51
|
Guan HH, Yoshimura M, Chuankhayan P, Lin CC, Chen NC, Yang MC, Ismail A, Fun HK, Chen CJ. Crystal structure of an antigenic outer-membrane protein from Salmonella Typhi suggests a potential antigenic loop and an efflux mechanism. Sci Rep 2015; 5:16441. [PMID: 26563565 PMCID: PMC4643347 DOI: 10.1038/srep16441] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2015] [Accepted: 10/14/2015] [Indexed: 11/09/2022] Open
Abstract
ST50, an outer-membrane component of the multi-drug efflux system from Salmonella enterica serovar Typhi, is an obligatory diagnostic antigen for typhoid fever. ST50 is an excellent and unique diagnostic antigen with 95% specificity and 90% sensitivity and is used in the commercial diagnosis test kit (TYPHIDOT(TM)). The crystal structure of ST50 at a resolution of 2.98 Å reveals a trimer that forms an α-helical tunnel and a β-barrel transmembrane channel traversing the periplasmic space and outer membrane. Structural investigations suggest significant conformational variations in the extracellular loop regions, especially extracellular loop 2. This is the location of the most plausible antibody-binding domain that could be used to target the design of new antigenic epitopes for the development of better diagnostics or drugs for the treatment of typhoid fever. A molecule of the detergent n-octyl-β-D-glucoside is observed in the D-cage, which comprises three sets of Asp361 and Asp371 residues at the periplasmic entrance. These structural insights suggest a possible substrate transport mechanism in which the substrate first binds at the periplasmic entrance of ST50 and subsequently, via iris-like structural movements to open the periplasmic end, penetrates the periplasmic domain for efflux pumping of molecules, including poisonous metabolites or xenobiotics, for excretion outside the pathogen.
Collapse
Affiliation(s)
- Hong-Hsiang Guan
- Life Science Group, Scientific Research Division, National Synchrotron Radiation Research Center, Hsinchu, 30076, Taiwan
| | - Masato Yoshimura
- Life Science Group, Scientific Research Division, National Synchrotron Radiation Research Center, Hsinchu, 30076, Taiwan
| | - Phimonphan Chuankhayan
- Life Science Group, Scientific Research Division, National Synchrotron Radiation Research Center, Hsinchu, 30076, Taiwan
| | - Chien-Chih Lin
- Life Science Group, Scientific Research Division, National Synchrotron Radiation Research Center, Hsinchu, 30076, Taiwan
| | - Nai-Chi Chen
- Life Science Group, Scientific Research Division, National Synchrotron Radiation Research Center, Hsinchu, 30076, Taiwan.,Institute of Biotechnology, and University Center for Bioscience and Biotechnology, National Cheng Kung University, Tainan City, 701, Taiwan
| | - Ming-Chi Yang
- Life Science Group, Scientific Research Division, National Synchrotron Radiation Research Center, Hsinchu, 30076, Taiwan
| | - Asma Ismail
- Institute for Research in Molecular Medicine, Universiti Sains Malaysia, Kelantan, Malaysia
| | - Hoong-Kun Fun
- Department of Pharmaceutical Chemistry, College of Pharmacy, King Saud University, Riyadh, 11451, Saudi Arabia.,X-ray Crystallography Unit, School of Physics, Universiti Sains Malaysia, 11800 USM, Penang, Malaysia
| | - Chun-Jung Chen
- Life Science Group, Scientific Research Division, National Synchrotron Radiation Research Center, Hsinchu, 30076, Taiwan.,Institute of Biotechnology, and University Center for Bioscience and Biotechnology, National Cheng Kung University, Tainan City, 701, Taiwan.,Department of Pharmaceutical Chemistry, College of Pharmacy, King Saud University, Riyadh, 11451, Saudi Arabia.,Department of Physics, National Tsing Hua University, Hsinchu, 30043, Taiwan
| |
Collapse
|
52
|
Fahie MA, Yang B, Mullis M, Holden MA, Chen M. Selective Detection of Protein Homologues in Serum Using an OmpG Nanopore. Anal Chem 2015; 87:11143-9. [PMID: 26451707 DOI: 10.1021/acs.analchem.5b03350] [Citation(s) in RCA: 53] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
Outer membrane protein G is a monomeric β-barrel porin that has seven flexible loops on its extracellular side. Conformational changes of these labile loops induce gating spikes in current recordings that we exploited as the prime sensing element for protein detection. The gating characteristics, open probability, frequency, and current decrease, provide rich information for analyte identification. Here, we show that two antibiotin antibodies each induced a distinct gating pattern, which allowed them to be readily detected and simultaneously discriminated by a single OmpG nanopore in the presence of fetal bovine serum. Our results demonstrate the feasibility of directly profiling proteins in real-world samples with minimal or no sample pretreatment.
Collapse
Affiliation(s)
- Monifa A Fahie
- Molecular and Cellular Biology Program and †Department of Chemistry, University of Massachusetts Amherst , Amherst, Massachusetts 01003, United States
| | - Bib Yang
- Molecular and Cellular Biology Program and †Department of Chemistry, University of Massachusetts Amherst , Amherst, Massachusetts 01003, United States
| | - Martin Mullis
- Molecular and Cellular Biology Program and †Department of Chemistry, University of Massachusetts Amherst , Amherst, Massachusetts 01003, United States
| | - Matthew A Holden
- Molecular and Cellular Biology Program and †Department of Chemistry, University of Massachusetts Amherst , Amherst, Massachusetts 01003, United States
| | - Min Chen
- Molecular and Cellular Biology Program and †Department of Chemistry, University of Massachusetts Amherst , Amherst, Massachusetts 01003, United States
| |
Collapse
|
53
|
Wolfe AJ, Mohammad MM, Thakur AK, Movileanu L. Global redesign of a native β-barrel scaffold. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2015; 1858:19-29. [PMID: 26456555 DOI: 10.1016/j.bbamem.2015.10.006] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/30/2015] [Revised: 10/03/2015] [Accepted: 10/07/2015] [Indexed: 11/30/2022]
Abstract
One persistent challenge in membrane protein design is accomplishing extensive modifications of proteins without impairing their functionality. A truncation derivative of the ferric hydroxamate uptake component A (FhuA), which featured the deletion of the 160-residue cork domain and five large extracellular loops, produced the conversion of a non-conductive, monomeric, 22-stranded β-barrel protein into a large-conductance protein pore. Here, we show that this redesigned β-barrel protein tolerates an extensive alteration in the internal surface charge, encompassing 25 negative charge neutralizations. By using single-molecule electrophysiology, we noted that a commonality of various truncation FhuA protein pores was the occurrence of 33% blockades of the unitary current at very high transmembrane potentials. We determined that these current transitions were stimulated by their interaction with an external cationic polypeptide, which occurred in a fashion dependent on the surface charge of the pore interior as well as the polypeptide characteristics. This study shows promise for extensive engineering of a large monomeric β-barrel protein pore in molecular biomedical diagnosis, therapeutics, and biosensor technology.
Collapse
Affiliation(s)
- Aaron J Wolfe
- Department of Physics, Syracuse University, 201 Physics Building, Syracuse, NY 13244-1130, USA; Structural Biology, Biochemistry, and Biophysics Program, Syracuse University, 111 College Place, Syracuse, NY 13244-4100, USA
| | - Mohammad M Mohammad
- Department of Physics, Syracuse University, 201 Physics Building, Syracuse, NY 13244-1130, USA
| | - Avinash K Thakur
- Department of Physics, Syracuse University, 201 Physics Building, Syracuse, NY 13244-1130, USA; Structural Biology, Biochemistry, and Biophysics Program, Syracuse University, 111 College Place, Syracuse, NY 13244-4100, USA
| | - Liviu Movileanu
- Department of Physics, Syracuse University, 201 Physics Building, Syracuse, NY 13244-1130, USA; Structural Biology, Biochemistry, and Biophysics Program, Syracuse University, 111 College Place, Syracuse, NY 13244-4100, USA; The Syracuse Biomaterials Institute, Syracuse University, 121 Link Hall, Syracuse, NY 13244, USA.
| |
Collapse
|
54
|
Abstract
Two membranes enclose Gram-negative bacteria-an inner membrane consisting of phospholipid and an outer membrane having an asymmetric structure in which the inner leaflet contains phospholipid and the outer leaflet consists primarily of lipopolysaccharide. The impermeable nature of the outer membrane imposes a need for numerous outer membrane pores and transporters to ferry substances in and out of the cell. These outer membrane proteins have structures distinct from their inner membrane counterparts and most often function without any discernable energy source. In this chapter, we review the structures and functions of four classes of outer membrane protein: general and specific porins, specific transporters, TonB-dependent transporters, and export channels. While not an exhaustive list, these classes exemplify small-molecule transport across the outer membrane and illustrate the diversity of structures and functions found in Gram-negative bacteria.
Collapse
|
55
|
Uporov IV, Forlemu NY, Nori R, Aleksandrov T, Sango BA, Mbote YEB, Pothuganti S, Thomasson KA. Introducing DInaMo: A Package for Calculating Protein Circular Dichroism Using Classical Electromagnetic Theory. Int J Mol Sci 2015; 16:21237-76. [PMID: 26370961 PMCID: PMC4613251 DOI: 10.3390/ijms160921237] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2015] [Revised: 06/09/2015] [Accepted: 06/30/2015] [Indexed: 01/23/2023] Open
Abstract
The dipole interaction model is a classical electromagnetic theory for calculating circular dichroism (CD) resulting from the π-π* transitions of amides. The theoretical model, pioneered by J. Applequist, is assembled into a package, DInaMo, written in Fortran allowing for treatment of proteins. DInaMo reads Protein Data Bank formatted files of structures generated by molecular mechanics or reconstructed secondary structures. Crystal structures cannot be used directly with DInaMo; they either need to be rebuilt with idealized bond angles and lengths, or they need to be energy minimized to adjust bond lengths and bond angles because it is common for crystal structure geometries to have slightly short bond lengths, and DInaMo is sensitive to this. DInaMo reduces all the amide chromophores to points with anisotropic polarizability and all nonchromophoric aliphatic atoms including hydrogens to points with isotropic polarizability; all other atoms are ignored. By determining the interactions among the chromophoric and nonchromophoric parts of the molecule using empirically derived polarizabilities, the rotational and dipole strengths are determined leading to the calculation of CD. Furthermore, ignoring hydrogens bound to methyl groups is initially explored and proves to be a good approximation. Theoretical calculations on 24 proteins agree with experiment showing bands with similar morphology and maxima.
