51
|
Nakagawa T, Yoneda M, Higashi M, Ohkuma Y, Ito T. Enhancer function regulated by combinations of transcription factors and cofactors. Genes Cells 2018; 23:808-821. [PMID: 30092612 DOI: 10.1111/gtc.12634] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2018] [Revised: 07/23/2018] [Accepted: 07/24/2018] [Indexed: 12/11/2022]
Abstract
Regulation of the expression of diverse genes is essential for making possible the complexity of higher organisms, and the temporal and spatial regulation of gene expression allows for the alteration of cell types and growth patterns. A critical component of this regulation is the DNA sequence-specific binding of transcription factors (TFs). However, most TFs do not independently participate in gene transcriptional regulation, because they lack an effector function. Instead, TFs are thought to work by recruiting cofactors, including Mediator complex (Mediator), chromatin-remodeling complexes (CRCs), and histone-modifying complexes (HMCs). Mediator associates with the majority of transcribed genes and acts as an integrator of multiple signals. On the other hand, CRCs and HMCs are selectively recruited by TFs. Although all the pairings between TFs and CRCs or HMCs are not fully known, there are a growing number of established TF-CRC and TF-HMC combinations. In this review, we focused on the most important of these pairings and discuss how they control gene expression.
Collapse
Affiliation(s)
- Takeya Nakagawa
- Department of Biochemistry, Nagasaki University School of Medicine, Nagasaki, Japan
| | - Mitsuhiro Yoneda
- Department of Biochemistry, Nagasaki University School of Medicine, Nagasaki, Japan
| | - Miki Higashi
- Department of Biochemistry, Nagasaki University School of Medicine, Nagasaki, Japan
| | - Yoshiaki Ohkuma
- Department of Biochemistry, Nagasaki University School of Medicine, Nagasaki, Japan
| | - Takashi Ito
- Department of Biochemistry, Nagasaki University School of Medicine, Nagasaki, Japan
| |
Collapse
|
52
|
Ioannou M, Papageorgiou DN, Ogryzko V, Strouboulis J. Mammalian expression vectors for metabolic biotinylation tandem affinity tagging by co-expression in cis of a mammalian codon-optimized BirA biotin ligase. BMC Res Notes 2018; 11:390. [PMID: 29898783 PMCID: PMC6001059 DOI: 10.1186/s13104-018-3500-9] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2018] [Accepted: 06/07/2018] [Indexed: 01/11/2023] Open
Abstract
Οbjective To construct mammalian expression vectors for the N- or C-terminal tagging of proteins with a tandem affinity tag comprised of the biotinylatable Avi tag and of a triple FLAG tag. Results We constructed and tested by transient transfections mammalian expression vectors for the co-expression from a single plasmid of N- or C-terminally tagged proteins bearing a tandem affinity tag comprised of the biotinylatable Avi tag and of a triple FLAG tag separated by a tobacco etch virus (TEV) protease cleavage site, together with a mammalian codon-optimized BirA biotin ligase fused to green fluorescent protein. We also describe platform vectors for the N- or C-terminal AVI-TEV-FLAG tagging of any complementary DNA of choice. These vectors offer versatility and efficiency in the application of metabolic biotinylation tandem affinity tagging of nuclear proteins in mammalian cells. Electronic supplementary material The online version of this article (10.1186/s13104-018-3500-9) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Marina Ioannou
- Institute of Molecular Biology and Biotechnology, Foundation of Research & Technology Hellas, 100 Nikolaou Plastira Street, 70013, Heraklion, Crete, Greece
| | - Dimitris N Papageorgiou
- Division of Molecular Oncology, Biomedical Sciences Research Center "Alexander Fleming", 34 Fleming Street, 166 72, Vari, Greece.,Division of Proteomics Stem Cells and Cancer, German Cancer Research Center (DKFZ), Im Neuenheimer Feld 581, 69120, Heidelberg, Germany
| | - Vasily Ogryzko
- UMR8126, Université Paris-Sud 11, CNRS, Institut de Cancérologie Gustave Roussy, 94805, Villejuif, France
| | - John Strouboulis
- Institute of Molecular Biology and Biotechnology, Foundation of Research & Technology Hellas, 100 Nikolaou Plastira Street, 70013, Heraklion, Crete, Greece.
| |
Collapse
|
53
|
Shen Y, Nar R, Fan AX, Aryan M, Hossain MA, Gurumurthy A, Wassel PC, Tang M, Lu J, Strouboulis J, Bungert J. Functional interrelationship between TFII-I and E2F transcription factors at specific cell cycle gene loci. J Cell Biochem 2017; 119:712-722. [PMID: 28657656 DOI: 10.1002/jcb.26235] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2017] [Accepted: 06/22/2017] [Indexed: 11/10/2022]
Abstract
Transcription factor TFII-I is a multifunctional protein implicated in the regulation of cell cycle and stress-response genes. Previous studies have shown that a subset of TFII-I associated genomic sites contained DNA-binding motifs for E2F family transcription factors. We analyzed the co-association of TFII-I and E2Fs in more detail using bioinformatics, chromatin immunoprecipitation, and co-immunoprecipitation experiments. The data show that TFII-I interacts with E2F transcription factors. Furthermore, TFII-I, E2F4, and E2F6 interact with DNA-regulatory elements of several genes implicated in the regulation of the cell cycle, including DNMT1, HDAC1, CDKN1C, and CDC27. Inhibition of TFII-I expression led to a decrease in gene expression and in the association of E2F4 and E2F6 with these gene loci in human erythroleukemia K562 cells. Finally, TFII-I deficiency reduced the proliferation of K562 cells and increased the sensitivity toward doxorubicin toxicity. The results uncover novel interactions between TFII-I and E2Fs and suggest that TFII-I mediates E2F function at specific cell cycle genes.
Collapse
Affiliation(s)
- Yong Shen
- Department of Biochemistry and Molecular Biology, Center for Epigenetics, Genetics Institute, Health Cancer Center, Powell-Gene Therapy Center, University of Florida, Gainesville, Florida
| | - Rukiye Nar
- Department of Biochemistry and Molecular Biology, Center for Epigenetics, Genetics Institute, Health Cancer Center, Powell-Gene Therapy Center, University of Florida, Gainesville, Florida
| | - Alex X Fan
- Department of Biochemistry and Molecular Biology, Center for Epigenetics, Genetics Institute, Health Cancer Center, Powell-Gene Therapy Center, University of Florida, Gainesville, Florida
| | - Mahmoud Aryan
- Department of Biochemistry and Molecular Biology, Center for Epigenetics, Genetics Institute, Health Cancer Center, Powell-Gene Therapy Center, University of Florida, Gainesville, Florida
| | - Mir A Hossain
- Department of Biochemistry and Molecular Biology, Center for Epigenetics, Genetics Institute, Health Cancer Center, Powell-Gene Therapy Center, University of Florida, Gainesville, Florida
| | - Aishwarya Gurumurthy
- Department of Biochemistry and Molecular Biology, Center for Epigenetics, Genetics Institute, Health Cancer Center, Powell-Gene Therapy Center, University of Florida, Gainesville, Florida
| | - Paul C Wassel
- Department of Biochemistry and Molecular Biology, Center for Epigenetics, Genetics Institute, Health Cancer Center, Powell-Gene Therapy Center, University of Florida, Gainesville, Florida
| | - Ming Tang
- Department of Biochemistry and Molecular Biology, Center for Epigenetics, Genetics Institute, Health Cancer Center, Powell-Gene Therapy Center, University of Florida, Gainesville, Florida
| | - Jianrong Lu
- Department of Biochemistry and Molecular Biology, Center for Epigenetics, Genetics Institute, Health Cancer Center, Powell-Gene Therapy Center, University of Florida, Gainesville, Florida
| | - John Strouboulis
- Institute of Molecular Biology and Biotechnology, Foundation of Research and Technology-Hellas, Heraklion, Crete, Greece
| | - Jörg Bungert
- Department of Biochemistry and Molecular Biology, Center for Epigenetics, Genetics Institute, Health Cancer Center, Powell-Gene Therapy Center, University of Florida, Gainesville, Florida
| |
Collapse
|
54
|
Maroofi N, Azarkeivan A, Banihashemi S, Mohammadparast S, Aghajanirefah A, Banan M. An enhancer haplotype may influence BCL11A expression levels and the response to hydroxyurea in β-thalassemia patients. Pharmacogenomics 2017. [PMID: 28639471 DOI: 10.2217/pgs-2017-0019] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
AIM To identify the BCL11A intron-2 enhancer linkage disequilibrium (LD) block, harboring two previously identified SNPs, associating with the hydroxyurea response in β-thalassemia patients and the functional significance of this region. MATERIALS & METHODS Several neighboring SNPs were genotyped in our cohort. The associating LD block was identified, and its function studied in K562 erythroid cells via CRISPR/Cas9 genome editing. RESULTS A haplotype harboring three tag SNPs correlated significantly with the HU-response and BCL11A transcript levels in the patients' reticulocytes. Two deletions encompassing this LD block significantly reduced BCL11A transcript levels in K562 cells. CONCLUSION Our data suggest an essential role for this LD block in BCL11A expression levels and the response to hydroxyurea in β-thalassemia patients.
Collapse
Affiliation(s)
- Nahal Maroofi
- Genetics Research Center, University of Social Welfare & Rehabilitation Sciences, Tehran, Iran
| | - Azita Azarkeivan
- Pediatric Hematology Oncology, Blood Transfusion Research Center, High Institute for Research & Education in Transfusion Medicine, Thalassemia Clinic, Tehran, Iran
| | - Soosan Banihashemi
- Genetics Research Center, University of Social Welfare & Rehabilitation Sciences, Tehran, Iran
| | - Saeid Mohammadparast
- Genetics Research Center, University of Social Welfare & Rehabilitation Sciences, Tehran, Iran
| | - Ali Aghajanirefah
- Genetics Research Center, University of Social Welfare & Rehabilitation Sciences, Tehran, Iran.,Laboratory Medicine, UCSF School of Medicine, San Francisco, CA 94115, USA
| | - Mehdi Banan
- Genetics Research Center, University of Social Welfare & Rehabilitation Sciences, Tehran, Iran
| |
Collapse
|
55
|
Jian W, Yan B, Huang S, Qiu Y. Histone deacetylase 1 activates PU.1 gene transcription through regulating TAF9 deacetylation and transcription factor IID assembly. FASEB J 2017; 31:4104-4116. [PMID: 28572446 DOI: 10.1096/fj.201700022r] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2017] [Accepted: 05/15/2017] [Indexed: 11/11/2022]
Abstract
Histone acetyltransferases and histone deacetylases (HDACs) are important epigenetic coregulators. It has been thought that HDACs associate with corepressor complexes and repress gene transcription; however, in this study, we have found that PU.1-a key master regulator for hematopoietic self-renewal and lineage specification-requires HDAC activity for gene activation. Deregulated PU.1 gene expression is linked to dysregulated hematopoiesis and the development of leukemia. In this study, we used erythroid differentiation as a model to analyze how the PU.1 gene is regulated. We found that active HDAC1 is directly recruited to active PU.1 promoter in progenitor cells, whereas acetylated HDAC1, which is inactive, is on the silenced PU.1 promoter in differentiated erythroid cells. We then studied the mechanism of HDAC1-mediated activation. We discovered that HDAC1 activates PU.1 gene transcription via deacetylation of TATA-binding protein-associated factor 9 (TAF9), a component in the transcription factor IID (TFIID) complex. Treatment with HDAC inhibitor results in an increase in TAF9 acetylation. Acetylated TAF9 does not bind to the PU.1 gene promoter and subsequently leads to the disassociation of the TFIID complex and transcription repression. Thus, these results demonstrate a key role for HDAC1 in PU.1 gene transcription and, more importantly, uncover a novel mechanism of TFIID recruitment and gene activation.-Jian, W., Yan, B., Huang, S., Qiu, Y. Histone deacetylase 1 activates PU.1 gene transcription through regulating TAF9 deacetylation and transcription factor IID assembly.
Collapse
Affiliation(s)
- Wei Jian
- Department of Anatomy and Cell Biology, College of Medicine, University of Florida, Gainesville, Florida, USA
| | - Bowen Yan
- Department of Anatomy and Cell Biology, College of Medicine, University of Florida, Gainesville, Florida, USA
| | - Suming Huang
- Department of Biochemistry and Molecular Biology, College of Medicine, University of Florida, Gainesville, Florida, USA; and.,Macau Institute for Applied Research in Medicine and Health, State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Taipa, Macau
| | - Yi Qiu
- Department of Anatomy and Cell Biology, College of Medicine, University of Florida, Gainesville, Florida, USA;
| |
Collapse
|
56
|
Kokavec J, Zikmund T, Savvulidi F, Kulvait V, Edelmann W, Skoultchi AI, Stopka T. The ISWI ATPase Smarca5 (Snf2h) Is Required for Proliferation and Differentiation of Hematopoietic Stem and Progenitor Cells. Stem Cells 2017; 35:1614-1623. [PMID: 28276606 DOI: 10.1002/stem.2604] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2016] [Revised: 12/14/2016] [Accepted: 01/09/2017] [Indexed: 12/17/2022]
Abstract
The imitation switch nuclear ATPase Smarca5 (Snf2h) is one of the most conserved chromatin remodeling factors. It exists in a variety of oligosubunit complexes that move DNA with respect to the histone octamer to generate regularly spaced nucleosomal arrays. Smarca5 interacts with different accessory proteins and represents a molecular motor for DNA replication, repair, and transcription. We deleted Smarca5 at the onset of definitive hematopoiesis (Vav1-iCre) and observed that animals die during late fetal development due to anemia. Hematopoietic stem and progenitor cells accumulated but their maturation toward erythroid and myeloid lineages was inhibited. Proerythroblasts were dysplastic while basophilic erythroblasts were blocked in G2/M and depleted. Smarca5 deficiency led to increased p53 levels, its activation at two residues, one associated with DNA damage (S15Ph °s ) second with CBP/p300 (K376Ac ), and finally activation of the p53 targets. We also deleted Smarca5 in committed erythroid cells (Epor-iCre) and observed that animals were anemic postnatally. Furthermore, 4-hydroxytamoxifen-mediated deletion of Smarca5 in the ex vivo cultures confirmed its requirement for erythroid cell proliferation. Thus, Smarca5 plays indispensable roles during early hematopoiesis and erythropoiesis. Stem Cells 2017;35:1614-1623.
