51
|
Pharmacological Inhibition of the Vacuolar ATPase in Bloodstream-Form Trypanosoma brucei Rescues Genetic Knockdown of Mitochondrial Gene Expression. Antimicrob Agents Chemother 2018; 62:AAC.02268-17. [PMID: 29914945 PMCID: PMC6125517 DOI: 10.1128/aac.02268-17] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2017] [Accepted: 06/08/2018] [Indexed: 11/20/2022] Open
Abstract
Trypanosomatid parasites cause diseases in humans and livestock. It was reported that partial inhibition of the vacuolar ATPase (V-ATPase) affects the dependence of Trypanosoma brucei on its mitochondrial genome (kinetoplast DNA [kDNA]), a target of the antitrypanosomatid drug isometamidium. Here, we report that V-ATPase inhibition with bafilomycin A1 (BafA) provides partial resistance to genetic knockdown of mitochondrial gene expression. BafA does not promote long-term survival after kDNA loss, but in its presence, isometamidium causes less damage to kDNA.
Collapse
|
52
|
Abstract
Amino acids participate in several critical processes in the biology of trypanosomatids, such as osmoregulation, cell differentiation, and host cell invasion. Some of them provide reducing power for mitochondrial ATP synthesis. It was previously shown that alanine, which is formed mainly by the amination of pyruvate, is a metabolic end product formed when parasites are replicating in a medium rich in glucose and amino acids. It was shown as well that this amino acid can also be used for the regulation of cell volume and resistance to osmotic stress. In this work, we demonstrate that, despite it being an end product of its metabolism, Trypanosoma cruzi can take up and metabolize l-Ala through a low-specificity nonstereoselective active transport system. The uptake was dependent on the temperature in the range between 10 and 40°C, which allowed us to calculate an activation energy of 66.4 kJ/mol and estimate the number of transporters per cell at ~436,000. We show as well that, once taken up by the cells, l-Ala can be completely oxidized to CO2, supplying electrons to the electron transport chain, maintaining the electrochemical proton gradient across the mitochondrial inner membrane, and supporting ATP synthesis in T. cruzi epimastigotes. Our data demonstrate a dual role for Ala in the parasite's bioenergetics, by being a secreted end product of glucose catabolism and taken up as nutrient for oxidative mitochondrial metabolism.IMPORTANCE It is well known that trypanosomatids such as the etiological agent of Chagas' disease, Trypanosoma cruzi, produce alanine as a main end product of their energy metabolism when they grow in a medium containing glucose and amino acids. In this work, we investigated if under starvation conditions (which happen during the parasite life cycle) the secreted alanine could be recovered from the extracellular medium and used as an energy source. Herein we show that indeed, in parasites submitted to metabolic stress, this metabolite can be taken up and used as an energy source for ATP synthesis, allowing the parasite to extend its survival under starvation conditions. The obtained results point to a dual role for Ala in the parasite's bioenergetics, by being a secreted end product of glucose catabolism and taken up as nutrient for oxidative mitochondrial metabolism.
Collapse
|
53
|
Mitochondrial DNA is critical for longevity and metabolism of transmission stage Trypanosoma brucei. PLoS Pathog 2018; 14:e1007195. [PMID: 30020996 PMCID: PMC6066258 DOI: 10.1371/journal.ppat.1007195] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2018] [Revised: 07/30/2018] [Accepted: 07/02/2018] [Indexed: 01/19/2023] Open
Abstract
The sleeping sickness parasite Trypanosoma brucei has a complex life cycle, alternating between a mammalian host and the tsetse fly vector. A tightly controlled developmental programme ensures parasite transmission between hosts as well as survival within them and involves strict regulation of mitochondrial activities. In the glucose-rich bloodstream, the replicative 'slender' stage is thought to produce ATP exclusively via glycolysis and uses the mitochondrial F1FO-ATP synthase as an ATP hydrolysis-driven proton pump to generate the mitochondrial membrane potential (ΔΨm). The 'procyclic' stage in the glucose-poor tsetse midgut depends on mitochondrial catabolism of amino acids for energy production, which involves oxidative phosphorylation with ATP production via the F1FO-ATP synthase. Both modes of the F1FO enzyme critically depend on FO subunit a, which is encoded in the parasite's mitochondrial DNA (kinetoplast or kDNA). Comparatively little is known about mitochondrial function and the role of kDNA in non-replicative 'stumpy' bloodstream forms, a developmental stage essential for disease transmission. Here we show that the L262P mutation in the nuclear-encoded F1 subunit γ that permits survival of 'slender' bloodstream forms lacking kDNA ('akinetoplastic' forms), via FO-independent generation of ΔΨm, also permits their differentiation into stumpy forms. However, these akinetoplastic stumpy cells lack a ΔΨm and have a reduced lifespan in vitro and in mice, which significantly alters the within-host dynamics of the parasite. We further show that generation of ΔΨm in stumpy parasites and their ability to use α-ketoglutarate to sustain viability depend on F1-ATPase activity. Surprisingly, however, loss of ΔΨm does not reduce stumpy life span. We conclude that the L262P γ subunit mutation does not enable FO-independent generation of ΔΨm in stumpy cells, most likely as a consequence of mitochondrial ATP production in these cells. In addition, kDNA-encoded genes other than FO subunit a are important for stumpy form viability.
Collapse
|
54
|
Cuypers B, Van den Broeck F, Van Reet N, Meehan CJ, Cauchard J, Wilkes JM, Claes F, Goddeeris B, Birhanu H, Dujardin JC, Laukens K, Büscher P, Deborggraeve S. Genome-Wide SNP Analysis Reveals Distinct Origins of Trypanosoma evansi and Trypanosoma equiperdum. Genome Biol Evol 2018; 9:1990-1997. [PMID: 28541535 PMCID: PMC5566637 DOI: 10.1093/gbe/evx102] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/24/2017] [Indexed: 12/22/2022] Open
Abstract
Trypanosomes cause a variety of diseases in man and domestic animals in Africa, Latin America, and Asia. In the Trypanozoon subgenus, Trypanosoma brucei gambiense and Trypanosoma brucei rhodesiense cause human African trypanosomiasis, whereas Trypanosoma brucei brucei, Trypanosoma evansi, and Trypanosoma equiperdum are responsible for nagana, surra, and dourine in domestic animals, respectively. The genetic relationships between T. evansi and T. equiperdum and other Trypanozoon species remain unclear because the majority of phylogenetic analyses has been based on only a few genes. In this study, we have conducted a phylogenetic analysis based on genome-wide SNP analysis comprising 56 genomes from the Trypanozoon subgenus. Our data reveal that T. equiperdum has emerged at least once in Eastern Africa and T. evansi at two independent occasions in Western Africa. The genomes within the T. equiperdum and T. evansi monophyletic clusters show extremely little variation, probably due to the clonal spread linked to the independence from tsetse flies for their transmission.
Collapse
Affiliation(s)
- Bart Cuypers
- Biomedical Sciences Department, Institute of Tropical Medicine, Antwerp, Belgium.,Department of Mathematics and Computer Sciences, University of Antwerp, Belgium
| | | | - Nick Van Reet
- Biomedical Sciences Department, Institute of Tropical Medicine, Antwerp, Belgium
| | - Conor J Meehan
- Biomedical Sciences Department, Institute of Tropical Medicine, Antwerp, Belgium
| | - Julien Cauchard
- Anses Dozulé Laboratory for Equine Diseases, Goustranville, France
| | - Jonathan M Wilkes
- Wellcome Trust Centre of Molecular Parasitology, University of Glasgow, United Kingdom
| | - Filip Claes
- Food and Agriculture Organization of the United Nations (FAO), Regional Office for Asia and the Pacific, Bangkok, Thailand
| | | | - Hadush Birhanu
- College of Veterinary Medicine, Mekelle University, Tigray, Ethiopia
| | - Jean-Claude Dujardin
- Biomedical Sciences Department, Institute of Tropical Medicine, Antwerp, Belgium.,Department of Biomedical Sciences, University of Antwerp, Antwerp, Belgium
| | - Kris Laukens
- Department of Mathematics and Computer Sciences, University of Antwerp, Belgium
| | - Philippe Büscher
- Biomedical Sciences Department, Institute of Tropical Medicine, Antwerp, Belgium
| | - Stijn Deborggraeve
- Biomedical Sciences Department, Institute of Tropical Medicine, Antwerp, Belgium
| |
Collapse
|
55
|
Cultured bloodstream Trypanosoma brucei adapt to life without mitochondrial translation release factor 1. Sci Rep 2018; 8:5135. [PMID: 29572512 PMCID: PMC5865105 DOI: 10.1038/s41598-018-23472-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2018] [Accepted: 03/13/2018] [Indexed: 01/07/2023] Open
Abstract
Trypanosoma brucei is an extracellular parasite that alternates between an insect vector (procyclic form) and the bloodstream of a mammalian host (bloodstream form). While it was previously reported that mitochondrial release factor 1 (TbMrf1) is essential in cultured procyclic form cells, we demonstrate here that in vitro bloodstream form cells can tolerate the elimination of TbMrf1. Therefore, we explored if this discrepancy is due to the unique bioenergetics of the parasite since procyclic form cells rely on oxidative phosphorylation; whereas bloodstream form cells utilize glycolysis for ATP production and FoF1-ATPase to maintain the essential mitochondrial membrane potential. The observed disruption of intact bloodstream form FoF1-ATPases serves as a proxy to indicate that the translation of its mitochondrially encoded subunit A6 is impaired without TbMrf1. While these null mutants have a decreased mitochondrial membrane potential, they have adapted by increasing their dependence on the electrogenic contributions of the ADP/ATP carrier to maintain the mitochondrial membrane potential above the minimum threshold required for T. brucei viability in vitro. However, this inefficient compensatory mechanism results in avirulent mutants in mice. Finally, the depletion of the codon-independent release factor TbPth4 in the TbMrf1 knockouts further exacerbates the characterized mitchondrial phenotypes.
Collapse
|
56
|
Cestari I, Anupama A, Stuart K. Inositol polyphosphate multikinase regulation of Trypanosoma brucei life stage development. Mol Biol Cell 2018. [PMID: 29514930 PMCID: PMC5921579 DOI: 10.1091/mbc.e17-08-0515] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
The regulation of Trypanosoma brucei life stage development remains unclear. Inositol polyphosphate multikinase regulates the development of mammalian bloodforms to insect stages that normally develop in flies. Specific inositol phosphates, perhaps as second messengers, interact with proteins of the regulatory network that controls development. Many cellular processes change during the Trypanosoma brucei life cycle as this parasite alternates between the mammalian host and tsetse fly vector. We show that the inositol phosphate pathway helps regulate these developmental changes. Knockdown of inositol polyphosphate multikinase (IPMK), which phosphorylates Ins(1,4,5)P3 and Ins(1,3,4,5)P4, resulted in changes in bloodstream forms that are characteristic of insect stage procyclic forms. These changes include expression of the procyclic surface coat, up-regulation of RNA-binding proteins that we show to regulate stage-specific transcripts, and activation of oxidative phosphorylation with increased ATP production in bloodstream forms. These changes were accompanied by development of procyclic morphology, which also occurred by the expression of a catalytically inactive IPMK, implying that regulation of these processes entails IPMK activity. Proteins involved in signaling, protein synthesis and turnover, and metabolism were affinity-enriched with the IPMK substrate or product. Developmental changes associated with IPMK knockdown or catalytic inactivation reflected processes that are enriched with inositol phosphates, and chemical and genetic perturbation of these processes affected T. brucei development. Hence, IPMK helps regulate T. brucei development, perhaps by affecting inositol phosphate interactions with proteins of the regulatory network that controls energy metabolism and development.
Collapse
Affiliation(s)
- Igor Cestari
- Center for Infectious Disease Research, Seattle, WA 98109
| | - Atashi Anupama
- Center for Infectious Disease Research, Seattle, WA 98109
| | - Kenneth Stuart
- Center for Infectious Disease Research, Seattle, WA 98109.,Department of Global Health, University of Washington, Seattle, WA 98195
| |
Collapse
|
57
|
Acidocalcisome-Mitochondrion Membrane Contact Sites in Trypanosoma brucei. Pathogens 2018; 7:pathogens7020033. [PMID: 29565282 PMCID: PMC6027259 DOI: 10.3390/pathogens7020033] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2018] [Revised: 03/13/2018] [Accepted: 03/14/2018] [Indexed: 12/13/2022] Open
Abstract
Membrane contact sites are regions of close apposition between two organelles, typically less than 30 nanometers apart, that facilitate transfer of biomolecules. The presence of contact sites has been demonstrated in yeast, plants, and mammalian cells. Here, we investigated the presence of such contact sites in Trypanosoma brucei. In mammalian cells, endoplasmic reticulum-mitochondria contact sites facilitate mitochondrial uptake of Ca2+ released by the ER-located inositol 1,4,5-trisphosphate receptor (InsP3R). However, the InsP3R in trypanosomes localizes to acidocalcisomes, which serve as major Ca2+ stores in these parasites. In this work, we have used super-resolution structured illumination microscopy and electron microscopy to identify membrane contact sites that exist between acidocalcisomes and mitochondria. Furthermore, we have confirmed the close association of these organelles using proximity ligation assays. Characterization of these contact sites may be a necessary starting point towards unraveling the role of Ca2+ in regulating trypanosome bioenergetics.