Collapse
Affiliation(s)
- Igor V Uporov
- Chemistry Department, University of North Dakota, 151 Cornell St. Stop 9024, Grand Forks, ND 58202, USA.
- Faculty of Chemistry, M. V. Lomonosov Moscow State University, GSP-1, 1-3 Leninskiye Gory, 119991 Moscow, Russia.
| | - Neville Y Forlemu
- Chemistry Department, University of North Dakota, 151 Cornell St. Stop 9024, Grand Forks, ND 58202, USA.
- Georgia Gwinnett College, 1000 University Center Lane, Lawrenceville, GA 30043, USA.
| | - Rahul Nori
- Chemistry Department, University of North Dakota, 151 Cornell St. Stop 9024, Grand Forks, ND 58202, USA.
| | - Tsvetan Aleksandrov
- Chemistry Department, University of North Dakota, 151 Cornell St. Stop 9024, Grand Forks, ND 58202, USA.
| | - Boris A Sango
- Chemistry Department, University of North Dakota, 151 Cornell St. Stop 9024, Grand Forks, ND 58202, USA.
| | - Yvonne E Bongfen Mbote
- Chemistry Department, University of North Dakota, 151 Cornell St. Stop 9024, Grand Forks, ND 58202, USA.
- James E. Hurley College of Science & Mathematics, Oklahoma Baptist University, OBU Box 61772, 500 W. University, Shawnee, OK 74804, USA.
| | - Sandeep Pothuganti
- Chemistry Department, University of North Dakota, 151 Cornell St. Stop 9024, Grand Forks, ND 58202, USA.
| | - Kathryn A Thomasson
- Chemistry Department, University of North Dakota, 151 Cornell St. Stop 9024, Grand Forks, ND 58202, USA.
| |
Collapse
|
56
|
Fahie MA, Chen M. Electrostatic Interactions between OmpG Nanopore and Analyte Protein Surface Can Distinguish between Glycosylated Isoforms. J Phys Chem B 2015; 119:10198-206. [PMID: 26181080 DOI: 10.1021/acs.jpcb.5b06435] [Citation(s) in RCA: 56] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
The flexible loops decorating the entrance of OmpG nanopore move dynamically during ionic current recording. The gating caused by these flexible loops changes when a target protein is bound. The gating is characterized by parameters including frequency, duration, and open-pore current, and these features combine to reveal the identity of a specific analyte protein. Here, we show that OmpG nanopore equipped with a biotin ligand can distinguish glycosylated and deglycosylated isoforms of avidin by their differences in surface charge. Our studies demonstrate that the direct interaction between the nanopore and analyte surface, induced by the electrostatic attraction between the two molecules, is essential for protein isoform detection. Our technique is remarkably sensitive to the analyte surface, which may provide a useful tool for glycoprotein profiling.
Collapse
Affiliation(s)
- Monifa A Fahie
- Molecular and Cellular Biology Program and Department of Chemistry, University of Massachusetts Amherst, Amherst, Massachusetts 01003, United States
| | - Min Chen
- Molecular and Cellular Biology Program and Department of Chemistry, University of Massachusetts Amherst, Amherst, Massachusetts 01003, United States
| |
Collapse
|
57
|
Valéry C, Deville-Foillard S, Lefebvre C, Taberner N, Legrand P, Meneau F, Meriadec C, Delvaux C, Bizien T, Kasotakis E, Lopez-Iglesias C, Gall A, Bressanelli S, Le Du MH, Paternostre M, Artzner F. Atomic view of the histidine environment stabilizing higher-pH conformations of pH-dependent proteins. Nat Commun 2015; 6:7771. [PMID: 26190377 PMCID: PMC4518280 DOI: 10.1038/ncomms8771] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2015] [Accepted: 06/09/2015] [Indexed: 11/17/2022] Open
Abstract
External stimuli are powerful tools that naturally control protein assemblies and functions. For example, during viral entry and exit changes in pH are known to trigger large protein conformational changes. However, the molecular features stabilizing the higher pH structures remain unclear. Here we elucidate the conformational change of a self-assembling peptide that forms either small or large nanotubes dependent on the pH. The sub-angstrom high-pH peptide structure reveals a globular conformation stabilized through a strong histidine-serine H-bond and a tight histidine-aromatic packing. Lowering the pH induces histidine protonation, disrupts these interactions and triggers a large change to an extended β-sheet-based conformation. Re-visiting available structures of proteins with pH-dependent conformations reveals both histidine-containing aromatic pockets and histidine-serine proximity as key motifs in higher pH structures. The mechanism discovered in this study may thus be generally used by pH-dependent proteins and opens new prospects in the field of nanomaterials. In biological systems, large pH-induced conformational changes can be observed in certain proteins, a phenomenon poorly understood at the molecular level. Here the authors describe a peptide with the ability to self-organize into either small or large nanotubes in a pH-dependent manner and detail the mechanism driving the transition.
Collapse
Affiliation(s)
- Céline Valéry
- 1] Biomolecular Interaction Centre, School of Biological Sciences, University of Canterbury, 8140 Christchurch, New zealand [2] Ipsen, 5 Avenue du Canada, 91940 Les Ulis, France
| | - Stéphanie Deville-Foillard
- 1] Ipsen, 5 Avenue du Canada, 91940 Les Ulis, France [2] CEA, Institute of Biology and Technologies of Saclay, 91191 CEA-Saclay, France [3] Institute for Integrative Biology of the Cell (I2BC), CEA, CNRS, Université Paris-Sud, 91191 CEA-Saclay, Gif sur Yvette, France
| | - Christelle Lefebvre
- CNRS, UMR 6251, Institut de Physique de Rennes, 263 av. Général Leclerc, Université Rennes I, 35042 Rennes Cedex, France
| | | | | | | | - Cristelle Meriadec
- CNRS, UMR 6251, Institut de Physique de Rennes, 263 av. Général Leclerc, Université Rennes I, 35042 Rennes Cedex, France
| | - Camille Delvaux
- 1] CEA, Institute of Biology and Technologies of Saclay, 91191 CEA-Saclay, France [2] Institute for Integrative Biology of the Cell (I2BC), CEA, CNRS, Université Paris-Sud, 91191 CEA-Saclay, Gif sur Yvette, France
| | - Thomas Bizien
- CNRS, UMR 6251, Institut de Physique de Rennes, 263 av. Général Leclerc, Université Rennes I, 35042 Rennes Cedex, France
| | - Emmanouil Kasotakis
- 1] CEA, Institute of Biology and Technologies of Saclay, 91191 CEA-Saclay, France [2] Institute for Integrative Biology of the Cell (I2BC), CEA, CNRS, Université Paris-Sud, 91191 CEA-Saclay, Gif sur Yvette, France
| | - Carmen Lopez-Iglesias
- Cryo-Electron Microscopy Unit. Scientific and Tecnological Centers of the University of Barcelona, E-08028 Barcelona, Spain
| | - Andrew Gall
- 1] CEA, Institute of Biology and Technologies of Saclay, 91191 CEA-Saclay, France [2] Institute for Integrative Biology of the Cell (I2BC), CEA, CNRS, Université Paris-Sud, 91191 CEA-Saclay, Gif sur Yvette, France
| | - Stéphane Bressanelli
- 1] CEA, Institute of Biology and Technologies of Saclay, 91191 CEA-Saclay, France [2] Institute for Integrative Biology of the Cell (I2BC), CEA, CNRS, Université Paris-Sud, 91191 CEA-Saclay, Gif sur Yvette, France
| | - Marie-Hélène Le Du
- 1] CEA, Institute of Biology and Technologies of Saclay, 91191 CEA-Saclay, France [2] Institute for Integrative Biology of the Cell (I2BC), CEA, CNRS, Université Paris-Sud, 91191 CEA-Saclay, Gif sur Yvette, France
| | - Maïté Paternostre
- 1] CEA, Institute of Biology and Technologies of Saclay, 91191 CEA-Saclay, France [2] Institute for Integrative Biology of the Cell (I2BC), CEA, CNRS, Université Paris-Sud, 91191 CEA-Saclay, Gif sur Yvette, France
| | - Franck Artzner
- CNRS, UMR 6251, Institut de Physique de Rennes, 263 av. Général Leclerc, Université Rennes I, 35042 Rennes Cedex, France
| |
Collapse
|
58
|
Hattab G, Warschawski DE, Moncoq K, Miroux B. Escherichia coli as host for membrane protein structure determination: a global analysis. Sci Rep 2015; 5:12097. [PMID: 26160693 PMCID: PMC4498379 DOI: 10.1038/srep12097] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2015] [Accepted: 06/11/2015] [Indexed: 11/13/2022] Open
Abstract
The structural biology of membrane proteins (MP) is hampered by the difficulty in producing and purifying them. A comprehensive analysis of protein databases revealed that 213 unique membrane protein structures have been obtained after production of the target protein in E. coli. The primary expression system used was the one based on the T7 RNA polymerase, followed by the arabinose and T5 promoter based expression systems. The C41λ(DE3) and C43λ(DE3) bacterial mutant hosts have contributed to 28% of non E. coli membrane protein structures. A large scale analysis of expression protocols demonstrated a preference for a combination of bacterial host-vector together with a bimodal distribution of induction temperature and of inducer concentration. Altogether our analysis provides a set of rules for the optimal use of bacterial expression systems in membrane protein production.
