infections developed by non-albicans species and by multi-resistant strains has taken the attention of the scientific community, which has been searching for new therapeutic alternatives. Among the alternatives found the use of nanosystems for delivery of drugs already commercialized and new biomolecules have grown, in order to increase stability, solubility, optimize efficiency and reduce adverse effects. In view of the growing number of studies involving technological alternatives for the treatment of candidiasis, the present review came with the intention of gathering studies from the last two decades that used nanotechnology for the treatment of candidiasis, as well as analysing them critically and pointing out the future perspectives for their application with this purpose. Different studies were considered for the development of this review, addressing nanosystems such as metallic nanoparticles, mesoporous silica nanoparticles, polymeric nanoparticles, liposomes, nanoemulsion, microemulsion, solid lipid nanoparticle, nanostructured lipid carrier, lipidic nanocapsules and liquid crystals; and different clinical presentations of candidiasis. As a general overview, nanotechnology has proven to be an important ally for the treatment against the diversity of candidiasis found in the clinic, whether in increasing the effectiveness of commercialized drugs and reducing their adverse effects, as well as allowing exploring more effectively properties therapeutics of new biomolecules.
Collapse
Affiliation(s)
- Victor Hugo Sousa Araujo
- School of Pharmaceutical Sciences, São Paulo State University (UNESP), Araraquara, São Paulo, Brazil
| | - Jonatas Lobato Duarte
- School of Pharmaceutical Sciences, São Paulo State University (UNESP), Araraquara, São Paulo, Brazil
| | - Gabriela Corrêa Carvalho
- School of Pharmaceutical Sciences, São Paulo State University (UNESP), Araraquara, São Paulo, Brazil
| | | | - Bruno Fonseca-Santos
- Faculty of Pharmaceutical Sciences, University of Campinas (UNICAMP), Campinas, São Paulo, Brazil
| | - Gabriel Davi Marena
- School of Pharmaceutical Sciences, São Paulo State University (UNESP), Araraquara, São Paulo, Brazil.,Department of Biological Sciences, School of Pharmaceutical Sciences, São Paulo State University (UNESP), Araraquara, São Paulo, Brazil
| | - Tais de Cassia Ribeiro
- School of Pharmaceutical Sciences, São Paulo State University (UNESP), Araraquara, São Paulo, Brazil
| | - Matheus Aparecido Dos Santos Ramos
- School of Pharmaceutical Sciences, São Paulo State University (UNESP), Araraquara, São Paulo, Brazil.,Department of Biological Sciences, School of Pharmaceutical Sciences, São Paulo State University (UNESP), Araraquara, São Paulo, Brazil
| | - Taís Maria Bauab
- Department of Biological Sciences, School of Pharmaceutical Sciences, São Paulo State University (UNESP), Araraquara, São Paulo, Brazil
| | - Marlus Chorilli
- School of Pharmaceutical Sciences, São Paulo State University (UNESP), Araraquara, São Paulo, Brazil
| |
Collapse
|
69
|
Abstract
Chronic oral mucosal lesions can be associated with several mucocutaneous diseases. This article reviews the autoimmune and immune-mediated, reactive, genetic, and infectious diseases that may present with chronic oral and/or cutaneous manifestations and provides a rational approach to diagnosis and management.
Collapse
|
70
|
Liao M, Cheng L, Zhou XD, Ren B. [Research progress of Candida albicans on malignant transformation of oral mucosal diseases]. HUA XI KOU QIANG YI XUE ZA ZHI = HUAXI KOUQIANG YIXUE ZAZHI = WEST CHINA JOURNAL OF STOMATOLOGY 2020; 38:431-437. [PMID: 32865364 DOI: 10.7518/hxkq.2020.04.014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Oral cancer is the most common malignant tumor in the head and neck, and is one of the world's top ten malignancies. Microbial infection is an important risk factor of oral cancer. Candida albicans is the most popular opportunistic fungal pathogen. Epidemiological studies have shown that Candida albicans is closely tied to oral malignancy. Animal experimentation have also proven that infection of Candida albicans can promote the development of oral epithelial carcinogenesis. The current studies have revealed several mechanisms involved in this process, including destroying the epithelial barrier, producing carcinogenic substances (nitrosamines, acetaldehyde), inducing chronic inflammation, activating immune response, etc. However, current researches on mechanisms are still inadequate, and some hypotheses remain controversial. Here, we review the findings related to Candida albicans' effect on the malignant transformation of oral mucosa, hoping to provide reference for deep research and controlling oral cancer clinically.
