51
|
Soluble decoy receptor 3 modulates the survival and formation of osteoclasts from multiple myeloma bone disease patients. Leukemia 2009; 23:2139-46. [PMID: 19587706 DOI: 10.1038/leu.2009.136] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Decoy receptor 3 (DcR3), a member of the tumor necrosis factor (TNF) receptor superfamily, is known to be involved in cell survival and osteoclast (OC) formation. In this study, we show that malignant plasma cells and T lymphocytes from multiple myeloma (MM) bone disease patients, as well as Karpas 909, a human myeloma cell line, directly produce DcR3. By interacting with FasL, this molecule could inhibit OC apoptosis. In fact, the use of a neutralizing anti-DcR3 antibody induces a reduction of cell viability with a consequent increase of apoptotic cell number, the activation of caspase-8 and -3, and DNA fragmentation. Furthermore, we show that DcR3 supports OC formation in samples from MM patients through the upregulation of RANKL and TNFalpha by T lymphocytes and only TNFalpha by CD14+ cells. In conclusion, our data provide the first evidence of the expression of DcR3 in MM, and the involvement of this molecule in supporting the survival and formation of OCs from MM bone disease patients. The production of DcR3 by T lymphocytes confers these cells a role in the pathogenesis of bone disease associated with MM.
Collapse
|
52
|
Nose M, Yamazaki H, Hagino H, Morio Y, Hayashi SI, Teshima R. Comparison of osteoclast precursors in peripheral blood mononuclear cells from rheumatoid arthritis and osteoporosis patients. J Bone Miner Metab 2009; 27:57-65. [PMID: 19082778 DOI: 10.1007/s00774-008-0011-0] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/11/2007] [Accepted: 05/06/2008] [Indexed: 01/14/2023]
Abstract
Osteolytic disorders cause serious problems for quality of life with aging. Osteolysis is performed by osteoclasts of the hematopoietic lineage that share some characteristics with monocytes and macrophages. As osteoclast precursors (pOCs) are present in peripheral blood, their characterization in osteolytic diseases may help us to understand risk factors. Although essential factors for osteoclastogenesis have been reported, the effective induction from pOCs in human peripheral blood mononuclear cells (PBMCs) to mature osteoclasts in culture requires further improvement. The aim of this study was development of an efficient culture system for human osteoclastogenesis and providing a simple system for the enrichment of pOCs from PBMCs. We employed coculturing of human PBMCs with a mouse stromal cell line. Significant numbers of tartrate-resistant acid phosphatase-positive (TRAP(+)) multinucleated osteoclasts (MNCs), which could resorb dentine slices, were efficiently induced in this culture condition. pOCs were enriched in an anti-CD16 antibody column-passed anti-CD14 antibody-bound cell population isolated by magnetic cell sorting. We compared the percentage of the CD14(high) CD16(dull) cell population, which mainly contained pOCs in PBMCs, from age-matched patients with rheumatoid arthritis (RA) and osteoporosis (OP), but it was comparable. However, the mean number of TRAP(+) MNCs generated in cultures from PBMCs of RA was higher. In contrast, the frequency of pOCs in PBMCs from OP was relatively higher. These results suggest the characteristics of pOCs from RA and OP may be different, because single pOCs from OP gave rise to lower numbers of osteoclasts than those from RA.
Collapse
Affiliation(s)
- Michinari Nose
- Division of Orthopaedic Surgery, Department of Medicine of Sensory and Motor Organs, Faculty of Medicine, Tottori University, Yonago, Tottori 683-8503, Japan.