Collapse
Affiliation(s)
- Juraj Kokavec
- BIOCEV, First Faculty of Medicine, Charles University, Czech Republic.,Department of Cell Biology, Albert Einstein College of Medicine, Bronx, New York, USA
| | - Tomas Zikmund
- BIOCEV, First Faculty of Medicine, Charles University, Czech Republic
| | - Filipp Savvulidi
- BIOCEV, First Faculty of Medicine, Charles University, Czech Republic
| | - Vojtech Kulvait
- BIOCEV, First Faculty of Medicine, Charles University, Czech Republic
| | - Winfried Edelmann
- Department of Cell Biology, Albert Einstein College of Medicine, Bronx, New York, USA
| | - Arthur I Skoultchi
- Department of Cell Biology, Albert Einstein College of Medicine, Bronx, New York, USA
| | - Tomas Stopka
- BIOCEV, First Faculty of Medicine, Charles University, Czech Republic
| |
Collapse
|
57
|
Lee WS, McColl B, Maksimovic J, Vadolas J. Epigenetic interplay at the β-globin locus. BIOCHIMICA ET BIOPHYSICA ACTA-GENE REGULATORY MECHANISMS 2017; 1860:393-404. [DOI: 10.1016/j.bbagrm.2017.01.014] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/02/2016] [Revised: 01/28/2017] [Accepted: 01/30/2017] [Indexed: 02/02/2023]
|
58
|
Anguita E, Candel FJ, Chaparro A, Roldán-Etcheverry JJ. Transcription Factor GFI1B in Health and Disease. Front Oncol 2017; 7:54. [PMID: 28401061 PMCID: PMC5368270 DOI: 10.3389/fonc.2017.00054] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2016] [Accepted: 03/13/2017] [Indexed: 12/13/2022] Open
Abstract
Many human diseases arise through dysregulation of genes that control key cell fate pathways. Transcription factors (TFs) are major cell fate regulators frequently involved in cancer, particularly in leukemia. The GFI1B gene, coding a TF, was identified by sequence homology with the oncogene growth factor independence 1 (GFI1). Both GFI1 and GFI1B have six C-terminal C2H2 zinc fingers and an N-terminal SNAG (SNAIL/GFI1) transcriptional repression domain. Gfi1 is essential for neutrophil differentiation in mice. In humans, GFI1 mutations are associated with severe congenital neutropenia. Gfi1 is also required for B and T lymphopoiesis. However, knockout mice have demonstrated that Gfi1b is required for development of both erythroid and megakaryocytic lineages. Consistent with this, human mutations of GFI1B produce bleeding disorders with low platelet count and abnormal function. Loss of Gfi1b in adult mice increases the absolute numbers of hematopoietic stem cells (HSCs) that are less quiescent than wild-type HSCs. In keeping with this key role in cell fate, GFI1B is emerging as a gene involved in cancer, which also includes solid tumors. In fact, abnormal activation of GFI1B and GFI1 has been related to human medulloblastoma and is also likely to be relevant in blood malignancies. Several pieces of evidence supporting this statement will be detailed in this mini review.
Collapse
Affiliation(s)
- Eduardo Anguita
- Hematology Department, Hospital Clínico San Carlos, Instituto de Investigación Sanitaria San Carlos (IdISSC), Madrid, Spain; Department of Medicine, Universidad Complutense de Madrid (UCM), Madrid, Spain
| | - Francisco J Candel
- Microbiology Department, Hospital Clínico San Carlos, Instituto de Investigación Sanitaria San Carlos (IdISSC) , Madrid , Spain
| | - Alberto Chaparro
- Hematology Department, Hospital Clínico San Carlos, Instituto de Investigación Sanitaria San Carlos (IdISSC), Madrid, Spain; Department of Medicine, Universidad Complutense de Madrid (UCM), Madrid, Spain
| | - Juan J Roldán-Etcheverry
- Hematology Department, Hospital Clínico San Carlos, Instituto de Investigación Sanitaria San Carlos (IdISSC), Madrid, Spain; Department of Medicine, Universidad Complutense de Madrid (UCM), Madrid, Spain
| |
Collapse
|
59
|
Ferreira CR, Chen D, Abraham SM, Adams DR, Simon KL, Malicdan MC, Markello TC, Gunay-Aygun M, Gahl WA. Combined alpha-delta platelet storage pool deficiency is associated with mutations in GFI1B. Mol Genet Metab 2017; 120:288-294. [PMID: 28041820 PMCID: PMC5346474 DOI: 10.1016/j.ymgme.2016.12.006] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/06/2016] [Revised: 12/09/2016] [Accepted: 12/09/2016] [Indexed: 01/25/2023]
Abstract
Combined alpha-delta platelet storage pool deficiency is characterized by the absence or reduction in the number of both alpha granules and dense bodies. This disorder can have variable severity as well as a variable inheritance pattern. We describe two patients from unrelated families with combined alpha-delta storage pool deficiency due to mutations in GFI1B, a zinc finger protein known to act as a transcriptional repressor of various genes. We demonstrate that this disease is associated with either a heterozygous mutation (de novo or familial) abrogating the binding of the zinc fingers with the promoter of its target genes, or by hypomorphic biallelic mutations in GFI1B leading to autosomal recessive inheritance.
Collapse
Affiliation(s)
- Carlos R Ferreira
- Medical Genetics Branch, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD, United States; Division of Genetics and Metabolism, Children's National Health System, Washington, DC, United States.
| | - Dong Chen
- Special Coagulation Laboratory, Division of Hematopathology, Department of Laboratory Medicine and Pathology, Mayo Clinic College of Medicine, Rochester, MN, United States
| | - Shirley M Abraham
- Division of Hematology and Oncology, Department of Pediatrics, University of New Mexico, Albuquerque, NM, United States
| | - David R Adams
- Medical Genetics Branch, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD, United States; NIH Undiagnosed Diseases Program, NIH Common Fund, National Institutes of Health, Bethesda, MD, United States; Office of the Clinical Director, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD, United States
| | - Karen L Simon
- Medical Genetics Branch, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD, United States
| | - May C Malicdan
- Medical Genetics Branch, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD, United States; NIH Undiagnosed Diseases Program, NIH Common Fund, National Institutes of Health, Bethesda, MD, United States
| | - Thomas C Markello
- NIH Undiagnosed Diseases Program, NIH Common Fund, National Institutes of Health, Bethesda, MD, United States
| | - Meral Gunay-Aygun
- Medical Genetics Branch, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD, United States; Johns Hopkins University School of Medicine, Department of Pediatrics, McKusick-Nathans Institute of Genetic Medicine, Baltimore, MD, United States
| | - William A Gahl
- Medical Genetics Branch, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD, United States; NIH Undiagnosed Diseases Program, NIH Common Fund, National Institutes of Health, Bethesda, MD, United States; Office of the Clinical Director, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD, United States
| |
Collapse
|
60
|
Kang Y, Kim YW, Kang J, Yun WJ, Kim A. Erythroid specific activator GATA-1-dependent interactions between CTCF sites around the β-globin locus. BIOCHIMICA ET BIOPHYSICA ACTA-GENE REGULATORY MECHANISMS 2017; 1860:416-426. [PMID: 28161276 DOI: 10.1016/j.bbagrm.2017.01.013] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/09/2016] [Revised: 01/22/2017] [Accepted: 01/30/2017] [Indexed: 11/24/2022]
Abstract
CTCF sites (binding motifs for CCCTC-binding factor, an insulator protein) are located considerable distances apart on genomes but are closely positioned in organized chromatin. The close positioning of CTCF sites is often cell type or tissue specific. Here we analyzed chromatin organization in eight CTCF sites around the β-globin locus by 3C assay and explored the roles of erythroid specific transcription activator GATA-1 and KLF1 in it. It was found five CTCF sites convergent to the locus interact with each other in erythroid K562 cells but not in non-erythroid 293 cells. The interaction was decreased by depletion of GATA-1 or KLF1. It accompanied reductions of CTCF and Rad21 occupancies and loss of active chromatin structure at the CTCF sites. Furthermore Rad21 occupancy was reduced in the β-globin locus control region (LCR) hypersensitive sites (HSs) by the depletion of GATA-1 or KLF1. The role of GATA-1 in interaction between CTCF sites was revealed by its ectopic expression in 293 cells and by deletion of a GATA-1 site in the LCR HS2. These findings indicate that erythroid specific activator GATA-1 acts at CTCF sites around the β-globin locus to establish tissue-specific chromatin organization.
Collapse
Affiliation(s)
- Yujin Kang
- Department of Molecular Biology, College of Natural Sciences, Pusan National University, Busan 46241, Republic of Korea
| | - Yea Woon Kim
- Department of Molecular Biology, College of Natural Sciences, Pusan National University, Busan 46241, Republic of Korea
| | - Jin Kang
- Department of Molecular Biology, College of Natural Sciences, Pusan National University, Busan 46241, Republic of Korea
| | - Won Ju Yun
- Department of Molecular Biology, College of Natural Sciences, Pusan National University, Busan 46241, Republic of Korea
| | - AeRi Kim
- Department of Molecular Biology, College of Natural Sciences, Pusan National University, Busan 46241, Republic of Korea.
| |
Collapse
|
61
|
Christophersen MK, Jöud M, Ajore R, Vege S, Ljungdahl KW, Westhoff CM, Olsson ML, Storry JR, Nilsson B. SMIM1 variants rs1175550 and rs143702418 independently modulate Vel blood group antigen expression. Sci Rep 2017; 7:40451. [PMID: 28084402 PMCID: PMC5233989 DOI: 10.1038/srep40451] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2016] [Accepted: 12/07/2016] [Indexed: 12/11/2022] Open
Abstract
The Vel blood group antigen is expressed on the red blood cells of most individuals. Recently, we described that homozygosity for inactivating mutations in SMIM1 defines the rare Vel-negative phenotype. Still, Vel-positive individuals show great variability in Vel antigen expression, creating a risk for Vel blood typing errors and transfusion reactions. We fine-mapped the regulatory region located in SMIM1 intron 2 in Swedish blood donors, and observed a strong correlation between expression and rs1175550 as well as with a previously unreported tri-nucleotide insertion (rs143702418; C > CGCA). While the two variants are tightly linked in Caucasians, we separated their effects in African Americans, and found that rs1175550G and to a lesser extent rs143702418C independently increase SMIM1 and Vel antigen expression. Gel shift and luciferase assays indicate that both variants are transcriptionally active, and we identified binding of the transcription factor TAL1 as a potential mediator of the increased expression associated with rs1175550G. Our results provide insight into the regulatory logic of Vel antigen expression, and extend the set of markers for genetic Vel blood group typing.
Collapse
Affiliation(s)
- Mikael K Christophersen
- Division of Hematology and Transfusion Medicine, Department of Laboratory Medicine, Lund University, Lund, Sweden
| | - Magnus Jöud
- Division of Hematology and Transfusion Medicine, Department of Laboratory Medicine, Lund University, Lund, Sweden.,Clinical Immunology and Transfusion Medicine, Laboratory Medicine, Office of Medical Services, Lund, Sweden
| | - Ram Ajore
- Division of Hematology and Transfusion Medicine, Department of Laboratory Medicine, Lund University, Lund, Sweden
| | - Sunitha Vege
- Laboratory of Immunohematology and Genomics, New York Blood Center, New York City, NY, USA
| | - Klara W Ljungdahl
- Division of Hematology and Transfusion Medicine, Department of Laboratory Medicine, Lund University, Lund, Sweden
| | - Connie M Westhoff
- Laboratory of Immunohematology and Genomics, New York Blood Center, New York City, NY, USA
| | - Martin L Olsson
- Division of Hematology and Transfusion Medicine, Department of Laboratory Medicine, Lund University, Lund, Sweden.,Clinical Immunology and Transfusion Medicine, Laboratory Medicine, Office of Medical Services, Lund, Sweden
| | - Jill R Storry
- Division of Hematology and Transfusion Medicine, Department of Laboratory Medicine, Lund University, Lund, Sweden.,Clinical Immunology and Transfusion Medicine, Laboratory Medicine, Office of Medical Services, Lund, Sweden
| | - Björn Nilsson
- Division of Hematology and Transfusion Medicine, Department of Laboratory Medicine, Lund University, Lund, Sweden
| |
Collapse
|
62
|
Scheenstra MR, De Cuyper IM, Branco-Madeira F, de Bleser P, Kool M, Meinders M, Hoogenboezem M, Mul E, Wolkers MC, Salerno F, Nota B, Saeys Y, Klarenbeek S, van IJcken WFJ, Hammad H, Philipsen S, van den Berg TK, Kuijpers TW, Lambrecht BN, Gutiérrez L. GATA1-Deficient Dendritic Cells Display Impaired CCL21-Dependent Migration toward Lymph Nodes Due to Reduced Levels of Polysialic Acid. THE JOURNAL OF IMMUNOLOGY 2016; 197:4312-4324. [DOI: 10.4049/jimmunol.1600103] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/21/2016] [Accepted: 09/29/2016] [Indexed: 02/05/2023]
|
63
|
Arlet JB, Guillem F, Lamarque M, Dussiot M, Maciel T, Moura I, Hermine O, Courtois G. Protein-based therapeutic for anemia caused by dyserythropoiesis. Expert Rev Proteomics 2016; 13:983-992. [PMID: 27661264 DOI: 10.1080/14789450.2016.1240622] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
INTRODUCTION Major advances have been recently made in understanding the molecular determinants of dyserythropoiesis, particularly due to recent works in β-thalassemia. The purpose of this review is devoted to underline the role of some proteins recently evidenced in the field, that may be new alternative therapeutic targets in the near future to alleviate different types of anemia. Areas covered: This review covers the contemporary aspects of some proteins involved in various types of dyserythropoiesis, including the transcriptional factor GATA-1 and its protective chaperone HSP70, but also cytokines of the transforming growth factor beta (TFG-β) family, TGF-β1 and GDF-11, and hormones as erythroferrone. It will be not exhaustive, but based on major recent published works from the literature in the past three years. Expert commentary: Sotatercept and lustatercept, two activin receptor II ligand traps that block GDF-11, are candidate drugs providing therapeutic hope in different types of ineffective erythropoiesis, including myelodysplastic syndromes (MDS) and β-thalassemia. Furthermore, a new concept emerges to consider erythroid lineage in the bone marrow as an endocrine gland.