Collapse
Affiliation(s)
- Min Liao
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases & Dept. of Conservative Dentistry and Endodontics, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China
| | - Lei Cheng
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases & Dept. of Conservative Dentistry and Endodontics, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China
| | - Xue-Dong Zhou
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases & Dept. of Conservative Dentistry and Endodontics, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China
| | - Biao Ren
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases & Dept. of Conservative Dentistry and Endodontics, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China
| |
Collapse
|
71
|
Common oral sores and infections. J Am Dent Assoc 2020; 151:640. [DOI: 10.1016/j.adaj.2020.05.020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2020] [Accepted: 05/23/2020] [Indexed: 11/19/2022]
|
72
|
Bio- and Nanotechnology as the Key for Clinical Application of Salivary Peptide Histatin: A Necessary Advance. Microorganisms 2020; 8:microorganisms8071024. [PMID: 32664360 PMCID: PMC7409060 DOI: 10.3390/microorganisms8071024] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2020] [Revised: 07/07/2020] [Accepted: 07/08/2020] [Indexed: 12/14/2022] Open
Abstract
Candida albicans is a common microorganism of human’s microbiota and can be easily found in both respiratory and gastrointestinal tracts as well as in the genitourinary tract. Approximately 30% of people will be infected by C. albicans during their lifetime. Due to its easy adaptation, this microorganism started to present high resistance to antifungal agents which is associated with their indiscriminate use. There are several reports of adaptive mechanisms that this species can present. Some of them are intrinsic alteration in drug targets, secretion of extracellular enzymes to promote host protein degradation and efflux receptors that lead to a diminished action of common antifungal and host’s innate immune response. The current review aims to bring promising alternatives for the treatment of candidiasis caused mainly by C. albicans. One of these alternatives is the use of antifungal peptides (AFPs) from the Histatin family, like histatin-5. Besides that, our focus is to show how nanotechnology can allow the application of these peptides for treatment of this microorganism. In addition, our intention is to show the importance of nanoparticles (NPs) for this purpose, which may be essential in the near future.
Collapse
|
73
|
Clitherow KH, Binaljadm TM, Hansen J, Spain SG, Hatton PV, Murdoch C. Medium-Chain Fatty Acids Released from Polymeric Electrospun Patches Inhibit Candida albicans Growth and Reduce the Biofilm Viability. ACS Biomater Sci Eng 2020; 6:4087-4095. [PMID: 32685674 PMCID: PMC7362581 DOI: 10.1021/acsbiomaterials.0c00614] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2020] [Accepted: 05/20/2020] [Indexed: 01/23/2023]
Abstract
Oral candidiasis is a very common oral condition among susceptible individuals, with the main causative organism being the fungus Candida albicans. Current drug delivery systems to the oral mucosa are often ineffective because of short drug/tissue contact times as well as increased prevalence of drug-resistant Candida strains. We evaluated the potency of saturated fatty acids as antifungal agents and investigated their delivery by novel electrospun mucoadhesive oral patches using agar disk diffusion and biofilm assays. Octanoic (C8) and nonanoic (C9) acids were the most effective at inhibiting C. albicans growth on disk diffusion assays, both in solution or when released from polycaprolactone (PCL) or polyvinylpyrrolidone/RS100 (PVP/RS100) electrospun patches. In contrast, dodecanoic acid (C12) displayed the most potent antifungal activity against pre-existing C. albicans biofilms in solution or when released by PCL or PVP/RS100 patches. Both free and patch-released saturated fatty acids displayed a significant toxicity to wild-type and azole-resistant strains of C. albicans. These data not only provide evidence that certain saturated fatty acids have the potential to be used as antifungal agents but also demonstrate that this therapy could be delivered directly to Candida-infected sites using electrospun mucoadhesive patches, demonstrating a potential new therapeutic approach to treat oral thrush.