| | | | | | | | | | | |
Collapse
|
53
|
Tang CH, Huang TH, Chang CS, Fu WM, Yang RS. Water solution of onion crude powder inhibits RANKL-induced osteoclastogenesis through ERK, p38 and NF-kappaB pathways. Osteoporos Int 2009; 20:93-103. [PMID: 18506384 DOI: 10.1007/s00198-008-0630-2] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/23/2007] [Accepted: 03/21/2008] [Indexed: 12/20/2022]
Abstract
UNLABELLED Onion powder has been reported to decrease the ovariectomy-induced bone resorption of rats. However, the molecular mechanism of onion powder on the bone cells has not been reported. Here, we report that water solution of onion crude powder decreases the osteoclastogenesis from co-cultures of bone marrow stromal cells and macrophage cells. Additionally, water solution of onion crude powder inhibits the RANKL-induced ERK, p38 and NF-kappaB activation in macrophages. In summary, our data showed that onion powder may benefit bone through an anti-resorption effect on the osteoclasts. INTRODUCTION A nutritional approach is important for both prevention and treatment of osteoporosis. Onion has been reported to decrease the ovariectomy-induced bone resorption. However, the functional effects of onion on the cultured osteoclasts and osteoblasts remain largely unknown. Here, we found that water solution of onion crude powder markedly inhibited the receptor activator of nuclear factor kappa B ligand (RANKL)-induced osteoclastogenesis through ERK, p38 and NF-kappaB pathways. Other studies were also designed to investigate the potential signaling pathways involved in onion-induced decrease in osteoclastogenesis. METHODS The osteoclastogenesis was examined using the TRAP staining method. The MAPKs and NF-kappaB pathways were measured using Western blot analysis. A transfection protocol was used to examine NF-kappaB activity. RESULTS Water solution of onion crude powder inhibited the RANKL plus M-CSF-induced osteoclastic differentiation from either bone marrow stromal cells or from RAW264.7 macrophage cells. Treatment of RAW264.7 macrophages with RANKL could induce the activation of ERK, p38 and NF-kappaB that was inhibited by water solution of onion crude powder. On the other hand, it did not affect the cell proliferation and differentiation of human cultured osteoblasts. CONCLUSIONS Our data suggest that water solution of onion crude powder inhibits osteoclastogenesis from co-cultures of bone marrow stromal cells and macrophage cells via attenuation of RANKL-induced ERK, p38 and NF-kappaB activation.
Collapse
Affiliation(s)
- C-H Tang
- Department of Pharmacology, China Medical University, Taichung, Taiwan
| | | | | | | | | |
Collapse
|
54
|
Therapeutic Potential of VEGI/TL1A in Autoimmunity and Cancer. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2009; 647:207-15. [DOI: 10.1007/978-0-387-89520-8_15] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
|
55
|
Chen PH, Yang CR. Decoy Receptor 3 Expression in AsPC-1 Human Pancreatic Adenocarcinoma Cells via the Phosphatidylinositol 3-Kinase-, Akt-, and NF-κB-Dependent Pathway. THE JOURNAL OF IMMUNOLOGY 2008; 181:8441-9. [DOI: 10.4049/jimmunol.181.12.8441] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
56
|
Bamias G, Siakavellas SI, Stamatelopoulos KS, Chryssochoou E, Papamichael C, Sfikakis PP. Circulating levels of TNF-like cytokine 1A (TL1A) and its decoy receptor 3 (DcR3) in rheumatoid arthritis. Clin Immunol 2008; 129:249-255. [PMID: 18757243 DOI: 10.1016/j.clim.2008.07.014] [Citation(s) in RCA: 89] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2008] [Revised: 07/07/2008] [Accepted: 07/11/2008] [Indexed: 01/07/2023]
Abstract
TL1A is a novel TNF-like cytokine, which provides co-stimulatory and Th1-polarizing signals to activated lymphocytes, via binding to death-domain receptor 3 (DR3). These functions are inhibited when TL1A associates to decoy receptor 3 (DcR3). We investigated the serum expression of TL1A and DcR3 in 81 patients with RA and 51 healthy controls. TL1A concentrations were elevated in patients by 5-fold (P<0.00001). This increase was more prominent in RFactor-positive patients and correlated with clinical activity in this subgroup. DcR3 was detected more frequently and in significantly higher values in RA-derived sera, correlated strongly with TL1A, and was present in inflammatory synovial fluid. Severe RA stage was associated with highly elevated TL1A and DcR3 serum levels. Treatment with an anti-TNF agent significantly decreased TL1A serum levels. We conclude that TL1A may serve as an inflammatory marker in RA. Interactions between TL1A and its receptors may be important in the pathogenesis of RA.