Collapse
|
58
|
Structure of the catalytic F 1 head of the F 1-F o ATP synthase from Trypanosoma brucei. Proc Natl Acad Sci U S A 2018. [PMID: 29523707 DOI: 10.1073/pnas.1801103115] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
|
59
|
Gahura O, Šubrtová K, Váchová H, Panicucci B, Fearnley IM, Harbour ME, Walker JE, Zíková A. The F 1 -ATPase from Trypanosoma brucei is elaborated by three copies of an additional p18-subunit. FEBS J 2018; 285:614-628. [PMID: 29247468 DOI: 10.1111/febs.14364] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2017] [Revised: 11/16/2017] [Accepted: 12/08/2017] [Indexed: 01/09/2023]
Abstract
The F-ATPases (also called the F1 Fo -ATPases or ATP synthases) are multi-subunit membrane-bound molecular machines that produce ATP in bacteria and in eukaryotic mitochondria and chloroplasts. The structures and enzymic mechanisms of their F1 -catalytic domains are highly conserved in all species investigated hitherto. However, there is evidence that the F-ATPases from the group of protozoa known as Euglenozoa have novel features. Therefore, we have isolated pure and active F1 -ATPase from the euglenozoan parasite, Trypanosoma brucei, and characterized it. All of the usual eukaryotic subunits (α, β, γ, δ, and ε) were present in the enzyme, and, in addition, two unique features were detected. First, each of the three α-subunits in the F1 -domain has been cleaved by proteolysis in vivo at two sites eight residues apart, producing two assembled fragments. Second, the T. brucei F1 -ATPase has an additional subunit, called p18, present in three copies per complex. Suppression of expression of p18 affected in vitro growth of both the insect and infectious mammalian forms of T. brucei. It also reduced the levels of monomeric and multimeric F-ATPase complexes and diminished the in vivo hydrolytic activity of the enzyme significantly. These observations imply that p18 plays a role in the assembly of the F1 domain. These unique features of the F1 -ATPase extend the list of special characteristics of the F-ATPase from T. brucei, and also, demonstrate that the architecture of the F1 -ATPase complex is not strictly conserved in eukaryotes.
Collapse
Affiliation(s)
- Ondřej Gahura
- Institute of Parasitology, Biology Centre, Czech Academy of Science, České Budějovice, Czech Republic
- The Medical Research Council Mitochondrial Biology Unit, University of Cambridge, Cambridge Biomedical Campus, Cambridge, UK
| | - Karolína Šubrtová
- Institute of Parasitology, Biology Centre, Czech Academy of Science, České Budějovice, Czech Republic
| | - Hana Váchová
- Institute of Parasitology, Biology Centre, Czech Academy of Science, České Budějovice, Czech Republic
| | - Brian Panicucci
- Institute of Parasitology, Biology Centre, Czech Academy of Science, České Budějovice, Czech Republic
| | - Ian M Fearnley
- The Medical Research Council Mitochondrial Biology Unit, University of Cambridge, Cambridge Biomedical Campus, Cambridge, UK
| | - Michael E Harbour
- The Medical Research Council Mitochondrial Biology Unit, University of Cambridge, Cambridge Biomedical Campus, Cambridge, UK
| | - John E Walker
- The Medical Research Council Mitochondrial Biology Unit, University of Cambridge, Cambridge Biomedical Campus, Cambridge, UK
| | - Alena Zíková
- Institute of Parasitology, Biology Centre, Czech Academy of Science, České Budějovice, Czech Republic
- Faculty of Science, University of South Bohemia, České Budějovice, Czech Republic
| |
Collapse
|
60
|
Zíková A, Verner Z, Nenarokova A, Michels PAM, Lukeš J. A paradigm shift: The mitoproteomes of procyclic and bloodstream Trypanosoma brucei are comparably complex. PLoS Pathog 2017; 13:e1006679. [PMID: 29267392 PMCID: PMC5739487 DOI: 10.1371/journal.ppat.1006679] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Affiliation(s)
- Alena Zíková
- Institute of Parasitology, Biology Centre, Czech Academy of Sciences, České Budějovice, Czech Republic
- Faculty of Science, University of South Bohemia, České Budějovice, Czech Republic
- * E-mail:
| | - Zdeněk Verner
- Institute of Parasitology, Biology Centre, Czech Academy of Sciences, České Budějovice, Czech Republic
- Faculty of Sciences, Charles University, Prague, Czech Republic
| | - Anna Nenarokova
- Institute of Parasitology, Biology Centre, Czech Academy of Sciences, České Budějovice, Czech Republic
- Faculty of Science, University of South Bohemia, České Budějovice, Czech Republic
| | - Paul A. M. Michels
- Centre for Immunity, Infection and Evolution, The University of Edinburgh, Edinburgh, United Kingdom
| | - Julius Lukeš
- Institute of Parasitology, Biology Centre, Czech Academy of Sciences, České Budějovice, Czech Republic
- Faculty of Science, University of South Bohemia, České Budějovice, Czech Republic
| |
Collapse
|
61
|
Millan CR, Acosta-Reyes FJ, Lagartera L, Ebiloma GU, Lemgruber L, Nué Martínez JJ, Saperas N, Dardonville C, de Koning HP, Campos JL. Functional and structural analysis of AT-specific minor groove binders that disrupt DNA-protein interactions and cause disintegration of the Trypanosoma brucei kinetoplast. Nucleic Acids Res 2017. [PMID: 28637278 PMCID: PMC5737332 DOI: 10.1093/nar/gkx521] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023] Open
Abstract
Trypanosoma brucei, the causative agent of sleeping sickness (Human African Trypanosomiasis, HAT), contains a kinetoplast with the mitochondrial DNA (kDNA), comprising of >70% AT base pairs. This has prompted studies of drugs interacting with AT-rich DNA, such as the N-phenylbenzamide bis(2-aminoimidazoline) derivatives 1 [4-((4,5-dihydro-1H-imidazol-2-yl)amino)-N-(4-((4,5-dihydro-1H-imidazol-2-yl)amino)phenyl)benzamide dihydrochloride] and 2 [N-(3-chloro-4-((4,5-dihydro-1H-imidazol-2-yl)amino)phenyl)-4-((4,5-dihydro-1H-imidazol-2-yl)amino)benzamide] as potential drugs for HAT. Both compounds show in vitro effects against T. brucei and in vivo curative activity in a mouse model of HAT. The main objective was to identify their cellular target inside the parasite. We were able to demonstrate that the compounds have a clear effect on the S-phase of T. brucei cell cycle by inflicting specific damage on the kinetoplast. Surface plasmon resonance (SPR)–biosensor experiments show that the drug can displace HMG box-containing proteins essential for kDNA function from their kDNA binding sites. The crystal structure of the complex of the oligonucleotide d[AAATTT]2 with compound 1 solved at 1.25 Å (PDB-ID: 5LIT) shows that the drug covers the minor groove of DNA, displaces bound water and interacts with neighbouring DNA molecules as a cross-linking agent. We conclude that 1 and 2 are powerful trypanocides that act directly on the kinetoplast, a structure unique to the order Kinetoplastida.
Collapse
Affiliation(s)
- Cinthia R Millan
- Departament d'Enginyeria Química, EEBE, Universitat Politècnica de Catalunya, 08019 Barcelona, Spain
| | - Francisco J Acosta-Reyes
- Departament d'Enginyeria Química, EEBE, Universitat Politècnica de Catalunya, 08019 Barcelona, Spain
| | | | - Godwin U Ebiloma
- Institute of Infection, Immunity and Inflammation, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow G12 8TA, UK
| | - Leandro Lemgruber
- Institute of Infection, Immunity and Inflammation, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow G12 8TA, UK.,The Wellcome Centre for Molecular Parasitology, Institute of Infection, Immunity and Inflammation, University of Glasgow, Glasgow G12 8TA, UK
| | | | - Núria Saperas
- Departament d'Enginyeria Química, EEBE, Universitat Politècnica de Catalunya, 08019 Barcelona, Spain
| | | | - Harry P de Koning
- Institute of Infection, Immunity and Inflammation, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow G12 8TA, UK
| | - J Lourdes Campos
- Departament d'Enginyeria Química, EEBE, Universitat Politècnica de Catalunya, 08019 Barcelona, Spain
| |
Collapse
|
62
|
Genomic analysis of Isometamidium Chloride resistance in Trypanosoma congolense. INTERNATIONAL JOURNAL FOR PARASITOLOGY-DRUGS AND DRUG RESISTANCE 2017; 7:350-361. [PMID: 29032180 PMCID: PMC5645165 DOI: 10.1016/j.ijpddr.2017.10.002] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/14/2017] [Revised: 10/02/2017] [Accepted: 10/05/2017] [Indexed: 12/30/2022]
Abstract
Isometamidium Chloride (ISM) is one of the principal drugs used to counteract Trypanosoma congolense infection in livestock, both as a prophylactic as well as a curative treatment. However, numerous cases of ISM resistance have been reported in different African regions, representing a significant constraint in the battle against Animal African Trypanosomiasis. In order to identify genetic signatures associated with ISM resistance in T. congolense, the sensitive strain MSOROM7 was selected for induction of ISM resistance in a murine host. Administered ISM concentrations in immune-suppressed mice were gradually increased from 0.001 mg/kg to 1 mg/kg, the maximal dose used in livestock. As a result, three independent MSOROM7 lines acquired full resistance to this concentration after five months of induction, and retained this full resistant phenotype following a six months period without drug pressure. In contrast, parasites did not acquire ISM resistance in immune-competent animals, even after more than two years under ISM pressure, suggesting that the development of full ISM resistance is strongly enhanced when the host immune response is compromised. Genomic analyses comparing the ISM resistant lines with the parental sensitive line identified shifts in read depth at heterozygous loci in genes coding for different transporters and transmembrane products, and several of these shifts were also found within natural ISM resistant isolates. These findings suggested that the transport and accumulation of ISM inside the resistant parasites may be modified, which was confirmed by flow cytometry and ex vivo ISM uptake assays that showed a decrease in the accumulation of ISM in the resistant parasites.
Collapse
|
63
|
Tulloch LB, Menzies SK, Fraser AL, Gould ER, King EF, Zacharova MK, Florence GJ, Smith TK. Photo-affinity labelling and biochemical analyses identify the target of trypanocidal simplified natural product analogues. PLoS Negl Trop Dis 2017; 11:e0005886. [PMID: 28873407 PMCID: PMC5608556 DOI: 10.1371/journal.pntd.0005886] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2017] [Revised: 09/21/2017] [Accepted: 08/21/2017] [Indexed: 12/22/2022] Open
Abstract
Current drugs to treat African sleeping sickness are inadequate and new therapies are urgently required. As part of a medicinal chemistry programme based upon the simplification of acetogenin-type ether scaffolds, we previously reported the promising trypanocidal activity of compound 1, a bis-tetrahydropyran 1,4-triazole (B-THP-T) inhibitor. This study aims to identify the protein target(s) of this class of compound in Trypanosoma brucei to understand its mode of action and aid further structural optimisation. We used compound 3, a diazirine- and alkyne-containing bi-functional photo-affinity probe analogue of our lead B-THP-T, compound 1, to identify potential targets of our lead compound in the procyclic form T. brucei. Bi-functional compound 3 was UV cross-linked to its target(s) in vivo and biotin affinity or Cy5.5 reporter tags were subsequently appended by Cu(II)-catalysed azide-alkyne cycloaddition. The biotinylated protein adducts were isolated with streptavidin affinity beads and subsequent LC-MSMS identified the FoF1-ATP synthase (mitochondrial complex V) as a potential target. This target identification was confirmed using various different approaches. We show that (i) compound 1 decreases cellular ATP levels (ii) by inhibiting oxidative phosphorylation (iii) at the FoF1-ATP synthase. Furthermore, the use of GFP-PTP-tagged subunits of the FoF1-ATP synthase, shows that our compounds bind specifically to both the α- and β-subunits of the ATP synthase. The FoF1-ATP synthase is a target of our simplified acetogenin-type analogues. This mitochondrial complex is essential in both procyclic and bloodstream forms of T. brucei and its identification as our target will enable further inhibitor optimisation towards future drug discovery. Furthermore, the photo-affinity labeling technique described here can be readily applied to other drugs of unknown targets to identify their modes of action and facilitate more broadly therapeutic drug design in any pathogen or disease model.