Collapse
Affiliation(s)
- Katharina H Clitherow
- School of Clinical Dentistry, University of Sheffield, 19 Claremont Crescent, Sheffield S10 2TA, U.K
| | - Tahani M Binaljadm
- School of Clinical Dentistry, University of Sheffield, 19 Claremont Crescent, Sheffield S10 2TA, U.K
| | - Jens Hansen
- Afyx Therapeutics, Lergravsej 57, 2. tv, 2300 Copenhagen, Denmark
| | - Sebastian G Spain
- Department of Chemistry, University of Sheffield, Brook Hill, Sheffield S3 7HF, U.K
| | - Paul V Hatton
- School of Clinical Dentistry, University of Sheffield, 19 Claremont Crescent, Sheffield S10 2TA, U.K
| | - Craig Murdoch
- School of Clinical Dentistry, University of Sheffield, 19 Claremont Crescent, Sheffield S10 2TA, U.K
| |
Collapse
|
74
|
Vila T, Sultan AS, Montelongo-Jauregui D, Jabra-Rizk MA. Oral Candidiasis: A Disease of Opportunity. J Fungi (Basel) 2020; 6:jof6010015. [PMID: 31963180 PMCID: PMC7151112 DOI: 10.3390/jof6010015] [Citation(s) in RCA: 206] [Impact Index Per Article: 41.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2019] [Revised: 01/10/2020] [Accepted: 01/13/2020] [Indexed: 12/14/2022] Open
Abstract
Oral candidiasis, commonly referred to as “thrush,” is an opportunistic fungal infection that commonly affects the oral mucosa. The main causative agent, Candida albicans, is a highly versatile commensal organism that is well adapted to its human host; however, changes in the host microenvironment can promote the transition from one of commensalism to pathogen. This transition is heavily reliant on an impressive repertoire of virulence factors, most notably cell surface adhesins, proteolytic enzymes, morphologic switching, and the development of drug resistance. In the oral cavity, the co-adhesion of C. albicans with bacteria is crucial for its persistence, and a wide range of synergistic interactions with various oral species were described to enhance colonization in the host. As a frequent colonizer of the oral mucosa, the host immune response in the oral cavity is oriented toward a more tolerogenic state and, therefore, local innate immune defenses play a central role in maintaining Candida in its commensal state. Specifically, in addition to preventing Candida adherence to epithelial cells, saliva is enriched with anti-candidal peptides, considered to be part of the host innate immunity. The T helper 17 (Th17)-type adaptive immune response is mainly involved in mucosal host defenses, controlling initial growth of Candida and inhibiting subsequent tissue invasion. Animal models, most notably the mouse model of oropharyngeal candidiasis and the rat model of denture stomatitis, are instrumental in our understanding of Candida virulence factors and the factors leading to host susceptibility to infections. Given the continuing rise in development of resistance to the limited number of traditional antifungal agents, novel therapeutic strategies are directed toward identifying bioactive compounds that target pathogenic mechanisms to prevent C. albicans transition from harmless commensal to pathogen.
Collapse
Affiliation(s)
- Taissa Vila
- Department of Oncology and Diagnostic Sciences, School of Dentistry, University of Maryland, Baltimore, MD 21201, USA; (T.V.); (A.S.S.); (D.M.-J.)
| | - Ahmed S. Sultan
- Department of Oncology and Diagnostic Sciences, School of Dentistry, University of Maryland, Baltimore, MD 21201, USA; (T.V.); (A.S.S.); (D.M.-J.)
| | - Daniel Montelongo-Jauregui
- Department of Oncology and Diagnostic Sciences, School of Dentistry, University of Maryland, Baltimore, MD 21201, USA; (T.V.); (A.S.S.); (D.M.-J.)
| | - Mary Ann Jabra-Rizk
- Department of Oncology and Diagnostic Sciences, School of Dentistry, University of Maryland, Baltimore, MD 21201, USA; (T.V.); (A.S.S.); (D.M.-J.)