Collapse
Affiliation(s)
- Georges Hattab
- Laboratoire de Biologie Physico-Chimique des Protéines Membranaires, Institut de Biologie Physico-Chimique, CNRS, Univ Paris Diderot, Sorbonne Paris Cité, PSL research university, Paris, France
| | - Dror E Warschawski
- Laboratoire de Biologie Physico-Chimique des Protéines Membranaires, Institut de Biologie Physico-Chimique, CNRS, Univ Paris Diderot, Sorbonne Paris Cité, PSL research university, Paris, France
| | - Karine Moncoq
- Laboratoire de Biologie Physico-Chimique des Protéines Membranaires, Institut de Biologie Physico-Chimique, CNRS, Univ Paris Diderot, Sorbonne Paris Cité, PSL research university, Paris, France
| | - Bruno Miroux
- Laboratoire de Biologie Physico-Chimique des Protéines Membranaires, Institut de Biologie Physico-Chimique, CNRS, Univ Paris Diderot, Sorbonne Paris Cité, PSL research university, Paris, France
| |
Collapse
|
59
|
IR-spectroscopic characterization of an elongated OmpG mutant. Arch Biochem Biophys 2015; 576:73-9. [DOI: 10.1016/j.abb.2015.04.010] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2015] [Revised: 04/10/2015] [Accepted: 04/27/2015] [Indexed: 11/22/2022]
|
60
|
Outer-membrane translocation of bulky small molecules by passive diffusion. Proc Natl Acad Sci U S A 2015; 112:E2991-9. [PMID: 26015567 DOI: 10.1073/pnas.1424835112] [Citation(s) in RCA: 58] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The outer membrane (OM) of gram-negative bacteria forms a protective layer around the cell that serves as a permeability barrier to prevent unrestricted access of noxious substances. The permeability barrier of the OM results partly from the limited pore diameters of OM diffusion channels. As a consequence, there is an "OM size-exclusion limit," and the uptake of bulky molecules with molecular masses of more than ∼ 600 Da is thought to be mediated by TonB-dependent, active transporters. Intriguingly, the OM protein CymA from Klebsiella oxytoca does not depend on TonB but nevertheless mediates efficient OM passage of cyclodextrins with diameters of up to ∼ 15 Å. Here we show, by using X-ray crystallography, molecular dynamics simulations, and single-channel electrophysiology, that CymA forms a monomeric 14-stranded β-barrel with a large pore that is occluded on the periplasmic side by the N-terminal 15 residues of the protein. Representing a previously unidentified paradigm in OM transport, CymA mediates the passive diffusion of bulky molecules via an elegant transport mechanism in which a mobile element formed by the N terminus acts as a ligand-expelled gate to preserve the permeability barrier of the OM.
Collapse
|
61
|
Kleinschmidt JH. Folding of β-barrel membrane proteins in lipid bilayers - Unassisted and assisted folding and insertion. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2015; 1848:1927-43. [PMID: 25983306 DOI: 10.1016/j.bbamem.2015.05.004] [Citation(s) in RCA: 65] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/22/2015] [Revised: 05/06/2015] [Accepted: 05/07/2015] [Indexed: 01/08/2023]
Abstract
In cells, β-barrel membrane proteins are transported in unfolded form to an outer membrane into which they fold and insert. Model systems have been established to investigate the mechanisms of insertion and folding of these versatile proteins into detergent micelles, lipid bilayers and even synthetic amphipathic polymers. In these experiments, insertion into lipid membranes is initiated from unfolded forms that do not display residual β-sheet secondary structure. These studies therefore have allowed the investigation of membrane protein folding and insertion in great detail. Folding of β-barrel membrane proteins into lipid bilayers has been monitored from unfolded forms by dilution of chaotropic denaturants that keep the protein unfolded as well as from unfolded forms present in complexes with molecular chaperones from cells. This review is aimed to provide an overview of the principles and mechanisms observed for the folding of β-barrel transmembrane proteins into lipid bilayers, the importance of lipid-protein interactions and the function of molecular chaperones and folding assistants. This article is part of a Special Issue entitled: Lipid-protein interactions.
Collapse
Affiliation(s)
- Jörg H Kleinschmidt
- Abteilung Biophysik, Institut für Biologie, FB 10, Universität Kassel and Center for Interdisciplinary Nanostructure Science and Technology (CINSaT), Heinrich-Plett-Str. 40, D-34132 Kassel, Germany.
| |
Collapse
|
62
|
Anand A, LeDoyt M, Karanian C, Luthra A, Koszelak-Rosenblum M, Malkowski MG, Puthenveetil R, Vinogradova O, Radolf JD. Bipartite Topology of Treponema pallidum Repeat Proteins C/D and I: OUTER MEMBRANE INSERTION, TRIMERIZATION, AND PORIN FUNCTION REQUIRE A C-TERMINAL β-BARREL DOMAIN. J Biol Chem 2015; 290:12313-31. [PMID: 25805501 PMCID: PMC4424362 DOI: 10.1074/jbc.m114.629188] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2014] [Revised: 03/20/2015] [Indexed: 11/06/2022] Open
Abstract
We previously identified Treponema pallidum repeat proteins TprC/D, TprF, and TprI as candidate outer membrane proteins (OMPs) and subsequently demonstrated that TprC is not only a rare OMP but also forms trimers and has porin activity. We also reported that TprC contains N- and C-terminal domains (TprC(N) and TprC(C)) orthologous to regions in the major outer sheath protein (MOSP(N) and MOSP(C)) of Treponema denticola and that TprC(C) is solely responsible for β-barrel formation, trimerization, and porin function by the full-length protein. Herein, we show that TprI also possesses bipartite architecture, trimeric structure, and porin function and that the MOSP(C)-like domains of native TprC and TprI are surface-exposed in T. pallidum, whereas their MOSP(N)-like domains are tethered within the periplasm. TprF, which does not contain a MOSP(C)-like domain, lacks amphiphilicity and porin activity, adopts an extended inflexible structure, and, in T. pallidum, is tightly bound to the protoplasmic cylinder. By thermal denaturation, the MOSP(N) and MOSP(C)-like domains of TprC and TprI are highly thermostable, endowing the full-length proteins with impressive conformational stability. When expressed in Escherichia coli with PelB signal sequences, TprC and TprI localize to the outer membrane, adopting bipartite topologies, whereas TprF is periplasmic. We propose that the MOSP(N)-like domains enhance the structural integrity of the cell envelope by anchoring the β-barrels within the periplasm. In addition to being bona fide T. pallidum rare outer membrane proteins, TprC/D and TprI represent a new class of dual function, bipartite bacterial OMP.
Collapse
Affiliation(s)
| | | | | | | | | | - Michael G Malkowski
- the Hauptman-Woodward Medical Research Institute and Department of Structural Biology, State University of New York, Buffalo, New York 14203, and
| | | | - Olga Vinogradova
- Pharmaceutical Sciences, University of Connecticut, Storrs, Connecticut 06269
| | - Justin D Radolf
- From the Departments of Medicine, Pediatrics, Molecular Biology and Biophysics, Genetics and Genomic Science, and Immunology, University of Connecticut Health Center, Farmington, Connecticut 06030,
| |
Collapse
|
63
|
Purification, Refolding, and Crystallization of the Outer Membrane Protein OmpG from Escherichia coli. Methods Enzymol 2015. [PMID: 25950964 DOI: 10.1016/bs.mie.2015.01.018] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/20/2023]
Abstract
OmpG is a pore-forming protein from E. coli outer membranes. Unlike the classical outer membrane porins, which are trimers, the OmpG channel is a monomeric β-barrel made of 14 antiparallel β-strands with short periplasmic turns and longer extracellular loops. The channel activity of OmpG is pH dependent and the channel is gated by the extracellular loop L6. At neutral/high pH, the channel is open and permeable for substrate molecules with a size up to 900 Da. At acidic pH, loop L6 folds across the channel and blocks the pore. The channel blockage at acidic pH appears to be triggered by the protonation of a histidine pair on neighboring β-strands, which repel one another, resulting in the rearrangement of loop L6 and channel closure. OmpG was purified by refolding from inclusion bodies and crystallized in two and three dimensions. Crystallization and analysis by electron microscopy and X-ray crystallography revealed the fundamental mechanisms essential for the channel activity.
Collapse
|
64
|
Fahie M, Chisholm C, Chen M. Resolved single-molecule detection of individual species within a mixture of anti-biotin antibodies using an engineered monomeric nanopore. ACS NANO 2015; 9:1089-98. [PMID: 25575121 PMCID: PMC4958048 DOI: 10.1021/nn506606e] [Citation(s) in RCA: 73] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/19/2023]
Abstract
Oligomeric protein nanopores with rigid structures have been engineered for the purpose of sensing a wide range of analytes including small molecules and biological species such as proteins and DNA. We chose a monomeric β-barrel porin, OmpG, as the platform from which to derive the nanopore sensor. OmpG is decorated with seven flexible loops that move dynamically to create a distinct gating pattern when ionic current passes through the pore. Biotin was chemically tethered to the most flexible one of these loops. The gating characteristic of the loop's movement in and out of the porin was substantially altered by analyte protein binding. The gating characteristics of the pore with bound targets were remarkably sensitive to molecular identity, even providing the ability to distinguish between homologues within an antibody mixture. A total of five gating parameters were analyzed for each analyte to create a unique fingerprint for each biotin-binding protein. Our exploitation of gating noise as a molecular identifier may allow more sophisticated sensor design, while OmpG's monomeric structure greatly simplifies nanopore production.