Collapse
Affiliation(s)
- Lindsay B. Tulloch
- EaStChem School of Chemistry and School of Biology, Biomedical Science Research Complex, University of St Andrews, St Andrews, Fife, United Kingdom
| | - Stefanie K. Menzies
- EaStChem School of Chemistry and School of Biology, Biomedical Science Research Complex, University of St Andrews, St Andrews, Fife, United Kingdom
| | - Andrew L. Fraser
- EaStChem School of Chemistry and School of Biology, Biomedical Science Research Complex, University of St Andrews, St Andrews, Fife, United Kingdom
| | - Eoin R. Gould
- EaStChem School of Chemistry and School of Biology, Biomedical Science Research Complex, University of St Andrews, St Andrews, Fife, United Kingdom
| | - Elizabeth F. King
- EaStChem School of Chemistry and School of Biology, Biomedical Science Research Complex, University of St Andrews, St Andrews, Fife, United Kingdom
| | - Marija K. Zacharova
- EaStChem School of Chemistry and School of Biology, Biomedical Science Research Complex, University of St Andrews, St Andrews, Fife, United Kingdom
| | - Gordon J. Florence
- EaStChem School of Chemistry and School of Biology, Biomedical Science Research Complex, University of St Andrews, St Andrews, Fife, United Kingdom
- * E-mail: (TKS); (GJF)
| | - Terry K. Smith
- EaStChem School of Chemistry and School of Biology, Biomedical Science Research Complex, University of St Andrews, St Andrews, Fife, United Kingdom
- * E-mail: (TKS); (GJF)
| |
Collapse
|
64
|
Trypanosoma brucei TbIF1 inhibits the essential F1-ATPase in the infectious form of the parasite. PLoS Negl Trop Dis 2017; 11:e0005552. [PMID: 28414727 PMCID: PMC5407850 DOI: 10.1371/journal.pntd.0005552] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2016] [Revised: 04/27/2017] [Accepted: 04/04/2017] [Indexed: 12/01/2022] Open
Abstract
The mitochondrial (mt) FoF1-ATP synthase of the digenetic parasite, Trypanosoma brucei, generates ATP during the insect procyclic form (PF), but becomes a perpetual consumer of ATP in the mammalian bloodstream form (BF), which lacks a canonical respiratory chain. This unconventional dependence on FoF1-ATPase is required to maintain the essential mt membrane potential (Δψm). Normally, ATP hydrolysis by this rotary molecular motor is restricted to when eukaryotic cells experience sporadic hypoxic conditions, during which this compulsory function quickly depletes the cellular ATP pool. To protect against this cellular treason, the highly conserved inhibitory factor 1 (IF1) binds the enzyme in a manner that solely inhibits the hydrolytic activity. Intriguingly, we were able to identify the IF1 homolog in T. brucei (TbIF1), but determined that its expression in the mitochondrion is tightly regulated throughout the life cycle as it is only detected in PF cells. TbIF1 appears to primarily function as an emergency brake in PF cells, where it prevented the restoration of the Δψm by FoF1-ATPase when respiration was chemically inhibited. In vitro, TbIF1 overexpression specifically inhibits the hydrolytic activity but not the synthetic capability of the FoF1-ATP synthase in PF mitochondria. Furthermore, low μM amounts of recombinant TbIF1 achieve the same inhibition of total mt ATPase activity as the FoF1-ATPase specific inhibitors, azide and oligomycin. Therefore, even minimal ectopic expression of TbIF1 in BF cells proved lethal as the indispensable Δψm collapsed due to inhibited FoF1-ATPase. In summary, we provide evidence that T. brucei harbors a natural and potent unidirectional inhibitor of the vital FoF1-ATPase activity that can be exploited for future structure-based drug design. Enzymes are catalysts that drive both a forward and reverse chemical reaction depending on the thermodynamic properties. FoF1-ATP synthase is a multiprotein enzyme that under normal physiological conditions generates ATP. However, when respiration is impeded, this rotary molecular machine reverses and hydrolyzes ATP to pump protons and maintain the essential mitochondrial membrane potential. While this activity is exceptional in most eukaryotic cells, the unique composition of the Trypanosoma brucei mitochondrion dictates that the infectious stage of this human parasite is utterly dependent on the hydrolytic activity of FoF1-ATPase. While searching for better chemotherapeutics against Human African Trypanosomiasis, several trypanocidal compounds were determined to interact with this enzyme, but they indiscriminately inhibit both the ATP hydrolytic and synthetic activities. A more promising approach involves the conserved eukaryotic protein IF1, a unidirectional inhibitor that prevents just ATP hydrolysis. Auspiciously, we identified this protein homolog in T. brucei (TbIF1) and its expression is tightly regulated between life stages of the parasite. Importantly, the introduction of exogenous TbIF1 protein specifically inhibits FoF1-ATPase and is lethal for the infectious stage of T. brucei. Therefore, we have identified a natural inhibitor of an essential and druggable enzyme that can be exploited for future structure-based drug design.
Collapse
|
65
|
Mitochondrial behaviour throughout the lytic cycle of Toxoplasma gondii. Sci Rep 2017; 7:42746. [PMID: 28202940 PMCID: PMC5311943 DOI: 10.1038/srep42746] [Citation(s) in RCA: 50] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2016] [Accepted: 01/12/2017] [Indexed: 01/11/2023] Open
Abstract
Mitochondria distribution in cells controls cellular physiology in health and disease. Here we describe the mitochondrial morphology and positioning found in the different stages of the lytic cycle of the eukaryotic single-cell parasite Toxoplasma gondii. The lytic cycle, driven by the tachyzoite life stage, is responsible for acute toxoplasmosis. It is known that whilst inside a host cell the tachyzoite maintains its single mitochondrion at its periphery. We found that upon parasite transition from the host cell to the extracellular matrix, mitochondrion morphology radically changes, resulting in a reduction in peripheral proximity. This change is reversible upon return to the host, indicating that an active mechanism maintains the peripheral positioning found in the intracellular stages. Comparison between the two states by electron microscopy identified regions of coupling between the mitochondrion outer membrane and the parasite pellicle, whose features suggest the presence of membrane contact sites, and whose abundance changes during the transition between intra- and extra-cellular states. These novel observations pave the way for future research to identify molecular mechanisms involved in mitochondrial distribution in Toxoplasma and the consequences of these mitochondrion changes on parasite physiology.
Collapse
|
66
|
In situ structure of trypanosomal ATP synthase dimer reveals a unique arrangement of catalytic subunits. Proc Natl Acad Sci U S A 2017; 114:992-997. [PMID: 28096380 DOI: 10.1073/pnas.1612386114] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
We used electron cryotomography and subtomogram averaging to determine the in situ structures of mitochondrial ATP synthase dimers from two organisms belonging to the phylum euglenozoa: Trypanosoma brucei, a lethal human parasite, and Euglena gracilis, a photosynthetic protist. At a resolution of 32.5 Å and 27.5 Å, respectively, the two structures clearly exhibit a noncanonical F1 head, in which the catalytic (αβ)3 assembly forms a triangular pyramid rather than the pseudo-sixfold ring arrangement typical of all other ATP synthases investigated so far. Fitting of known X-ray structures reveals that this unusual geometry results from a phylum-specific cleavage of the α subunit, in which the C-terminal αC fragments are displaced by ∼20 Å and rotated by ∼30° from their expected positions. In this location, the αC fragment is unable to form the conserved catalytic interface that was thought to be essential for ATP synthesis, and cannot convert γ-subunit rotation into the conformational changes implicit in rotary catalysis. The new arrangement of catalytic subunits suggests that the mechanism of ATP generation by rotary ATPases is less strictly conserved than has been generally assumed. The ATP synthases of these organisms present a unique model system for discerning the individual contributions of the α and β subunits to the fundamental process of ATP synthesis.
Collapse
|
67
|
Eze AA, Gould MK, Munday JC, Tagoe DNA, Stelmanis V, Schnaufer A, De Koning HP. Reduced Mitochondrial Membrane Potential Is a Late Adaptation of Trypanosoma brucei brucei to Isometamidium Preceded by Mutations in the γ Subunit of the F1Fo-ATPase. PLoS Negl Trop Dis 2016; 10:e0004791. [PMID: 27518185 PMCID: PMC4982688 DOI: 10.1371/journal.pntd.0004791] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2016] [Accepted: 05/30/2016] [Indexed: 11/19/2022] Open
Abstract
Background Isometamidium is the main prophylactic drug used to prevent the infection of livestock with trypanosomes that cause Animal African Trypanosomiasis. As well as the animal infective trypanosome species, livestock can also harbor the closely related human infective subspecies T. b. gambiense and T. b. rhodesiense. Resistance to isometamidium is a growing concern, as is cross-resistance to the diamidine drugs diminazene and pentamidine. Methodology/Principal Findings Two isometamidium resistant Trypanosoma brucei clones were generated (ISMR1 and ISMR15), being 7270- and 16,000-fold resistant to isometamidium, respectively, which retained their ability to grow in vitro and establish an infection in mice. Considerable cross-resistance was shown to ethidium bromide and diminazene, with minor cross-resistance to pentamidine. The mitochondrial membrane potentials of both resistant cell lines were significantly reduced compared to the wild type. The net uptake rate of isometamidium was reduced 2-3-fold but isometamidium efflux was similar in wild-type and resistant lines. Fluorescence microscopy and PCR analysis revealed that ISMR1 and ISMR15 had completely lost their kinetoplast DNA (kDNA) and both lines carried a mutation in the nuclearly encoded γ subunit gene of F1 ATPase, truncating the protein by 22 amino acids. The mutation compensated for the loss of the kinetoplast in bloodstream forms, allowing near-normal growth, and conferred considerable resistance to isometamidium and ethidium as well as significant resistance to diminazene and pentamidine, when expressed in wild type trypanosomes. Subsequent exposure to either isometamidium or ethidium led to rapid loss of kDNA and a further increase in isometamidium resistance. Conclusions/Significance Sub-lethal exposure to isometamidium gives rise to viable but highly resistant trypanosomes that, depending on sub-species, are infective to humans and cross-resistant to at least some diamidine drugs. The crucial mutation is in the F1 ATPase γ subunit, which allows loss of kDNA and results in a reduction of the mitochondrial membrane potential. Isometamidium is the only prophylactic treatment of Animal African Trypanosomiasis, a wasting disease of livestock and domestic animals in sub-Saharan Africa. Unfortunately resistance threatens the continued utility of this drug after decades of use. Not only does this disease have severe impacts on agriculture, but some subspecies of Trypanosoma brucei are human-infective as well (causing sleeping sickness) and there is concern that cross-resistance with trypanocides of the diamidine class could further undermine treatment of both veterinary and human infections. It is therefore essential to understand the mechanism of isometamidium resistance and the likelihood for cross-resistance with other first-line trypanocides. Here, we report that isometamidium resistance can be caused by a mutation in an important mitochondrial protein, the γ subunit of the F1 ATPase, and that this mutation alone is sufficient for high levels of resistance, cross-resistance to various drugs, and a strongly reduced mitochondrial membrane potential. This report will for the first time enable a structural assessment of isometamidium resistance genes in T. brucei spp.
Collapse
Affiliation(s)
- Anthonius A. Eze
- Institute of Infection, Immunity and Inflammation, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, United Kingdom
| | - Matthew K. Gould
- Institute for Immunology and Infection Research and Centre for Immunity, Infection and Evolution, School of Biological Sciences, University of Edinburgh, Edinburgh, United Kingdom
| | - Jane C. Munday
- Institute of Infection, Immunity and Inflammation, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, United Kingdom
| | - Daniel N. A. Tagoe
- Institute of Infection, Immunity and Inflammation, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, United Kingdom
- Wellcome Trust Centre for Molecular Parasitology, University of Glasgow, Glasgow, United Kingdom
| | - Valters Stelmanis
- Institute of Infection, Immunity and Inflammation, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, United Kingdom
| | - Achim Schnaufer
- Institute for Immunology and Infection Research and Centre for Immunity, Infection and Evolution, School of Biological Sciences, University of Edinburgh, Edinburgh, United Kingdom
| | - Harry P. De Koning
- Institute of Infection, Immunity and Inflammation, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, United Kingdom
- * E-mail:
| |
Collapse
|
68
|
Hu J, Xia Y. F1 -ATP synthase α-subunit: a potential target for RNAi-mediated pest management of Locusta migratoria manilensis. PEST MANAGEMENT SCIENCE 2016; 72:1433-1439. [PMID: 26558746 DOI: 10.1002/ps.4185] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/05/2015] [Revised: 10/27/2015] [Accepted: 11/06/2015] [Indexed: 06/05/2023]
Abstract
BACKGROUND The migratory locust is one of the most destructive agricultural pests worldwide. ATP synthase (F0 F1 -ATPase) uses proton or sodium motive force to produce 90% of the cellular ATP, and the α-subunit of F1 -ATP synthase (ATP5A) is vital for F1 -ATP synthase. Here, we tested whether ATP5A could be a potential target for RNAi-mediated pest management of L. migratoria. RESULTS Lm-ATP5A was cloned and characterised. Lm-ATP5A is expressed in all tissues. Injection of 100 ng of the double-stranded RNA of ATP5A (dsATP5A) knocked down the transcription of the target gene and caused mortality in 1.5-5 days. The Lm-ATP5A protein level, the oligomycin-sensitive ATP synthetic and hydrolytic activities and the ATP content were correspondingly reduced following dsATP5A injection. CONCLUSION These findings demonstrated the essential roles of Lm-ATP5A in L. migratoria and identified it as a potential target for insect pest control. © 2015 Society of Chemical Industry.