Collapse
Affiliation(s)
- Jean-Benoît Arlet
- a Laboratoire INSERM UMR 1163 , CNRS ERL 8254 , Paris , France.,b Service de Médecine Interne, Faculté de Médecine Paris Descartes, Sorbonne Paris-Cité et Assistance Publique-Hôpitaux de Paris , Hôpital européen Georges Pompidou , Paris , France.,c Imagine Institute, Assistance Publique-Hôpitaux de Paris, Hôpital Necker , Université Paris Descartes, Sorbonne Paris Cité , Paris , France.,d Laboratory of Excellence GR-Ex , Paris , France
| | - Flavia Guillem
- a Laboratoire INSERM UMR 1163 , CNRS ERL 8254 , Paris , France.,c Imagine Institute, Assistance Publique-Hôpitaux de Paris, Hôpital Necker , Université Paris Descartes, Sorbonne Paris Cité , Paris , France.,d Laboratory of Excellence GR-Ex , Paris , France
| | - Mathilde Lamarque
- a Laboratoire INSERM UMR 1163 , CNRS ERL 8254 , Paris , France.,c Imagine Institute, Assistance Publique-Hôpitaux de Paris, Hôpital Necker , Université Paris Descartes, Sorbonne Paris Cité , Paris , France.,d Laboratory of Excellence GR-Ex , Paris , France.,e Service d'Hématologie, Faculté de Médecine Paris Descartes , Sorbonne Paris-Cité et Assistance Publique-Hôpitaux de Paris Hôpital Necker , Paris , France
| | - Michael Dussiot
- a Laboratoire INSERM UMR 1163 , CNRS ERL 8254 , Paris , France.,c Imagine Institute, Assistance Publique-Hôpitaux de Paris, Hôpital Necker , Université Paris Descartes, Sorbonne Paris Cité , Paris , France.,d Laboratory of Excellence GR-Ex , Paris , France
| | - Thiago Maciel
- a Laboratoire INSERM UMR 1163 , CNRS ERL 8254 , Paris , France.,c Imagine Institute, Assistance Publique-Hôpitaux de Paris, Hôpital Necker , Université Paris Descartes, Sorbonne Paris Cité , Paris , France.,d Laboratory of Excellence GR-Ex , Paris , France
| | - Ivan Moura
- a Laboratoire INSERM UMR 1163 , CNRS ERL 8254 , Paris , France.,c Imagine Institute, Assistance Publique-Hôpitaux de Paris, Hôpital Necker , Université Paris Descartes, Sorbonne Paris Cité , Paris , France.,d Laboratory of Excellence GR-Ex , Paris , France
| | - Olivier Hermine
- a Laboratoire INSERM UMR 1163 , CNRS ERL 8254 , Paris , France.,c Imagine Institute, Assistance Publique-Hôpitaux de Paris, Hôpital Necker , Université Paris Descartes, Sorbonne Paris Cité , Paris , France.,d Laboratory of Excellence GR-Ex , Paris , France.,e Service d'Hématologie, Faculté de Médecine Paris Descartes , Sorbonne Paris-Cité et Assistance Publique-Hôpitaux de Paris Hôpital Necker , Paris , France
| | - Geneviève Courtois
- a Laboratoire INSERM UMR 1163 , CNRS ERL 8254 , Paris , France.,c Imagine Institute, Assistance Publique-Hôpitaux de Paris, Hôpital Necker , Université Paris Descartes, Sorbonne Paris Cité , Paris , France.,d Laboratory of Excellence GR-Ex , Paris , France
| |
Collapse
|
64
|
Papageorgiou DN, Karkoulia E, Amaral-Psarris A, Burda P, Kolodziej K, Demmers J, Bungert J, Stopka T, Strouboulis J. Distinct and overlapping DNMT1 interactions with multiple transcription factors in erythroid cells: Evidence for co-repressor functions. BIOCHIMICA ET BIOPHYSICA ACTA-GENE REGULATORY MECHANISMS 2016; 1859:1515-1526. [PMID: 27693117 DOI: 10.1016/j.bbagrm.2016.09.007] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/06/2016] [Revised: 09/14/2016] [Accepted: 09/26/2016] [Indexed: 01/14/2023]
Abstract
DNMT1 is the maintenance DNA methyltransferase shown to be essential for embryonic development and cellular growth and differentiation in many somatic tissues in mammals. Increasing evidence has also suggested a role for DNMT1 in repressing gene expression through interactions with specific transcription factors. Previously, we identified DNMT1 as an interacting partner of the TR2/TR4 nuclear receptor heterodimer in erythroid cells, implicated in the developmental silencing of fetal β-type globin genes in the adult stage of human erythropoiesis. Here, we extended this work by using a biotinylation tagging approach to characterize DNMT1 protein complexes in mouse erythroleukemic cells. We identified novel DNMT1 interactions with several hematopoietic transcription factors with essential roles in erythroid differentiation, including GATA1, GFI-1b and FOG-1. We provide evidence for DNMT1 forming distinct protein subcomplexes with specific transcription factors and propose the existence of a "core" DNMT1 complex with the transcription factors ZBP-89 and ZNF143, which is also present in non-hematopoietic cells. Furthermore, we identified the short (17a.a.) PCNA Binding Domain (PBD) located near the N-terminus of DNMT1 as being necessary for mediating interactions with the transcription factors described herein. Lastly, we provide evidence for DNMT1 serving as a co-repressor of ZBP-89 and GATA1 acting through upstream regulatory elements of the PU.1 and GATA1 gene loci.
Collapse
Affiliation(s)
- Dimitris N Papageorgiou
- Division of Molecular Oncology, Biomedical Sciences Research Center "Alexander Fleming", Vari, Greece
| | - Elena Karkoulia
- Division of Molecular Oncology, Biomedical Sciences Research Center "Alexander Fleming", Vari, Greece
| | - Alexandra Amaral-Psarris
- Division of Molecular Oncology, Biomedical Sciences Research Center "Alexander Fleming", Vari, Greece
| | - Pavel Burda
- Institute of Hematology and Blood Transfusion, Prague, Czech Republic
| | - Katarzyna Kolodziej
- Department of Cell Biology, Erasmus Medical Center, Rotterdam, The Netherlands
| | - Jeroen Demmers
- Proteomics Center, Erasmus Medical Center, Rotterdam, The Netherlands
| | - Jörg Bungert
- Department of Biochemistry and Molecular Biology, University of Florida, Gainesville, FL, USA
| | - Tomas Stopka
- Biocev, 1st Medical Faculty, Charles University, Prague, Czech Republic
| | - John Strouboulis
- Division of Molecular Oncology, Biomedical Sciences Research Center "Alexander Fleming", Vari, Greece.
| |
Collapse
|
65
|
Zhang YC, Ye H, Zeng Z, Chin YE, Huang YN, Fu GH. The NF-κB p65/miR-23a-27a-24 cluster is a target for leukemia treatment. Oncotarget 2016; 6:33554-67. [PMID: 26378023 PMCID: PMC4741785 DOI: 10.18632/oncotarget.5591] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2015] [Accepted: 08/23/2015] [Indexed: 11/25/2022] Open
Abstract
p65 is a transcription factor that is involved in many physiological and pathologic processes. Here we report that p65 strongly binds to the miR-23a-27a-24 cluster promoter to up-regulate its expression. As bone marrow-derived cells differentiate into red blood cells in vitro, p65/miR-23a-27a-24 cluster expression increases sharply and then declines before the appearance of red blood cells, suggesting that this cluster is negatively related to erythroid terminal differentiation. Bioinformatic and molecular biology experiments confirmed that the miR-23a-27a-24 cluster inhibited the expression of the erythroid proteome and contributed to erythroleukemia progression. In addition, high level of the p65/miR-23a-27a-24 cluster was found in APL and AML cell lines and in nucleated peripheral blood cells from leukemia patients. Furthermore, anti-leukemia drugs significantly inhibited the expression of the p65/miR-23a-27a-24 cluster in leukemia cells. Administration of the p65 inhibitor parthenolide significantly improved hematology and myelogram indices while prolonging the life span of erythroleukemia mice. Meanwhile, stable overexpression of these three miRNAs in mouse erythroleukemia cells enhanced cell malignancy. Our findings thus connect a novel regulation pathway of the p65/miR-23a-27a-24 cluster with the erythroid proteome and provide an applicable approach for treating leukemia.
Collapse
Affiliation(s)
- Yong-Chang Zhang
- Pathology Center, Shanghai General Hospital/Faculty of Basic Medicine, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Hui Ye
- Pathology Center, Shanghai General Hospital/Faculty of Basic Medicine, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Zhi Zeng
- Pathology Center, Shanghai General Hospital/Faculty of Basic Medicine, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Y Eugene Chin
- Institute of Health Sciences, Shanghai Institutes for Biological Sciences (SIBS), Chinese Academy of Sciences (CAS) and Shanghai Jiao Tong University School of Medicine (SJTUSM), Shanghai, China
| | - Yu-Ning Huang
- Pathology Center, Shanghai General Hospital/Faculty of Basic Medicine, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Guo-Hui Fu
- Pathology Center, Shanghai General Hospital/Faculty of Basic Medicine, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| |
Collapse
|
66
|
Zhang Z, Costa FC, Tan EP, Bushue N, DiTacchio L, Costello CE, McComb ME, Whelan SA, Peterson KR, Slawson C. O-Linked N-Acetylglucosamine (O-GlcNAc) Transferase and O-GlcNAcase Interact with Mi2β Protein at the Aγ-Globin Promoter. J Biol Chem 2016; 291:15628-40. [PMID: 27231347 DOI: 10.1074/jbc.m116.721928] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2016] [Indexed: 12/23/2022] Open
Abstract
One mode of γ-globin gene silencing involves a GATA-1·FOG-1·Mi2β repressor complex that binds to the -566 GATA site relative to the (A)γ-globin gene cap site. However, the mechanism of how this repressor complex is assembled at the -566 GATA site is unknown. In this study, we demonstrate that the O-linked N-acetylglucosamine (O-GlcNAc) processing enzymes, O-GlcNAc-transferase (OGT) and O-GlcNAcase (OGA), interact with the (A)γ-globin promoter at the -566 GATA repressor site; however, mutation of the GATA site to GAGA significantly reduces OGT and OGA promoter interactions in β-globin locus yeast artificial chromosome (β-YAC) bone marrow cells. When WT β-YAC bone marrow cells are treated with the OGA inhibitor Thiamet-G, the occupancy of OGT, OGA, and Mi2β at the (A)γ-globin promoter is increased. In addition, OGT and Mi2β recruitment is increased at the (A)γ-globin promoter when γ-globin becomes repressed in postconception day E18 human β-YAC transgenic mouse fetal liver. Furthermore, we show that Mi2β is modified with O-GlcNAc, and both OGT and OGA interact with Mi2β, GATA-1, and FOG-1. Taken together, our data suggest that O-GlcNAcylation is a novel mechanism of γ-globin gene regulation mediated by modulating the assembly of the GATA-1·FOG-1·Mi2β repressor complex at the -566 GATA motif within the promoter.
Collapse
Affiliation(s)
- Zhen Zhang
- From the Department of Biochemistry and Molecular Biology
| | | | - Ee Phie Tan
- From the Department of Biochemistry and Molecular Biology
| | - Nathan Bushue
- From the Department of Biochemistry and Molecular Biology
| | | | - Catherine E Costello
- Department of Biochemistry and Center for Biomedical Mass Spectrometry, Boston University School of Medicine, Boston, Massachusetts 02118, and
| | - Mark E McComb
- Department of Biochemistry and Center for Biomedical Mass Spectrometry, Boston University School of Medicine, Boston, Massachusetts 02118, and
| | - Stephen A Whelan
- Department of Biochemistry and Center for Biomedical Mass Spectrometry, Boston University School of Medicine, Boston, Massachusetts 02118, and
| | - Kenneth R Peterson
- From the Department of Biochemistry and Molecular Biology, Anatomy and Cell Biology, and Cancer Center, Institute for Reproductive Health and Regenerative Medicine, and
| | - Chad Slawson
- From the Department of Biochemistry and Molecular Biology, Cancer Center, Institute for Reproductive Health and Regenerative Medicine, and Alzheimer's Disease Center, University of Kansas Medical Center, Kansas City, Kansas 66160,
| |
Collapse
|
67
|
Meinders M, Hoogenboezem M, Scheenstra MR, De Cuyper IM, Papadopoulos P, Németh T, Mócsai A, van den Berg TK, Kuijpers TW, Gutiérrez L. Repercussion of Megakaryocyte-Specific Gata1 Loss on Megakaryopoiesis and the Hematopoietic Precursor Compartment. PLoS One 2016; 11:e0154342. [PMID: 27152938 PMCID: PMC4859556 DOI: 10.1371/journal.pone.0154342] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2015] [Accepted: 04/11/2016] [Indexed: 12/22/2022] Open
Abstract
During hematopoiesis, transcriptional programs are essential for the commitment and differentiation of progenitors into the different blood lineages. GATA1 is a transcription factor expressed in several hematopoietic lineages and essential for proper erythropoiesis and megakaryopoiesis. Megakaryocyte-specific genes, such as GP1BA, are known to be directly regulated by GATA1. Mutations in GATA1 can lead to dyserythropoietic anemia and pseudo gray-platelet syndrome. Selective loss of Gata1 expression in adult mice results in macrothrombocytopenia with platelet dysfunction, characterized by an excess of immature megakaryocytes. To specifically analyze the impact of Gata1 loss in mature committed megakaryocytes, we generated Gata1-Lox|Pf4-Cre mice (Gata1cKOMK). Consistent with previous findings, Gata1cKOMK mice are macrothrombocytopenic with platelet dysfunction. Supporting this notion we demonstrate that Gata1 regulates directly the transcription of Syk, a tyrosine kinase that functions downstream of Clec2 and GPVI receptors in megakaryocytes and platelets. Furthermore, we show that Gata1cKOMK mice display an additional aberrant megakaryocyte differentiation stage. Interestingly, these mice present a misbalance of the multipotent progenitor compartment and the erythroid lineage, which translates into compensatory stress erythropoiesis and splenomegaly. Despite the severe thrombocytopenia, Gata1cKOMK mice display a mild reduction of TPO plasma levels, and Gata1cKOMK megakaryocytes show a mild increase in Pf4 mRNA levels; such a misbalance might be behind the general hematopoietic defects observed, affecting locally normal TPO and Pf4 levels at hematopoietic stem cell niches.