Collapse
Affiliation(s)
- Monifa Fahie
- Molecular and Cellular Biology Program, University of Massachusetts Amherst, Amherst, MA 01003
- Department of Chemistry, University of Massachusetts Amherst, Amherst, MA 01003
| | - Christina Chisholm
- Molecular and Cellular Biology Program, University of Massachusetts Amherst, Amherst, MA 01003
- Department of Chemistry, University of Massachusetts Amherst, Amherst, MA 01003
| | - Min Chen
- Molecular and Cellular Biology Program, University of Massachusetts Amherst, Amherst, MA 01003
- Department of Chemistry, University of Massachusetts Amherst, Amherst, MA 01003
- Address correspondence to:
| |
Collapse
|
65
|
Grosse W, Psakis G, Mertins B, Reiss P, Windisch D, Brademann F, Bürck J, Ulrich A, Koert U, Essen LO. Structure-based engineering of a minimal porin reveals loop-independent channel closure. Biochemistry 2014; 53:4826-38. [PMID: 24988371 DOI: 10.1021/bi500660q] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Porins, like outer membrane protein G (OmpG) of Escherichia coli, are ideal templates among ion channels for protein and chemical engineering because of their robustness and simple architecture. OmpG shows fast transitions between open and closed states, which were attributed to loop 6 (L6). As flickering limits single-channel-based applications, we pruned L6 by either 8 or 12 amino acids. While the open probabilities of both L6 variants resemble that of native OmpG, their gating frequencies were reduced by 63 and 81%, respectively. Using the 3.2 Å structure of the shorter L6 variant in the open state, we engineered a minimal porin (220 amino acids), where all remaining extramembranous loops were truncated. Unexpectedly, this minimized porin still exhibited gating, but it was 5-fold less frequent than in OmpG. The residual gating of the minimal pore is hence independent of L6 rearrangements and involves narrowing of the ion conductance pathway most probably driven by global stretching-flexing deformations of the membrane-embedded β-barrel.
Collapse
Affiliation(s)
- Wolfgang Grosse
- Department of Chemistry, Philipps-University Marburg , Hans-Meerwein-Straße, 35032 Marburg, Germany
| | | | | | | | | | | | | | | | | | | |
Collapse
|
66
|
Abstract
Ion channels provide a conductance pathway for the passive transport of ions across membranes. These functional molecules perform key tasks in biological systems such as neuronal signaling, muscular control, and sensing. Recently, function-oriented synthesis researchers began to focus on ion channels with the goal of modifying the function of existing ion channels (ion selectivity, gating) or creating new channels with novel functions. Both approaches, ion channel engineering and de novo design, have involved synthetic chemists, biochemists, structural biologists, and neurochemists. Researchers characterize the function of ion channels by measuring their conductance in samples of biological membranes (patch clamp) or artificial membranes (planar lipid bilayers). At the single molecule level, these measurements require special attention to the purity of the sample, a challenge that synthetic chemists should be aware of. Ideally, researchers study the function of channels while also acquiring structural data (X-ray, NMR) to understand and predict how synthetic modifications alter channel function. Long-term oriented researchers would like to apply synthetic ion channels to single molecule sensing and to implantat these synthetic systems in living organisms as tools or for the treatment of channelopathies. In this Account, we discuss our own work on synthetic ion channels and explain the shift of our research focus from a de novo design of oligo-THFs and oligo-THF-amino acids to ion channel engineering. We introduce details about two biological lead structures for ion channel engineering: the gramicidin β(6,3) helix as an example of a channel with a narrow ion conductance pathway and the outer membrane porins (OmpF, OmpG) with their open β-barrel structure. The increase and the reversal of ion selectivity of these systems and the hydrophobic match/mismatch of the channel with the phospholipid bilayer are of particular interest. For engineering ion channels, we need to supplement the single-point attachment of a synthetic modulator with the synthesis of a more challenging two-point attachment. The successful function-oriented synthesis of ion channels will require interdisciplinary efforts that include new electrophysiology techniques, efficient synthesis (peptide/protein/organic), and good structural analysis.
Collapse
Affiliation(s)
- Philipp Reiß
- Fachbereich Chemie, Philipps-Universität Marburg, Hans Meerwein Strasse, 35032 Marburg, Germany
| | - Ulrich Koert
- Fachbereich Chemie, Philipps-Universität Marburg, Hans Meerwein Strasse, 35032 Marburg, Germany
| |
Collapse
|
67
|
Rico F, Rigato A, Picas L, Scheuring S. Mechanics of proteins with a focus on atomic force microscopy. J Nanobiotechnology 2013; 11 Suppl 1:S3. [PMID: 24565326 PMCID: PMC4029730 DOI: 10.1186/1477-3155-11-s1-s3] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Abstract
The capacity of proteins to function relies on a balance between molecular stability to maintain their folded state and structural flexibility allowing conformational changes related to biological function. Among many others, four different examples can be chosen. The giant protein titin is stretched and can unfold during muscle contraction providing passive elasticity to muscle tissue; myoglobin adsorbs and releases oxygen molecules thank to conformational changes in its structure; the outer membrane protein G (OmpG) is a bacterial porin with a long and flexible loop that modulates gating; and the proton pump bacteriorhodopsin adapts its cytosolic half to allow proton pumping. All these conformational changes triggered either by chemical or by physical cues, require mechanical flexibility or elasticity of certain protein domains. While the methods to determine protein structure, X-ray crystallography above all, have been dramatically improved over the last decades, the number of tools that directly measure the mechanical flexibility of proteins and protein domains is still limited. In this tutorial, after a brief introduction to protein structure, we present some of the available techniques to estimate protein flexibility, then focusing on atomic force microscopy (AFM). We describe the principles of the technique and its various imaging and force spectroscopy modes of operation that allow probing the elasticity of proteins, protein domains and their surrounding environment.
Collapse
|
68
|
Yoshihara E, Eda S. Diversity in the Oligomeric Channel Structure of the Multidrug Efflux Pumps inPseudomonas aeruginosa. Microbiol Immunol 2013; 51:47-52. [PMID: 17237598 DOI: 10.1111/j.1348-0421.2007.tb03889.x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
MexAB-OprM, the multidrug efflux pump of Pseudomonas aeruginosa, contributes to the high resistance of this organism to a wide variety of antibiotics. To investigate the structure and function of OprM, the outer membrane channel of MexAB-OprM, we examined the oligomeric states of OprM and its homologues OprJ and OprN. These proteins were treated with crosslinking reagent after their reconstitution into liposome membranes. The crosslinked products indicated that OprM and OprN formed trimers, while OprJ unexpectedly appeared to form a tetramer. In order to test whether differences in oligomeric structure might be intimately related to channel function, we examined the channel-forming activity of these proteins by liposome swelling assay. However, no significant differences in channel characteristics were detected among OprM, OprJ, and OprN. We proposed the probable explanation for the diversity in the oligomeric structure of the channel proteins.
Collapse
Affiliation(s)
- Eisaku Yoshihara
- Department of Molecular Life Science, Tokai University School of Medicine, Kanagawa, Japan.
| | | |
Collapse
|
69
|
Rösner HI, Kragelund BB. Structure and dynamic properties of membrane proteins using NMR. Compr Physiol 2013; 2:1491-539. [PMID: 23798308 DOI: 10.1002/cphy.c110036] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
Integral membrane proteins are one of the most challenging groups of macromolecules despite their apparent conformational simplicity. They manage and drive transport, circulate information, and participate in cellular movements via interactions with other proteins and through intricate conformational changes. Their structural and functional decoding is challenging and has imposed demanding experimental development. Solution nuclear magnetic resonance (NMR) spectroscopy is one of the techniques providing the capacity to make a significant difference in the deciphering of the membrane protein structure-function paradigm. The method has evolved dramatically during the last decade resulting in a plethora of new experiments leading to a significant increase in the scientific repertoire for studying membrane proteins. Besides solving the three-dimensional structures using state-of-the-art approaches, a large variety of developments of well-established techniques are available providing insight into membrane protein flexibility, dynamics, and interactions. Inspired by the speed of development in the application of new strategies, by invention of methods to measure solvent accessibility and describe low-populated states, this review seeks to introduce the vast possibilities solution NMR can offer to the study of membrane protein structure-function analyses with special focus on applicability.
Collapse
Affiliation(s)
- Heike I Rösner
- Structural Biology and NMR Laboratory, Department of Biology, University of Copenhagen, Copenhagen, Denmark
| | | |
Collapse
|
70
|
Dreyer J, Strodel P, Ippoliti E, Finnerty J, Eisenberg B, Carloni P. Ion permeation in the NanC porin from Escherichia coli: free energy calculations along pathways identified by coarse-grain simulations. J Phys Chem B 2013; 117:13534-42. [PMID: 24147565 DOI: 10.1021/jp4081838] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
Using the X-ray structure of a recently discovered bacterial protein, the N-acetylneuraminic acid-inducible channel (NanC), we investigate computationally K(+) and Cl(-) ions' permeation. We identify ion permeation pathways that are likely to be populated using coarse-grain Monte Carlo simulations. Next, we use these pathways as reaction coordinates for umbrella sampling-based free energy simulations. We find distinct tubelike pathways connecting specific binding sites for K(+) and, more pronounced, for Cl(-) ions. Both ions permeate the porin preserving almost all of their first hydration shell. The calculated free energy barriers are G(#) ≈ 4 kJ/mol and G(#) ≈ 8 kJ/mol for Cl(-) and K(+), respectively. Within the approximations associated with these values, discussed in detail in this work, we suggest that the porin is slightly selective for Cl(-) versus K(+). Our suggestion is consistent with the experimentally observed weak Cl(-) over K(+) selectivity. A rationale for the latter is suggested by a comparison with previous calculations on strongly anion selective porins.