Collapse
Affiliation(s)
- Jun Hu
- Genetic Engineering Research Centre, College of Life Science, Chongqing University, Chongqing, China
- Chongqing Engineering Research Centre for Fungal Insecticide, Chongqing, China
- Key Laboratory of Gene Function and Regulation Technologies under the Chongqing Municipal Education Commission, Chongqing, China
| | - Yuxian Xia
- Genetic Engineering Research Centre, College of Life Science, Chongqing University, Chongqing, China
- Chongqing Engineering Research Centre for Fungal Insecticide, Chongqing, China
- Key Laboratory of Gene Function and Regulation Technologies under the Chongqing Municipal Education Commission, Chongqing, China
| |
Collapse
|
69
|
Leishmania donovani Aurora kinase: A promising therapeutic target against visceral leishmaniasis. Biochim Biophys Acta Gen Subj 2016; 1860:1973-88. [PMID: 27288586 DOI: 10.1016/j.bbagen.2016.06.005] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2016] [Revised: 06/02/2016] [Accepted: 06/06/2016] [Indexed: 01/04/2023]
Abstract
BACKGROUND Aurora kinases are key mitotic kinases executing multiple aspects of eukaryotic cell-division. The apicomplexan homologs being essential for survival, suggest that the Leishmania homolog, annotated LdAIRK, may be equally important. METHODS Bioinformatics, stage-specific immunofluorescence microscopy, immunoblotting, RT-PCR, molecular docking, in-vitro kinase assay, anti-leishmanial activity assays, flow cytometry, fluorescence microscopy. RESULTS Ldairk expression is seen to vary as the cell-cycle progresses from G1 through S and finally G2M and cytokinesis. Kinetic studies demonstrate their enzymatic activity exhibiting a Km and Vmax of 6.12μM and 82.9pmoles·min(-1)mg(-1) respectively against ATP using recombinant Leishmania donovani H3, its physiological substrate. Due to the failure of LdAIRK-/+ knock-out parasites to survive, we adopted a chemical knock-down approach. Based on the conservation of key active site residues, three mammalian Aurora kinase inhibitors were investigated to evaluate their potential as inhibitors of LdAIRK activity. Interestingly, the cell-cycle progressed unhindered, despite treatment with GSK-1070916 or Barasertib, inhibitors with greater potencies for the ATP-binding pocket compared to Hesperadin, which at nanomolar concentrations, severely compromised viability at IC50s 105.9 and 36.4nM for promastigotes and amastigotes, respectively. Cell-cycle and morphological studies implicated their role in both mitosis and cytokinesis. CONCLUSION We identified an Aurora kinase homolog in L. donovani implicated in cell-cycle progression, whose inhibition led to aberrant changes in cell-cycle progression and reduced viability. GENERAL SIGNIFICANCE Human homologs being actively pursued drug targets and the observations with LdAIRK in both promastigotes and amastigotes suggest their potential as therapeutic-targets. Importantly, our results encourage the exploration of other proteins identified herein as potential novel drug targets.
Collapse
|
70
|
Birhanu H, Gebrehiwot T, Goddeeris BM, Büscher P, Van Reet N. New Trypanosoma evansi Type B Isolates from Ethiopian Dromedary Camels. PLoS Negl Trop Dis 2016; 10:e0004556. [PMID: 27035661 PMCID: PMC4818106 DOI: 10.1371/journal.pntd.0004556] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2015] [Accepted: 02/27/2016] [Indexed: 01/13/2023] Open
Abstract
BACKGROUND Trypanosoma (T.) evansi is a dyskinetoplastic variant of T. brucei that has gained the ability to be transmitted by all sorts of biting flies. T. evansi can be divided into type A, which is the most abundant and found in Africa, Asia and Latin America and type B, which has so far been isolated only from Kenyan dromedary camels. This study aimed at the isolation and the genetic and phenotypic characterisation of type A and B T. evansi stocks from camels in Northern Ethiopia. METHODOLOGY/PRINCIPAL FINDINGS T. evansi was isolated in mice by inoculation with the cryopreserved buffy coat of parasitologically confirmed animals. Fourteen stocks were thus isolated and subject to genotyping with PCRs targeting type-specific variant surface glycoprotein genes, mitochondrial minicircles and maxicircles, minisatellite markers and the F1-ATP synthase γ subunit gene. Nine stocks corresponded to type A, two stocks were type B and three stocks represented mixed infections between A and B, but not hybrids. One T. evansi type A stock was completely akinetoplastic. Five stocks were adapted to in vitro culture and subjected to a drug sensitivity assay with melarsomine dihydrochloride, diminazene diaceturate, isometamidium chloride and suramin. In vitro adaptation induced some loss of kinetoplasts within 60 days. No correlation between drug sensitivity and absence of the kinetoplast was observed. Sequencing the full coding sequence of the F1-ATP synthase γ subunit revealed new type-specific single nucleotide polymorphisms and deletions. CONCLUSIONS/SIGNIFICANCE This study addresses some limitations of current molecular markers for T. evansi genotyping. Polymorphism within the F1-ATP synthase γ subunit gene may provide new markers to identify the T. evansi type that do not rely on variant surface glycoprotein genes or kinetoplast DNA.
Collapse
Affiliation(s)
- Hadush Birhanu
- College of Veterinary Medicine, Mekelle University, Mekelle, Ethiopia
- KU Leuven, Faculty of Bioscience Engineering, Department of Biosystems, Leuven, Belgium
- Institute of Tropical Medicine, Department of Biomedical Sciences, Antwerp, Belgium
- * E-mail:
| | | | - Bruno Maria Goddeeris
- KU Leuven, Faculty of Bioscience Engineering, Department of Biosystems, Leuven, Belgium
| | - Philippe Büscher
- Institute of Tropical Medicine, Department of Biomedical Sciences, Antwerp, Belgium
| | - Nick Van Reet
- Institute of Tropical Medicine, Department of Biomedical Sciences, Antwerp, Belgium
| |
Collapse
|
71
|
Trypanosoma evansi contains two auxiliary enzymes of glycolytic metabolism: Phosphoenolpyruvate carboxykinase and pyruvate phosphate dikinase. Exp Parasitol 2016; 165:7-15. [PMID: 26968775 DOI: 10.1016/j.exppara.2016.03.003] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2015] [Revised: 02/11/2016] [Accepted: 03/03/2016] [Indexed: 11/22/2022]
Abstract
Trypanosoma evansi is a monomorphic protist that can infect horses and other animal species of economic importance for man. Like the bloodstream form of the closely related species Trypanosoma brucei, T. evansi depends exclusively on glycolysis for its free-energy generation. In T. evansi as in other kinetoplastid organisms, the enzymes of the major part of the glycolytic pathway are present within organelles called glycosomes, which are authentic but specialized peroxisomes. Since T. evansi does not undergo stage-dependent differentiations, it occurs only as bloodstream forms, it has been assumed that the metabolic pattern of this parasite is identical to that of the bloodstream form of T. brucei. However, we report here the presence of two additional enzymes, phosphoenolpyruvate carboxykinase and PPi-dependent pyruvate phosphate dikinase in T. evansi glycosomes. Their colocalization with glycolytic enzymes within the glycosomes of this parasite has not been reported before. Both enzymes can make use of PEP for contributing to the production of ATP within the organelles. The activity of these enzymes in T. evansi glycosomes drastically changes the model assumed for the oxidation of glucose by this parasite.
Collapse
|
72
|
Zíková A, Hampl V, Paris Z, Týč J, Lukeš J. Aerobic mitochondria of parasitic protists: Diverse genomes and complex functions. Mol Biochem Parasitol 2016; 209:46-57. [PMID: 26906976 DOI: 10.1016/j.molbiopara.2016.02.007] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2015] [Revised: 02/16/2016] [Accepted: 02/17/2016] [Indexed: 02/08/2023]
Abstract
In this review the main features of the mitochondria of aerobic parasitic protists are discussed. While the best characterized organelles are by far those of kinetoplastid flagellates and Plasmodium, we also consider amoebae Naegleria and Acanthamoeba, a ciliate Ichthyophthirius and related lineages. The simplistic view of the mitochondrion as just a power house of the cell has already been abandoned in multicellular organisms and available data indicate that this also does not apply for protists. We discuss in more details the following mitochondrial features: genomes, post-transcriptional processing, translation, biogenesis of iron-sulfur complexes, heme metabolism and the electron transport chain. Substantial differences in all these core mitochondrial features between lineages are compatible with the view that aerobic protists harbor organelles that are more complex and flexible than previously appreciated.
Collapse
Affiliation(s)
- Alena Zíková
- Institute of Parasitology, Biology Centre, České Budějovice (Budweis), Czech Republic; University of South Bohemia, Faculty of Science, České Budějovice (Budweis), Czech Republic.
| | - Vladimír Hampl
- Charles University in Prague, Faculty of Science, Prague, Czech Republic
| | - Zdeněk Paris
- Institute of Parasitology, Biology Centre, České Budějovice (Budweis), Czech Republic
| | - Jiří Týč
- Institute of Parasitology, Biology Centre, České Budějovice (Budweis), Czech Republic
| | - Julius Lukeš
- Institute of Parasitology, Biology Centre, České Budějovice (Budweis), Czech Republic; University of South Bohemia, Faculty of Science, České Budějovice (Budweis), Czech Republic; Canadian Institute for Advanced Research, Toronto, Canada.
| |
Collapse
|
73
|
Aphasizheva I, Maslov DA, Qian Y, Huang L, Wang Q, Costello CE, Aphasizhev R. Ribosome-associated pentatricopeptide repeat proteins function as translational activators in mitochondria of trypanosomes. Mol Microbiol 2016; 99:1043-58. [PMID: 26713541 DOI: 10.1111/mmi.13287] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/22/2015] [Indexed: 12/20/2022]
Abstract
Mitochondrial ribosomes of Trypanosoma brucei are composed of 9S and 12S rRNAs, eubacterial-type ribosomal proteins, polypeptides lacking discernible motifs and approximately 20 pentatricopeptide repeat (PPR) RNA binding proteins. Several PPRs also populate the polyadenylation complex; among these, KPAF1 and KPAF2 function as general mRNA 3' adenylation/uridylation factors. The A/U-tail enables mRNA binding to the small ribosomal subunit and is essential for translation. The presence of A/U-tail also correlates with requirement for translation of certain mRNAs in mammalian and insect parasite stages. Here, we inquired whether additional PPRs activate translation of individual mRNAs. Proteomic analysis identified KRIPP1 and KRIPP8 as components of the small ribosomal subunit in mammalian and insect forms, but also revealed their association with the polyadenylation complex in the latter. RNAi knockdowns demonstrated essential functions of KRIPP1 and KRIPP8 in the actively respiring insect stage, but not in the mammalian stage. In the KRIPP1 knockdown, A/U-tailed mRNA encoding cytochrome c oxidase subunit 1 declined concomitantly with the de novo synthesis of this subunit whereas polyadenylation and translation of cyb mRNA were unaffected. In contrast, the KRIPP8 knockdown inhibited A/U-tailing and translation of both CO1 and cyb mRNAs. Our findings indicate that ribosome-associated PPRs may selectively activate mRNAs for translation.
Collapse
Affiliation(s)
- Inna Aphasizheva
- Department of Molecular and Cell Biology, Boston University Goldman School of Dental Medicine, Boston, MA, 02118, USA
| | - Dmitri A Maslov
- Department of Biology, University of California, Riverside, CA, 92521, USA
| | - Yu Qian
- Department of Molecular and Cell Biology, Boston University Goldman School of Dental Medicine, Boston, MA, 02118, USA
| | - Lan Huang
- Department of Physiology and Biophysics, School of Medicine, University of California, Irvine, CA, 92697, USA
| | - Qi Wang
- Department of Biochemistry, Boston University School of Medicine, Boston, MA, 02118, USA
| | - Catherine E Costello
- Department of Biochemistry, Boston University School of Medicine, Boston, MA, 02118, USA
| | - Ruslan Aphasizhev
- Department of Molecular and Cell Biology, Boston University Goldman School of Dental Medicine, Boston, MA, 02118, USA.,Department of Biochemistry, Boston University School of Medicine, Boston, MA, 02118, USA
| |
Collapse
|
74
|
Alkhaldi AAM, Martinek J, Panicucci B, Dardonville C, Zíková A, de Koning HP. Trypanocidal action of bisphosphonium salts through a mitochondrial target in bloodstream form Trypanosoma brucei. INTERNATIONAL JOURNAL FOR PARASITOLOGY-DRUGS AND DRUG RESISTANCE 2015; 6:23-34. [PMID: 27054061 PMCID: PMC4805778 DOI: 10.1016/j.ijpddr.2015.12.002] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/15/2015] [Revised: 12/03/2015] [Accepted: 12/07/2015] [Indexed: 12/21/2022]
Abstract
Lipophilic bisphosphonium salts are among the most promising antiprotozoal leads currently under investigation. As part of their preclinical evaluation we here report on their mode of action against African trypanosomes, the etiological agents of sleeping sickness. The bisphosphonium compounds CD38 and AHI-9 exhibited rapid inhibition of Trypanosoma brucei growth, apparently the result of cell cycle arrest that blocked the replication of mitochondrial DNA, contained in the kinetoplast, thereby preventing the initiation of S-phase. Incubation with either compound led to a rapid reduction in mitochondrial membrane potential, and ATP levels decreased by approximately 50% within 1 h. Between 4 and 8 h, cellular calcium levels increased, consistent with release from the depolarized mitochondria. Within the mitochondria, the Succinate Dehydrogenase complex (SDH) was investigated as a target for bisphosphonium salts, but while its subunit 1 (SDH1) was present at low levels in the bloodstream form trypanosomes, the assembled complex was hardly detectable. RNAi knockdown of the SDH1 subunit produced no growth phenotype, either in bloodstream or in the procyclic (insect) forms and we conclude that in trypanosomes SDH is not the target for bisphosphonium salts. Instead, the compounds inhibited ATP production in intact mitochondria, as well as the purified F1 ATPase, to a level that was similar to 1 mM azide. Co-incubation with azide and bisphosphonium compounds did not inhibit ATPase activity more than either product alone. The results show that, in T. brucei, bisphosphonium compounds do not principally act on succinate dehydrogenase but on the mitochondrial FoF1 ATPase. Bisphosphonium salts display highly promising antiprotozoal activity. It has been reported that, in Leishmania, they act on the mitochondrial SDH complex. We show that in Trypanosoma brucei SDH is not essential and not the drug target. Instead, we present strong evidence that the F1F0 ATPase is the target.