Collapse
Affiliation(s)
- Marjolein Meinders
- Dept. of Blood Cell Research, Sanquin Research and Landsteiner Laboratory, Academic Medical Centre (AMC), University of Amsterdam (UvA), Amsterdam, the Netherlands
| | - Mark Hoogenboezem
- Dept. of Molecular Cell Biology, Sanquin Research and Landsteiner Laboratory, AMC, UvA, Amsterdam, the Netherlands
| | - Maaike R. Scheenstra
- Dept. of Blood Cell Research, Sanquin Research and Landsteiner Laboratory, Academic Medical Centre (AMC), University of Amsterdam (UvA), Amsterdam, the Netherlands
| | - Iris M. De Cuyper
- Dept. of Blood Cell Research, Sanquin Research and Landsteiner Laboratory, Academic Medical Centre (AMC), University of Amsterdam (UvA), Amsterdam, the Netherlands
| | - Petros Papadopoulos
- Dept. of Hematology, Hospital Clínico San Carlos, Instituto de Investigación Sanitaria San Carlos (IdISSC), Madrid, Spain
| | - Tamás Németh
- Dept. of Physiology, Semmelweis University School of Medicine, Budapest, Hungary
- MTA-SE “Lendület” Inflammation Physiology Research Group of the Hungarian Academy of Sciences and Semmelweis University, Budapest, Hungary
| | - Attila Mócsai
- Dept. of Physiology, Semmelweis University School of Medicine, Budapest, Hungary
- MTA-SE “Lendület” Inflammation Physiology Research Group of the Hungarian Academy of Sciences and Semmelweis University, Budapest, Hungary
| | - Timo K. van den Berg
- Dept. of Blood Cell Research, Sanquin Research and Landsteiner Laboratory, Academic Medical Centre (AMC), University of Amsterdam (UvA), Amsterdam, the Netherlands
| | - Taco W. Kuijpers
- Dept. of Blood Cell Research, Sanquin Research and Landsteiner Laboratory, Academic Medical Centre (AMC), University of Amsterdam (UvA), Amsterdam, the Netherlands
- Emma Children’s Hospital, Academic Medical Centre (AMC), UvA, Amsterdam, the Netherlands
| | - Laura Gutiérrez
- Dept. of Blood Cell Research, Sanquin Research and Landsteiner Laboratory, Academic Medical Centre (AMC), University of Amsterdam (UvA), Amsterdam, the Netherlands
- Dept. of Hematology, Hospital Clínico San Carlos, Instituto de Investigación Sanitaria San Carlos (IdISSC), Madrid, Spain
- * E-mail:
| |
Collapse
|
68
|
Burda P, Vargova J, Curik N, Salek C, Papadopoulos GL, Strouboulis J, Stopka T. GATA-1 Inhibits PU.1 Gene via DNA and Histone H3K9 Methylation of Its Distal Enhancer in Erythroleukemia. PLoS One 2016; 11:e0152234. [PMID: 27010793 PMCID: PMC4807078 DOI: 10.1371/journal.pone.0152234] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2015] [Accepted: 03/10/2016] [Indexed: 01/17/2023] Open
Abstract
GATA-1 and PU.1 are two important hematopoietic transcription factors that mutually inhibit each other in progenitor cells to guide entrance into the erythroid or myeloid lineage, respectively. PU.1 controls its own expression during myelopoiesis by binding to the distal URE enhancer, whose deletion leads to acute myeloid leukemia (AML). We herein present evidence that GATA-1 binds to the PU.1 gene and inhibits its expression in human AML-erythroleukemias (EL). Furthermore, GATA-1 together with DNA methyl Transferase I (DNMT1) mediate repression of the PU.1 gene through the URE. Repression of the PU.1 gene involves both DNA methylation at the URE and its histone H3 lysine-K9 methylation and deacetylation as well as the H3K27 methylation at additional DNA elements and the promoter. The GATA-1-mediated inhibition of PU.1 gene transcription in human AML-EL mediated through the URE represents important mechanism that contributes to PU.1 downregulation and leukemogenesis that is sensitive to DNA demethylation therapy.
Collapse
MESH Headings
- Cell Differentiation/genetics
- DNA (Cytosine-5-)-Methyltransferase 1
- DNA (Cytosine-5-)-Methyltransferases/genetics
- DNA (Cytosine-5-)-Methyltransferases/metabolism
- DNA Methylation/genetics
- Enhancer Elements, Genetic
- GATA1 Transcription Factor/genetics
- GATA1 Transcription Factor/metabolism
- Gene Expression Regulation, Leukemic
- Histones/genetics
- Humans
- Leukemia, Erythroblastic, Acute/genetics
- Leukemia, Erythroblastic, Acute/pathology
- Leukemia, Myeloid, Acute/genetics
- Leukemia, Myeloid, Acute/pathology
- Promoter Regions, Genetic
- Protein Binding
- Proto-Oncogene Proteins/biosynthesis
- Proto-Oncogene Proteins/genetics
- Proto-Oncogene Proteins/metabolism
- Trans-Activators/biosynthesis
- Trans-Activators/genetics
- Trans-Activators/metabolism
- Transcription, Genetic
Collapse
Affiliation(s)
- Pavel Burda
- Biocev and Pathological Physiology, 1st Faculty of Medicine, Charles University in Prague, Czech Republic
- Institute of Hematology and Blood Transfusion, Prague, Czech Republic
| | - Jarmila Vargova
- Biocev and Pathological Physiology, 1st Faculty of Medicine, Charles University in Prague, Czech Republic
| | - Nikola Curik
- Biocev and Pathological Physiology, 1st Faculty of Medicine, Charles University in Prague, Czech Republic
- Institute of Hematology and Blood Transfusion, Prague, Czech Republic
| | - Cyril Salek
- Institute of Hematology and Blood Transfusion, Prague, Czech Republic
| | - Giorgio Lucio Papadopoulos
- Institute of Molecular Biology and Biotechnology, Foundation of Research and Technology-Hellas, Heraklion, Crete, Greece
- Department of Biology, University of Crete, Heraklion, Crete, Greece
| | - John Strouboulis
- Institute of Molecular Biology and Biotechnology, Foundation of Research and Technology-Hellas, Heraklion, Crete, Greece
| | - Tomas Stopka
- Biocev and Pathological Physiology, 1st Faculty of Medicine, Charles University in Prague, Czech Republic
- 1st Medical Department–Hematology, General Faculty Hospital, Prague, Czech Republic
- * E-mail:
| |
Collapse
|
69
|
Kohrs N, Kolodziej S, Kuvardina ON, Herglotz J, Yillah J, Herkt S, Piechatzek A, Salinas Riester G, Lingner T, Wichmann C, Bonig H, Seifried E, Platzbecker U, Medyouf H, Grez M, Lausen J. MiR144/451 Expression Is Repressed by RUNX1 During Megakaryopoiesis and Disturbed by RUNX1/ETO. PLoS Genet 2016; 12:e1005946. [PMID: 26990877 PMCID: PMC4798443 DOI: 10.1371/journal.pgen.1005946] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2015] [Accepted: 03/01/2016] [Indexed: 01/22/2023] Open
Abstract
A network of lineage-specific transcription factors and microRNAs tightly regulates differentiation of hematopoietic stem cells along the distinct lineages. Deregulation of this regulatory network contributes to impaired lineage fidelity and leukemogenesis. We found that the hematopoietic master regulator RUNX1 controls the expression of certain microRNAs, of importance during erythroid/megakaryocytic differentiation. In particular, we show that the erythorid miR144/451 cluster is epigenetically repressed by RUNX1 during megakaryopoiesis. Furthermore, the leukemogenic RUNX1/ETO fusion protein transcriptionally represses the miR144/451 pre-microRNA. Thus RUNX1/ETO contributes to increased expression of miR451 target genes and interferes with normal gene expression during differentiation. Furthermore, we observed that inhibition of RUNX1/ETO in Kasumi1 cells and in RUNX1/ETO positive primary acute myeloid leukemia patient samples leads to up-regulation of miR144/451. RUNX1 thus emerges as a key regulator of a microRNA network, driving differentiation at the megakaryocytic/erythroid branching point. The network is disturbed by the leukemogenic RUNX1/ETO fusion product.
Collapse
Affiliation(s)
- Nicole Kohrs
- Georg-Speyer-Haus, Institute for Tumorbiology and Experimental Therapy, Frankfurt, Germany
| | - Stephan Kolodziej
- Georg-Speyer-Haus, Institute for Tumorbiology and Experimental Therapy, Frankfurt, Germany
| | - Olga N. Kuvardina
- Georg-Speyer-Haus, Institute for Tumorbiology and Experimental Therapy, Frankfurt, Germany
| | - Julia Herglotz
- Heinrich-Pette-Institute, Leibniz Institute for Experimental Virology, Hamburg, Germany
| | - Jasmin Yillah
- Georg-Speyer-Haus, Institute for Tumorbiology and Experimental Therapy, Frankfurt, Germany
| | - Stefanie Herkt
- Georg-Speyer-Haus, Institute for Tumorbiology and Experimental Therapy, Frankfurt, Germany
| | - Alexander Piechatzek
- Georg-Speyer-Haus, Institute for Tumorbiology and Experimental Therapy, Frankfurt, Germany
| | | | - Thomas Lingner
- Medical-University Goettingen, Transcriptome Analysis Laboratory, Goettingen, Germany
| | - Christian Wichmann
- Department of Transfusion Medicine, Cell Therapeutics and Hemostaseology, Ludwig-Maximilian University Hospital, Munich, Germany
| | - Halvard Bonig
- Institute for Transfusion Medicine and Immunohematology, Johann-Wolfgang-Goethe University and German Red Cross Blood Service, Frankfurt am Main, Germany
| | - Erhard Seifried
- Institute for Transfusion Medicine and Immunohematology, Johann-Wolfgang-Goethe University and German Red Cross Blood Service, Frankfurt am Main, Germany
| | - Uwe Platzbecker
- Department of Hematology, Medical Clinic and Polyclinic I, University Hospital Carl Gustav Carus, Dresden, Germany
| | - Hind Medyouf
- Georg-Speyer-Haus, Institute for Tumorbiology and Experimental Therapy, Frankfurt, Germany
| | - Manuel Grez
- Georg-Speyer-Haus, Institute for Tumorbiology and Experimental Therapy, Frankfurt, Germany
| | - Jörn Lausen
- Georg-Speyer-Haus, Institute for Tumorbiology and Experimental Therapy, Frankfurt, Germany
- Institute for Transfusion Medicine and Immunohematology, Johann-Wolfgang-Goethe University and German Red Cross Blood Service, Frankfurt am Main, Germany
- * E-mail:
| |
Collapse
|
70
|
Miyagi H, Nag K, Sultana N, Munakata K, Hirose S, Nakamura N. Characterization of the zebrafish cx36.7 gene promoter: Its regulation of cardiac-specific expression and skeletal muscle-specific repression. Gene 2016; 577:265-74. [PMID: 26692140 DOI: 10.1016/j.gene.2015.12.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2015] [Revised: 10/28/2015] [Accepted: 12/03/2015] [Indexed: 11/25/2022]
Abstract
Zebrafish connexin 36.7 (cx36.7/ecx) has been identified as a key molecule in the early stages of heart development in this species. A defect in cx36.7 causes severe heart malformation due to the downregulation of nkx2.5 expression, a result which resembles congenital heart disease in humans. It has been shown that cx36.7 is expressed specifically in early developing heart cardiomyocytes. However, the regulatory mechanism for the cardiac-restricted expression of cx36.7 remains to be elucidated. In this study we isolated the 5'-flanking promoter region of the cx36.7 gene and characterized its promoter activity in zebrafish embryos. Deletion analysis showed that a 316-bp upstream region is essential for cardiac-restricted expression. This region contains four GATA elements, the proximal two of which are responsible for promoter activation in the embryonic heart and serve as binding sites for gata4. When gata4, gata5 and gata6 were simultaneously knocked down, the promoter activity was significantly decreased. Moreover, the deletion of the region between -316 and -133bp led to EGFP expression in the embryonic trunk muscle. The distal two GATA and A/T-rich elements in this region act as repressors of promoter activity in skeletal muscle. These results suggest that cx36.7 expression is directed by cardiac promoter activation via the two proximal GATA elements as well as by skeletal muscle-specific promoter repression via the two distal GATA elements.
Collapse
Affiliation(s)
- Hisako Miyagi
- Department of Biological Sciences, Tokyo Institute of Technology, 4259-B13 Nagatsuta-cho, Midori-ku, Yokohama 226-8501, Japan.
| | - Kakon Nag
- Department of Biological Sciences, Tokyo Institute of Technology, 4259-B13 Nagatsuta-cho, Midori-ku, Yokohama 226-8501, Japan.
| | - Naznin Sultana
- Department of Biological Sciences, Tokyo Institute of Technology, 4259-B13 Nagatsuta-cho, Midori-ku, Yokohama 226-8501, Japan.
| | - Keijiro Munakata
- Department of Biological Sciences, Tokyo Institute of Technology, 4259-B13 Nagatsuta-cho, Midori-ku, Yokohama 226-8501, Japan.
| | - Shigehisa Hirose
- Department of Biological Sciences, Tokyo Institute of Technology, 4259-B13 Nagatsuta-cho, Midori-ku, Yokohama 226-8501, Japan.
| | - Nobuhiro Nakamura
- Department of Biological Sciences, Tokyo Institute of Technology, 4259-B13 Nagatsuta-cho, Midori-ku, Yokohama 226-8501, Japan.
| |
Collapse
|
71
|
Lohmann F, Dangeti M, Soni S, Chen X, Planutis A, Baron MH, Choi K, Bieker JJ. The DEK Oncoprotein Is a Critical Component of the EKLF/KLF1 Enhancer in Erythroid Cells. Mol Cell Biol 2015; 35:3726-38. [PMID: 26303528 PMCID: PMC4589598 DOI: 10.1128/mcb.00382-15] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2015] [Revised: 05/06/2015] [Accepted: 08/17/2015] [Indexed: 02/07/2023] Open
Abstract
Understanding how transcriptional regulators are themselves controlled is important in attaining a complete picture of the intracellular effects that follow signaling cascades during early development and cell-restricted differentiation. We have addressed this issue by focusing on the regulation of EKLF/KLF1, a zinc finger transcription factor that plays a necessary role in the global regulation of erythroid gene expression. Using biochemical affinity purification, we have identified the DEK oncoprotein as a critical factor that interacts with an essential upstream enhancer element of the EKLF promoter and exerts a positive effect on EKLF levels. This element also binds a core set of erythroid transcription factors, suggesting that DEK is part of a tissue-restricted enhanceosome that contains BMP4-dependent and -independent components. Together with local enrichment of properly coded histones and an open chromatin domain, optimal transcriptional activation of the EKLF locus can be established.
Collapse
Affiliation(s)
- Felix Lohmann
- Department of Developmental and Regenerative Biology, Mount Sinai School of Medicine, New York, New York, USA
| | - Mohan Dangeti
- Department of Developmental and Regenerative Biology, Mount Sinai School of Medicine, New York, New York, USA
| | - Shefali Soni
- Department of Developmental and Regenerative Biology, Mount Sinai School of Medicine, New York, New York, USA
| | - Xiaoyong Chen
- Department of Developmental and Regenerative Biology, Mount Sinai School of Medicine, New York, New York, USA
| | - Antanas Planutis
- Department of Developmental and Regenerative Biology, Mount Sinai School of Medicine, New York, New York, USA
| | - Margaret H Baron
- Department of Developmental and Regenerative Biology, Mount Sinai School of Medicine, New York, New York, USA Black Family Stem Cell Institute, Mount Sinai School of Medicine, New York, New York, USA Tisch Cancer Institute, Mount Sinai School of Medicine, New York, New York, USA Department of Medicine, Mount Sinai School of Medicine, New York, New York, USA
| | - Kyunghee Choi
- Department of Pathology, Washington University School of Medicine, St. Louis, Missouri, USA
| | - James J Bieker
- Department of Developmental and Regenerative Biology, Mount Sinai School of Medicine, New York, New York, USA Black Family Stem Cell Institute, Mount Sinai School of Medicine, New York, New York, USA Tisch Cancer Institute, Mount Sinai School of Medicine, New York, New York, USA
| |
Collapse
|
72
|
Amanatiadou EP, Papadopoulos GL, Strouboulis J, Vizirianakis IS. GATA1 and PU.1 Bind to Ribosomal Protein Genes in Erythroid Cells: Implications for Ribosomopathies. PLoS One 2015; 10:e0140077. [PMID: 26447946 PMCID: PMC4598024 DOI: 10.1371/journal.pone.0140077] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2015] [Accepted: 09/21/2015] [Indexed: 12/15/2022] Open
Abstract
The clear connection between ribosome biogenesis dysfunction and specific hematopoiesis-related disorders prompted us to examine the role of critical lineage-specific transcription factors in the transcriptional regulation of ribosomal protein (RP) genes during terminal erythroid differentiation. By applying EMSA and ChIP methodologies in mouse erythroleukemia cells we show that GATA1 and PU.1 bind in vitro and in vivo the proximal promoter region of the RPS19 gene which is frequently mutated in Diamond-Blackfan Anemia. Moreover, ChIPseq data analysis also demonstrates that several RP genes are enriched as potential GATA1 and PU.1 gene targets in mouse and human erythroid cells, with GATA1 binding showing an association with higher ribosomal protein gene expression levels during terminal erythroid differentiation in human and mouse. Our results suggest that RP gene expression and hence balanced ribosome biosynthesis may be specifically and selectively regulated by lineage specific transcription factors during hematopoiesis, a finding which may be clinically relevant to ribosomopathies.