Collapse
Affiliation(s)
- Giorgos Bamias
- First Department of Propaedeutic and Internal Medicine, Laikon Hospital, Athens University Medical School, Athens, Greece.
| | | | | | | | | | | |
Collapse
|
57
|
Epigenetic control of MHC class II expression in tumor-associated macrophages by decoy receptor 3. Blood 2008; 111:5054-63. [PMID: 18349319 DOI: 10.1182/blood-2007-12-130609] [Citation(s) in RCA: 93] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
Abstract
Decoy receptor 3 (DcR3) is a member of the TNF receptor superfamily and is up-regulated in tumors originating from a diversity of lineages. DcR3 is capable of promoting angiogenesis, inducing dendritic cell apoptosis, and modulating macrophage differentiation. Since tumor-associated macrophages (TAMs) are the major infiltrating leukocytes in most malignant tumors, we used microarray technology to investigate whether DcR3 contributes to the development of TAMs. Among the DcR3-modulated genes expressed by TAMs, those that encode proteins involved in MHC class II (MHC-II)-dependent antigen presentation were down-regulated substantially, together with the master regulator of MHC-II expression (the class II transactivator, CIITA). The ERK- and JNK-induced deacetylation of histones associated with the CIITA promoters was responsible for DcR3-mediated down-regulation of MHC-II expression. Furthermore, the expression level of DcR3 in cancer cells correlated inversely with HLA-DR levels on TAMs and with the overall survival time of pancreatic cancer patients. The role of DcR3 in the development of TAMs was further confirmed using transgenic mice overexpressing DcR3. This elucidates the molecular mechanism of impaired MHC-II-mediated antigen presentation by TAMs, and raises the possibility that subversion of TAM-induced immunosuppression via inhibition of DcR3 expression might represent a target for the design of new therapeutics.
Collapse
|
58
|
Abstract
Decoy receptor 3 (DcR3) is a soluble decoy receptor belonging to the tumor necrosis factor receptor (TNFR) superfamily, and its expression is not only up-regulated in cancer cells derived from various cell lineages, but also correlates with overall survival of patients with cancer. It has been shown that DcR3 sensitize cells of hematopoietic origin to TNF-related apoptosis-inducing ligand (TRAIL)-induced apoptosis; therefore, we asked whether DcR3 down-regulated host immunity by inducing immune cell apoptosis. We demonstrate that DcR3 induces dendritic cell (DC) apoptosis by activating PKC-delta and JNK subsequently to up-regulate DR5 to recruit Fas-associated death domain (FADD) to propagate the apoptotic signals. The association of FADD with DR5 results in the formation of death-inducing signaling complex (DISC) to trigger the downstream apoptotic signaling cascade. PKC-delta is activated via cross-linking of heparan sulfate proteoglycan (HSPG) on DCs, because recombinant protein containing the heparin-binding domain (HBD) of DcR3 and the Fc portion of IgG(1), the HBD.Fc fusion protein, is also able to trigger DC apoptosis. This provides the first evidence that cross-linking of HSPG on DCs can activate PKC-delta to induce DC apoptosis via the formation of DR5 DISC, and elucidates a novel mechanism of DcR3-mediated immunosuppression.