Collapse
Affiliation(s)
- Abdulsalam A M Alkhaldi
- Institute of Infection, Immunity and Inflammation, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, United Kingdom
| | - Jan Martinek
- Institute of Parasitology, Biology Centre & Faculty of Science, University of South Bohemia, České Budějovice, Czech Republic
| | - Brian Panicucci
- Institute of Parasitology, Biology Centre & Faculty of Science, University of South Bohemia, České Budějovice, Czech Republic
| | | | - Alena Zíková
- Institute of Parasitology, Biology Centre & Faculty of Science, University of South Bohemia, České Budějovice, Czech Republic.
| | - Harry P de Koning
- Institute of Infection, Immunity and Inflammation, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, United Kingdom.
| |
Collapse
|
75
|
Huang Z, Faktorová D, Křížová A, Kafková L, Read LK, Lukeš J, Hashimi H. Integrity of the core mitochondrial RNA-binding complex 1 is vital for trypanosome RNA editing. RNA (NEW YORK, N.Y.) 2015; 21:2088-102. [PMID: 26447184 PMCID: PMC4647463 DOI: 10.1261/rna.052340.115] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/24/2015] [Accepted: 09/09/2015] [Indexed: 05/20/2023]
Abstract
Trypanosoma brucei is the causative agent of the human and veterinarian diseases African sleeping sickness and nagana. A majority of its mitochondrial-encoded transcripts undergo RNA editing, an essential process of post-transcriptional uridine insertion and deletion to produce translatable mRNA. Besides the well-characterized RNA editing core complex, the mitochondrial RNA-binding 1 (MRB1) complex is one of the key players. It comprises a core complex of about six proteins, guide RNA-associated proteins (GAPs) 1/2, which form a heterotetramer that binds and stabilizes gRNAs, plus MRB5390, MRB3010, and MRB11870, which play roles in initial stages of RNA editing, presumably guided by the first gRNA:mRNA duplex in the case of the latter two proteins. To better understand all functions of the MRB1 complex, we performed a functional analysis of the MRB8620 core subunit, the only one not characterized so far. Here we show that MRB8620 plays a role in RNA editing in both procyclic and bloodstream stages of T. brucei, which reside in the tsetse fly vector and mammalian circulatory system, respectively. While RNAi silencing of MRB8620 does not affect procyclic T. brucei fitness when grown in glucose-containing media, it is somewhat compromised in cells grown in the absence of this carbon source. MRB8620 is crucial for integrity of the MRB1 core, such as its association with GAP1/2, which presumably acts to deliver gRNAs to this complex. In contrast, GAP1/2 is not required for the fabrication of the MRB1 core. Disruption of the MRB1 core assembly is followed by the accumulation of mRNAs associated with GAP1/2.
Collapse
Affiliation(s)
- Zhenqiu Huang
- Biology Center, Institute of Parasitology, Czech Academy of Sciences, České Budějovice (Budweis), 370 05, Czech Republic Faculty of Sciences, University of South Bohemia, České Budějovice (Budweis), 370 05, Czech Republic
| | - Drahomíra Faktorová
- Biology Center, Institute of Parasitology, Czech Academy of Sciences, České Budějovice (Budweis), 370 05, Czech Republic Faculty of Sciences, University of South Bohemia, České Budějovice (Budweis), 370 05, Czech Republic
| | - Adéla Křížová
- Faculty of Sciences, University of South Bohemia, České Budějovice (Budweis), 370 05, Czech Republic
| | - Lucie Kafková
- Department of Microbiology and Immunology, School of Medicine, State University of New York at Buffalo, Buffalo, New York 14214, USA
| | - Laurie K Read
- Department of Microbiology and Immunology, School of Medicine, State University of New York at Buffalo, Buffalo, New York 14214, USA
| | - Julius Lukeš
- Biology Center, Institute of Parasitology, Czech Academy of Sciences, České Budějovice (Budweis), 370 05, Czech Republic Faculty of Sciences, University of South Bohemia, České Budějovice (Budweis), 370 05, Czech Republic Canadian Institute for Advanced Research, Toronto, Ontario M5G 1Z8, Canada
| | - Hassan Hashimi
- Biology Center, Institute of Parasitology, Czech Academy of Sciences, České Budějovice (Budweis), 370 05, Czech Republic Faculty of Sciences, University of South Bohemia, České Budějovice (Budweis), 370 05, Czech Republic
| |
Collapse
|
76
|
Szempruch AJ, Choudhury R, Wang Z, Hajduk SL. In vivo analysis of trypanosome mitochondrial RNA function by artificial site-specific RNA endonuclease-mediated knockdown. RNA (NEW YORK, N.Y.) 2015; 21:1781-1789. [PMID: 26264591 PMCID: PMC4574754 DOI: 10.1261/rna.052084.115] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/03/2015] [Accepted: 07/08/2015] [Indexed: 05/29/2023]
Abstract
Trypanosomes possess a unique mitochondrial genome called the kinetoplast DNA (kDNA). Many kDNA genes encode pre-mRNAs that must undergo guide RNA-directed editing. In addition, alternative mRNA editing gives rise to diverse mRNAs and several kDNA genes encode open reading frames of unknown function. To better understand the mechanism of RNA editing and the function of mitochondrial RNAs in trypanosomes, we have developed a reverse genetic approach using artificial site-specific RNA endonucleases (ASREs) to directly silence kDNA-encoded genes. The RNA-binding domain of an ASRE can be programmed to recognize unique 8-nucleotide sequences, allowing the design of ASREs to cleave any target RNA. Utilizing an ASRE containing a mitochondrial localization signal, we targeted the extensively edited mitochondrial mRNA for the subunit A6 of the F0F1 ATP synthase (A6) in the procyclic stage of Trypanosoma brucei. This developmental stage, found in the midgut of the insect vector, relies on mitochondrial oxidative phosphorylation for ATP production with A6 forming the critical proton half channel across the inner mitochondrial membrane. Expression of an A6-targeted ASRE in procyclic trypanosomes resulted in a 50% reduction in A6 mRNA levels after 24 h, a time-dependent decrease in mitochondrial membrane potential (ΔΨm), and growth arrest. Expression of the A6-ASRE, lacking the mitochondrial localization signal, showed no significant growth defect. The development of the A6-ASRE allowed the first in vivo functional analysis of an edited mitochondrial mRNA in T. brucei and provides a critical new tool to study mitochondrial RNA biology in trypanosomes.
Collapse
Affiliation(s)
- Anthony J Szempruch
- Department of Biochemistry and Molecular Biology, University of Georgia, Athens, Georgia 30602, USA
| | - Rajarshi Choudhury
- Department of Pharmacology, University of North Carolina Chapel Hill, Chapel Hill, North Carolina 27599, USA
| | - Zefeng Wang
- Department of Pharmacology, University of North Carolina Chapel Hill, Chapel Hill, North Carolina 27599, USA
| | - Stephen L Hajduk
- Department of Biochemistry and Molecular Biology, University of Georgia, Athens, Georgia 30602, USA
| |
Collapse
|
77
|
McDermott SM, Guo X, Carnes J, Stuart K. Differential Editosome Protein Function between Life Cycle Stages of Trypanosoma brucei. J Biol Chem 2015; 290:24914-31. [PMID: 26304125 DOI: 10.1074/jbc.m115.669432] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2015] [Indexed: 11/06/2022] Open
Abstract
Uridine insertion and deletion RNA editing generates functional mitochondrial mRNAs in Trypanosoma brucei. The mRNAs are differentially edited in bloodstream form (BF) and procyclic form (PF) life cycle stages, and this correlates with the differential utilization of glycolysis and oxidative phosphorylation between the stages. The mechanism that controls this differential editing is unknown. Editing is catalyzed by multiprotein ∼20S editosomes that contain endonuclease, 3'-terminal uridylyltransferase, exonuclease, and ligase activities. These editosomes also contain KREPB5 and KREPA3 proteins, which have no functional catalytic motifs, but they are essential for parasite viability, editing, and editosome integrity in BF cells. We show here that repression of KREPB5 or KREPA3 is also lethal in PF, but the effects on editosome structure differ from those in BF. In addition, we found that point mutations in KREPB5 or KREPA3 differentially affect cell growth, editosome integrity, and RNA editing between BF and PF stages. These results indicate that the functions of KREPB5 and KREPA3 editosome proteins are adjusted between the life cycle stages. This implies that these proteins are involved in the processes that control differential editing and that the 20S editosomes differ between the life cycle stages.
Collapse
Affiliation(s)
- Suzanne M McDermott
- From the Center for Infectious Disease Research, formerly known as Seattle Biomedical Research Institute, Seattle, Washington 98109
| | - Xuemin Guo
- From the Center for Infectious Disease Research, formerly known as Seattle Biomedical Research Institute, Seattle, Washington 98109
| | - Jason Carnes
- From the Center for Infectious Disease Research, formerly known as Seattle Biomedical Research Institute, Seattle, Washington 98109
| | - Kenneth Stuart
- From the Center for Infectious Disease Research, formerly known as Seattle Biomedical Research Institute, Seattle, Washington 98109
| |
Collapse
|
78
|
Škodová-Sveráková I, Horváth A, Maslov DA. Identification of the mitochondrially encoded subunit 6 of F1FO ATPase in Trypanosoma brucei. Mol Biochem Parasitol 2015; 201:135-8. [PMID: 26276057 DOI: 10.1016/j.molbiopara.2015.08.002] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2015] [Revised: 08/04/2015] [Accepted: 08/06/2015] [Indexed: 11/17/2022]
Abstract
Kinetoplast maxicircle DNA of trypanosomatids encodes eighteen proteins. RNA editing is required to confer translatability to mRNA for twelve of these. Sequence conservation of the predicted hydrophobic polypeptides indicates that they represent functional components of the respiratory chain. Yet, so far only two of those, cytochrome c oxidase subunit I and apocytochrome b of cytochrome c reductase, have been identified with biochemical methods. Here we report on identification of A6 subunit of F1FO ATPase encoded by a pan-edited mRNA in Trypanosoma brucei. The polypeptide was present among the (35)S-labeled mitochondrial translation products characterized by anomalous migration in denaturing 2D gels. It was identified as an ATPase subunit by co-migration with this complex in Blue Native 2D gels. A partial N-terminal sequence of the corresponding polypeptide present in the gel-purified ATPase complex from Leishmania tarentolae was consistent with the predicted A6 sequence.
Collapse
Affiliation(s)
- Ingrid Škodová-Sveráková
- Department of Biology, University of California - Riverside, Riverside, CA 92521, USA; Faculty of Natural Sciences, Comenius University, 842 15 Bratislava, Slovakia
| | - Anton Horváth
- Faculty of Natural Sciences, Comenius University, 842 15 Bratislava, Slovakia
| | - Dmitri A Maslov
- Department of Biology, University of California - Riverside, Riverside, CA 92521, USA.
| |
Collapse
|
79
|
The Oral Antimalarial Drug Tafenoquine Shows Activity against Trypanosoma brucei. Antimicrob Agents Chemother 2015. [PMID: 26195527 DOI: 10.1128/aac.00879-15] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
The protozoan parasite Trypanosoma brucei causes human African trypanosomiasis, or sleeping sickness, a neglected tropical disease that requires new, safer, and more effective treatments. Repurposing oral drugs could reduce both the time and cost involved in sleeping sickness drug discovery. Tafenoquine (TFQ) is an oral antimalarial drug belonging to the 8-aminoquinoline family which is currently in clinical phase III. We show here that TFQ efficiently kills different T. brucei spp. in the submicromolar concentration range. Our results suggest that TFQ accumulates into acidic compartments and induces a necrotic process involving cell membrane disintegration and loss of cytoplasmic content, leading to parasite death. Cell lysis is preceded by a wide and multitarget drug action, affecting the lysosome, mitochondria, and acidocalcisomes and inducing a depolarization of the mitochondrial membrane potential, elevation of intracellular Ca(2+), and production of reactive oxygen species. This is the first report of an 8-aminoquinoline demonstrating significant in vitro activity against T. brucei.
Collapse
|
80
|
Abstract
Cancer is a general name for more than 100 malignant diseases. It is postulated that all cancers start from a single abnormal cell that grows out of control. Untreated cancers can cause serious consequences and deaths. Great progress has been made in cancer research that has significantly improved our knowledge and understanding of the nature and mechanisms of the disease, but the origins of cancer are far from being well understood due to the limitations of suitable model systems and to the complexities of the disease. In view of the fact that cancers are found in various species of vertebrates and other metazoa, here, we suggest that cancer also occurs in parasitic protozoans such as Trypanosoma brucei, a blood parasite, and Toxoplasma gondii, an obligate intracellular pathogen. Without treatment, these protozoan cancers may cause severe disease and death in mammals, including humans. The simpler genomes of these single-cell organisms, in combination with their complex life cycles and fascinating life cycle differentiation processes, may help us to better understand the origins of cancers and, in particular, leukemias.