Collapse
Affiliation(s)
- Jens Dreyer
- Computational Biophysics, German Research School for Simulation Sciences , D-52425 Jülich, Germany
| | | | | | | | | | | |
Collapse
|
71
|
Pfreundschuh M, Hensen U, Müller DJ. Quantitative imaging of the electrostatic field and potential generated by a transmembrane protein pore at subnanometer resolution. NANO LETTERS 2013; 13:5585-5593. [PMID: 24079830 DOI: 10.1021/nl403232z] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/02/2023]
Abstract
Elucidating the mechanisms by which proteins translocate small molecules and ions through transmembrane pores and channels is of great interest in biology, medicine, and nanotechnology. However, the characterization of pore forming proteins in their native state lacks suitable methods that are capable of high-resolution imaging (~1 nm) while simultaneously mapping physical and chemical properties. Here we report how force-distance (FD) curve-based atomic force microscopy (AFM) imaging can be applied to image the native pore forming outer membrane protein F (OmpF) at subnanometer resolution and to quantify the electrostatic field and potential generated by the transmembrane pore. We further observe the electrostatic field and potential of the OmpF pore switching "on" and "off" in dependence of the electrolyte concentration. Because electrostatic field and potential select for charged molecules and ions and guide them to the transmembrane pore the insights are of fundamental importance to understand the pore function. These experimental results establish FD-based AFM as a unique tool to image biological systems to subnanometer resolution and to quantify their electrostatic properties.
Collapse
Affiliation(s)
- Moritz Pfreundschuh
- Department of Biosystems Science and Engineering, ETH Zurich , CH-4058 Basel, Switzerland
| | | | | |
Collapse
|
72
|
Zhuang T, Chisholm C, Chen M, Tamm LK. NMR-based conformational ensembles explain pH-gated opening and closing of OmpG channel. J Am Chem Soc 2013; 135:15101-13. [PMID: 24020969 DOI: 10.1021/ja408206e] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
The outer membrane protein G (OmpG) is a monomeric 33 kDa 14-stranded β-barrel membrane protein functioning as a nonspecific porin for the uptake of oligosaccharides in Escherichia coli. Two different crystal structures of OmpG obtained at different values of pH suggest a pH-gated pore opening mechanism. In these structures, extracellular loop 6 extends away from the barrel wall at neutral pH but is folded back into the pore lumen at low pH, blocking transport through the pore. Loop 6 was invisible in a previously published solution NMR structure of OmpG in n-dodecylphosphocholine micelles, presumably due to conformational exchange on an intermediate NMR time scale. Here we present an NMR paramagnetic relaxation enhancement (PRE)-based approach to visualize the conformational dynamics of loop 6 and to calculate conformational ensembles that explain the pH-gated opening and closing of the OmpG channel. The different loop conformers detected by the PRE ensemble calculations were validated by disulfide cross-linking of strategically engineered cysteines and electrophysiological single channel recordings. The results indicate a more dynamically regulated channel opening and closing than previously thought and reveal additional membrane-associated conformational ensembles at pH 6.3 and 7.0. We anticipate this approach to be generally applicable to detect and characterize functionally important conformational ensembles of membrane proteins.
Collapse
Affiliation(s)
- Tiandi Zhuang
- Department of Molecular Physiology and Biological Physics and Center for Membrane Biology, University of Virginia , Charlottesville, Virginia 22903, United States
| | | | | | | |
Collapse
|
73
|
Galdiero S, Falanga A, Cantisani M, Tarallo R, Della Pepa ME, D'Oriano V, Galdiero M. Microbe-host interactions: structure and role of Gram-negative bacterial porins. Curr Protein Pept Sci 2013; 13:843-54. [PMID: 23305369 PMCID: PMC3706956 DOI: 10.2174/138920312804871120] [Citation(s) in RCA: 127] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2012] [Revised: 07/20/2012] [Accepted: 07/25/2012] [Indexed: 12/13/2022]
Abstract
Gram negative bacteria have evolved many mechanisms of attaching to and invading host epithelial and immune cells. In particular, many outer membrane proteins (OMPs) are involved in this initial interaction between the pathogen and their host. The outer membrane (OM) of Gram-negative bacteria performs the crucial role of providing an extra layer of protection to the organism without compromising the exchange of material required for sustaining life. The OM, therefore, represents a sophisticated macromolecular assembly, whose complexity has yet to be fully elucidated. This review will summarize the structural information available for porins, a class of OMP, and highlight their role in bacterial pathogenesis and their potential as therapeutic targets. The functional role of porins in microbe-host interactions during various bacterial infections has emerged only during the last few decades, and their interaction with a variety of host tissues for adhesion to and invasion of the cell and for evasion of host-defense mechanisms have placed bacterial porins at the forefront of research in bacterial pathogenesis. This review will discuss the role that porins play in activating immunological responses, in inducing signaling pathways and their influence on antibiotic resistance mechanisms that involve modifications of the properties of the OM lipid barrier.
Collapse
Affiliation(s)
- Stefania Galdiero
- Department of Biological Sciences, Division of Biostructures, University of Naples "Federico II" and Istituto di Biostrutture e Bioimmagini, CNR, Via Mezzocannone 16, 80134, Naples, Italy.
| | | | | | | | | | | | | |
Collapse
|
74
|
Yu M, Sun P, He Y, Xiao L, Sun D, Zhang L, Tian C. Mutation of the critical pH-gating residues histidine 231 to glutamate increase open probability of outer membrane protein G in planar lipid bilayer. Protein Cell 2013; 4:803-6. [PMID: 24018649 DOI: 10.1007/s13238-013-3070-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022] Open
Affiliation(s)
- Mu Yu
- High Magnetic Field Laboratory, Chinese Academic of Sciences, Hefei, 230031, China
| | | | | | | | | | | | | |
Collapse
|
75
|
Mechanistic Explanation of Different Unfolding Behaviors Observed for Transmembrane and Soluble β-Barrel Proteins. Structure 2013; 21:1317-24. [DOI: 10.1016/j.str.2013.06.001] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2013] [Revised: 06/01/2013] [Accepted: 06/05/2013] [Indexed: 01/31/2023]
|
76
|
Ursby T, Unge J, Appio R, Logan DT, Fredslund F, Svensson C, Larsson K, Labrador A, Thunnissen MMGM. The macromolecular crystallography beamline I911-3 at the MAX IV laboratory. JOURNAL OF SYNCHROTRON RADIATION 2013; 20:648-53. [PMID: 23765310 PMCID: PMC3943556 DOI: 10.1107/s0909049513011734] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/28/2013] [Accepted: 04/29/2013] [Indexed: 05/12/2023]
Abstract
The macromolecular crystallography beamline I911-3, part of the Cassiopeia/I911 suite of beamlines, is based on a superconducting wiggler at the MAX II ring of the MAX IV Laboratory in Lund, Sweden. The beamline is energy-tunable within a range between 6 and 18 keV. I911-3 opened for users in 2005. In 2010-2011 the experimental station was completely rebuilt and refurbished such that it has become a state-of-the-art experimental station with better possibilities for rapid throughput, crystal screening and work with smaller samples. This paper describes the complete I911-3 beamline and how it is embedded in the Cassiopeia suite of beamlines.
Collapse
Affiliation(s)
- Thomas Ursby
- MAX IV Laboratory, Lund University, POB 118, Lund SE-221 00, Sweden.
| | | | | | | | | | | | | | | | | |
Collapse
|
77
|
Fox DA, Columbus L. Solution NMR resonance assignment strategies for β-barrel membrane proteins. Protein Sci 2013; 22:1133-40. [PMID: 23754333 DOI: 10.1002/pro.2291] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2013] [Revised: 05/17/2013] [Accepted: 05/18/2013] [Indexed: 12/23/2022]
Abstract
Membrane proteins in detergent micelles are large and dynamic complexes that present challenges for solution NMR investigations such as spectral overlap and line broadening. In this study, multiple methods are introduced to facilitate resonance assignment of β-barrel membrane proteins using Opa60 from Neisseria gonorrhoeae as a model system. Opa60 is an eight-stranded β-barrel with long extracellular loops (∼63% of the protein) that engage host receptors and induce engulfment of the bacterium. The NMR spectra of Opa60 in detergent micelles exhibits significant spectral overlap and resonances corresponding to the loop regions had variable line widths, which interfered with a complete assignment of the protein. To assign the β-barrel residues, trypsin cleavage was used to remove much of the extracellular loops while preserving the detergent solubilized β-barrel. The removal of the loop resonances significantly improved the assignment of the Opa60 β-barrel region (97% of the resonances corresponding to the β-barrel and periplasmic turns were assigned). For the loop resonance assignments, two strategies were implemented; modulating temperature and synthetic peptides. Lowering the temperature broadened many peaks beyond detection and simplified the spectra to only the most dynamic regions of the loops facilitating 27 loop resonances to be assigned. To further assign functionally important and unstructured regions of the extracellular loops, a synthetic 20 amino acid peptide was synthesized and had nearly complete spectral overlap with the full-length protein allowing 17 loop resonances to be assigned. Collectively, these strategies are effective tools that may accelerate solution NMR structure determination of β-barrel membrane proteins.