Collapse
|
59
|
Ciraci E, Barisani D, Parafioriti A, Formisano G, Arancia G, Bottazzo G, Berardi AC. CD34 human hematopoietic progenitor cell line, MUTZ-3, differentiates into functional osteoclasts. Exp Hematol 2007; 35:967-977. [PMID: 17533051 DOI: 10.1016/j.exphem.2007.03.003] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2006] [Revised: 02/28/2007] [Accepted: 03/05/2007] [Indexed: 11/21/2022]
Abstract
OBJECTIVE CD14(+) monocyte cell lines can differentiate into an osteoclast (OC)-like lineage. However, the identification of human cell lines with stem cell characteristics, capable of differentiating into OCs, would provide a tool for the study of the molecular mechanisms regulating their commitment, differentiation, and function. Since the human acute myeloid leukemia cell line MUTZ-3 contains both CD34(+) stem cell and CD14(+) cell populations, we investigated the capacity of the stem/progenitor CD34(+) population to differentiate into functional OCs. MATERIALS AND METHODS Sorted MUTZ-3-CD34(+) and MUTZ-3-CD14(+) cells were cultured in presence of M-CSF, RANK-L, and TNF-alpha to generate OCs. Differentiation was evaluated by TRAP staining and RT-PCR, which assessed the expression of c-fms, RANK, MMP-9, CATK, TRAP, and CTR in -CD34(+)OC and -CD14(+)OC cells. Resorption pit formation was also evaluated. CD34, CD14, M-CSF-R, RANK, and CTR expression was assessed by FACS analysis. RESULTS MUTZ-3-CD34(+) differentiated into OCs, displaying the full range of differentiation markers; MMP-9, CATK, TRAP, and RANK mRNA were detected from day 3 of culture, whereas CTR from day 12. Stimulated MUTZ-3-CD34(+) generated functional osteoclasts that formed extensive resorption lacunae on both mineralized surface and bone slices. Surprisingly, in both sorted populations we identified a population M-CSF-R(+)/RANK(+) that at the same time co-expressed CD14 and CD34. CONCLUSIONS These findings demonstrate that MUTZ-3 cells constitute an invaluable model to study the expression pattern in different developmental stages of commitment and differentiation. Importantly, the data indicate that the CD14(+)CD34(+)M-CSF-R(+)RANK(+) population represents an intermediate stage of differentiation from CD34 precursors and monocytes to osteoclast.
Collapse
Affiliation(s)
- Elisa Ciraci
- Laboratory of Stem Cells, IRCCS-Pediatric Hospital of Bambino Gesù, Rome, Italy
| | | | | | | | | | | | | |
Collapse
|
60
|
Nakamichi Y, Udagawa N, Kobayashi Y, Nakamura M, Yamamoto Y, Yamashita T, Mizoguchi T, Sato M, Mogi M, Penninger JM, Takahashi N. Osteoprotegerin Reduces the Serum Level of Receptor Activator of NF-κB Ligand Derived from Osteoblasts. THE JOURNAL OF IMMUNOLOGY 2006; 178:192-200. [PMID: 17182555 DOI: 10.4049/jimmunol.178.1.192] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Osteoprotegerin (OPG) is a decoy receptor for receptor activator of NF-kappaB ligand (RANKL). We previously reported that OPG deficiency elevated the circulating level of RANKL in mice. Using OPG(-/-) mice, we investigated whether OPG is involved in the shedding of RANKL by cells expressing RANKL. Osteoblasts and activated T cells in culture released a large amount of RANKL in the absence of OPG. OPG or a soluble form of receptor activator of NF-kappaB (the receptor of RANKL) suppressed the release of RANKL from those cells. OPG- and T cell-double-deficient mice showed an elevated serum RANKL level equivalent to that of OPG(-/-) mice, indicating that circulating RANKL is mainly derived from bone. The serum level of RANKL in OPG(-/-) mice was increased by ovariectomy or administration of 1alpha,25-dihydroxyvitamin D(3). Expression of RANKL mRNA in bone, but not thymus or spleen, was increased in wild-type and OPG(-/-) mice by 1alpha,25-dihydroxyvitamin D(3). These results suggest that OPG suppresses the shedding of RANKL from osteoblasts and that the serum RANKL in OPG(-/-) mice exactly reflects the state of bone resorption.