- Department of Microbiology and Immunology, School of Medicine, University of Maryland, Baltimore, MD 21201, USA
- Correspondence: ; Tel.: +1-410-706-0508; Fax: +1-410-706-0519
| |
Collapse
|
75
|
Alves IA, Savi FM, de Vasconcelos C. Braz J, Quintans Junior LJ, Serafini MR. The Patenting and Technological Trends in Candidiasis Treatment: A Systematic Review (2014-2018). Curr Top Med Chem 2019; 19:2629-2639. [DOI: 10.2174/1568026619666191030091211] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2019] [Revised: 04/30/2019] [Accepted: 09/04/2019] [Indexed: 11/22/2022]
Abstract
Background:
In the last few decades, mycoses caused by opportunistic fungi namely Candida
species has gained significant attention. Such infections are very common and present high mortality
rates, especially in immunocompromised patients. Currently, a limited number of antifungal drugs
are available for the treatment of these infections and are also often related to severe adverse side effects.
Therefore, new drugs and innovative technologies for the treatment of this infection are necessary.
Objective:
The aim of this study was to evaluate the development of new drugs, formulations, as well as
patents for the treatment of infections caused by Candida spp.
Methods:
The present patent review was carried out through a specialized search database Espacenet.
The patent selection was based on the following inclusion criteria: Recent patents published in English
or Spanish containing candidiasis as the keyword in the title, abstract or full text. This survey was conducted
in October and November 2018.
Results:
As a result of that, 22 patents were selected to the final selection, the most common routes of
application were oral (n = 6), vaginal (n = 6), topical (n = 5) and others (n = 5). This fact is related to the
clinical manifestations of candidiasis.
Conclusion:
Through this review, it was possible to identify significant improvements and advances in
the area of antifungal therapeutic innovation research. In addition, we demonstrated the growing interest
of academic and industrial groups in pharmaceutical development and novel formulations for the treatment
of candidiasis. New therapeutic options can contribute to improve the quality of patient’s life, prevent
infections and promote the search for an innovative and effective treatment of Candida infections.
Collapse
Affiliation(s)
- Izabel Almeida Alves
- Universidade Regional Integrada do Alto Uruguai e das Missoes, Santo Angelo, Rio Grande do Sul, Brazil
| | - Flávia Medeiros Savi
- Institute of Health and Biomedical Innovation, Queensland University of Technology, Queensland, Australia
| | - Juliana de Vasconcelos C. Braz
- Department of Pharmacy, Programa de Pos Graduacao em Ciencias da Saude, Universidade Federal de Sergipe, Sao Cristovao, Sergipe, Brazil
| | - Lucindo José Quintans Junior
- Department of Pharmacy, Programa de Pos Graduacao em Ciencias da Saude, Universidade Federal de Sergipe, Sao Cristovao, Sergipe, Brazil
| | - Mairim Russo Serafini
- Department of Pharmacy, Programa de Pos Graduacao em Ciencias da Saude, Universidade Federal de Sergipe, Sao Cristovao, Sergipe, Brazil
| |
Collapse
|
76
|
Rossoni RD, de Barros PP, Lopes LADC, Ribeiro FC, Nakatsuka T, Kasaba H, Junqueira JC. Effects of surface pre-reacted glass-ionomer (S-PRG) eluate on Candida spp.: antifungal activity, anti-biofilm properties, and protective effects on Galleria mellonella against C. albicans infection. BIOFOULING 2019; 35:997-1006. [PMID: 31710252 DOI: 10.1080/08927014.2019.1686485] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/18/2019] [Revised: 10/24/2019] [Accepted: 10/24/2019] [Indexed: 06/10/2023]
Abstract
Surface pre-reacted glass-ionomer (S-PRG) is a bioactive filler produced by PRG technology, which is applied to various dental materials. The inhibitory effects of S-PRG eluate against Candida, the most common fungal oral pathogen, were investigated. Minimum inhibitory concentrations (MIC) and anti-biofilm activities were tested against Candida albicans, Candida glabrata, Candida krusei, and Candida tropicalis. For the in vivo study, Galleria mellonella was used as a model to evaluate the effects of S-PRG on toxicity, hemocyte counts and candidiasis. The MIC of S-PRG ranged from 5 to 40% (v/v). S-PRG eluate exhibited anti-biofilm activity for all the Candida species tested. Furthermore, injection of S-PRG eluate into G. mellonella was not toxic to the larvae and protected G. mellonella against experimental candidiasis. In addition, S-PRG eluate inhibited biofilm formation by C. albicans, C. glabrata, C. krusei, and C. tropicalis and exerted protective effects on G. mellonella against experimental candidiasis in vivo.