Collapse
Affiliation(s)
- Daniel A Fox
- Department of Chemistry, University of Virginia, Charlottesville, Virginia 22904, USA
| | | |
Collapse
|
78
|
The major outer sheath protein (Msp) of Treponema denticola has a bipartite domain architecture and exists as periplasmic and outer membrane-spanning conformers. J Bacteriol 2013; 195:2060-71. [PMID: 23457251 DOI: 10.1128/jb.00078-13] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
The major outer sheath protein (Msp) is a primary virulence determinant in Treponema denticola, as well as the parental ortholog for the Treponema pallidum repeat (Tpr) family in the syphilis spirochete. The Conserved Domain Database (CDD) server revealed that Msp contains two conserved domains, major outer sheath protein(N) (MOSP(N)) and MOSP(C), spanning residues 77 to 286 and 332 to 543, respectively, within the N- and C-terminal regions of the protein. Circular dichroism (CD) spectroscopy, Triton X-114 (TX-114) phase partitioning, and liposome incorporation demonstrated that full-length, recombinant Msp (Msp(Fl)) and a recombinant protein containing MOSP(C), but not MOSP(N), form amphiphilic, β-sheet-rich structures with channel-forming activity. Immunofluorescence analysis of intact T. denticola revealed that only MOSP(C) contains surface-exposed epitopes. Data obtained using proteinase K accessibility, TX-114 phase partitioning, and cell fractionation revealed that Msp exists as distinct OM-integrated and periplasmic trimers. Msp(Fl) folded in Tris buffer contained slightly less β-sheet structure than detergent-folded Msp(Fl); both forms, however, partitioned into the TX-114 detergent-enriched phase. CDD analysis of the nine Tpr paralogs predicted to be outer membrane proteins (OMPs) revealed that seven have an Msp-like bipartite structure; phylogenetic analysis revealed that the MOSP(N) and MOSP(C) domains of Msp are most closely related to those of TprK. Based upon our collective results, we propose a model whereby a newly exported, partially folded intermediate can be either processed for OM insertion by the β-barrel assembly machinery (BAM) or remain periplasmic, ultimately forming a stable, water-soluble trimer. Extrapolated to T. pallidum, our model enables us to explain how individual Tprs can localize to either the periplasmic (e.g., TprK) or OM (e.g., TprC) compartments.
Collapse
|
79
|
Vinothkumar KR, Edwards PC, Standfuss J. Practical aspects in expression and purification of membrane proteins for structural analysis. Methods Mol Biol 2013; 955:17-30. [PMID: 23132053 DOI: 10.1007/978-1-62703-176-9_2] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
A surge of membrane protein structures in the last few years can be attributed to advances in technologies starting at the level of genomes, to highly efficient expression systems, stabilizing conformational flexibility, automation of crystallization and data collection for screening large numbers of crystals and the microfocus beam lines at synchrotrons. The substantial medical importance of many membrane proteins provides a strong incentive to understand them at the molecular level. It is becoming obvious that the major bottleneck in many of the membrane projects is obtaining sufficient amount of stable functional proteins in a detergent micelle for structural studies. Naturally, large effort has been spent on optimizing and advancing multiple expression systems and purification strategies that have started to yield sufficient protein and structures. We describe in this chapter protocols to refold membrane proteins from inclusion bodies, purification from inner membranes of Escherichia coli and from mammalian cell lines.
Collapse
|
80
|
Galdiero S, Falanga A, Cantisani M, Tarallo R, Della Pepa ME, D'Oriano V, Galdiero M. Microbe-host interactions: structure and role of Gram-negative bacterial porins. Curr Protein Pept Sci 2012. [PMID: 23305369 DOI: 10.2174/1389203711213080012] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/26/2023]
Abstract
Gram negative bacteria have evolved many mechanisms of attaching to and invading host epithelial and immune cells. In particular, many outer membrane proteins (OMPs) are involved in this initial interaction between the pathogen and their host. The outer membrane (OM) of Gram-negative bacteria performs the crucial role of providing an extra layer of protection to the organism without compromising the exchange of material required for sustaining life. The OM, therefore, represents a sophisticated macromolecular assembly, whose complexity has yet to be fully elucidated. This review will summarize the structural information available for porins, a class of OMP, and highlight their role in bacterial pathogenesis and their potential as therapeutic targets. The functional role of porins in microbe-host interactions during various bacterial infections has emerged only during the last few decades, and their interaction with a variety of host tissues for adhesion to and invasion of the cell and for evasion of host-defense mechanisms have placed bacterial porins at the forefront of research in bacterial pathogenesis. This review will discuss the role that porins play in activating immunological responses, in inducing signaling pathways and their influence on antibiotic resistance mechanisms that involve modifications of the properties of the OM lipid barrier.
Collapse
Affiliation(s)
- Stefania Galdiero
- Department of Biological Sciences, Division of Biostructures, University of Naples "Federico II" and Istituto di Biostrutture e Bioimmagini, CNR, Via Mezzocannone 16, 80134, Naples, Italy.
| | | | | | | | | | | | | |
Collapse
|
81
|
Kiser PD, Farquhar ER, Shi W, Sui X, Chance MR, Palczewski K. Structure of RPE65 isomerase in a lipidic matrix reveals roles for phospholipids and iron in catalysis. Proc Natl Acad Sci U S A 2012; 109:E2747-56. [PMID: 23012475 PMCID: PMC3478654 DOI: 10.1073/pnas.1212025109] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
RPE65 is a key metalloenzyme responsible for maintaining visual function in vertebrates. Despite extensive research on this membrane-bound retinoid isomerase, fundamental questions regarding its enzymology remain unanswered. Here, we report the crystal structure of RPE65 in a membrane-like environment. These crystals, obtained from enzymatically active, nondelipidated protein, displayed an unusual packing arrangement wherein RPE65 is embedded in a lipid-detergent sheet. Structural differences between delipidated and nondelipidated RPE65 uncovered key residues involved in substrate uptake and processing. Complementary iron K-edge X-ray absorption spectroscopy data established that RPE65 as isolated contained a divalent iron center and demonstrated the presence of a tightly bound ligand consistent with a coordinated carboxylate group. These results support the hypothesis that the Lewis acidity of iron could be used to promote ester dissociation and generation of a carbocation intermediate required for retinoid isomerization.
Collapse
Affiliation(s)
- Philip D. Kiser
- Department of Pharmacology, School of Medicine, Case Western Reserve University, Cleveland, OH 44106; and
| | - Erik R. Farquhar
- Center for Proteomics and Bioinformatics, Center for Synchrotron Biosciences, School of Medicine, Case Western Reserve University, Cleveland, OH 44106
| | - Wuxian Shi
- Center for Proteomics and Bioinformatics, Center for Synchrotron Biosciences, School of Medicine, Case Western Reserve University, Cleveland, OH 44106
| | - Xuewu Sui
- Department of Pharmacology, School of Medicine, Case Western Reserve University, Cleveland, OH 44106; and
| | - Mark R. Chance
- Center for Proteomics and Bioinformatics, Center for Synchrotron Biosciences, School of Medicine, Case Western Reserve University, Cleveland, OH 44106
| | - Krzysztof Palczewski
- Department of Pharmacology, School of Medicine, Case Western Reserve University, Cleveland, OH 44106; and
| |
Collapse
|
82
|
Besya AB, Mobasheri H, Ejtehadi MR. Gating and conduction of nano-channel forming proteins: a computational approach. J Biomol Struct Dyn 2012; 31:818-28. [PMID: 22928968 DOI: 10.1080/07391102.2012.712460] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
Abstract
Monitoring conformational changes in ion channels is essential to understand their gating mechanism. Here, we explore the structural dynamics of four outer membrane proteins with different structures and functions in the slowest nonzero modes of vibration. Normal mode analysis was performed on the modified elastic network model of channel in the membrane. According to our results, when membrane proteins were analyzed in the dominant mode, the composed pores, TolC and α-hemolysin showed large motions at the intramembrane β-barrel region while, in other porins, OmpA and OmpF, largest motions observed in the region of external flexible loops. A criterion based on equipartition theorem was used to measure the possible amplitude of vibration in channel forming proteins. The current approach complements theoretical and experimental techniques including HOLE, Molecular Dynamics (MD), and voltage clamp used to address the channel's structure and dynamics and provides the means to conduct a theoretical simultaneous study of the structure and function of the channel. An animated interactive 3D complement (I3DC) is available in Proteopedia at http://proteopedia.org/w/Journal:JBSD:3.
Collapse
Affiliation(s)
- A B Besya
- Institute for Nano Science and Technology, Sharif University of Technology, P.O. Box 14588-89694, Tehran, Iran
| | | | | |
Collapse
|
83
|
Caffrey M, Li D, Dukkipati A. Membrane protein structure determination using crystallography and lipidic mesophases: recent advances and successes. Biochemistry 2012; 51:6266-88. [PMID: 22783824 DOI: 10.1021/bi300010w] [Citation(s) in RCA: 82] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
The crystal structure of the β(2)-adrenergic receptor in complex with an agonist and its cognate G protein has just recently been determined. It is now possible to explore in molecular detail the means by which this paradigmatic transmembrane receptor binds agonist, communicates the impulse or signaling event across the membrane, and sets in motion a series of G protein-directed intracellular responses. The structure was determined using crystals of the ternary complex grown in a rationally designed lipidic mesophase by the so-called in meso method. The method is proving to be particularly useful in the G protein-coupled receptor field where the structures of 13 distinct receptor types have been determined in the past 5 years. In addition to receptors, the method has proven to be useful with a wide variety of integral membrane protein classes that include bacterial and eukaryotic rhodopsins, light-harvesting complex II (LHII), photosynthetic reaction centers, cytochrome oxidases, β-barrels, an exchanger, and an integral membrane peptide. This attests to the versatility and range of the method and supports the view that the in meso method should be included in the arsenal of the serious membrane structural biologist. For this to happen, however, the reluctance to adopt it attributable, in part, to the anticipated difficulties associated with handling the sticky, viscous cubic mesophase in which crystals grow must be overcome. Harvesting and collecting diffraction data with the mesophase-grown crystals are also viewed with some trepidation. It is acknowledged that there are challenges associated with the method. Over the years, we have endeavored to establish how the method works at a molecular level and to make it user-friendly. To these ends, tools for handling the mesophase in the pico- to nanoliter volume range have been developed for highly efficient crystallization screening in manual and robotic modes. Methods have been implemented for evaluating the functional activity of membrane proteins reconstituted into the bilayer of the cubic phase as a prelude to crystallogenesis. Glass crystallization plates that provide unparalleled optical quality and sensitivity to nascent crystals have been built. Lipid and precipitant screens have been designed for a more rational approach to crystallogenesis such that the method can now be applied to an even wider variety of membrane protein types. In this work, these assorted advances are outlined along with a summary of the membrane proteins that have yielded to the method. The prospects for and the challenges that must be overcome to further develop the method are described.