Collapse
|
81
|
Vacuolar ATPase depletion affects mitochondrial ATPase function, kinetoplast dependency, and drug sensitivity in trypanosomes. Proc Natl Acad Sci U S A 2015; 112:9112-7. [PMID: 26150481 DOI: 10.1073/pnas.1505411112] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Kinetoplastid parasites cause lethal diseases in humans and animals. The kinetoplast itself contains the mitochondrial genome, comprising a huge, complex DNA network that is also an important drug target. Isometamidium, for example, is a key veterinary drug that accumulates in the kinetoplast in African trypanosomes. Kinetoplast independence and isometamidium resistance are observed where certain mutations in the F1-γ-subunit of the two-sector F1Fo-ATP synthase allow for Fo-independent generation of a mitochondrial membrane potential. To further explore kinetoplast biology and drug resistance, we screened a genome-scale RNA interference library in African trypanosomes for isometamidium resistance mechanisms. Our screen identified 14 V-ATPase subunits and all 4 adaptin-3 subunits, implicating acidic compartment defects in resistance; V-ATPase acidifies lysosomes and related organelles, whereas adaptin-3 is responsible for trafficking among these organelles. Independent strains with depleted V-ATPase or adaptin-3 subunits were isometamidium resistant, and chemical inhibition of the V-ATPase phenocopied this effect. While drug accumulation in the kinetoplast continued after V-ATPase subunit depletion, acriflavine-induced kinetoplast loss was specifically tolerated in these cells and in cells depleted for adaptin-3 or endoplasmic reticulum membrane complex subunits, also identified in our screen. Consistent with kinetoplast dispensability, V-ATPase defective cells were oligomycin resistant, suggesting ATP synthase uncoupling and bypass of the normal Fo-A6-subunit requirement; this subunit is the only kinetoplast-encoded product ultimately required for viability in bloodstream-form trypanosomes. Thus, we describe 30 genes and 3 protein complexes associated with kinetoplast-dependent growth. Mutations affecting these genes could explain natural cases of dyskinetoplasty and multidrug resistance. Our results also reveal potentially conserved communication between the compartmentalized two-sector rotary ATPases.
Collapse
|
82
|
Moreno SA, Nava M. Trypanosoma evansi is alike to Trypanosoma brucei brucei in the subcellular localisation of glycolytic enzymes. Mem Inst Oswaldo Cruz 2015; 110:468-75. [PMID: 26061149 PMCID: PMC4501409 DOI: 10.1590/0074-02760150024] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2015] [Accepted: 04/01/2015] [Indexed: 01/17/2023] Open
Abstract
Trypanosoma evansi, which causes surra, is descended from Trypanosoma brucei brucei, which causes nagana. Although both parasites are presumed to be metabolically similar, insufficient knowledge of T. evansi precludes a full comparison. Herein, we provide the first report on the subcellular localisation of the glycolytic enzymes in T. evansi, which is a alike to that of the bloodstream form (BSF) of T. b. brucei: (i) fructose-bisphosphate aldolase, glyceraldehyde-3-phosphate dehydrogenase (GAPDH), hexokinase, phosphofructokinase, glucose-6-phosphate isomerase, phosphoglycerate kinase, triosephosphate isomerase (glycolytic enzymes) and glycerol-3-phosphate dehydrogenase (a glycolysis-auxiliary enzyme) in glycosomes, (ii) enolase, phosphoglycerate mutase, pyruvate kinase (glycolytic enzymes) and a GAPDH isoenzyme in the cytosol, (iii) malate dehydrogenase in cytosol and (iv) glucose-6-phosphate dehydrogenase in both glycosomes and the cytosol. Specific enzymatic activities also suggest that T. evansi is alike to the BSF of T. b. brucei in glycolytic flux, which is much faster than the pentose phosphate pathway flux, and in the involvement of cytosolic GAPDH in the NAD+/NADH balance. These similarities were expected based on the close phylogenetic relationship of both parasites.
Collapse
Affiliation(s)
- S Andrea Moreno
- Departamento de Biología, Facultad de Ciencias, Universidad de Los
Andes, Mérida, Mérida, Venezuela
| | - Mayerly Nava
- Departamento de Biología, Facultad Experimental de Ciencias, Universidad
del Zulia, Maracaibo, Zulia, Venezuela
| |
Collapse
|
83
|
Xu T, Pagadala V, Mueller DM. Understanding structure, function, and mutations in the mitochondrial ATP synthase. MICROBIAL CELL 2015; 2:105-125. [PMID: 25938092 PMCID: PMC4415626 DOI: 10.15698/mic2015.04.197] [Citation(s) in RCA: 58] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
The mitochondrial ATP synthase is a multimeric enzyme complex with an overall molecular weight of about 600,000 Da. The ATP synthase is a molecular motor composed of two separable parts: F1 and Fo. The F1 portion contains the catalytic sites for ATP synthesis and protrudes into the mitochondrial matrix. Fo forms a proton turbine that is embedded in the inner membrane and connected to the rotor of F1. The flux of protons flowing down a potential gradient powers the rotation of the rotor driving the synthesis of ATP. Thus, the flow of protons though Fo is coupled to the synthesis of ATP. This review will discuss the structure/function relationship in the ATP synthase as determined by biochemical, crystallographic, and genetic studies. An emphasis will be placed on linking the structure/function relationship with understanding how disease causing mutations or putative single nucleotide polymorphisms (SNPs) in genes encoding the subunits of the ATP synthase, will affect the function of the enzyme and the health of the individual. The review will start by summarizing the current understanding of the subunit composition of the enzyme and the role of the subunits followed by a discussion on known mutations and their effect on the activity of the ATP synthase. The review will conclude with a summary of mutations in genes encoding subunits of the ATP synthase that are known to be responsible for human disease, and a brief discussion on SNPs.
Collapse
Affiliation(s)
- Ting Xu
- Department of Biochemistry and Molecular Biology, The Chicago Medical School, Rosalind Franklin University of Medicine and Science, 3333 Green Bay Road, North Chicago, IL 60064
| | - Vijayakanth Pagadala
- Department of Chemical Biology and Medicinal Chemistry, Eshelman School of Pharmacy, University of North Carolina, Chapel Hill, NC
| | - David M Mueller
- Department of Biochemistry and Molecular Biology, The Chicago Medical School, Rosalind Franklin University of Medicine and Science, 3333 Green Bay Road, North Chicago, IL 60064
| |
Collapse
|
84
|
Šubrtová K, Panicucci B, Zíková A. ATPaseTb2, a unique membrane-bound FoF1-ATPase component, is essential in bloodstream and dyskinetoplastic trypanosomes. PLoS Pathog 2015; 11:e1004660. [PMID: 25714685 PMCID: PMC4340940 DOI: 10.1371/journal.ppat.1004660] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2014] [Accepted: 01/06/2015] [Indexed: 12/21/2022] Open
Abstract
In the infectious stage of Trypanosoma brucei, an important parasite of humans and livestock, the mitochondrial (mt) membrane potential (Δψm) is uniquely maintained by the ATP hydrolytic activity and subsequent proton pumping of the essential FoF1-ATPase. Intriguingly, this multiprotein complex contains several trypanosome-specific subunits of unknown function. Here, we demonstrate that one of the largest novel subunits, ATPaseTb2, is membrane-bound and localizes with monomeric and multimeric assemblies of the FoF1-ATPase. Moreover, RNAi silencing of ATPaseTb2 quickly leads to a significant decrease of the Δψm that manifests as a decreased growth phenotype, indicating that the FoF1-ATPase is impaired. To further explore the function of this protein, we employed a trypanosoma strain that lacks mtDNA (dyskinetoplastic, Dk) and thus subunit a, an essential component of the proton pore in the membrane Fo-moiety. These Dk cells generate the Δψm by combining the hydrolytic activity of the matrix-facing F1-ATPase and the electrogenic exchange of ATP4- for ADP3- by the ATP/ADP carrier (AAC). Surprisingly, in addition to the expected presence of F1-ATPase, the monomeric and multimeric FoF1-ATPase complexes were identified. In fact, the immunoprecipitation of a F1-ATPase subunit demonstrated that ATPaseTb2 was a component of these complexes. Furthermore, RNAi studies established that the membrane-bound ATPaseTb2 subunit is essential for maintaining normal growth and the Δψm of Dk cells. Thus, even in the absence of subunit a, a portion of the FoF1-ATPase is assembled in Dk cells.
Collapse
Affiliation(s)
- Karolína Šubrtová
- Institute of Parasitology, Biology Centre, CAS, České Budějovice, Czech Republic; Faculty of Science, University of South Bohemia, České Budějovice, Czech Republic
| | - Brian Panicucci
- Institute of Parasitology, Biology Centre, CAS, České Budějovice, Czech Republic
| | - Alena Zíková
- Institute of Parasitology, Biology Centre, CAS, České Budějovice, Czech Republic; Faculty of Science, University of South Bohemia, České Budějovice, Czech Republic
| |
Collapse
|
85
|
Characterization of oxidative phosphorylation enzymes inEuglena gracilisand its white mutant strainWgmZOflL. FEBS Lett 2015; 589:687-94. [DOI: 10.1016/j.febslet.2015.01.035] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2014] [Revised: 01/29/2015] [Accepted: 01/30/2015] [Indexed: 02/06/2023]
|
86
|
Verner Z, Basu S, Benz C, Dixit S, Dobáková E, Faktorová D, Hashimi H, Horáková E, Huang Z, Paris Z, Peña-Diaz P, Ridlon L, Týč J, Wildridge D, Zíková A, Lukeš J. Malleable mitochondrion of Trypanosoma brucei. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2015; 315:73-151. [PMID: 25708462 DOI: 10.1016/bs.ircmb.2014.11.001] [Citation(s) in RCA: 78] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
The importance of mitochondria for a typical aerobic eukaryotic cell is undeniable, as the list of necessary mitochondrial processes is steadily growing. Here, we summarize the current knowledge of mitochondrial biology of an early-branching parasitic protist, Trypanosoma brucei, a causative agent of serious human and cattle diseases. We present a comprehensive survey of its mitochondrial pathways including kinetoplast DNA replication and maintenance, gene expression, protein and metabolite import, major metabolic pathways, Fe-S cluster synthesis, ion homeostasis, organellar dynamics, and other processes. As we describe in this chapter, the single mitochondrion of T. brucei is everything but simple and as such rivals mitochondria of multicellular organisms.
Collapse
Affiliation(s)
- Zdeněk Verner
- Institute of Parasitology, Biology Centre, Czech Academy of Sciences, Czech Republic; Present address: Faculty of Natural Sciences, Comenius University, Bratislava, Slovakia; Present address: Faculty of Sciences, Charles University, Prague, Czech Republic
| | - Somsuvro Basu
- Institute of Parasitology, Biology Centre, Czech Academy of Sciences, Czech Republic; Faculty of Sciences, University of South Bohemia, České Budějovice (Budweis), Czech Republic; Present address: Institut für Zytobiologie und Zytopathologie, Philipps-Universität Marburg, Germany
| | - Corinna Benz
- Faculty of Sciences, University of South Bohemia, České Budějovice (Budweis), Czech Republic
| | - Sameer Dixit
- Faculty of Sciences, University of South Bohemia, České Budějovice (Budweis), Czech Republic
| | - Eva Dobáková
- Institute of Parasitology, Biology Centre, Czech Academy of Sciences, Czech Republic; Present address: Faculty of Natural Sciences, Comenius University, Bratislava, Slovakia
| | - Drahomíra Faktorová
- Institute of Parasitology, Biology Centre, Czech Academy of Sciences, Czech Republic; Faculty of Sciences, University of South Bohemia, České Budějovice (Budweis), Czech Republic
| | - Hassan Hashimi
- Institute of Parasitology, Biology Centre, Czech Academy of Sciences, Czech Republic; Faculty of Sciences, University of South Bohemia, České Budějovice (Budweis), Czech Republic
| | - Eva Horáková
- Institute of Parasitology, Biology Centre, Czech Academy of Sciences, Czech Republic
| | - Zhenqiu Huang
- Institute of Parasitology, Biology Centre, Czech Academy of Sciences, Czech Republic; Faculty of Sciences, University of South Bohemia, České Budějovice (Budweis), Czech Republic
| | - Zdeněk Paris
- Institute of Parasitology, Biology Centre, Czech Academy of Sciences, Czech Republic
| | - Priscila Peña-Diaz
- Institute of Parasitology, Biology Centre, Czech Academy of Sciences, Czech Republic
| | - Lucie Ridlon
- Faculty of Sciences, University of South Bohemia, České Budějovice (Budweis), Czech Republic; Present address: Salk Institute, La Jolla, San Diego, USA
| | - Jiří Týč
- Institute of Parasitology, Biology Centre, Czech Academy of Sciences, Czech Republic; Faculty of Sciences, University of South Bohemia, České Budějovice (Budweis), Czech Republic
| | - David Wildridge
- Institute of Parasitology, Biology Centre, Czech Academy of Sciences, Czech Republic
| | - Alena Zíková
- Institute of Parasitology, Biology Centre, Czech Academy of Sciences, Czech Republic; Faculty of Sciences, University of South Bohemia, České Budějovice (Budweis), Czech Republic
| | - Julius Lukeš
- Institute of Parasitology, Biology Centre, Czech Academy of Sciences, Czech Republic; Faculty of Sciences, University of South Bohemia, České Budějovice (Budweis), Czech Republic
| |
Collapse
|
87
|
Škodová-Sveráková I, Verner Z, Skalický T, Votýpka J, Horváth A, Lukeš J. Lineage-specific activities of a multipotent mitochondrion of trypanosomatid flagellates. Mol Microbiol 2015; 96:55-67. [PMID: 25557487 DOI: 10.1111/mmi.12920] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/28/2014] [Indexed: 01/19/2023]
Abstract
Trypanosomatids are a very diverse group composed of monoxenous and dixenous parasites belonging to the excavate class Kinetoplastea. Here we studied the respiration of five monoxenous species (Blechomonas ayalai, Herpetomonas muscarum, H. samuelpessoai, Leptomonas pyrrhocoris and Sergeia podlipaevi) introduced into culture, each representing a novel yet globally distributed and/or species-rich clade, and compare them with well-studied flagellates Trypanosoma brucei, Phytomonas serpens, Crithidia fasciculata and Leishmania tarentolae. Differences in structure and activities of respiratory chain complexes, respiration and other biochemical parameters recorded under laboratory conditions reveal their substantial diversity, likely a reflection of different host environments. Phylogenetic relationships of the analysed trypanosomatids do not correlate with their biochemical parameters, with the differences within clades by far exceeding those among clades. As the S. podlipaevi canonical respiratory chain complexes have very low activities, we believe that its mitochondrion is utilised for purposes other than oxidative phosphorylation. Hence, the single reticulated mitochondrion of diverse trypanosomatids seems to retain multipotency, with the capacity to activate its individual components based on the host environment.