Collapse
Affiliation(s)
- Rodnei Dennis Rossoni
- Department of Biosciences and Oral Diagnosis, Institute of Science and Technology, UNESP - Univ Estadual Paulista, Sao Jose dos Campos, Brazil
| | - Patrícia Pimentel de Barros
- Department of Biosciences and Oral Diagnosis, Institute of Science and Technology, UNESP - Univ Estadual Paulista, Sao Jose dos Campos, Brazil
| | - Lucas Alexandre das Chagas Lopes
- Department of Biosciences and Oral Diagnosis, Institute of Science and Technology, UNESP - Univ Estadual Paulista, Sao Jose dos Campos, Brazil
| | - Felipe Camargo Ribeiro
- Department of Biosciences and Oral Diagnosis, Institute of Science and Technology, UNESP - Univ Estadual Paulista, Sao Jose dos Campos, Brazil
| | | | | | - Juliana Campos Junqueira
- Department of Biosciences and Oral Diagnosis, Institute of Science and Technology, UNESP - Univ Estadual Paulista, Sao Jose dos Campos, Brazil
| |
Collapse
|
77
|
Rodrigues CF, Rodrigues ME, Henriques MC. Promising Alternative Therapeutics for Oral Candidiasis. Curr Med Chem 2019; 26:2515-2528. [DOI: 10.2174/0929867325666180601102333] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2017] [Revised: 03/29/2018] [Accepted: 05/08/2018] [Indexed: 12/16/2022]
Abstract
:Candida is the main human fungal pathogen causing infections (candidiasis), mostly in the elderly and immunocompromised hosts. Even though Candida spp. is a member of the oral microbiota in symbiosis, in some circumstances, it can cause microbial imbalance leading to dysbiosis, resulting in oral diseases. Alternative therapies are urgently needed to treat oral candidiasis (usually associated to biofilms), as several antifungal drugs’ activity has been compromised. This has occurred especially due to an increasing occurrence of drugresistant in Candida spp. strains. The overuse of antifungal medications, systemic toxicity, cross-reactivity with other drugs and a presently low number of drug molecules with antifungal activity, have contributed to important clinical limitations.:We undertook a structured search of bibliographic databases (PubMed Central, Elsevier’s ScienceDirect, SCOPUS and Springer’s SpringerLink) for peer-reviewed research literature using a focused review in the areas of alternatives to manage oral candidiasis. The keywords used were “candidiasis”, “oral candidiasis”, “biofilm + candida”, “alternative treatment”, “combination therapy + candida” and the reports from the last 10 to 15 years were considered for this review.:This review identified several promising new approaches in the treatment of oral candidiasis: combination anti-Candida therapies, denture cleansers, mouth rinses as alternatives for disrupting candidal biofilms, natural compounds (e.g. honey, probiotics, plant extracts and essential oils) and photodynamic therapy.:The findings of this review confirm the importance and the urgency of the development of efficacious therapies for oral candidal infections.