Collapse
Affiliation(s)
- Martin Caffrey
- Membrane Structural and Functional Biology Group, School of Medicine and School of Biochemistry and Immunology, Trinity College Dublin, Dublin, Ireland.
| | | | | |
Collapse
|
84
|
Althoff T, Davies KM, Schulze S, Joos F, Kühlbrandt W. GRecon: a method for the lipid reconstitution of membrane proteins. Angew Chem Int Ed Engl 2012; 51:8343-7. [PMID: 22821803 PMCID: PMC3494379 DOI: 10.1002/anie.201202094] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2012] [Indexed: 11/30/2022]
Affiliation(s)
- Thorsten Althoff
- Max-Planck-Institut für Biophysik, Strukturbiologie, Max-von-Laue-Strasse 3, 60438 Frankfurt, Germany
| | | | | | | | | |
Collapse
|
85
|
Althoff T, Davies KM, Schulze S, Joos F, Kühlbrandt W. GRecon: A Method for the Lipid Reconstitution of Membrane Proteins. Angew Chem Int Ed Engl 2012. [DOI: 10.1002/ange.201202094] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
86
|
Korkmaz F, Köster S, Yildiz O, Mäntele W. In situ opening/closing of OmpG from E. coli and the splitting of β-sheet signals in ATR-FTIR spectroscopy. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2012; 91:395-401. [PMID: 22402479 DOI: 10.1016/j.saa.2012.01.025] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/03/2011] [Revised: 01/04/2012] [Accepted: 01/16/2012] [Indexed: 05/31/2023]
Abstract
The pH dependent opening and closure of Escherichia coli OmpG is driven by the formation and breaking of hydrogen bridges in β-strands S11-S13. We have investigated the in situ secondary structural changes of OmpG with ATR-FTIR difference spectroscopy in order to detect the signals associated with the newly established interactions. Curve-fitting of OmpG in two pH conditions revealed the splitting and shifting of β-sheet signals upon opening of the channel. Besides secondary structure changes, there are also amino acid side chain signals that play active role in opening/closing of the channel. An interaction among positively charged arginines and negatively charged aspartic and glutamic acid residues is suggested upon closure of the channel while this interaction is abolished when the channel opens at higher pH.
Collapse
Affiliation(s)
- Filiz Korkmaz
- Atilim University, Physics Unit, Biophysics Laboratory, Kizilcasar Mah., 06836 Ankara, Turkey.
| | | | | | | |
Collapse
|
87
|
Balasubramaniam D, Arockiasamy A, Kumar PD, Sharma A, Krishnaswamy S. Asymmetric pore occupancy in crystal structure of OmpF porin from Salmonella typhi. J Struct Biol 2012; 178:233-44. [PMID: 22525817 DOI: 10.1016/j.jsb.2012.04.005] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2011] [Revised: 04/03/2012] [Accepted: 04/07/2012] [Indexed: 11/25/2022]
Abstract
OmpF is a major general diffusion porin of Salmonella typhi, a Gram-negative bacterium, which is an obligatory human pathogen causing typhoid. The structure of S. typhi Ty21a OmpF (PDB Id: 3NSG) determined at 2.8 Å resolution by X-ray crystallography shows a 16-stranded β-barrel with three β-barrel monomers associated to form a trimer. The packing observed in S. typhi Ty21a rfOmpF crystals has not been observed earlier in other porin structures. The variations seen in the loop regions provide a starting point for using the S. typhi OmpF for structure-based multi-valent vaccine design. Along one side of the S. typhi Ty21a OmpF pore there exists a staircase arrangement of basic residues (20R, 60R, 62K, 65R, 77R, 130R and 16K), which also contribute, to the electrostatic potential in the pore. This structure suggests the presence of asymmetric electrostatics in the porin oligomer. Moreover, antibiotic translocation, permeability and reduced uptake in the case of mutants can be understood based on the structure paving the way for designing new antibiotics.
Collapse
Affiliation(s)
- D Balasubramaniam
- Department of Genetic Engineering, School of Biotechnology, Madurai Kamaraj University, Madurai 625 021, India
| | | | | | | | | |
Collapse
|
88
|
Abstract
Biomimetic nanopores based on membrane-spanning single-walled carbon nanotubes have been designed to include selectivity filters based on combinations of anionic and cationic groups mimicking those present in bacterial porins and in voltage-gated sodium and calcium channels. The ion permeation and selectivity properties of these nanopores when embedded in a phospholipid bilayer have been explored by molecular dynamics simulations and free energy profile calculations. The interactions of the nanopores with sodium, potassium, calcium, and chloride ions have been explored as a function of the number of anionic and cationic groups within the selectivity filter. Unbiased molecular dynamics simulations show that the overall selectivity is largely determined by the net charge of the filter. Analysis of distribution functions reveals considerable structuring of the distribution of ions and water within the nanopores. The distributions of ions along the pore axis reveal local selectivity for cations around filter, even in those nanopores (C0) where the net filter charge is zero. Single ion free energy profiles also reveal clear evidence for cation selectivity, even in the C0 nanopores. Detailed analysis of the interactions of the C0 nanopore with Ca(2+) ions reveals that local interactions with the anionic (carboxylate) groups of the selectivity filter lead to (partial) replacement of solvating water as the ion passes through the pore. These studies suggest that a computational biomimetic approach can be used to evaluate our understanding of the design principles of nanopores and channels.
Collapse
|
89
|
Affiliation(s)
- Simon G Patching
- Astbury Centre for Structural Molecular Biology and Institute of Membrane and Systems Biology, Faculty of Biological Sciences, University of Leeds, Leeds, UK.
| |
Collapse
|
90
|
Damaghi M, Köster S, Bippes CA, Yildiz Ö, Müller DJ. One β Hairpin Follows the Other: Exploring Refolding Pathways and Kinetics of the Transmembrane β-Barrel Protein OmpG. Angew Chem Int Ed Engl 2011. [DOI: 10.1002/ange.201101450] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
|
91
|
Damaghi M, Köster S, Bippes CA, Yildiz Ö, Müller DJ. One β Hairpin Follows the Other: Exploring Refolding Pathways and Kinetics of the Transmembrane β-Barrel Protein OmpG. Angew Chem Int Ed Engl 2011; 50:7422-4. [DOI: 10.1002/anie.201101450] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2011] [Revised: 05/10/2011] [Indexed: 11/10/2022]
|
92
|
Damaghi M, Sapra KT, Köster S, Yildiz Ö, Kühlbrandt W, Muller DJ. Dual energy landscape: the functional state of the β-barrel outer membrane protein G molds its unfolding energy landscape. Proteomics 2011; 10:4151-62. [PMID: 21058339 DOI: 10.1002/pmic.201000241] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
We applied dynamic single-molecule force spectroscopy to quantify the parameters (free energy of activation and distance of the transition state from the folded state) characterizing the energy barriers in the unfolding energy landscape of the outer membrane protein G (OmpG) from Escherichia coli. The pH-dependent functional switching of OmpG directs the protein along different regions on the unfolding energy landscape. The two functional states of OmpG take the same unfolding pathway during the sequential unfolding of β-hairpins I-IV. After the initial unfolding events, the unfolding pathways diverge. In the open state, the unfolding of β-hairpin V in one step precedes the unfolding of β-hairpin VI. In the closed state, β-hairpin V and β-strand S11 with a part of extracellular loop L6 unfold cooperatively, and subsequently β-strand S12 unfolds with the remaining loop L6. These two unfolding pathways in the open and closed states join again in the last unfolding step of β-hairpin VII. Also, the conformational change from the open to the closed state witnesses a rigidified extracellular gating loop L6. Thus, a change in the conformational state of OmpG not only bifurcates its unfolding pathways but also tunes its mechanical properties for optimum function.
Collapse
Affiliation(s)
- Mehdi Damaghi
- ETH Zürich, Department of Biosystems Science and Engineering, Basel, Switzerland
| | | | | | | | | | | |
Collapse
|
93
|
Engel A. Imaging and interrogating native membrane proteins using the atomic force microscope. Methods Mol Biol 2011; 736:153-167. [PMID: 21660727 DOI: 10.1007/978-1-61779-105-5_11] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/30/2023]
Abstract
Membrane proteins exist in a lipid bilayer and provide for cell-cell communication, transport solutes, and convert energies. Detergents are used to extract membrane proteins and keep them in solution for purification and subsequent analyses. The atomic force microscope (AFM) is a powerful tool for imaging and manipulating membrane proteins in their native state without the necessity to solubilize them. It allows membranes that are adsorbed to flat solid supports to be raster-scanned in physiological solutions with an atomically sharp tip. Therefore, AFM is capable of observing biological molecular machines at work. Superb images of native membranes have been recorded, and a quantitative interpretation of the data acquired using the AFM tip has become possible. In addition, multifunctional probes to simultaneously acquire information on the topography and electrical properties of membrane proteins have been produced. This progress is discussed here and fosters expectations for future developments and applications of AFM and single-molecule force spectroscopy.