Collapse
Affiliation(s)
- Elsa P. Amanatiadou
- Laboratory of Pharmacology, Department of Pharmaceutical Sciences, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - Giorgio L. Papadopoulos
- Division of Molecular Oncology, Biomedical Sciences Research Center "Alexander Fleming", Vari, Greece
| | - John Strouboulis
- Division of Molecular Oncology, Biomedical Sciences Research Center "Alexander Fleming", Vari, Greece
- * E-mail: (JS); (ISV)
| | - Ioannis S. Vizirianakis
- Laboratory of Pharmacology, Department of Pharmaceutical Sciences, Aristotle University of Thessaloniki, Thessaloniki, Greece
- * E-mail: (JS); (ISV)
| |
Collapse
|
73
|
Nucleated red blood cells impact DNA methylation and expression analyses of cord blood hematopoietic cells. Clin Epigenetics 2015; 7:95. [PMID: 26366232 PMCID: PMC4567832 DOI: 10.1186/s13148-015-0129-6] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2015] [Accepted: 08/31/2015] [Indexed: 12/31/2022] Open
Abstract
BACKGROUND Genome-wide DNA methylation (DNAm) studies have proven extremely useful to understand human hematopoiesis. Due to their active DNA content, nucleated red blood cells (nRBCs) contribute to epigenetic and transcriptomic studies derived from whole cord blood. Genomic studies of cord blood hematopoietic cells isolated by fluorescence-activated cell sorting (FACS) may be significantly altered by heterotopic interactions with nRBCs during conventional cell sorting. RESULTS We report that cord blood T cells, and to a lesser extent monocytes and B cells, physically engage with nRBCs during FACS. These heterotopic interactions resulted in significant cross-contamination of genome-wide epigenetic and transcriptomic data. Formal exclusion of erythroid lineage-specific markers yielded DNAm profiles (measured by the Illumina 450K array) of cord blood CD4 and CD8 T lymphocytes, B lymphocytes, natural killer (NK) cells, granulocytes, monocytes, and nRBCs that were more consistent with expected hematopoietic lineage relationships. Additionally, we identified eight highly differentially methylated CpG sites in nRBCs (false detection rate <5 %, |Δβ| >0.50) that can be used to detect nRBC contamination of purified hematopoietic cells or to assess the impact of nRBCs on whole cord blood DNAm profiles. Several of these erythroid markers are located in or near genes involved in erythropoiesis (ZFPM1, HDAC4) or immune function (MAP3K14, IFIT1B), reinforcing a possible immune regulatory role for nRBCs in early life. CONCLUSIONS Heterotopic interactions between erythroid cells and white blood cells can result in contaminated cell populations if not properly excluded during cell sorting. Cord blood nRBCs have a distinct DNAm profile that can significantly skew epigenetic studies. Our findings have major implications for the design and interpretation of genome-wide epigenetic and transcriptomic studies using human cord blood.
Collapse
|
74
|
Dege C, Hagman J. Mi-2/NuRD chromatin remodeling complexes regulate B and T-lymphocyte development and function. Immunol Rev 2015; 261:126-40. [PMID: 25123281 DOI: 10.1111/imr.12209] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Mi-2/nucleosomal remodeling and deacetylase (NuRD) complexes are important epigenetic regulators of chromatin structure and gene expression. Mi-2/NuRD complexes are an assemblage of proteins that combine key epigenetic regulators necessary for (i) histone deacetylation and demethylation, (ii) binding to methylated DNA, (iii) mobilization of nucleosomes, and (iv) recruitment of additional regulatory proteins. Depending on their context in chromatin, Mi-2/NuRD complexes either activate or repress gene transcription. In this regard, they are important regulators of hematopoiesis and lymphopoiesis. Mi-2/NuRD complexes maintain pools of hematopoietic stem cells. Specifically, components of these complexes control multiple stages of B-cell development by regulating B-cell specific transcription. With one set of components, they inhibit terminal differentiation of germinal center B cells into plasma B cells. They also mediate gene repression together with Blimp-1 during plasma cell differentiation. In cooperation with Ikaros, Mi-2/NuRD complexes also play important roles in T-cell development, including CD4 versus CD8 fate decisions and peripheral T-cell responses. Dysregulation of NuRD during lymphopoiesis promotes leukemogenesis. Here, we review general properties of Mi-2/NuRD complexes and focus on their functions in gene regulation and development of lymphocytes.
Collapse
Affiliation(s)
- Carissa Dege
- Integrated Department of Immunology, National Jewish Health and School of Medicine, University of Colorado, Denver, Aurora, CO, USA
| | | |
Collapse
|
75
|
Histone methyltransferase Setd8 represses Gata2 expression and regulates erythroid maturation. Mol Cell Biol 2015; 35:2059-72. [PMID: 25848090 DOI: 10.1128/mcb.01413-14] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2014] [Accepted: 03/27/2015] [Indexed: 11/20/2022] Open
Abstract
Setd8 is the sole histone methyltransferase in mammals capable of monomethylating histone H4 lysine 20 (H4K20me1). Setd8 is expressed at significantly higher levels in erythroid cells than any other cell or tissue type, suggesting that Setd8 has an erythroid-cell-specific function. To test this hypothesis, stable Setd8 knockdown was established in extensively self-renewing erythroblasts (ESREs), a well-characterized, nontransformed model of erythroid maturation. Knockdown of Setd8 resulted in impaired erythroid maturation characterized by a delay in hemoglobin accumulation, larger mean cell area, persistent ckit expression, incomplete nuclear condensation, and lower rates of enucleation. Setd8 knockdown did not alter ESRE proliferation or viability or result in accumulation of DNA damage. Global gene expression analyses following Setd8 knockdown demonstrated that in erythroid cells, Setd8 functions primarily as a repressor. Most notably, Gata2 expression was significantly higher in knockdown cells than in control cells and Gata2 knockdown rescued some of the maturation impairments associated with Setd8 disruption. Setd8 occupies critical regulatory elements in the Gata2 locus, and knockdown of Setd8 resulted in loss of H4K20me1 and gain of H4 acetylation at the Gata2 1S promoter. These results suggest that Setd8 is an important regulator of erythroid maturation that works in part through repression of Gata2 expression.
Collapse
|
76
|
Zhou S, Li L, Yan Z, Li W, Shen Y. Characterization of Hydroxymethylation Patterns in the Promoter of β-globin Clusters in Murine Fetal Livers. DNA Cell Biol 2015. [PMID: 25723376 DOI: 10.1089/dna.2014.2773] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
DNA methylation of 5-methylcytosine (5mC) is a key epigenetic regulator in mammals; the dynamic balance between methylation and demethylation affects the transcriptional activity of β-globin. However, the dynamic cytosine methylation of β-globin in vivo during the different stages of embryogenesis and in developing liver has not been fully established. 5-Hydroxymethylcytosine (5hmC) is a newly discovered epigenetic modification that is presumably generated by oxidation of 5mC by the ten-eleven translocation (TET) family and it has not been fully identified in β-globin clusters. Here, we determined the 5hmC modifications in the promoter of murine β-globin from fetal livers during normal embryonic development with the methods of bisulfite (BS) and oxidative bisulfite (oxBS)-based pyrosequencing techniques, with the combination of methylated DNA immunoprecipitation (MeDIP) and chromatin immunoprecipitation-quantitative polymerase chain reaction (ChIP-qPCR). The results characterized the 5hmC modification at the CpG sites of -426, -388, and -151 of ɛ(y) promoters and -50 and -487 CpG of β(h1) from transcriptional start sites from E15.5 and E17.5 livers, while 5hmC modification was not observed in the adult β-globin promoters. These observations were validated by the induction of TET transcription after being treated with a potent demethylating agent 5-azacytidine, and TET-mediated hydroxymethylation of ɛ(y) and β(h1) from E13.5 livers was also confirmed in our study. These results suggested the 5hmC modification in promoters of ɛ(y) and β(h1) and indicated that the 5hmC modification is essential for the β-globin switching before the embryonic globin reactivation.
Collapse
Affiliation(s)
- Shasha Zhou
- 1 Department of Endocrinology, Shanghai Children's Hospital, Shanghai Jiao Tong University , Shanghai, People's Republic of China
| | | | | | | | | |
Collapse
|
77
|
Progenitor stage-specific activity of a cis-acting double GATA motif for Gata1 gene expression. Mol Cell Biol 2014; 35:805-15. [PMID: 25535330 DOI: 10.1128/mcb.01011-14] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
Abstract
GATA1 is a master regulator of erythropoiesis, expression of which is regulated by multiple discrete cis-acting elements. In this study, we examine the activity of a promoter-proximal double GATA (dbGATA) motif, using a Gata1 bacterial artificial chromosome (BAC)-transgenic green fluorescent protein (GFP) reporter (G1BAC-GFP) mouse system. Deletion of the dbGATA motif led to significant reductions in GFP expression in hematopoietic progenitors, while GFP expression was maintained in erythroblasts. Consistently, in mice with a germ line deletion of the dbGATA motif (Gata1(ΔdbGATA) mice), GATA1 expression in progenitors was significantly decreased. The suppressed GATA1 expression was associated with a compensatory increase in GATA2 levels in progenitors. When we crossed Gata1(ΔdbGATA) mice with Gata2 hypomorphic mutant mice (Gata2(fGN/fGN) mice), the Gata1(ΔdbGATA)::Gata2(fGN/fGN) compound mutant mice succumbed to a significant decrease in the progenitor population, whereas both groups of single mutant mice maintained progenitors and survived to adulthood, indicating the functional redundancy between GATA1 and GATA2 in progenitors. Meanwhile, the effects of the dbGATA site deletion on Gata1 expression were subtle in erythroblasts, which showed increased GATA1 binding and enhanced accumulation of active histone marks around the 1st-intron GATA motif of the ΔdbGATA locus. These results thus reveal a novel role of the dbGATA motif in the maintenance of Gata1 expression in hematopoietic progenitors and a functional compensation between the dbGATA site and the 1st-intron GATA motif in erythroblasts.
Collapse
|
78
|
Kang Y, Kim YW, Yun J, Shin J, Kim A. KLF1 stabilizes GATA-1 and TAL1 occupancy in the human β-globin locus. BIOCHIMICA ET BIOPHYSICA ACTA-GENE REGULATORY MECHANISMS 2014; 1849:282-9. [PMID: 25528728 DOI: 10.1016/j.bbagrm.2014.12.010] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/05/2014] [Revised: 12/09/2014] [Accepted: 12/10/2014] [Indexed: 02/05/2023]
Abstract
KLF1 is an erythroid specific transcription factor that binds to regulatory regions of erythroid genes. Binding sites of KLF1 are often found near binding sites of GATA-1 and TAL1. In the β-globin locus, KLF1 is required for forming active chromatin structure, although its role is unclear. To explore the role of KLF1 in transcribing the human γ-globin genes, we stably reduced the expression of KLF1 in erythroid K562 cells, compromising its association in the β-globin locus. The γ-globin transcription was reduced with disappearance of active chromatin structure of the locus in the KLF1 knockdown cells. Interestingly, GATA-1 and TAL1 binding was reduced in the β-globin locus, even though their expressions were not affected by KLF1 knockdown. The KLF1-dependent GATA-1 and TAL1 binding was observed in the adult locus transcribing the β-globin gene and in several erythroid genes, where GATA-1 occupancy is independent from TAL1. These results indicate that KLF1 plays a role in facilitating and/or stabilizing GATA-1 and TAL1 occupancy in the erythroid genes, contributing to the generation of active chromatin structure such as histone acetylation and chromatin looping.
Collapse
Affiliation(s)
- Yujin Kang
- Department of Molecular Biology, College of Natural Sciences, Pusan National University, Busan 609-735, Republic of Korea
| | - Yea Woon Kim
- Department of Molecular Biology, College of Natural Sciences, Pusan National University, Busan 609-735, Republic of Korea
| | - Jangmi Yun
- Department of Molecular Biology, College of Natural Sciences, Pusan National University, Busan 609-735, Republic of Korea
| | - Jongo Shin
- Department of Molecular Biology, College of Natural Sciences, Pusan National University, Busan 609-735, Republic of Korea
| | - AeRi Kim
- Department of Molecular Biology, College of Natural Sciences, Pusan National University, Busan 609-735, Republic of Korea.
| |
Collapse
|
79
|
Abstract
Although the functional significance of the metastasic tumor antigen (MTA) family of chromatin remodeling proteins in the pathobiology of cancer is fairly well recognized, the physiological role of MTA proteins continues to be an understudied research area and is just beginning to be recognized. Similar to cancer cells, MTA1 also modulates the expression of target genes in normal cells either by acting as a corepressor or coactivator. In addition, physiological functions of MTA proteins are likely to be influenced by its differential expression, subcellular localization, and regulation by upstream modulators and extracellular signals. This review summarizes our current understanding of the physiological functions of the MTA proteins in model systems. In particular, we highlight recent advances of the role MTA proteins play in the brain, eye, circadian rhythm, mammary gland biology, spermatogenesis, liver, immunomodulation and inflammation, cellular radio-sensitivity, and hematopoiesis and differentiation. Based on the growth of knowledge regarding the exciting new facets of the MTA family of proteins in biology and medicine, we speculate that the next burst of findings in this field may reveal further molecular regulatory insights of non-redundant functions of MTA coregulators in the normal physiology as well as in pathological conditions outside cancer.