Collapse
Affiliation(s)
- Célia F. Rodrigues
- CEB, Centre of Biological Engineering, LIBRO - Laboratorio de Investigacao em Biofilmes Rosario Oliveira, University of Minho, 4710-057 Braga, Portugal
| | - Maria E. Rodrigues
- CEB, Centre of Biological Engineering, LIBRO - Laboratorio de Investigacao em Biofilmes Rosario Oliveira, University of Minho, 4710-057 Braga, Portugal
| | - Mariana C.R. Henriques
- CEB, Centre of Biological Engineering, LIBRO - Laboratorio de Investigacao em Biofilmes Rosario Oliveira, University of Minho, 4710-057 Braga, Portugal
| |
Collapse
|
78
|
SILVA DMD, SOUZA TCD, ALENCAR CFDC, SOUZA IDSD, BANDEIRA MFCL, FERNANDES OCC. Virulence factors of Candida species from the oral mucosa and prostheses of elderly people from a riverside community in the Amazon state, Brazil. REVISTA DE ODONTOLOGIA DA UNESP 2019. [DOI: 10.1590/1807-2577.09419] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Abstract Introduction Candida albicans is the yeast most commonly affecting the oral cavity, sometimes causing infection. However, several factors may be associated with the onset of candidiasis, which may be related not only to the hygiene and health of individuals, but also to the pathogenicity of these microorganisms. Objective To evaluate the virulence factors of Candida yeasts isolated from the oral mucosa of elderly people living in the “Comunidade Lago do Limão”, municipality of Iranduba, Amazonas state, Brazil. Material and method Testes were performed to assess the production of urease, proteinase, phospholipase and hemolysin. Statistical analysis used the Fisher's exact test and the Chi-squared test. Result Prevalence of non-albicans species was observed. As for virulence factors, all isolates were negative ureases, and there was prevalence of very strong proteinase production, whereas most isolates did not produce this enzyme in the phospholipase test. All yeasts analyzed presented hemolysin production, with grade IV hemolysis as the most prevalent. There was no statistically significant difference between the virulence of isolates from the oral cavity and the prostheses of the elderly analyzed. Conclusion Several virulence factors may present with high intensity in the presence of oral microbiota changes. In addition, non-albicans species present number of virulence factors similar to that of C. albicans, with high pathogenicity. This study allows a better analysis of candidiasis prevention strategies aiming to promote improvement in the health and quality of life for the elderly.
Collapse
|
79
|
Tantivitayakul P, Panpradit N, Maudcheingka T, Klaophimai A, Lapirattanakul J. Genotyping of Candida albicans and Candida dubliniensis by 25S rDNA analysis shows association with virulence attributes in oral candidiasis. Arch Oral Biol 2019; 97:18-24. [DOI: 10.1016/j.archoralbio.2018.10.006] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2018] [Revised: 09/19/2018] [Accepted: 10/05/2018] [Indexed: 12/22/2022]
|
80
|
Donovan TE, Marzola R, Murphy KR, Cagna DR, Eichmiller F, McKee JR, Metz JE, Albouy JP, Troeltzsch M. Annual review of selected scientific literature: A report of the Committee on Scientific Investigation of the American Academy of Restorative Dentistry. J Prosthet Dent 2018; 120:816-878. [DOI: 10.1016/j.prosdent.2018.09.010] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2018] [Accepted: 09/24/2018] [Indexed: 02/08/2023]
|
81
|
Obando-Pereda G. Pseudomembranous candidiasis by Candida tropicalis in an immunocompromised patient: Case Report. JOURNAL OF ORAL RESEARCH 2018. [DOI: 10.17126/joralres.2018.077] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Pseudomembranous candidiasis is the most frequent type of infection by Candida spp., and Candida albicans is the most common species to cause it. Candidiasis can be due to other Candida species less frequently, as is the case of Candida tropicalis a pathogenic species that can cause infection in immunocompromised patients. The aim of this case report is to describe a pathological condition produce by Candida tropicalis.
Collapse
|
82
|
Prevalence of Candida Species in Endodontic Infections: Systematic Review and Meta-analysis. J Endod 2018; 44:1616-1625.e9. [PMID: 30241680 DOI: 10.1016/j.joen.2018.07.016] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2018] [Revised: 07/16/2018] [Accepted: 07/19/2018] [Indexed: 12/19/2022]
Abstract
INTRODUCTION Candida in endodontic infections has been investigated in a large number of studies, but its role as an endodontic pathogen is still debatable. The aim of this study was to systematically review the literature on the prevalence of Candida species in root canal infections. METHODS Extensive literature research was performed in the most important electronic biomedical databases, and additional studies have been identified from references from relevant articles. Studies were critically appraised using a modified version of the Joanna Briggs Institute Critical Appraisal Checklist. RESULTS From 2225 unique records, 2118 were excluded on the basis of title and abstract. Of the remaining 107 studies, 50 were excluded after full-text review, and 57 were included for qualitative and quantitative analysis. The overall prevalence of Candida spp. in root canal infections was 8.20% (95% confidence interval, 5.56%-11.21%). Candida albicans was the most frequently isolated species. Significant heterogeneity among studies was observed (P < .001, I2 = 86.07%). Subgroup analyses revealed a higher prevalence of Candida spp. from African samples. All studies considered, a high or unclear risk of bias was prevalent regarding 6 out of the 8 items considered in the critical appraisal. CONCLUSIONS Candida spp. occurred in a small proportion of root canal infections. Further and better designed research is needed to investigate the real contribution of Candida spp. to the microbial ecology in infected root canals.
