51
|
Koch S, Acebron SP, Herbst J, Hatiboglu G, Niehrs C. Post-transcriptional Wnt Signaling Governs Epididymal Sperm Maturation. Cell 2015; 163:1225-1236. [DOI: 10.1016/j.cell.2015.10.029] [Citation(s) in RCA: 162] [Impact Index Per Article: 16.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2015] [Revised: 09/03/2015] [Accepted: 09/23/2015] [Indexed: 01/11/2023]
|
52
|
Gerlach JP, Emmink BL, Nojima H, Kranenburg O, Maurice MM. Wnt signalling induces accumulation of phosphorylated β-catenin in two distinct cytosolic complexes. Open Biol 2015; 4:140120. [PMID: 25392450 PMCID: PMC4248064 DOI: 10.1098/rsob.140120] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
Wnt/β-catenin signalling controls development and adult tissue homeostasis and causes cancer when inappropriately activated. In unstimulated cells, an Axin1-centred multi-protein complex phosphorylates the transcriptional co-activator β-catenin, marking it for degradation. Wnt signalling antagonizes β-catenin proteolysis, leading to its accumulation and target gene expression. How Wnt stimulation alters the size distribution, composition and activity of endogenous Axin1 complexes remains poorly understood. Here, we employed two-dimensional blue native/SDS-PAGE to analyse endogenous Axin1 and β-catenin complexes during Wnt signalling. We show that the size range of Axin1 complexes is conserved between species and remains largely unaffected by Wnt stimulation. We detect a striking Wnt-dependent, cytosolic accumulation of both non-phosphorylated and phosphorylated β-catenin within a 450 kDa Axin1-based complex and in a distinct, Axin1-free complex of 200 kDa. These results argue that during Wnt stimulation, phosphorylated β-catenin is released from the Axin1 complex but fails to undergo immediate degradation. Importantly, in APC-mutant cancer cells, the distribution of Axin1 and β-catenin complexes strongly resembles that of Wnt-stimulated cells. Our findings argue that Wnt signals and APC mutations interfere with the turnover of phosphorylated β-catenin. Furthermore, our results suggest that the accumulation of small-sized β-catenin complexes may serve as an indicator of Wnt pathway activity in primary cancer cells.
Collapse
Affiliation(s)
- Jan P Gerlach
- Department of Cell Biology, Center for Molecular Medicine, Heidelberglaan 100, Utrecht 3584CX, The Netherlands
| | - Benjamin L Emmink
- Department of Surgery, University Medical Center Utrecht, Heidelberglaan 100, Utrecht 3584CX, The Netherlands
| | - Hisashi Nojima
- MRC National Institute for Medical Research, The Ridgeway, Mill Hill, London NW7 1AA, UK
| | - Onno Kranenburg
- Department of Surgery, University Medical Center Utrecht, Heidelberglaan 100, Utrecht 3584CX, The Netherlands
| | - Madelon M Maurice
- Department of Cell Biology, Center for Molecular Medicine, Heidelberglaan 100, Utrecht 3584CX, The Netherlands
| |
Collapse
|
53
|
Abstract
Canonical Wnt signaling triggering β-catenin-dependent gene expression contributes to cell cycle progression, in particular at the G1/S transition. Recently, however, it became clear that the cell cycle can also feed back on Wnt signaling at the G2/M transition. This is illustrated by the fact that mitosis-specific cyclin-dependent kinases can phosphorylate the Wnt co-receptor LRP6 to prime the pathway for incoming Wnt signals when cells enter mitosis. In addition, there is accumulating evidence that various Wnt pathway components might exert additional, Wnt-independent functions that are important for proper regulation of mitosis. The importance of Wnt pathways during mitosis was most recently enforced by the discovery of Wnt signaling contributing to the stabilization of proteins other than β-catenin, specifically at G2/M and during mitosis. This Wnt-mediated stabilization of proteins, now referred to as Wnt/STOP, might on one hand contribute to maintaining a critical cell size required for cell division and, on the other hand, for the faithful execution of mitosis itself. In fact, most recently we have shown that Wnt/STOP is required for ensuring proper microtubule dynamics within mitotic spindles, which is pivotal for accurate chromosome segregation and for the maintenance of euploidy.