Collapse
Affiliation(s)
- Nirmalya Sen
- Department of Biochemistry and Molecular Medicine, George Washington University, Washington, DC, 20037, USA
| | | | | |
Collapse
|
80
|
Tindemans I, Serafini N, Di Santo JP, Hendriks RW. GATA-3 function in innate and adaptive immunity. Immunity 2014; 41:191-206. [PMID: 25148023 DOI: 10.1016/j.immuni.2014.06.006] [Citation(s) in RCA: 187] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2014] [Accepted: 06/19/2014] [Indexed: 02/07/2023]
Abstract
The zinc-finger transcription factor GATA-3 has received much attention as a master regulator of T helper 2 (Th2) cell differentiation, during which it controls interleukin-4 (IL-4), IL-5, and IL-13 expression. More recently, GATA-3 was shown to contribute to type 2 immunity through regulation of group 2 innate lymphoid cell (ILC2) development and function. Furthermore, during thymopoiesis, GATA-3 represses B cell potential in early T cell precursors, activates TCR signaling in pre-T cells, and promotes the CD4(+) T cell lineage after positive selection. GATA-3 also functions outside the thymus in hematopoietic stem cells, regulatory T cells, CD8(+) T cells, thymic natural killer cells, and ILC precursors. Here we discuss the varied functions of GATA-3 in innate and adaptive immune cells, with emphasis on its activity in T cells and ILCs, and examine the mechanistic basis for the dose-dependent, developmental-stage- and cell-lineage-specific activity of this transcription factor.
Collapse
Affiliation(s)
- Irma Tindemans
- Department of Pulmonary Medicine, Erasmus MC, 3000 CA Rotterdam, the Netherlands
| | - Nicolas Serafini
- Innate Immunity Unit, Institut Pasteur, 75724 Paris, France; INSERM U668, 75724 Paris, France
| | - James P Di Santo
- Innate Immunity Unit, Institut Pasteur, 75724 Paris, France; INSERM U668, 75724 Paris, France
| | - Rudi W Hendriks
- Department of Pulmonary Medicine, Erasmus MC, 3000 CA Rotterdam, the Netherlands.
| |
Collapse
|
81
|
Wu W, Morrissey CS, Keller CA, Mishra T, Pimkin M, Blobel GA, Weiss MJ, Hardison RC. Dynamic shifts in occupancy by TAL1 are guided by GATA factors and drive large-scale reprogramming of gene expression during hematopoiesis. Genome Res 2014; 24:1945-62. [PMID: 25319994 PMCID: PMC4248312 DOI: 10.1101/gr.164830.113] [Citation(s) in RCA: 59] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
We used mouse ENCODE data along with complementary data from other laboratories to study the dynamics of occupancy and the role in gene regulation of the transcription factor TAL1, a critical regulator of hematopoiesis, at multiple stages of hematopoietic differentiation. We combined ChIP-seq and RNA-seq data in six mouse cell types representing a progression from multilineage precursors to differentiated erythroblasts and megakaryocytes. We found that sites of occupancy shift dramatically during commitment to the erythroid lineage, vary further during terminal maturation, and are strongly associated with changes in gene expression. In multilineage progenitors, the likely target genes are enriched for hematopoietic growth and functions associated with the mature cells of specific daughter lineages (such as megakaryocytes). In contrast, target genes in erythroblasts are specifically enriched for red cell functions. Furthermore, shifts in TAL1 occupancy during erythroid differentiation are associated with gene repression (dissociation) and induction (co-occupancy with GATA1). Based on both enrichment for transcription factor binding site motifs and co-occupancy determined by ChIP-seq, recruitment by GATA transcription factors appears to be a stronger determinant of TAL1 binding to chromatin than the canonical E-box binding site motif. Studies of additional proteins lead to the model that TAL1 regulates expression after being directed to a distinct subset of genomic binding sites in each cell type via its association with different complexes containing master regulators such as GATA2, ERG, and RUNX1 in multilineage cells and the lineage-specific master regulator GATA1 in erythroblasts.
Collapse
Affiliation(s)
- Weisheng Wu
- Center for Comparative Genomics and Bioinformatics, Department of Biochemistry and Molecular Biology, The Pennsylvania State University, University Park, Pennsylvania 16802, USA
| | - Christapher S Morrissey
- Center for Comparative Genomics and Bioinformatics, Department of Biochemistry and Molecular Biology, The Pennsylvania State University, University Park, Pennsylvania 16802, USA
| | - Cheryl A Keller
- Center for Comparative Genomics and Bioinformatics, Department of Biochemistry and Molecular Biology, The Pennsylvania State University, University Park, Pennsylvania 16802, USA
| | - Tejaswini Mishra
- Center for Comparative Genomics and Bioinformatics, Department of Biochemistry and Molecular Biology, The Pennsylvania State University, University Park, Pennsylvania 16802, USA
| | - Maxim Pimkin
- Division of Hematology, The Children's Hospital of Philadelphia, Philadelphia, Pennsylvania 19104, USA
| | - Gerd A Blobel
- Division of Hematology, The Children's Hospital of Philadelphia, Philadelphia, Pennsylvania 19104, USA; Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA
| | - Mitchell J Weiss
- Division of Hematology, The Children's Hospital of Philadelphia, Philadelphia, Pennsylvania 19104, USA; Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA
| | - Ross C Hardison
- Center for Comparative Genomics and Bioinformatics, Department of Biochemistry and Molecular Biology, The Pennsylvania State University, University Park, Pennsylvania 16802, USA
| |
Collapse
|
82
|
Qi WL, Cao LL, Hu JJ, Xue JY, Sang TT, Zheng YJ, Chen T, Wang J, Zhao FK, Zhang SF. Involvement of RbAp48 in erythroid differentiation of murine erythroleukemia cells induced by sodium butyrate. Oncol Lett 2014; 7:1785-1789. [PMID: 24932233 PMCID: PMC4049757 DOI: 10.3892/ol.2014.2015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2013] [Accepted: 02/18/2014] [Indexed: 11/22/2022] Open
Abstract
Normal mammalian terminal erythroid differentiation is a precisely regulated process during which the progenitor cells execute particular programs to form a mature erythrocytic phenotype. In the present study, it was found that RbAp48, a histone-binding protein associated with retinoblastoma protein, was upregulated during terminal erythroid maturation in vivo and in vitro. This indicated that RbAp48, at least in part, participated in the regulation of murine erythropoiesis. Following sodium butyrate (SB) induction, murine erythroleukemia (MEL) cells began to re-enter erythroid differentiation and the ratio of differentiated cells reached ~80% at 72 h. The erythroid maturation-related mRNA expression of α-globin, β-globin and glycophorin A (GPA) was increased markedly, which indicated that SB induced MEL differentiation. During MEL differentiation, the RbAp48 level showed a 1.5-fold increase at 72 h, and the globin transcription factor (GATA)-1 level was also upregulated in the early stage of differentiation. By contrast, the c-Myc level was gradually downregulated in MEL differentiation. Using an immunofluorescence assay, the results of the study directly showed that the average fluorescence intensity of RbAp48 in each cell reached an almost 1.7-fold increase at 72 and 96 h. This was consistent with the western blot results of RbAp48 during MEL differentiation. In addition, reduced expression of RbAp48 by RNA inference decreased SB-induced MEL differentiation by ~20%, indicating that a high level of RbAp48 was essential for MEL differentiation. Taken together, these results established a functional link between RbAp48 and erythroid differentiation.
Collapse
Affiliation(s)
- Wu-Lin Qi
- College of Life Sciences, Zhejiang Sci-Tech University, Hangzhou, Zhejiang 310018, P.R. China
| | - Ling-Ling Cao
- College of Life Sciences, Zhejiang Sci-Tech University, Hangzhou, Zhejiang 310018, P.R. China
| | - Jiang-Jiang Hu
- College of Life Sciences, Zhejiang Sci-Tech University, Hangzhou, Zhejiang 310018, P.R. China
| | - Jian-You Xue
- College of Life Sciences, Zhejiang Sci-Tech University, Hangzhou, Zhejiang 310018, P.R. China
| | - Ting-Ting Sang
- College of Life Sciences, Zhejiang Sci-Tech University, Hangzhou, Zhejiang 310018, P.R. China
| | - Ya-Juan Zheng
- College of Life Sciences, Zhejiang Sci-Tech University, Hangzhou, Zhejiang 310018, P.R. China
| | - Tao Chen
- College of Life Sciences, Zhejiang Sci-Tech University, Hangzhou, Zhejiang 310018, P.R. China
| | - Jie Wang
- College of Life Sciences, Zhejiang Sci-Tech University, Hangzhou, Zhejiang 310018, P.R. China
| | - Fu-Kun Zhao
- College of Life Sciences, Zhejiang Sci-Tech University, Hangzhou, Zhejiang 310018, P.R. China
| | - Shi-Fu Zhang
- College of Life Sciences, Zhejiang Sci-Tech University, Hangzhou, Zhejiang 310018, P.R. China
| |
Collapse
|
83
|
Fan AX, Papadopoulos GL, Hossain MA, Lin IJ, Hu J, Tang TM, Kilberg MS, Renne R, Strouboulis J, Bungert J. Genomic and proteomic analysis of transcription factor TFII-I reveals insight into the response to cellular stress. Nucleic Acids Res 2014; 42:7625-41. [PMID: 24875474 PMCID: PMC4081084 DOI: 10.1093/nar/gku467] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
The ubiquitously expressed transcription factor TFII-I exerts both positive and negative effects on transcription. Using biotinylation tagging technology and high-throughput sequencing, we determined sites of chromatin interactions for TFII-I in the human erythroleukemia cell line K562. This analysis revealed that TFII-I binds upstream of the transcription start site of expressed genes, both upstream and downstream of the transcription start site of repressed genes, and downstream of RNA polymerase II peaks at the ATF3 and other stress responsive genes. At the ATF3 gene, TFII-I binds immediately downstream of a Pol II peak located 5 kb upstream of exon 1. Induction of ATF3 expression increases transcription throughout the ATF3 gene locus which requires TFII-I and correlates with increased association of Pol II and Elongin A. Pull-down assays demonstrated that TFII-I interacts with Elongin A. Partial depletion of TFII-I expression caused a reduction in the association of Elongin A with and transcription of the DNMT1 and EFR3A genes without a decrease in Pol II recruitment. The data reveal different interaction patterns of TFII-I at active, repressed, or inducible genes, identify novel TFII-I interacting proteins, implicate TFII-I in the regulation of transcription elongation and provide insight into the role of TFII-I during the response to cellular stress.
Collapse
Affiliation(s)
- Alex Xiucheng Fan
- Department of Biochemistry and Molecular Biology, Center for Epigenetics, Genetics Institute, Powell Gene Therapy Center, Gainesville, Florida, USA
| | - Giorgio L Papadopoulos
- Departmentof Biology, University of Crete, GR1409 Heraklion, Greece Divisionof Molecular Oncology, Biomedical Sciences Research Center "Alexander Fleming", Vari GR 16672, Greece
| | - Mir A Hossain
- Department of Biochemistry and Molecular Biology, Center for Epigenetics, Genetics Institute, Powell Gene Therapy Center, Gainesville, Florida, USA
| | - I-Ju Lin
- Department of Biochemistry and Molecular Biology, Center for Epigenetics, Genetics Institute, Powell Gene Therapy Center, Gainesville, Florida, USA
| | - Jianhong Hu
- Departmentof Molecular Genetics and Microbiology, College of Medicine, University of Florida, Gainesville, Florida, 32610, USA
| | - Tommy Ming Tang
- Department of Biochemistry and Molecular Biology, Center for Epigenetics, Genetics Institute, Powell Gene Therapy Center, Gainesville, Florida, USA
| | - Michael S Kilberg
- Department of Biochemistry and Molecular Biology, Center for Epigenetics, Genetics Institute, Powell Gene Therapy Center, Gainesville, Florida, USA
| | - Rolf Renne
- Divisionof Molecular Oncology, Biomedical Sciences Research Center "Alexander Fleming", Vari GR 16672, Greece
| | - John Strouboulis
- Department of Biochemistry and Molecular Biology, Center for Epigenetics, Genetics Institute, Powell Gene Therapy Center, Gainesville, Florida, USA Departmentof Biology, University of Crete, GR1409 Heraklion, Greece Divisionof Molecular Oncology, Biomedical Sciences Research Center "Alexander Fleming", Vari GR 16672, Greece Departmentof Molecular Genetics and Microbiology, College of Medicine, University of Florida, Gainesville, Florida, 32610, USA
| | - Jörg Bungert
- Department of Biochemistry and Molecular Biology, Center for Epigenetics, Genetics Institute, Powell Gene Therapy Center, Gainesville, Florida, USA
| |
Collapse
|
84
|
Krivega I, Dale RK, Dean A. Role of LDB1 in the transition from chromatin looping to transcription activation. Genes Dev 2014; 28:1278-90. [PMID: 24874989 PMCID: PMC4066399 DOI: 10.1101/gad.239749.114] [Citation(s) in RCA: 86] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
Many questions remain about the relationship between chromatin loop formation and transcription. In erythroid cells, LDB1 is required for looping of the β-globin locus control region (LCR) to the active β-globin promoter. Dean and colleagues show that the LDB1 dimerization domain (DD) is necessary to restore LCR-promoter looping and transcription in LDB1-depleted cells. Deletion analysis reveals a conserved region of the LDB1 DD dispensable for dimerization and chromatin looping but necessary for transcription activation. The results thus uncouple enhancer–promoter looping from transcription at the β-globin locus. Many questions remain about how close association of genes and distant enhancers occurs and how this is linked to transcription activation. In erythroid cells, lim domain binding 1 (LDB1) protein is recruited to the β-globin locus via LMO2 and is required for looping of the β-globin locus control region (LCR) to the active β-globin promoter. We show that the LDB1 dimerization domain (DD) is necessary and, when fused to LMO2, sufficient to completely restore LCR–promoter looping and transcription in LDB1-depleted cells. The looping function of the DD is unique and irreplaceable by heterologous DDs. Dissection of the DD revealed distinct functional properties of conserved subdomains. Notably, a conserved helical region (DD4/5) is dispensable for LDB1 dimerization and chromatin looping but essential for transcriptional activation. DD4/5 is required for the recruitment of the coregulators FOG1 and the nucleosome remodeling and deacetylating (NuRD) complex. Lack of DD4/5 alters histone acetylation and RNA polymerase II recruitment and results in failure of the locus to migrate to the nuclear interior, as normally occurs during erythroid maturation. These results uncouple enhancer–promoter looping from nuclear migration and transcription activation and reveal new roles for LDB1 in these processes.