Collapse
Affiliation(s)
- Yuko Nakamichi
- Institute for Oral Science, Matsumoto Dental University, Nagano, Japan
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
61
|
Borysenko CW, García-Palacios V, Griswold RD, Li Y, Iyer AKV, Yaroslavskiy BB, Sharrow AC, Blair HC. Death receptor-3 mediates apoptosis in human osteoblasts under narrowly regulated conditions. J Cell Physiol 2006; 209:1021-8. [PMID: 16986165 DOI: 10.1002/jcp.20812] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
We previously reported that a soluble form of the TNF-family receptor death receptor-3 (DR3) is expressed in osteoblasts. DR3 regulates death or differentiation in other tissues, and DR3 ligands occur in bone, but the function of DR3 in the osteoblast was unknown. We studied the expression of DR3 and the effects crosslinking antibodies to DR3 or of natural DR3 ligands in human osteoblasts. Western analysis showed that nontransformed osteoblasts and the MG63 osteosarcoma cell line produce both soluble decoy receptor and transmembrane isoforms of DR3. Cell surface labeling showed that low and high DR3-expressing osteoblast populations occur. Verification of by cloning showed a point mutation in DR3 from MG63 cells. Activation of DR3 by antibody crosslinking or with DR3 ligands caused apoptosis in osteoblasts and in MG63 cells, but only in low-density cell cultures. In dense cultures apoptosis did not occur, but nuclear factor-kappaB nuclear translocation was observed under some conditions. Crosslinking of DR3 in high-density MG63 cultures blocked expression of bone matrix elements. DR3 activation in high-density nontransformed osteoblasts had only minor effects on cell maturation. We conclude that DR3 activation can mediate apoptosis in osteoblasts. Its activity is, however, highly restricted by its soluble ligand-binding isoform and possibly also by alternate survival signals. In the presence of survival signals, DR3 may affect cell maturation although effects on differentiation were clearly seen only in the MG63 transformed cell line.
Collapse
|
62
|
Tang CH, Hsu TL, Lin WW, Lai MZ, Yang RS, Hsieh SL, Fu WM. Attenuation of bone mass and increase of osteoclast formation in decoy receptor 3 transgenic mice. J Biol Chem 2006; 282:2346-54. [PMID: 17099218 DOI: 10.1074/jbc.m603070200] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
Decoy receptor 3 (DcR3), a soluble receptor for FasL, LIGHT, and TL1A, induces osteoclast formation from monocyte, macrophage, and bone stromal marrow cells. However, the function of DcR3 on bone formation remains largely unknown. To understand the function of DcR3 in bone formation in vivo, transgenic mice overexpressing DcR3 were generated. Bone mineral density (BMD) and bone mineral content (BMC) of total body were significantly lower in DcR3 transgenic mice as compared with wild-type controls. The difference in BMD and BMC between DcR3 transgenic and control mice was confirmed by histomorphometric analysis, which showed a 35.7% decrease in trabecular bone volume in DcR3 transgenic mice in comparison with wild-type controls. The number of osteoclasts increased in DcR3 transgenic mice. In addition, local administration of DcR3 (30 microg/ml, 10 microl, once/day) into the metaphysis of the tibia via the implantation of a needle cannula significantly decreased the BMD, BMC, and bone volume of secondary spongiosa in tibia. Local injection of DcR3 also increased osteoclast numbers around trabecular bone in tibia. Furthermore, coadminstration of soluble tumor necrosis factor receptor inhibitor/Fc chimera (TNFRSF1A) but not osteoprotegerin inhibited the action of DcR3. In addition, in an assay of osteoclast activity on substrate plates, DcR3 significantly increased the resorption activity of mature osteoclasts. Treatment with higher concentrations of DcR3 slightly increased nodule formation and alkaline phosphatase activity of primary cultured osteoblasts. These results indicate that DcR3 may play an important role in osteoporosis or other bone diseases.