Collapse
|
83
|
Oral medicine: Chronic hyperplastic candidosis. Br Dent J 2018; 224:844. [DOI: 10.1038/sj.bdj.2018.451] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
84
|
Karkowska-Kuleta J, Bartnicka D, Zawrotniak M, Zielinska G, Kieronska A, Bochenska O, Ciaston I, Koziel J, Potempa J, Baster Z, Rajfur Z, Rapala-Kozik M. The activity of bacterial peptidylarginine deiminase is important during formation of dual-species biofilm by periodontal pathogen Porphyromonas gingivalis and opportunistic fungus Candida albicans. Pathog Dis 2018; 76:4969680. [PMID: 29668945 PMCID: PMC6251568 DOI: 10.1093/femspd/fty033] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2017] [Accepted: 04/11/2018] [Indexed: 12/19/2022] Open
Abstract
Porphyromonas gingivalis, an anaerobic Gram-negative bacterium critically involved in the development of human periodontitis, belongs to the late colonizers of the oral cavity. The success of this pathogen in the host colonization and infection results from the presence of several virulence factors, including extracellular peptidylarginine deiminase (PPAD), an enzyme that converts protein arginine residues to citrullines. A common opportunistic fungal pathogen of humans, Candida albicans, is also frequently identified among microorganisms that reside at subgingival sites. The aim of the current work was to verify if protein citrullination can influence the formation of mixed biofilms by both microorganisms under hypoxic and normoxic conditions. Quantitative estimations of the bacterial adhesion to fungal cells demonstrated the importance of PPAD activity in this process, since the level of binding of P. gingivalis mutant strain deprived of PPAD was significantly lower than that observed for the wild-type strain. These results were consistent with mass spectrometric detection of the citrullination of selected surface-exposed C. albicans proteins. Furthermore, a viability of P. gingivalis cells under normoxia increased in the presence of fungal biofilm compared with the bacteria that formed single-species biofilm. These findings suggest a possible protection of these strict anaerobes under unfavorable aerobic conditions by C. albicans during mixed biofilm formation.
Collapse
Affiliation(s)
- Justyna Karkowska-Kuleta
- Department of Comparative Biochemistry and Bioanalytics, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University in Krakow, 30-387 Krakow, Poland
| | - Dominika Bartnicka
- Department of Comparative Biochemistry and Bioanalytics, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University in Krakow, 30-387 Krakow, Poland
| | - Marcin Zawrotniak
- Department of Comparative Biochemistry and Bioanalytics, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University in Krakow, 30-387 Krakow, Poland
| | - Gabriela Zielinska
- Department of Comparative Biochemistry and Bioanalytics, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University in Krakow, 30-387 Krakow, Poland
| | - Anna Kieronska
- Department of Comparative Biochemistry and Bioanalytics, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University in Krakow, 30-387 Krakow, Poland
| | - Oliwia Bochenska
- Department of Analytical Biochemistry, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University in Krakow, 30-387 Krakow, Poland
| | - Izabela Ciaston
- Department of Microbiology, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University in Krakow, 30-387 Krakow, Poland
| | - Joanna Koziel
- Department of Microbiology, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University in Krakow, 30-387 Krakow, Poland
| | - Jan Potempa
- Department of Microbiology, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University in Krakow, 30-387 Krakow, Poland
| | - Zbigniew Baster
- Institute of Physics, Faculty of Physics, Astronomy and Applied Computer Science, Jagiellonian University, 30-348 Krakow, Poland
| | - Zenon Rajfur
- Institute of Physics, Faculty of Physics, Astronomy and Applied Computer Science, Jagiellonian University, 30-348 Krakow, Poland
| | - Maria Rapala-Kozik
- Department of Comparative Biochemistry and Bioanalytics, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University in Krakow, 30-387 Krakow, Poland
| |
Collapse
|