Collapse
Affiliation(s)
- Ivan Krivega
- Laboratory of Cellular and Developmental Biology, National Institutes of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, Maryland 20892, USA
| | - Ryan K Dale
- Laboratory of Cellular and Developmental Biology, National Institutes of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, Maryland 20892, USA
| | - Ann Dean
- Laboratory of Cellular and Developmental Biology, National Institutes of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, Maryland 20892, USA
| |
Collapse
|
85
|
Aronson BE, Rabello Aronson S, Berkhout RP, Chavoushi SF, He A, Pu WT, Verzi MP, Krasinski SD. GATA4 represses an ileal program of gene expression in the proximal small intestine by inhibiting the acetylation of histone H3, lysine 27. BIOCHIMICA ET BIOPHYSICA ACTA-GENE REGULATORY MECHANISMS 2014; 1839:1273-82. [PMID: 24878542 DOI: 10.1016/j.bbagrm.2014.05.018] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/17/2014] [Revised: 04/29/2014] [Accepted: 05/19/2014] [Indexed: 11/17/2022]
Abstract
GATA4 is expressed in the proximal 85% of small intestine where it promotes a proximal intestinal ('jejunal') identity while repressing a distal intestinal ('ileal') identity, but its molecular mechanisms are unclear. Here, we tested the hypothesis that GATA4 promotes a jejunal versus ileal identity in mouse intestine by directly activating and repressing specific subsets of absorptive enterocyte genes by modulating the acetylation of histone H3, lysine 27 (H3K27), a mark of active chromatin, at sites of GATA4 occupancy. Global analysis of mouse jejunal epithelium showed a statistically significant association of GATA4 occupancy with GATA4-regulated genes. Occupancy was equally distributed between down- and up-regulated targets, and occupancy sites showed a dichotomy of unique motif over-representation at down- versus up-regulated genes. H3K27ac enrichment at GATA4-binding loci that mapped to down-regulated genes (activation targets) was elevated, changed little upon conditional Gata4 deletion, and was similar to control ileum, whereas H3K27ac enrichment at GATA4-binding loci that mapped to up-regulated genes (repression targets) was depleted, increased upon conditional Gata4 deletion, and approached H3K27ac enrichment in wild-type control ileum. These data support the hypothesis that GATA4 both activates and represses intestinal genes, and show that GATA4 represses an ileal program of gene expression in the proximal small intestine by inhibiting the acetylation of H3K27.
Collapse
Affiliation(s)
- B E Aronson
- Children's Hospital Boston, and Harvard Medical School, Boston, MA, USA; Academic Medical Center Amsterdam, Emma Children's Hospital, Amsterdam, the Netherlands
| | - S Rabello Aronson
- Center for Complex Network Research (CCNR), Northeastern University, Boston, MA, USA
| | - R P Berkhout
- Erasmus Medical Center, Rotterdam, the Netherlands
| | - S F Chavoushi
- Utrecht University and University Medical Center Utrecht, Utrecht, the Netherlands; Department of Pharmacy, Meander Medical Center, Amersfoort, the Netherlands
| | - A He
- Children's Hospital Boston, and Harvard Medical School, Boston, MA, USA
| | - W T Pu
- Children's Hospital Boston, and Harvard Medical School, Boston, MA, USA
| | - M P Verzi
- Division of the Life Sciences, Department of Genetics, Rutgers University, Piscataway, NJ, USA
| | - S D Krasinski
- Children's Hospital Boston, and Harvard Medical School, Boston, MA, USA; Friedman School of Nutrition Science and Policy, Tufts University, Boston, MA, USA.
| |
Collapse
|
86
|
Wolff L, Humeniuk R. Concise review: erythroid versus myeloid lineage commitment: regulating the master regulators. Stem Cells 2014; 31:1237-44. [PMID: 23559316 DOI: 10.1002/stem.1379] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2012] [Accepted: 02/18/2013] [Indexed: 12/26/2022]
Abstract
Developmental processes, like blood formation, are orchestrated by transcriptional networks. Those transcriptional networks are highly responsive to various environmental stimuli and affect common precursors resulting in increased production of cells of the erythroid lineage or myeloid lineage (granulocytes, neutrophils, and macrophages). A significant body of knowledge has accumulated describing transcription factors that drive differentiation of these two major cellular pathways, in particular the antagonistic master regulators such as GATA-1 and PU.1. However, little is known about factors that work upstream of master regulators to enhance differentiation toward one lineage. These functions become especially important under various stress conditions like sudden loss of red blood cells or pathogen infection. This review describes recent studies that begin to provide evidence for such factors. An increased understanding of factors regulating cellular commitment will advance our understanding of the etiology of diseases like anemia, cancer, and possibly other blood related disorders.
Collapse
Affiliation(s)
- Linda Wolff
- Center for Cancer Research, National Cancer Institute, Bethesda, MD, USA.
| | | |
Collapse
|
87
|
Vassen L, Beauchemin H, Lemsaddek W, Krongold J, Trudel M, Möröy T. Growth factor independence 1b (gfi1b) is important for the maturation of erythroid cells and the regulation of embryonic globin expression. PLoS One 2014; 9:e96636. [PMID: 24800817 PMCID: PMC4011847 DOI: 10.1371/journal.pone.0096636] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2014] [Accepted: 04/09/2014] [Indexed: 12/15/2022] Open
Abstract
Growth factor independence 1b (GFI1B) is a DNA binding repressor of transcription with vital functions in hematopoiesis. Gfi1b-null embryos die at midgestation very likely due to defects in erythro- and megakaryopoiesis. To analyze the full functionality of Gfi1b, we used conditionally deficient mice that harbor floxed Gfi1b alleles and inducible (Mx-Cre, Cre-ERT) or erythroid specific (EpoR-Cre) Cre expressing transgenes. In contrast to the germline knockout, EpoR-Cre mediated erythroid specific ablation of Gfi1b allows full gestation, but causes perinatal lethality with very few mice surviving to adulthood. Both the embryonic deletion of Gfi1b by EpoR-Cre and the deletion in adult mice by Mx-Cre or Cre-ERT leads to reduced numbers of erythroid precursors, perturbed and delayed erythroid maturation, anemia and extramedullary erythropoiesis. Global expression analyses showed that the Hba-x, Hbb-bh1 and Hbb-y embryonic globin genes were upregulated in Gfi1b deficient TER119+ fetal liver cells over the gestation period from day 12.5–17.5 p.c. and an increased level of Hbb-bh1 and Hbb-y embryonic globin gene expression was even maintained in adult Gfi1b deficient mice. While the expression of Bcl11a, a regulator of embryonic globin expression was not affected by Gfi1b deficiency, the expression of Gata1 was reduced and the expression of Sox6, also involved in globin switch, was almost entirely lost when Gfi1b was absent. These findings establish Gfi1b as a regulator of embryonic globin expression and embryonic and adult erythroid maturation.
Collapse
Affiliation(s)
- Lothar Vassen
- Institut de Recherches Cliniques de Montréal, IRCM, Montréal, Québec, Canada
| | - Hugues Beauchemin
- Institut de Recherches Cliniques de Montréal, IRCM, Montréal, Québec, Canada
| | - Wafaa Lemsaddek
- Institut de Recherches Cliniques de Montréal, IRCM, Montréal, Québec, Canada
| | - Joseph Krongold
- Institut de Recherches Cliniques de Montréal, IRCM, Montréal, Québec, Canada
- Division of Experimental Medicine, McGill University, Montréal, Québec, Canada
| | - Marie Trudel
- Institut de Recherches Cliniques de Montréal, IRCM, Montréal, Québec, Canada
| | - Tarik Möröy
- Institut de Recherches Cliniques de Montréal, IRCM, Montréal, Québec, Canada
- Département de Microbiologie, Infectiologie et Immunologie, Université de Montréal, Montréal, Québec, Canada
- Division of Experimental Medicine, McGill University, Montréal, Québec, Canada
- * E-mail:
| |
Collapse
|
88
|
Foudi A, Kramer DJ, Qin J, Ye D, Behlich AS, Mordecai S, Preffer FI, Amzallag A, Ramaswamy S, Hochedlinger K, Orkin SH, Hock H. Distinct, strict requirements for Gfi-1b in adult bone marrow red cell and platelet generation. ACTA ACUST UNITED AC 2014; 211:909-27. [PMID: 24711581 PMCID: PMC4010908 DOI: 10.1084/jem.20131065] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Strict, lineage-intrinsic requirement for continuous adult Gfi-1b expression at two distinct critical stages of erythropoiesis and megakaryopoiesis. The zinc finger transcriptional repressor Gfi-1b is essential for erythroid and megakaryocytic development in the embryo. Its roles in the maintenance of bone marrow erythropoiesis and thrombopoiesis have not been defined. We investigated Gfi-1b’s adult functions using a loxP-flanked Gfi-1b allele in combination with a novel doxycycline-inducible Cre transgene that efficiently mediates recombination in the bone marrow. We reveal strict, lineage-intrinsic requirements for continuous adult Gfi-1b expression at two distinct critical stages of erythropoiesis and megakaryopoiesis. Induced disruption of Gfi-1b was lethal within 3 wk with severely reduced hemoglobin levels and platelet counts. The erythroid lineage was arrested early in bipotential progenitors, which did not give rise to mature erythroid cells in vitro or in vivo. Yet Gfi-1b−/− progenitors had initiated the erythroid program as they expressed many lineage-restricted genes, including Klf1/Eklf and Erythropoietin receptor. In contrast, the megakaryocytic lineage developed beyond the progenitor stage in Gfi-1b’s absence and was arrested at the promegakaryocyte stage, after nuclear polyploidization, but before cytoplasmic maturation. Genome-wide analyses revealed that Gfi-1b directly regulates a wide spectrum of megakaryocytic and erythroid genes, predominantly repressing their expression. Together our study establishes Gfi-1b as a master transcriptional repressor of adult erythropoiesis and thrombopoiesis.
Collapse
Affiliation(s)
- Adlen Foudi
- Cancer Center, 2 Center for Regenerative Medicine, and 3 Department of Pathology, Massachusetts General Hospital, 4 Harvard Medical School, Boston, MA 02114
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
89
|
Abstract
Most heritable anemias are caused by mutations in genes encoding globins, red blood cell (RBC) membrane proteins, or enzymes in the glycolytic and hexose monophosphate shunt pathways. A less common class of genetic anemia is caused by mutations that alter the functions of erythroid transcription factors (TFs). Many TF mutations associated with heritable anemia cause truncations or amino acid substitutions, resulting in the production of functionally altered proteins. Characterization of these mutant proteins has provided insights into mechanisms of gene expression, hematopoietic development, and human disease. Mutations within promoter or enhancer regions that disrupt TF binding to essential erythroid genes also cause anemia and heritable variations in RBC traits, such as fetal hemoglobin content. Defining the latter may have important clinical implications for de-repressing fetal hemoglobin synthesis to treat sickle cell anemia and β thalassemia. Functionally important alterations in genes encoding TFs or their cognate cis elements are likely to occur more frequently than currently appreciated, a hypothesis that will soon be tested through ongoing genome-wide association studies and the rapidly expanding use of global genome sequencing for human diagnostics. Findings obtained through such studies of RBCs and associated diseases are likely generalizable to many human diseases and quantitative traits.
Collapse
|
90
|
Fujiwara T, Saitoh H, Inoue A, Kobayashi M, Okitsu Y, Katsuoka Y, Fukuhara N, Onishi Y, Ishizawa K, Ichinohasama R, Harigae H. 3-Deazaneplanocin A (DZNep), an inhibitor of S-adenosylmethionine-dependent methyltransferase, promotes erythroid differentiation. J Biol Chem 2014; 289:8121-34. [PMID: 24492606 PMCID: PMC3961643 DOI: 10.1074/jbc.m114.548651] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Abstract
EZH2, a core component of polycomb repressive complex 2 (PRC2), plays a role in transcriptional repression through histone H3 Lys-27 trimethylation and is involved in various biological processes, including hematopoiesis. It is well known that 3-deazaneplanocin A (DZNep), an inhibitor of S-adenosylmethionine-dependent methyltransferase that targets the degradation of EZH2, preferentially induces apoptosis in various hematological malignancies, suggesting that EZH2 may be a new target for epigenetic treatment. Because PRC2 participates in epigenetic silencing of a subset of GATA-1 target genes during erythroid differentiation, inhibition of EZH2 may influence erythropoiesis. To explore this possibility, we evaluated the impact of DZNep on erythropoiesis. DZNep treatment significantly induced erythroid differentiation of K562 cells, as assessed by benzidine staining and quantitative RT-PCR analysis for representative erythroid-related genes, including globins. When we evaluated the effects of DZNep in human primary erythroblasts derived from cord blood CD34-positive cells, the treatment significantly induced erythroid-related genes, as observed in K562 cells, suggesting that DZNep induces erythroid differentiation. Unexpectedly, siRNA-mediated EZH2 knockdown had no significant effect on the expression of erythroid-related genes. Transcriptional profiling of DZNep-treated K562 cells revealed marked up-regulation of SLC4A1 and EPB42, previously reported as representative targets of the transcriptional corepressor ETO2. In addition, DZNep treatment reduced the protein level of ETO2. These data suggest that erythroid differentiation by DZNep may not be directly related to EZH2 inhibition but may be partly associated with reduced protein level of hematopoietic corepressor ETO2. These data provide a better understanding of the mechanism of action of DZNep, which may be exploited for therapeutic applications for hematological diseases, including anemia.
Collapse
|
91
|
Huang HT, Kathrein KL, Barton A, Gitlin Z, Huang YH, Ward TP, Hofmann O, Dibiase A, Song A, Tyekucheva S, Hide W, Zhou Y, Zon LI. A network of epigenetic regulators guides developmental haematopoiesis in vivo. Nat Cell Biol 2013; 15:1516-25. [PMID: 24240475 PMCID: PMC3959952 DOI: 10.1038/ncb2870] [Citation(s) in RCA: 79] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2012] [Accepted: 10/02/2013] [Indexed: 12/17/2022]
Abstract
The initiation of cellular programs is orchestrated by key transcription factors and chromatin regulators that activate or inhibit target gene expression. To generate a compendium of chromatin factors that establish the epigenetic code during developmental haematopoiesis, a large-scale reverse genetic screen was conducted targeting orthologues of 425 human chromatin factors in zebrafish. A set of chromatin regulators was identified that target different stages of primitive and definitive blood formation, including factors not previously implicated in haematopoiesis. We identified 15 factors that regulate development of primitive erythroid progenitors and 29 factors that regulate development of definitive haematopoietic stem and progenitor cells. These chromatin factors are associated with SWI/SNF and ISWI chromatin remodelling, SET1 methyltransferase, CBP-p300-HBO1-NuA4 acetyltransferase, HDAC-NuRD deacetylase, and Polycomb repressive complexes. Our work provides a comprehensive view of how specific chromatin factors and their associated complexes play a major role in the establishment of haematopoietic cells in vivo.