Collapse
Affiliation(s)
- Chih-Hsin Tang
- Department of Pharmacology, College of Medicine, National Taiwan University, Taipei 100
| | | | | | | | | | | | | |
Collapse
|
63
|
Sundaram K, Nishimura R, Senn J, Youssef RF, London SD, Reddy SV. RANK ligand signaling modulates the matrix metalloproteinase-9 gene expression during osteoclast differentiation. Exp Cell Res 2006; 313:168-78. [PMID: 17084841 DOI: 10.1016/j.yexcr.2006.10.001] [Citation(s) in RCA: 173] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2006] [Revised: 09/22/2006] [Accepted: 10/02/2006] [Indexed: 11/17/2022]
Abstract
Osteoclast differentiation is tightly regulated by receptor activator of NF-kappaB ligand (RANKL) signaling. Matrix metalloproteinase-9 (MMP-9), a type IV collagenase is highly expressed in osteoclast cells and plays an important role in degradation of extracellular matrix; however, the molecular mechanisms that regulate MMP-9 gene expression are unknown. In this study, we demonstrate that RANKL signaling induces MMP-9 gene expression in osteoclast precursor cells. We further show that RANKL regulates MMP-9 gene expression through TRAF6 but not TRAF2. Interestingly, blockade of p38 MAPK activity by pharmacological inhibitor, SB203580 increases MMP-9 activity whereas ERK1/2 inhibitor, PD98059 decreases RANKL induced MMP-9 activity in RAW264.7 cells. These data suggest that RANKL differentially regulates MMP-9 expression through p38 and ERK signaling pathways during osteoclast differentiation. Transient expression of MMP-9 gene (+1 to -1174 bp relative to ATG start codon) promoter-luciferase reporter plasmids in RAW264.7 cells and RANKL stimulation showed significant increase (20-fold) of MMP-9 gene promoter activity; however, there is no significant change with respect to +1 bp to -446 bp promoter region and empty vector transfected cells. These results indicated that MMP-9 promoter sequence from -446 bp to -1174 bp relative to start codon is responsive to RANKL stimulation. Sequence analysis of the mouse MMP-9 gene promoter region further identified the presence of binding motif (-1123 bp to -1153 bp) for the nuclear factor of activated T cells 1 (NFATc1) transcription factor. Inhibition of NFATc1 using siRNA and VIVIT peptide inhibitor significantly decreased RANKL stimulation of MMP-9 activity. We further confirm by oligonucleotide pull-down assay that RANKL stimuli enhanced NFATc1 binding to MMP-9 gene promoter element. In addition, over-expression of constitutively active NFAT in RAW264.7 cells markedly increased (5-fold) MMP-9 gene promoter activity in the absence of RANKL. Taken together, our results suggest that RANKL signals through TRAF6 and that NFATc1 is a downstream effector of RANKL signaling to modulate MMP-9 gene expression during osteoclast differentiation.
Collapse
Affiliation(s)
- Kumaran Sundaram
- Charles P. Darby Children's Research Institute, 173 Ashley Avenue, Charleston, SC 29425, USA
| | | | | | | | | | | |
Collapse
|
64
|
Edwards JR, Sun SG, Locklin R, Shipman CM, Adamopoulos IE, Athanasou NA, Sabokbar A. LIGHT (TNFSF14), a novel mediator of bone resorption, is elevated in rheumatoid arthritis. ACTA ACUST UNITED AC 2006; 54:1451-62. [PMID: 16649193 DOI: 10.1002/art.21821] [Citation(s) in RCA: 75] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
OBJECTIVE Human osteoclast formation from mononuclear phagocyte precursors involves interactions between tumor necrosis factor (TNF) ligand superfamily members and their receptors. LIGHT is a transmembrane protein expressed and shed from the surface of activated T cells. Since activated T cells have been implicated in osteoclastogenesis in rheumatoid arthritis (RA), this study sought to determine whether LIGHT can regulate RANKL/cytokine-induced osteoclast formation, to identify the mechanism by which LIGHT influences osteoclastogenesis, and to investigate the presence of LIGHT in the serum of RA patients. METHODS The effect of LIGHT on human and murine osteoclast formation was assessed in the presence and absence of neutralizing reagents to known osteoclastogenic factors. Serum levels of LIGHT in RA patients were measured by enzyme-linked immunosorbent assay. RESULTS In the presence and absence of RANKL, LIGHT induced osteoclast formation from both human peripheral blood mononuclear cells and murine macrophage precursors, in a dose-dependent manner, whereas no inhibition was observed by adding osteoprotegerin, RANK:Fc, TNFalpha, or interleukin-8 or by blocking the LIGHT receptors herpesvirus entry mediator or lymphotoxin beta receptor. However, formation of osteoclasts was significantly decreased by the soluble decoy receptor for LIGHT, DcR3, and by blocking antibodies to the p75 component of the TNF receptor. A significant increase in LIGHT levels in the serum of RA patients compared with normal controls was also noted. CONCLUSION Our results indicate that LIGHT promotes RANKL-mediated osteoclastogenesis and that it can induce osteoclast formation by a mechanism independent of RANKL. The increased concentration of LIGHT in patients with RA raises the possibility that LIGHT may play a role in immunopathogenic conditions that are associated with localized or systemic bone loss.