Collapse
Affiliation(s)
- Ailine Stolz
- a Georg-August University Goettingen; Goettingen Center for Molecular Biosciences and University Medical Center Goettingen; Institute of Molecular Oncology; Section for Cellular Oncology ; Göttingen , Germany
| | | |
Collapse
|
54
|
Nanomedicine to overcome radioresistance in glioblastoma stem-like cells and surviving clones. Trends Pharmacol Sci 2015; 36:236-52. [PMID: 25799457 DOI: 10.1016/j.tips.2015.02.002] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2014] [Revised: 01/28/2015] [Accepted: 02/03/2015] [Indexed: 12/14/2022]
Abstract
Radiotherapy is one of the standard treatments for glioblastoma, but its effectiveness often encounters the phenomenon of radioresistance. This resistance was recently attributed to distinct cell contingents known as glioblastoma stem-like cells (GSCs) and dominant clones. It is characterized in particular by the activation of signaling pathways and DNA repair mechanisms. Recent advances in the field of nanomedicine offer new possibilities for radiosensitizing these cell populations. Several strategies have been developed in this direction, the first consisting of encapsulating a contrast agent or synthesizing metal-based nanocarriers to concentrate the dose gradient at the level of the target tissue. In the second strategy the physicochemical properties of the vectors are used to encapsulate a wide range of pharmacological agents which act in synergy with the ionizing radiation to destroy the cancerous cells. This review reports on the various molecular anomalies present in GSCs and the predominant role of nanomedicines in the development of radiosensitization strategies.
Collapse
|
55
|
MacLean AL, Rosen Z, Byrne HM, Harrington HA. Parameter-free methods distinguish Wnt pathway models and guide design of experiments. Proc Natl Acad Sci U S A 2015; 112:2652-7. [PMID: 25730853 PMCID: PMC4352827 DOI: 10.1073/pnas.1416655112] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
The canonical Wnt signaling pathway, mediated by β-catenin, is crucially involved in development, adult stem cell tissue maintenance, and a host of diseases including cancer. We analyze existing mathematical models of Wnt and compare them to a new Wnt signaling model that targets spatial localization; our aim is to distinguish between the models and distill biological insight from them. Using Bayesian methods we infer parameters for each model from mammalian Wnt signaling data and find that all models can fit this time course. We appeal to algebraic methods (concepts from chemical reaction network theory and matroid theory) to analyze the models without recourse to specific parameter values. These approaches provide insight into aspects of Wnt regulation: the new model, via control of shuttling and degradation parameters, permits multiple stable steady states corresponding to stem-like vs. committed cell states in the differentiation hierarchy. Our analysis also identifies groups of variables that should be measured to fully characterize and discriminate between competing models, and thus serves as a guide for performing minimal experiments for model comparison.