Collapse
Affiliation(s)
- Ingrid Škodová-Sveráková
- Institute of Parasitology, Biology Centre, České Budějovice (Budweis), Czech Republic; Department of Biochemistry, Faculty of Natural Sciences, Comenius University, Bratislava, Slovakia
| | | | | | | | | | | |
Collapse
|
88
|
The ADP/ATP carrier and its relationship to oxidative phosphorylation in ancestral protist trypanosoma brucei. EUKARYOTIC CELL 2015; 14:297-310. [PMID: 25616281 DOI: 10.1128/ec.00238-14] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
The highly conserved ADP/ATP carrier (AAC) is a key energetic link between the mitochondrial (mt) and cytosolic compartments of all aerobic eukaryotic cells, as it exchanges the ATP generated inside the organelle for the cytosolic ADP. Trypanosoma brucei, a parasitic protist of medical and veterinary importance, possesses a single functional AAC protein (TbAAC) that is related to the human and yeast ADP/ATP carriers. However, unlike previous studies performed with these model organisms, this study showed that TbAAC is most likely not a stable component of either the respiratory supercomplex III+IV or the ATP synthasome but rather functions as a physically separate entity in this highly diverged eukaryote. Therefore, TbAAC RNA interference (RNAi) ablation in the insect stage of T. brucei does not impair the activity or arrangement of the respiratory chain complexes. Nevertheless, RNAi silencing of TbAAC caused a severe growth defect that coincides with a significant reduction of mt ATP synthesis by both substrate and oxidative phosphorylation. Furthermore, TbAAC downregulation resulted in a decreased level of cytosolic ATP, a higher mt membrane potential, an elevated amount of reactive oxygen species, and a reduced consumption of oxygen in the mitochondria. Interestingly, while TbAAC has previously been demonstrated to serve as the sole ADP/ATP carrier for ADP influx into the mitochondria, our data suggest that a second carrier for ATP influx may be present and active in the T. brucei mitochondrion. Overall, this study provides more insight into the delicate balance of the functional relationship between TbAAC and the oxidative phosphorylation (OXPHOS) pathway in an early diverged eukaryote.
Collapse
|
89
|
Carnes J, Anupama A, Balmer O, Jackson A, Lewis M, Brown R, Cestari I, Desquesnes M, Gendrin C, Hertz-Fowler C, Imamura H, Ivens A, Kořený L, Lai DH, MacLeod A, McDermott SM, Merritt C, Monnerat S, Moon W, Myler P, Phan I, Ramasamy G, Sivam D, Lun ZR, Lukeš J, Stuart K, Schnaufer A. Genome and phylogenetic analyses of Trypanosoma evansi reveal extensive similarity to T. brucei and multiple independent origins for dyskinetoplasty. PLoS Negl Trop Dis 2015; 9:e3404. [PMID: 25568942 PMCID: PMC4288722 DOI: 10.1371/journal.pntd.0003404] [Citation(s) in RCA: 103] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2014] [Accepted: 11/09/2014] [Indexed: 11/18/2022] Open
Abstract
Two key biological features distinguish Trypanosoma evansi from the T. brucei group: independence from the tsetse fly as obligatory vector, and independence from the need for functional mitochondrial DNA (kinetoplast or kDNA). In an effort to better understand the molecular causes and consequences of these differences, we sequenced the genome of an akinetoplastic T. evansi strain from China and compared it to the T. b. brucei reference strain. The annotated T. evansi genome shows extensive similarity to the reference, with 94.9% of the predicted T. b. brucei coding sequences (CDS) having an ortholog in T. evansi, and 94.6% of the non-repetitive orthologs having a nucleotide identity of 95% or greater. Interestingly, several procyclin-associated genes (PAGs) were disrupted or not found in this T. evansi strain, suggesting a selective loss of function in the absence of the insect life-cycle stage. Surprisingly, orthologous sequences were found in T. evansi for all 978 nuclear CDS predicted to represent the mitochondrial proteome in T. brucei, although a small number of these may have lost functionality. Consistent with previous results, the F1FO-ATP synthase γ subunit was found to have an A281 deletion, which is involved in generation of a mitochondrial membrane potential in the absence of kDNA. Candidates for CDS that are absent from the reference genome were identified in supplementary de novo assemblies of T. evansi reads. Phylogenetic analyses show that the sequenced strain belongs to a dominant group of clonal T. evansi strains with worldwide distribution that also includes isolates classified as T. equiperdum. At least three other types of T. evansi or T. equiperdum have emerged independently. Overall, the elucidation of the T. evansi genome sequence reveals extensive similarity of T. brucei and supports the contention that T. evansi should be classified as a subspecies of T. brucei.
Collapse
Affiliation(s)
- Jason Carnes
- Seattle Biomedical Research Institute, Seattle, United States of America
| | - Atashi Anupama
- Seattle Biomedical Research Institute, Seattle, United States of America
| | - Oliver Balmer
- Swiss Tropical and Public Health Institute, Basel, Switzerland
| | - Andrew Jackson
- Department of Infection Biology, Institute of Infection and Global Health, University of Liverpool, Liverpool, United Kingdom
| | - Michael Lewis
- Department of Pathogen Molecular Biology, Faculty of Infectious and Tropical Diseases, London School of Hygiene and Tropical Medicine, London, United Kingdom
| | - Rob Brown
- Seattle Biomedical Research Institute, Seattle, United States of America
| | - Igor Cestari
- Seattle Biomedical Research Institute, Seattle, United States of America
| | - Marc Desquesnes
- CIRAD, UMR-InterTryp, Montpellier, France
- Faculty of Veterinary Medicine, Kasetsart University, Bangkok, Thailand
| | - Claire Gendrin
- Seattle Biomedical Research Institute, Seattle, United States of America
| | - Christiane Hertz-Fowler
- Centre for Genomic Research, Institute of Integrative Biology, University of Liverpool, Liverpool, United Kingdom
| | - Hideo Imamura
- Unit of Molecular Parasitology, Department of Biomedical Sciences, Institute of Tropical Medicine, Antwerp, Belgium
| | - Alasdair Ivens
- Centre of Immunity, Infection and Evolution, University of Edinburgh, Edinburgh, United Kingdom
| | - Luděk Kořený
- Biology Centre, Institute of Parasitology, Czech Academy of Sciences, České Budějovice (Budweis), Czech Republic
- Faculty of Sciences, University of South Bohemia, Centre, České Budějovice (Budweis), Czech Republic
| | - De-Hua Lai
- Biology Centre, Institute of Parasitology, Czech Academy of Sciences, České Budějovice (Budweis), Czech Republic
- Faculty of Sciences, University of South Bohemia, Centre, České Budějovice (Budweis), Czech Republic
- Center for Parasitic Organisms, State Key Laboratory of Biocontrol, School of Life Sciences, and Key Laboratory of Tropical Disease Control of Ministry of Education, Zhongshan School of Medicine, Sun Yat-Sen University, Guangzhou, People′s Republic of China
| | - Annette MacLeod
- Wellcome Trust Centre for Molecular Parasitology, Institute of Biodiversity, Animal Health and Comparative Medicine, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, United Kingdom
| | | | - Chris Merritt
- Seattle Biomedical Research Institute, Seattle, United States of America
| | - Severine Monnerat
- Seattle Biomedical Research Institute, Seattle, United States of America
| | - Wonjong Moon
- Seattle Biomedical Research Institute, Seattle, United States of America
| | - Peter Myler
- Seattle Biomedical Research Institute, Seattle, United States of America
| | - Isabelle Phan
- Seattle Biomedical Research Institute, Seattle, United States of America
| | - Gowthaman Ramasamy
- Seattle Biomedical Research Institute, Seattle, United States of America
| | - Dhileep Sivam
- Seattle Biomedical Research Institute, Seattle, United States of America
| | - Zhao-Rong Lun
- Center for Parasitic Organisms, State Key Laboratory of Biocontrol, School of Life Sciences, and Key Laboratory of Tropical Disease Control of Ministry of Education, Zhongshan School of Medicine, Sun Yat-Sen University, Guangzhou, People′s Republic of China
- * E-mail: (ZRL); (JL); (KS); (AS)
| | - Julius Lukeš
- Biology Centre, Institute of Parasitology, Czech Academy of Sciences, České Budějovice (Budweis), Czech Republic
- Faculty of Sciences, University of South Bohemia, Centre, České Budějovice (Budweis), Czech Republic
- Canadian Institute for Advanced Research, Toronto, Canada
- * E-mail: (ZRL); (JL); (KS); (AS)
| | - Ken Stuart
- Seattle Biomedical Research Institute, Seattle, United States of America
- Department of Global Health, University of Washington, Seattle, United States of America
- * E-mail: (ZRL); (JL); (KS); (AS)
| | - Achim Schnaufer
- Centre of Immunity, Infection and Evolution, University of Edinburgh, Edinburgh, United Kingdom
- Institute of Immunology & Infection Research, University of Edinburgh, Edinburgh, United Kingdom
- * E-mail: (ZRL); (JL); (KS); (AS)
| |
Collapse
|
90
|
Abstract
I knew nothing and had thought nothing about parasites until 1971. In fact, if you had asked me before then, I might have commented that parasites were rather disgusting. I had been at the Johns Hopkins School of Medicine for three years, and I was on the lookout for a new project. In 1971, I came across a paper in the Journal of Molecular Biology by Larry Simpson, a classmate of mine in graduate school. Larry's paper described a remarkable DNA structure known as kinetoplast DNA (kDNA), isolated from a parasite. kDNA, the mitochondrial genome of trypanosomatids, is a DNA network composed of several thousand interlocked DNA rings. Almost nothing was known about it. I was looking for a project on DNA replication, and I wanted it to be both challenging and important. I had no doubt that working with kDNA would be a challenge, as I would be exploring uncharted territory. I was also sure that the project would be important when I learned that parasites with kDNA threaten huge populations in underdeveloped tropical countries. Looking again at Larry's paper, I found the electron micrographs of the kDNA networks to be rather beautiful. I decided to take a chance on kDNA. Little did I know then that I would devote the next forty years of my life to studying kDNA replication.
Collapse
Affiliation(s)
- Paul T Englund
- From the Department of Biological Chemistry, Johns Hopkins University School of Medicine, Baltimore, Maryland 21205
| |
Collapse
|
91
|
Huang G, Vercesi AE, Docampo R. Essential regulation of cell bioenergetics in Trypanosoma brucei by the mitochondrial calcium uniporter. Nat Commun 2014; 4:2865. [PMID: 24305511 PMCID: PMC3868461 DOI: 10.1038/ncomms3865] [Citation(s) in RCA: 102] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2013] [Accepted: 11/04/2013] [Indexed: 01/07/2023] Open
Abstract
Mechanisms of regulation of mitochondrial metabolism in trypanosomes are not completely understood. Here we present evidence that the Trypanosoma brucei mitochondrial calcium uniporter (TbMCU) is essential for regulation of mitochondrial bioenergetics, autophagy, and cell death, even in the bloodstream forms that are devoid of a functional respiratory chain and oxidative phosphorylation. Localization studies reveal its co-localization with MitoTracker staining. TbMCU overexpression increases mitochondrial Ca2+ accumulation in intact and permeabilized trypanosomes, generates excessive mitochondrial reactive oxygen species (ROS), and sensitizes them to apoptotic stimuli. Ablation of TbMCU in RNAi or conditional knockout trypanosomes reduces mitochondrial Ca2+ uptake without affecting their membrane potential, increases the AMP/ATP ratio, stimulates autophagosome formation, and produces marked defects in growth in vitro and infectivity in mice, revealing its essentiality in these parasites. The requirement of TbMCU for proline and pyruvate metabolism in procyclic and bloodstream forms, respectively, reveals its role in regulation of mitochondrial bioenergetics.
Collapse
Affiliation(s)
- Guozhong Huang
- Center for Tropical and Emerging Global Diseases and Department of Cellular Biology, University of Georgia, Athens, Georgia 30602, USA
| | | | | |
Collapse
|
92
|
Docampo R, Vercesi AE, Huang G. Mitochondrial calcium transport in trypanosomes. Mol Biochem Parasitol 2014; 196:108-16. [PMID: 25218432 DOI: 10.1016/j.molbiopara.2014.09.001] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2014] [Revised: 08/22/2014] [Accepted: 09/02/2014] [Indexed: 01/26/2023]
Abstract
The biochemical peculiarities of trypanosomes were fundamental for the recent molecular identification of the long-sought channel involved in mitochondrial Ca(2+) uptake, the mitochondrial Ca(2+) uniporter or MCU. This discovery led to the finding of numerous regulators of the channel, which form a high molecular weight complex with MCU. Some of these regulators have been bioinformatically identified in trypanosomes, which are the first eukaryotic organisms described for which MCU is essential. In trypanosomes MCU is important for buffering cytosolic Ca(2+) changes and for activation of the bioenergetics of the cells. Future work on this pathway in trypanosomes promises further insight into the biology of these fascinating eukaryotes, as well as the potential for novel target discovery.