Collapse
Affiliation(s)
- J R Edwards
- Botnar Research Centre, University of Oxford, Oxford, UK
| | | | | | | | | | | | | |
Collapse
|
65
|
Chang YC, Chan YH, Jackson DG, Hsieh SL. The glycosaminoglycan-binding domain of decoy receptor 3 is essential for induction of monocyte adhesion. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2006; 176:173-80. [PMID: 16365408 DOI: 10.4049/jimmunol.176.1.173] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Decoy receptor 3 (DcR3), a soluble receptor for Fas ligand, LIGHT (homologous to lymphotoxins shows inducible expression and competes with HSV glycoprotein D for herpes virus entry mediator, a receptor expressed by T lymphocytes), and TNF-like molecule 1A, is highly expressed in cancer cells and in tissues affected by autoimmune disease. DcR3.Fc has been shown to stimulate cell adhesion and to modulate cell activation and differentiation by triggering multiple signaling cascades that are independent of its three known ligands. In this study we found that DcR3.Fc-induced cell adhesion was inhibited by heparin and heparan sulfate, and that DcR3.Fc was unable to bind Chinese hamster ovary K1 mutants defective in glycosaminoglycan (GAG) synthesis. Furthermore, the negatively charged, sulfated GAGs of cell surface proteoglycans, but not their core proteins, were identified as the binding sites for DcR3.Fc. A potential GAG-binding site was found in the C-terminal region of DcR3, and the mutation of three basic residues, i.e., K256, R258, and R259, to alanines abolished its ability to trigger cell adhesion. Moreover, a fusion protein comprising the GAG-binding region of DcR3 with an Fc fragment (DcR3_HBD.Fc) has the same effect as DcR3.Fc in activating protein kinase C and inducing cell adhesion. Compared with wild-type THP-1 cells, cell adhesion induced by DcR3.Fc was significantly reduced in both CD44v3 and syndecan-2 knockdown THP-1 cells. Therefore, we propose a model in which DcR3.Fc may bind to and cross-link proteoglycans to induce monocyte adhesion.
Collapse
Affiliation(s)
- Yung-Chi Chang
- Department and Institute of Microbiology and Immunology, National Yang-Ming University, Taipei, Taiwan
| | | | | | | |
Collapse
|
66
|
Hsu TL, Wu YY, Chang YC, Yang CY, Lai MZ, Su WB, Hsieh SL. Attenuation of Th1 response in decoy receptor 3 transgenic mice. THE JOURNAL OF IMMUNOLOGY 2005; 175:5135-45. [PMID: 16210617 DOI: 10.4049/jimmunol.175.8.5135] [Citation(s) in RCA: 49] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
The soluble decoy receptor 3 (DcR3) is a member of the TNFR superfamily. Because DcR3 is up-regulated in tumor tissues and is detectable in the sera of cancer patients, it is regarded as an immunosuppressor to down-regulate immune responses. To understand the function of DcR3 in vivo, we generated transgenic mice overexpressing DcR3 systemically. In comparison with HNT-TCR (HNT) transgenic mice, up-regulation of IL-4 and IL-10 and down-regulation of IFN-gamma, IL-12, and TNF-alpha were observed in the influenza hemagglutinin(126-138) peptide-stimulated splenocytes of HNT-DcR3 double-transgenic mice. When infected with Listeria monocytogenes, DcR3 transgenic mice show attenuated expression of IFN-gamma as well as increased susceptibility to infection. The Th2 cell-biased phenotype in DcR3 transgenic mice is attributed to decreased IL-2 secretion by T cells, resulting in the suppression of IL-2 dependent CD4(+) T cell proliferation. This suggests that DcR3 might help tumor growth by attenuating the Th1 response and suppressing cell-mediated immunity.