Collapse
Affiliation(s)
- Andreas Engel
- Maurice E. Müller Institute for Structural Biology, Biozentrum, University of Basel, Basel, Switzerland.
| |
Collapse
|
94
|
Abstract
The voltage-dependent anion channel (VDAC), located in the outer mitochondrial membrane, acts as a gatekeeper for the entry and exit of mitochondrial metabolites. Here we reveal functional dynamics of isoform one of VDAC (VDAC1) by a combination of solution NMR spectroscopy, Gaussian network model analysis, and molecular dynamics simulation. Micro- to millisecond dynamics are significantly increased for the N-terminal six β-strands of VDAC1 in micellar solution, in agreement with increased B-factors observed in the same region in the bicellar crystal structure of VDAC1. Molecular dynamics simulations reveal that a charge on the membrane-facing glutamic acid 73 (E73) accounts for the elevation of N-terminal protein dynamics as well as a thinning of the nearby membrane. Mutation or chemical modification of E73 strongly reduces the micro- to millisecond dynamics in solution. Because E73 is necessary for hexokinase-I-induced VDAC channel closure and inhibition of apoptosis, our results imply that micro- to millisecond dynamics in the N-terminal part of the barrel are essential for VDAC interaction and gating.
Collapse
|
95
|
Abstract
Gram-negative bacteria and mitochondria are both covered by two distinct biological membranes. These membrane systems have been maintained during the course of evolution from an early evolutionary precursor. Both outer membranes accommodate channels of the porin family, which are designed for the uptake and exchange of metabolites, including ions and small molecules, such as nucleosides or sugars. In bacteria, the structure of the outer membrane porin protein family of β-barrels is generally characterized by an even number of β-strands; usually 14, 16 or 18 strands are observed forming the bacterial porin barrel wall. In contrast, the recent structures of the mitochondrial porin, also known as VDAC (voltage-dependent anion channel), show an uneven number of 19 β-strands, but a similar molecular architecture. Despite the lack of a clear evolutionary link between these protein families, their common principles and differences in assembly, architecture and function are summarized in the present review.
Collapse
|
96
|
The 3D structures of VDAC represent a native conformation. Trends Biochem Sci 2010; 35:514-21. [PMID: 20708406 DOI: 10.1016/j.tibs.2010.03.005] [Citation(s) in RCA: 106] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2009] [Revised: 03/07/2010] [Accepted: 03/08/2010] [Indexed: 11/23/2022]
Abstract
The most abundant protein of the mitochondrial outer membrane is the voltage-dependent anion channel (VDAC), which facilitates the exchange of ions and molecules between mitochondria and cytosol and is regulated by interactions with other proteins and small molecules. VDAC has been studied extensively for more than three decades, and last year three independent investigations revealed a structure of VDAC-1 exhibiting 19 transmembrane beta-strands, constituting a unique structural class of beta-barrel membrane proteins. Here, we provide a historical perspective on VDAC research and give an overview of the experimental design used to obtain these structures. Furthermore, we validate the protein refolding approach and summarize the biochemical and biophysical evidence that links the 19-stranded structure to the native form of VDAC.
Collapse
|
97
|
Preiss L, Yildiz Ö, Hicks DB, Krulwich TA, Meier T. A new type of proton coordination in an F(1)F(o)-ATP synthase rotor ring. PLoS Biol 2010; 8:e1000443. [PMID: 20689804 PMCID: PMC2914638 DOI: 10.1371/journal.pbio.1000443] [Citation(s) in RCA: 77] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2010] [Accepted: 06/24/2010] [Indexed: 11/26/2022] Open
Abstract
The high-resolution structure of the rotor ring from alkaliphilic Bacillus pseudofirmus OF4 reveals a new type of ion binding in F1Fo-ATP synthases. We solved the crystal structure of a novel type of c-ring isolated from Bacillus pseudofirmus OF4 at 2.5 Å, revealing a cylinder with a tridecameric stoichiometry, a central pore, and an overall shape that is distinct from those reported thus far. Within the groove of two neighboring c-subunits, the conserved glutamate of the outer helix shares the proton with a bound water molecule which itself is coordinated by three other amino acids of outer helices. Although none of the inner helices contributes to ion binding and the glutamate has no other hydrogen bonding partner than the water oxygen, the site remains in a stable, ion-locked conformation that represents the functional state present at the c-ring/membrane interface during rotation. This structure reveals a new, third type of ion coordination in ATP synthases. It appears in the ion binding site of an alkaliphile in which it represents a finely tuned adaptation of the proton affinity during the reaction cycle. Like the wind turbines that generate electricity, the F1Fo-ATP synthases are natural “ion turbines” each made up of a stator and a rotor that turns, when driven by a flow of ions, to generate the cell's energy supply of ATP. The Fo motor rotates by reversible binding and release of coupling ions that flow down the electrochemical ion gradient across the cytoplasmic cell membrane (in the case of bacteria) or intracellular organelle membranes (in the case of eukaryotic cells). Here, we present the structure of a rotor (c-)ring from a Bacillus species (B. pseudofirmus OF4) determined at high-resolution by X-ray crystallography. This bacterium prefers alkaline environments where the concentration of protons (H+) is lower outside than inside the cell – the inverse of the situation usually found in organisms that prefer neutral or acidic environments. The amino acid sequence of the protein subunits in this rotor, nevertheless, has features common to an important group of ATP synthases in organisms from bacteria to man. The structure reveals a new type of ion binding in which a protonated glutamate residue in the protein associates with a water molecule. This finding raises the possibility considered by Nobel laureate Paul Boyer several decades ago that a hydronium ion (a protonated water molecule, H3O+), rather than a proton alone, might be the coupling species that energizes ATP synthesis. Also, it demonstrates the finely tuned adaptation of ATP synthase rotor rings and their ion-binding sites to the specific requirements of different organisms.
Collapse
Affiliation(s)
- Laura Preiss
- Department of Structural Biology, Max-Planck Institute of Biophysics, Frankfurt, Germany
| | - Özkan Yildiz
- Department of Structural Biology, Max-Planck Institute of Biophysics, Frankfurt, Germany
| | - David B. Hicks
- Department of Pharmacology and Systems Therapeutics, Mount Sinai School of Medicine, New York, New York, United States of America
| | - Terry A. Krulwich
- Department of Pharmacology and Systems Therapeutics, Mount Sinai School of Medicine, New York, New York, United States of America
| | - Thomas Meier
- Department of Structural Biology, Max-Planck Institute of Biophysics, Frankfurt, Germany
- Cluster of Excellence Macromolecular Complexes, Max-Planck Institute of Biophysics, Frankfurt, Germany
- * E-mail:
| |
Collapse
|
98
|
Korkmaz-Ozkan F, Köster S, Kühlbrandt W, Mäntele W, Yildiz O. Correlation between the OmpG secondary structure and its pH-dependent alterations monitored by FTIR. J Mol Biol 2010; 401:56-67. [PMID: 20561532 DOI: 10.1016/j.jmb.2010.06.015] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2010] [Revised: 06/01/2010] [Accepted: 06/08/2010] [Indexed: 11/16/2022]
Abstract
The channel activity of the outer-membrane protein G (OmpG) from Escherichia coli is pH-dependent. To investigate the role of the histidine pair His231/His261 in triggering channel opening and closing, we mutated both histidines to alanines and cysteines. Fourier transform infrared spectra revealed that the OmpG mutants stay-independent of pH-in an open conformation. Temperature ramp experiments indicate that the mutants are as stable as the open state of wild-type OmpG. The X-ray structure of the alanine-substituted OmpG mutant obtained at pH 6.5 confirms the constitutively open conformation. Compared to previous structures of the wild-type protein in the open and closed conformation, the mutant structure shows a difference in the extracellular loop L6 connecting beta-strands S12 and S13. A deletion of amino acids 220-228, which are thought to block the channel at low pH in wild-type OmpG, indicates conformational changes, which might be triggered by His231/His261.
Collapse
Affiliation(s)
- Filiz Korkmaz-Ozkan
- Institute of Biophysics, Goethe-University, Max-von-Laue-Str. 1, D-60438 Frankfurt am Main, Germany
| | | | | | | | | |
Collapse
|
99
|
Structural basis for solute transport, nucleotide regulation, and immunological recognition of Neisseria meningitidis PorB. Proc Natl Acad Sci U S A 2010; 107:6811-6. [PMID: 20351243 DOI: 10.1073/pnas.0912115107] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
PorB is the second most prevalent outer membrane protein in Neisseria meningitidis. PorB is required for neisserial pathogenesis and can elicit a Toll-like receptor mediated host immune response. Here, the x-ray crystal structure of PorB has been determined to 2.3 A resolution. Structural analysis and cocrystallization studies identify three putative solute translocation pathways through the channel pore: One pathway transports anions nonselectively, one transports cations nonselectively, and one facilitates the specific uptake of sugars. During infection, PorB likely binds host mitochondrial ATP, and cocrystallization with the ATP analog AMP-PNP suggests that binding of nucleotides regulates these translocation pathways both by partial occlusion of the pore and by restricting the motion of a putative voltage gating loop. PorB is located on the surface of N. meningitidis and can be recognized by receptors of the host innate immune system. Features of PorB suggest that Toll-like receptor mediated recognition outer membrane proteins may be initiated with a nonspecific electrostatic attraction.
Collapse
|
100
|
Scheuring S, Dufrêne YF. Atomic force microscopy: probing the spatial organization, interactions and elasticity of microbial cell envelopes at molecular resolution. Mol Microbiol 2010; 75:1327-36. [DOI: 10.1111/j.1365-2958.2010.07064.x] [Citation(s) in RCA: 74] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
|