Collapse
Affiliation(s)
- Roberto Docampo
- Center for Tropical and Emerging Global Diseases and Department of Cellular Biology, University of Georgia, Athens, GA 30602, USA; Departamento de Patologia Clínica, State University of Campinas, Campinas 13083, SP, Brazil.
| | - Anibal E Vercesi
- Departamento de Patologia Clínica, State University of Campinas, Campinas 13083, SP, Brazil
| | - Guozhong Huang
- Center for Tropical and Emerging Global Diseases and Department of Cellular Biology, University of Georgia, Athens, GA 30602, USA
| |
Collapse
|
93
|
Lukeš J, Basu S. Fe/S protein biogenesis in trypanosomes - A review. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2014; 1853:1481-92. [PMID: 25196712 DOI: 10.1016/j.bbamcr.2014.08.015] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/27/2014] [Revised: 08/25/2014] [Accepted: 08/29/2014] [Indexed: 12/15/2022]
Abstract
Trypanosoma brucei, the causative agent of the African sleeping sickness of humans, and other kinetoplastid flagellates belong to the eukarytotic supergroup Excavata. This early-branching model protist is known for a broad range of unique features. As it is amenable to most techniques of forward and reverse genetics, T. brucei was subject to several studies of its iron-sulfur (Fe/S) protein biogenesis and thus represents the best studied excavate eukaryote. Here we review what is known about the Fe/S protein biogenesis of T. brucei, and focus especially on the comparative and evolutionary interesting aspects. We also explore the connections between the well-known and quite conserved ISC and CIA machineries and the tRNA thiolation pathway. Moreover, the Fe/S cluster protein biogenesis is dissected in the procyclic stage of T. brucei which has an active mitochondrion, as well as in its pathogenic bloodstream stage with a metabolically repressed organelle. This article is part of a Special Issue entitled: Fe/S proteins: Analysis, structure, function, biogenesis and diseases.
Collapse
Affiliation(s)
- Julius Lukeš
- Biology Centre, Institute of Parasitology, Czech Academy of Sciences and Faculty of Science, University of South Bohemia, 37005 České Budějovice (Budweis), Czech Republic.
| | - Somsuvro Basu
- Biology Centre, Institute of Parasitology, Czech Academy of Sciences and Faculty of Science, University of South Bohemia, 37005 České Budějovice (Budweis), Czech Republic
| |
Collapse
|
94
|
Moshiri H, Mehta V, Yip CW, Salavati R. Pilot-scale compound screening against RNA editing identifies trypanocidal agents. ACTA ACUST UNITED AC 2014; 20:92-100. [PMID: 25170016 DOI: 10.1177/1087057114548833] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
Most mitochondrial messenger RNAs in trypanosomatid pathogens undergo a unique type of posttranscriptional modification involving insertion and/or deletion of uridylates. This process, RNA editing, is catalyzed by a multiprotein complex (~1.6 MDa), the editosome. Knockdown of core editosome proteins compromises mitochondrial function and, ultimately, parasite viability. Hence, because the editosome is restricted to trypanosomatids, it serves as a unique drug target in these pathogens. Currently, there is a lack of editosome inhibitors for antitrypanosomatid drug development or that could serve as unique tools for perturbing and characterizing editosome interactions or RNA editing reaction stages. Here, we screened a library of pharmacologically active compounds (LOPAC1280) using high-throughput screening to identify RNA editing inhibitors. We report that aurintricarboxylic acid, mitoxantrone, PPNDS, and NF449 are potent inhibitors of deletion RNA editing (IC50 range, 1-5 µM). However, none of these compounds could specifically inhibit the catalytic steps of RNA editing. Mitoxantrone blocked editing by inducing RNA-protein aggregates, whereas the other three compounds interfered with editosome-RNA interactions to varying extents. Furthermore, NF449, a suramin analogue, was effective at killing Trypanosoma brucei in vitro. Thus, new tools for editosome characterization and downstream RNA editing inhibitor have been identified.
Collapse
Affiliation(s)
- Houtan Moshiri
- Department of Biochemistry, McGill University, Montreal, Quebec, Canada Institute of Parasitology, McGill University, Montreal, Quebec, Canada
| | - Vaibhav Mehta
- Department of Biochemistry, McGill University, Montreal, Quebec, Canada Institute of Parasitology, McGill University, Montreal, Quebec, Canada
| | - Chun Wai Yip
- Institute of Parasitology, McGill University, Montreal, Quebec, Canada
| | - Reza Salavati
- Department of Biochemistry, McGill University, Montreal, Quebec, Canada Institute of Parasitology, McGill University, Montreal, Quebec, Canada McGill Centre for Bioinformatics, McGill University, Montreal, Quebec, Canada
| |
Collapse
|
95
|
Dynamics of mitochondrial RNA-binding protein complex in Trypanosoma brucei and its petite mutant under optimized immobilization conditions. EUKARYOTIC CELL 2014; 13:1232-40. [PMID: 25063375 DOI: 10.1128/ec.00149-14] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
There are a variety of complex metabolic processes ongoing simultaneously in the single, large mitochondrion of Trypanosoma brucei. Understanding the organellar environment and dynamics of mitochondrial proteins requires quantitative measurement in vivo. In this study, we have validated a method for immobilizing both procyclic stage (PS) and bloodstream stage (BS) T. brucei brucei with a high level of cell viability over several hours and verified its suitability for undertaking fluorescence recovery after photobleaching (FRAP), with mitochondrion-targeted yellow fluorescent protein (YFP). Next, we used this method for comparative analysis of the translational diffusion of mitochondrial RNA-binding protein 1 (MRP1) in the BS and in T. b. evansi. The latter flagellate is like petite mutant Saccharomyces cerevisiae because it lacks organelle-encoded nucleic acids. FRAP measurement of YFP-tagged MRP1 in both cell lines illuminated from a new perspective how the absence or presence of RNA affects proteins involved in mitochondrial RNA metabolism. This work represents the first attempt to examine this process in live trypanosomes.
Collapse
|
96
|
Fukuoh A, Cannino G, Gerards M, Buckley S, Kazancioglu S, Scialo F, Lihavainen E, Ribeiro A, Dufour E, Jacobs HT. Screen for mitochondrial DNA copy number maintenance genes reveals essential role for ATP synthase. Mol Syst Biol 2014; 10:734. [PMID: 24952591 PMCID: PMC4265055 DOI: 10.15252/msb.20145117] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
The machinery of mitochondrial DNA (mtDNA) maintenance is only partially characterized and is of wide interest due to its involvement in disease. To identify novel components of this machinery, plus other cellular pathways required for mtDNA viability, we implemented a genome-wide RNAi screen in Drosophila S2 cells, assaying for loss of fluorescence of mtDNA nucleoids stained with the DNA-intercalating agent PicoGreen. In addition to previously characterized components of the mtDNA replication and transcription machineries, positives included many proteins of the cytosolic proteasome and ribosome (but not the mitoribosome), three proteins involved in vesicle transport, some other factors involved in mitochondrial biogenesis or nuclear gene expression, > 30 mainly uncharacterized proteins and most subunits of ATP synthase (but no other OXPHOS complex). ATP synthase knockdown precipitated a burst of mitochondrial ROS production, followed by copy number depletion involving increased mitochondrial turnover, not dependent on the canonical autophagy machinery. Our findings will inform future studies of the apparatus and regulation of mtDNA maintenance, and the role of mitochondrial bioenergetics and signaling in modulating mtDNA copy number.
Collapse
Affiliation(s)
- Atsushi Fukuoh
- BioMediTech and Tampere University Hospital, University of Tampere, Tampere, Finland Department of Clinical Chemistry and Laboratory Medicine, Kyushu University Graduate school of Medical Sciences, Fukuoka, Japan Department of Medical Laboratory Science, Junshin Gakuen University, Fukuoka, Japan
| | - Giuseppe Cannino
- BioMediTech and Tampere University Hospital, University of Tampere, Tampere, Finland
| | - Mike Gerards
- BioMediTech and Tampere University Hospital, University of Tampere, Tampere, Finland
| | - Suzanne Buckley
- BioMediTech and Tampere University Hospital, University of Tampere, Tampere, Finland
| | - Selena Kazancioglu
- BioMediTech and Tampere University Hospital, University of Tampere, Tampere, Finland
| | - Filippo Scialo
- BioMediTech and Tampere University Hospital, University of Tampere, Tampere, Finland
| | - Eero Lihavainen
- Department of Signal Processing, Tampere University of Technology, Tampere, Finland
| | - Andre Ribeiro
- Department of Signal Processing, Tampere University of Technology, Tampere, Finland
| | - Eric Dufour
- BioMediTech and Tampere University Hospital, University of Tampere, Tampere, Finland
| | - Howard T Jacobs
- BioMediTech and Tampere University Hospital, University of Tampere, Tampere, Finland Research Program of Molecular Neurology, University of Helsinki, Helsinki, Finland
| |
Collapse
|
97
|
Trypanosomal TAC40 constitutes a novel subclass of mitochondrial β-barrel proteins specialized in mitochondrial genome inheritance. Proc Natl Acad Sci U S A 2014; 111:7624-9. [PMID: 24821793 DOI: 10.1073/pnas.1404854111] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Mitochondria cannot form de novo but require mechanisms allowing their inheritance to daughter cells. In contrast to most other eukaryotes Trypanosoma brucei has a single mitochondrion whose single-unit genome is physically connected to the flagellum. Here we identify a β-barrel mitochondrial outer membrane protein, termed tripartite attachment complex 40 (TAC40), that localizes to this connection. TAC40 is essential for mitochondrial DNA inheritance and belongs to the mitochondrial porin protein family. However, it is not specifically related to any of the three subclasses of mitochondrial porins represented by the metabolite transporter voltage-dependent anion channel (VDAC), the protein translocator of the outer membrane 40 (TOM40), or the fungi-specific MDM10, a component of the endoplasmic reticulum-mitochondria encounter structure (ERMES). MDM10 and TAC40 mediate cellular architecture and participate in transmembrane complexes that are essential for mitochondrial DNA inheritance. In yeast MDM10, in the context of the ERMES, is postulated to connect the mitochondrial genomes to actin filaments, whereas in trypanosomes TAC40 mediates the linkage of the mitochondrial DNA to the basal body of the flagellum. However, TAC40 does not colocalize with trypanosomal orthologs of ERMES components and, unlike MDM10, it regulates neither mitochondrial morphology nor the assembly of the protein translocase. TAC40 therefore defines a novel subclass of mitochondrial porins that is distinct from VDAC, TOM40, and MDM10. However, whereas the architecture of the TAC40-containing complex in trypanosomes and the MDM10-containing ERMES in yeast is very different, both are organized around a β-barrel protein of the mitochondrial porin family that mediates a DNA-cytoskeleton linkage that is essential for mitochondrial DNA inheritance.
Collapse
|
98
|
Kovárová J, Horáková E, Changmai P, Vancová M, Lukeš J. Mitochondrial and nucleolar localization of cysteine desulfurase Nfs and the scaffold protein Isu in Trypanosoma brucei. EUKARYOTIC CELL 2014; 13:353-62. [PMID: 24243795 PMCID: PMC3957590 DOI: 10.1128/ec.00235-13] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/05/2013] [Accepted: 11/12/2013] [Indexed: 01/09/2023]
Abstract
Trypanosoma brucei has a complex life cycle during which its single mitochondrion is subjected to major metabolic and morphological changes. While the procyclic stage (PS) of the insect vector contains a large and reticulated mitochondrion, its counterpart in the bloodstream stage (BS) parasitizing mammals is highly reduced and seems to be devoid of most functions. We show here that key Fe-S cluster assembly proteins are still present and active in this organelle and that produced clusters are incorporated into overexpressed enzymes. Importantly, the cysteine desulfurase Nfs, equipped with the nuclear localization signal, was detected in the nucleolus of both T. brucei life stages. The scaffold protein Isu, an interacting partner of Nfs, was also found to have a dual localization in the mitochondrion and the nucleolus, while frataxin and both ferredoxins are confined to the mitochondrion. Moreover, upon depletion of Isu, cytosolic tRNA thiolation dropped in the PS but not BS parasites.
Collapse
Affiliation(s)
- Julie Kovárová
- Biology Center, Institute of Parasitology, Czech Academy of Sciences and Faculty of Sciences, University of South Bohemia, České Budějovice (Budweis), Czech Republic
| | | | | | | | | |
Collapse
|
99
|
Independence from Kinetoplast DNA maintenance and expression is associated with multidrug resistance in Trypanosoma brucei in vitro. Antimicrob Agents Chemother 2014; 58:2925-8. [PMID: 24550326 PMCID: PMC3993240 DOI: 10.1128/aac.00122-14] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
It is well known that several antitrypanosomatid drugs accumulate in the parasite's mitochondrion, where they often bind to the organellar DNA, the kinetoplast. To what extent this property relates to the mode of action of these compounds has remained largely unquantified. Here we show that single point mutations that remove the dependence of laboratory strains of the sleeping sickness parasite Trypanosoma brucei on a functional kinetoplast result in significant resistance to the diamidine and phenanthridine drug classes.
Collapse
|
100
|
Verner Z, Čermáková P, Škodová I, Kováčová B, Lukeš J, Horváth A. Comparative analysis of respiratory chain and oxidative phosphorylation in Leishmania tarentolae, Crithidia fasciculata, Phytomonas serpens and procyclic stage of Trypanosoma brucei. Mol Biochem Parasitol 2014; 193:55-65. [DOI: 10.1016/j.molbiopara.2014.02.003] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2013] [Revised: 02/05/2014] [Accepted: 02/06/2014] [Indexed: 10/25/2022]
|