Collapse
MESH Headings
- Adjuvants, Immunologic/genetics
- Adjuvants, Immunologic/metabolism
- Adjuvants, Immunologic/physiology
- Animals
- Apoptosis/physiology
- Cells, Cultured
- Cytokines/metabolism
- Fas Ligand Protein
- Humans
- Immunity, Cellular/genetics
- Lymphocyte Activation/genetics
- Membrane Glycoproteins/genetics
- Membrane Glycoproteins/metabolism
- Membrane Glycoproteins/physiology
- Membrane Proteins/metabolism
- Mice
- Mice, Inbred BALB C
- Mice, Inbred MRL lpr
- Mice, Transgenic
- Receptors, Cell Surface/genetics
- Receptors, Cell Surface/metabolism
- Receptors, Cell Surface/physiology
- Receptors, Tumor Necrosis Factor/genetics
- Receptors, Tumor Necrosis Factor/metabolism
- Receptors, Tumor Necrosis Factor/physiology
- Receptors, Tumor Necrosis Factor, Member 6b
- Th1 Cells/immunology
- Th1 Cells/metabolism
- Th2 Cells/immunology
- Th2 Cells/metabolism
- Tumor Necrosis Factor Ligand Superfamily Member 14
- Tumor Necrosis Factor Ligand Superfamily Member 15
- Tumor Necrosis Factor-alpha/metabolism
- Tumor Necrosis Factor-alpha/physiology
- Tumor Necrosis Factors/metabolism
Collapse
Affiliation(s)
- Tsui-Ling Hsu
- Institute of Microbiology and Immunology, National Yang-Ming University, Shih-Pai, Taipei, Taiwan
| | | | | | | | | | | | | |
Collapse
|
67
|
Roux S, Lambert-Comeau P, Saint-Pierre C, Lépine M, Sawan B, Parent JL. Death receptors, Fas and TRAIL receptors, are involved in human osteoclast apoptosis. Biochem Biophys Res Commun 2005; 333:42-50. [PMID: 15936719 DOI: 10.1016/j.bbrc.2005.05.092] [Citation(s) in RCA: 49] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2005] [Accepted: 05/14/2005] [Indexed: 11/26/2022]
Abstract
Survival and apoptosis are crucial aspects of the osteoclast life cycle. Although osteoclast survival has been extensively studied, little is known about the mechanisms involved in human osteoclast apoptosis. In the present study, cord blood monocytes (CBMs) were used as the source of human osteoclast precursors. When cultured in the presence of M-CSF and RANKL, CBMs formed multinucleated cells that expressed RANK and calcitonin receptor, and were able to resorb bone. These cells expressed TRAIL receptors (R1-R4). Surprisingly, although TRAIL-receptor expression was not detectable in osteoclasts from normal bone, osteoclasts from myeloma specimens did express TRAIL receptors to a variable extent. Significantly, we have shown for the first time that this pathway is indeed functional in human osteoclasts, and that apoptosis occurred and was significantly greater in the presence of TRAIL. In addition, we have shown that a Fas-activating antibody is also able to induce osteoclast apoptosis, as did TGFbeta, whereas the survival factor M-CSF decreased apoptosis. Overall, these findings suggest that death receptors, TRAIL receptors and Fas, could be involved in osteoclast apoptosis in humans.
Collapse
Affiliation(s)
- Sophie Roux
- Department of Medicine, Division of Rheumatology, Sherbrooke University, Quebec, Canada.
| | | | | | | | | | | |
Collapse
|