Collapse
Affiliation(s)
- Hsuan-Ting Huang
- Department of Genetics, Harvard Medical School, Boston, MA 02115
- Stem Cell Program and Division of Pediatric Hematology/Oncology, Children's Hospital Boston and Dana-Farber Cancer Institute, Howard Hughes Medical Institute, Boston, MA 02115
| | - Katie L. Kathrein
- Stem Cell Program and Division of Pediatric Hematology/Oncology, Children's Hospital Boston and Dana-Farber Cancer Institute, Howard Hughes Medical Institute, Boston, MA 02115
| | - Abby Barton
- Stem Cell Program and Division of Pediatric Hematology/Oncology, Children's Hospital Boston and Dana-Farber Cancer Institute, Howard Hughes Medical Institute, Boston, MA 02115
| | - Zachary Gitlin
- Stem Cell Program and Division of Pediatric Hematology/Oncology, Children's Hospital Boston and Dana-Farber Cancer Institute, Howard Hughes Medical Institute, Boston, MA 02115
| | - Yue-Hua Huang
- Stem Cell Program and Division of Pediatric Hematology/Oncology, Children's Hospital Boston and Dana-Farber Cancer Institute, Howard Hughes Medical Institute, Boston, MA 02115
| | - Thomas P. Ward
- Stem Cell Program and Division of Pediatric Hematology/Oncology, Children's Hospital Boston and Dana-Farber Cancer Institute, Howard Hughes Medical Institute, Boston, MA 02115
| | | | - Anthony Dibiase
- Stem Cell Program and Division of Pediatric Hematology/Oncology, Children's Hospital Boston and Dana-Farber Cancer Institute, Howard Hughes Medical Institute, Boston, MA 02115
| | - Anhua Song
- Stem Cell Program and Division of Pediatric Hematology/Oncology, Children's Hospital Boston and Dana-Farber Cancer Institute, Howard Hughes Medical Institute, Boston, MA 02115
| | - Svitlana Tyekucheva
- Department of Biostatistics, Harvard School of Public Health, Boston, MA 02115
- Department of Biostatistics and Computational Biology, Dana-Farber Cancer Institute, Boston, MA 02115
| | - Winston Hide
- Harvard Stem Cell Institute, Cambridge, MA 02138
- Department of Biostatistics, Harvard School of Public Health, Boston, MA 02115
| | - Yi Zhou
- Stem Cell Program and Division of Pediatric Hematology/Oncology, Children's Hospital Boston and Dana-Farber Cancer Institute, Howard Hughes Medical Institute, Boston, MA 02115
| | - Leonard I. Zon
- Department of Genetics, Harvard Medical School, Boston, MA 02115
- Stem Cell Program and Division of Pediatric Hematology/Oncology, Children's Hospital Boston and Dana-Farber Cancer Institute, Howard Hughes Medical Institute, Boston, MA 02115
- Harvard Stem Cell Institute, Cambridge, MA 02138
| |
Collapse
|
92
|
PML4 facilitates erythroid differentiation by enhancing the transcriptional activity of GATA-1. Blood 2013; 123:261-70. [PMID: 24255919 DOI: 10.1182/blood-2013-02-483289] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Promyelocytic leukemia protein (PML) has been implicated as a participant in multiple cellular processes including senescence, apoptosis, proliferation, and differentiation. Studies of PML function in hematopoietic differentiation previously focused principally on its myeloid activities and also indicated that PML is involved in erythroid colony formation. However, the exact role that PML plays in erythropoiesis is essentially unknown. In this report, we found that PML4, a specific PML isoform expressed in erythroid cells, promotes endogenous erythroid genes expression in K562 and primary human erythroid cells. We show that the PML4 effect is GATA binding protein 1 (GATA-1) dependent using GATA-1 knockout/rescued G1E/G1E-ER4 cells. PML4, but not other detected PML isoforms, directly interacts with GATA-1 and can recruit it into PML nuclear bodies. Furthermore, PML4 facilitates GATA-1 trans-activation activity in an interaction-dependent manner. Finally, we present evidence that PML4 enhances GATA-1 occupancy within the globin gene cluster and stimulates cooperation between GATA-1 and its coactivator p300. These results demonstrate that PML4 is an important regulator of GATA-1 and participates in erythroid differention by enhancing GATA-1 trans-activation activity.
Collapse
|
93
|
Giambruno R, Grebien F, Stukalov A, Knoll C, Planyavsky M, Rudashevskaya EL, Colinge J, Superti-Furga G, Bennett KL. Affinity purification strategies for proteomic analysis of transcription factor complexes. J Proteome Res 2013; 12:4018-27. [PMID: 23937658 PMCID: PMC3768224 DOI: 10.1021/pr4003323] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
![]()
Affinity purification (AP) coupled
to mass spectrometry (MS) has
been successful in elucidating protein molecular networks of mammalian
cells. These approaches have dramatically increased the knowledge
of the interconnectivity present among proteins and highlighted biological
functions within different protein complexes. Despite significant
technical improvements reached in the past years, it is still challenging
to identify the interaction networks and the subsequent associated
functions of nuclear proteins such as transcription factors (TFs).
A straightforward and robust methodology is therefore required to
obtain unbiased and reproducible interaction data. Here we present
a new approach for TF AP-MS, exemplified with the CCAAT/enhancer binding
protein alpha (C/EBPalpha). Utilizing the advantages of a double tag
and three different MS strategies, we conducted a total of six independent
AP-MS strategies to analyze the protein–protein interactions
of C/EBPalpha. The resultant data were combined to produce a cohesive
C/EBPalpha interactome. Our study describes a new methodology that
robustly identifies specific molecular complexes associated with transcription
factors. Moreover, it emphasizes the existence of TFs as protein complexes
essential for cellular biological functions and not as single, static
entities.
Collapse
Affiliation(s)
- Roberto Giambruno
- CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, Lazarettgasse 14, AKH BT 25.3, 1090 Vienna, Austria
| | | | | | | | | | | | | | | | | |
Collapse
|
94
|
Ejarque M, Altirriba J, Gomis R, Gasa R. Characterization of the transcriptional activity of the basic helix-loop-helix (bHLH) transcription factor Atoh8. BIOCHIMICA ET BIOPHYSICA ACTA-GENE REGULATORY MECHANISMS 2013; 1829:1175-83. [PMID: 23938248 DOI: 10.1016/j.bbagrm.2013.08.003] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/05/2013] [Revised: 08/04/2013] [Accepted: 08/06/2013] [Indexed: 12/18/2022]
Abstract
The atonal-related Neurogenin/NeuroD family of basic helix-loop-helix (bHLH) transcription factors comprises potent inducers of neuronal and endocrine differentiation programs in the nervous and digestive system. Atonal homolog 8 (Atoh8) displays high similarity in the bHLH domain with NeuroD proteins. Yet, available evidences indicate that Atoh8 has distinctive features including a ubiquitous expression pattern in embryonic tissues and the ability to inhibit differentiation. To gain insights into Atoh8 function, we aimed at identifying Atoh8 targets and investigated the effects of Atoh8 on global gene expression patterns in pancreatic mPAC cells, a model of bHLH-dependent endocrine differentiation. Our data reveal that Atoh8 is a weak transcriptional activator and does not exhibit proendocrine activity. Conversely, it blocks the induction of a reduced group of gene targets of the atonal-related proendocrine factor Neurogenin3. We show that Atoh8 lacks a transactivation domain and possesses intrinsic repressor activity that depends on a conserved Proline-rich domain. Atoh8 binds the ubiquitous E protein E47 and its ability to repress transcription may partly result from its ability to inhibit E47/E47 and Neurogenin3/E47 dimer activities. These results reveal distinctive transcriptional properties of Atoh8 within the atonal-related bHLH family that may be associated with the acquisition of new biological functions.
Collapse
Affiliation(s)
- Miriam Ejarque
- Diabetes and Obesity Research Laboratory, Institut D'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain; CIBER de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM), Spain
| | | | | | | |
Collapse
|
95
|
Direct protein interactions are responsible for Ikaros-GATA and Ikaros-Cdk9 cooperativeness in hematopoietic cells. Mol Cell Biol 2013; 33:3064-76. [PMID: 23732910 DOI: 10.1128/mcb.00296-13] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Ikaros (Ik) is a critical regulator of hematopoietic gene expression. Here, we established that the Ik interactions with GATA transcription factors and cyclin-dependent kinase 9 (Cdk9), a component of the positive transcription elongation factor b (P-TEFb), are required for transcriptional activation of Ik target genes. A detailed dissection of Ik-GATA and Ik-Cdk9 protein interactions indicated that the C-terminal zinc finger domain of Ik interacts directly with the C-terminal zinc fingers of GATA1, GATA2, and GATA3, whereas the N-terminal zinc finger domain of Ik is required for interaction with the kinase and T-loop domains of Cdk9. The relevance of these interactions was demonstrated in vivo in COS-7 and primary hematopoietic cells, in which Ik facilitated Cdk9 and GATA protein recruitment to gene promoters and transcriptional activation. Moreover, the oncogenic isoform Ik6 did not efficiently interact with Cdk9 or GATA proteins in vivo and perturbed Cdk9/P-TEFb recruitment to Ik target genes, thereby affecting transcription elongation. Finally, characterization of a novel nuclear Ik isoform revealed that Ik exon 6 is dispensable for interactions with Mi2 and GATA proteins but is essential for the Cdk9 interaction. Thus, Ik is central to the Ik-GATA-Cdk9 regulatory network, which is broadly utilized for gene regulation in hematopoietic cells.
Collapse
|
96
|
Abstract
Missense mutations in transcription factor GATA1 underlie a spectrum of congenital red blood cell and platelet disorders. We investigated how these alterations cause distinct clinical phenotypes by combining structural, biochemical, and genomic approaches with gene complementation systems that examine GATA1 function in biologically relevant cellular contexts. Substitutions that disrupt FOG1 cofactor binding impair both gene activation and repression and are associated with pronounced clinical phenotypes. Moreover, clinical severity correlates with the degree of FOG1 disruption. Surprisingly, 2 mutations shown to impair DNA binding of GATA1 in vitro did not measurably affect in vivo target gene occupancy. Rather, one of these disrupted binding to the TAL1 complex, implicating it in diseases caused by GATA1 mutations. Diminished TAL1 complex recruitment mainly impairs transcriptional activation and is linked to relatively mild disease. Notably, different substitutions at the same amino acid can selectively inhibit TAL1 complex or FOG1 binding, producing distinct cellular and clinical phenotypes. The structure-function relationships elucidated here were not predicted by prior in vitro or computational studies. Thus, our findings uncover novel disease mechanisms underlying GATA1 mutations and highlight the power of gene complementation assays for elucidating the molecular basis of genetic diseases.
Collapse
|
97
|
Ldb1-nucleated transcription complexes function as primary mediators of global erythroid gene activation. Blood 2013; 121:4575-85. [PMID: 23610375 DOI: 10.1182/blood-2013-01-479451] [Citation(s) in RCA: 68] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Erythropoiesis is dependent on the lineage-specific transcription factors Gata1, Tal1, and Klf1. Several erythroid genes have been shown to require all 3 factors for their expression, suggesting that they function synergistically; however, there is little direct evidence for widespread cooperation. Gata1 and Tal1 can assemble within higher-order protein complexes (Ldb1 complexes) that include the adapter molecules Lmo2 and Ldb1. Ldb1 proteins are capable of coassociation, and long-range Ldb1-mediated oligomerization of enhancer- and promoter-bound Ldb1 complexes has been shown to be required for β-globin gene expression. In this study, we generated a genomewide map of Ldb1 complex binding sites that revealed widespread binding at erythroid genes and at known erythroid enhancer elements. Ldb1 complex binding sites frequently colocalized with Klf1 binding sites and with consensus binding motifs for other erythroid transcription factors. Transcriptomic analysis demonstrated a strong correlation between Ldb1 complex binding and Ldb1 dependency for gene expression and identified a large cohort of genes coregulated by Ldb1 complexes and Klf1. Together, these results provide a foundation for defining the mechanism and scope of Ldb1 complex activity during erythropoiesis.
Collapse
|
98
|
Papadopoulos GL, Karkoulia E, Tsamardinos I, Porcher C, Ragoussis J, Bungert J, Strouboulis J. GATA-1 genome-wide occupancy associates with distinct epigenetic profiles in mouse fetal liver erythropoiesis. Nucleic Acids Res 2013; 41:4938-48. [PMID: 23519611 PMCID: PMC3643580 DOI: 10.1093/nar/gkt167] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
We report the genomic occupancy profiles of the key hematopoietic transcription factor GATA-1 in pro-erythroblasts and mature erythroid cells fractionated from day E12.5 mouse fetal liver cells. Integration of GATA-1 occupancy profiles with available genome-wide transcription factor and epigenetic profiles assayed in fetal liver cells enabled as to evaluate GATA-1 involvement in modulating local chromatin structure of target genes during erythroid differentiation. Our results suggest that GATA-1 associates preferentially with changes of specific epigenetic modifications, such as H4K16, H3K27 acetylation and H3K4 di-methylation. Furthermore, we used random forest (RF) non-linear regression to predict changes in the expression levels of GATA-1 target genes based on the genomic features available for pro-erythroblasts and mature fetal liver-derived erythroid cells. Remarkably, our prediction model explained a high proportion of 62% of variation in gene expression. Hierarchical clustering of the proximity values calculated by the RF model produced a clear separation of upregulated versus downregulated genes and a further separation of downregulated genes in two distinct groups. Thus, our study of GATA-1 genome-wide occupancy profiles in mouse primary erythroid cells and their integration with global epigenetic marks reveals three clusters of GATA-1 gene targets that are associated with specific epigenetic signatures and functional characteristics.
Collapse
Affiliation(s)
- Giorgio L Papadopoulos
- Division of Molecular Oncology, Biomedical Sciences Research Center "Alexander Fleming", Vari GR16672, Greece
| | | | | | | | | | | | | |
Collapse
|
99
|
NP-40 reduces contamination by endogenous biotinylated carboxylases during purification of biotin tagged nuclear proteins. Protein Expr Purif 2013; 89:80-3. [PMID: 23500724 DOI: 10.1016/j.pep.2013.02.015] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2013] [Revised: 02/25/2013] [Accepted: 02/26/2013] [Indexed: 11/21/2022]
Abstract
We describe here a simple procedure for greatly reducing contamination of nuclear extracts by naturally biotinylated cytoplasmic carboxylases, which represent a major source of non-specific background when employing BirA-mediated biotinylation tagging for the purification and characterization of nuclear protein complexes by mass spectrometry. We show that the use of 0.5% of the non-ionic detergent Nonidet-40 (NP-40) during cell lysis and nuclei isolation is sufficient to practically eliminate contamination of nuclear extracts by carboxylases and to greatly reduce background signals in downstream mass spectrometric analyses.
Collapse
|
100
|
Abstract
An understanding of the human fetal to adult hemoglobin switch offers the potential to ameliorate β-type globin gene disorders such as sickle cell anemia and β-thalassemia through activation of the fetal γ-globin gene. Chromatin modifying complexes, including MBD2-NuRD and GATA-1/FOG-1/NuRD, play a role in γ-globin gene silencing, and Mi2β (CHD4) is a critical component of NuRD complexes. We observed that knockdown of Mi2β relieves γ-globin gene silencing in β-YAC transgenic murine chemical inducer of dimerization hematopoietic cells and in CD34(+) progenitor-derived human primary adult erythroid cells. We show that independent of MBD2-NuRD and GATA-1/FOG-1/NuRD, Mi2β binds directly to and positively regulates both the KLF1 and BCL11A genes, which encode transcription factors critical for γ-globin gene silencing during β-type globin gene switching. Remarkably, <50% knockdown of Mi2β is sufficient to significantly induce γ-globin gene expression without disrupting erythroid differentiation of primary human CD34(+) progenitors. These results indicate that Mi2β is a potential target for therapeutic induction of fetal hemoglobin.
Collapse
|