Collapse
Affiliation(s)
- Adam L MacLean
- Mathematical Institute, University of Oxford, Oxford OX2 6GG, United Kingdom
| | - Zvi Rosen
- Department of Mathematics, University of California, Berkeley, CA 94720; and
| | - Helen M Byrne
- Mathematical Institute, University of Oxford, Oxford OX2 6GG, United Kingdom; Department of Computer Science, University of Oxford, Oxford OX1 3QD, United Kingdom
| | | |
Collapse
|
56
|
Felgueiras J, Fardilha M. Phosphoprotein phosphatase 1-interacting proteins as therapeutic targets in prostate cancer. World J Pharmacol 2014; 3:120-139. [DOI: 10.5497/wjp.v3.i4.120] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/29/2014] [Revised: 09/01/2014] [Accepted: 09/24/2014] [Indexed: 02/06/2023] Open
Abstract
Prostate cancer is a major public health concern worldwide, being one of the most prevalent cancers in men. Great improvements have been made both in terms of early diagnosis and therapeutics. However, there is still an urgent need for reliable biomarkers that could overcome the lack of cancer-specificity of prostate-specific antigen, as well as alternative therapeutic targets for advanced metastatic cases. Reversible phosphorylation of proteins is a post-translational modification critical to the regulation of numerous cellular processes. Phosphoprotein phosphatase 1 (PPP1) is a major serine/threonine phosphatase, whose specificity is determined by its interacting proteins. These interactors can be PPP1 substrates, regulators, or even both. Deregulation of this protein-protein interaction network alters cell dynamics and underlies the development of several cancer hallmarks. Therefore, the identification of PPP1 interactome in specific cellular context is of crucial importance. The knowledge on PPP1 complexes in prostate cancer remains scarce, with only 4 holoenzymes characterized in human prostate cancer models. However, an increasing number of PPP1 interactors have been identified as expressed in human prostate tissue, including the tumor suppressors TP53 and RB1. Efforts should be made in order to identify the role of such proteins in prostate carcinogenesis, since only 26 have yet well-recognized roles. Here, we revise literature and human protein databases to provide an in-depth knowledge on the biological significance of PPP1 complexes in human prostate carcinogenesis and their potential use as therapeutic targets for the development of new therapies for prostate cancer.
Collapse
|
57
|
Yu J, Virshup D. Updating the Wnt pathways. Biosci Rep 2014; 34:e00142. [PMID: 25208913 PMCID: PMC4201215 DOI: 10.1042/bsr20140119] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2014] [Revised: 09/05/2014] [Accepted: 09/11/2014] [Indexed: 12/12/2022] Open
Abstract
In the three decades since the discovery of the Wnt1 proto-oncogene in virus-induced mouse mammary tumours, our understanding of the signalling pathways that are regulated by the Wnt proteins has progressively expanded. Wnts are involved in an complex signalling network that governs multiple biological processes and cross-talk with multiple additional signalling cascades, including the Notch, FGF (fibroblast growth factor), SHH (Sonic hedgehog), EGF (epidermal growth factor) and Hippo pathways. The Wnt signalling pathway also illustrates the link between abnormal regulation of the developmental processes and disease manifestation. Here we provide an overview of Wnt-regulated signalling cascades and highlight recent advances. We focus on new findings regarding the dedicated Wnt production and secretion pathway with potential therapeutic targets that might be beneficial for patients with Wnt-related diseases.
Collapse
Key Words
- adenomatous polyposis coli
- planar cell polarity (pcp)
- wnt
- apc, adenomatous polyposis coli
- bar, bin-amphiphysin-rvs
- cbp, creb (camp response element-binding)-binding protein
- cop, coat protein complex
- crd, cysteine-rich domain
- ctd, c-terminal domain
- ck1α, casein kinase 1 α
- er, endoplasmic reticulum fap, familial adenomatous polyposis
- fdh, focal dermal hypoplasia
- gsk3β, glycogen synthase kinase 3β
- lef, lymphoid enhancer-binding factor
- lrp, lipoprotein receptor-related protein
- ntd, n-terminal domain
- pcp, planar cell polarity
- porcn, protein porcupine
- ror2, receptor tyrosine kinase-like orphan receptor 2
- rspo, r-spondin
- sfrp, secreted frizzled-related protein
- snx-1, sorting nexin-1
- swim, wingless-interacting molecule
- tcf, t cell-specific factor
Collapse
Affiliation(s)
- Jia Yu
- *Program in Cancer and Stem Cell Biology, Duke-NUS Graduate Medical School, 8 College Road, Singapore 169857, Singapore
| | - David M. Virshup
- *Program in Cancer and Stem Cell Biology, Duke-NUS Graduate Medical School, 8 College Road, Singapore 169857, Singapore
- †Institute of Medical Biology, A*STAR, Singapore 138648, Singapore
- ‡Department of Biochemistry, National University of Singapore, Singapore 117597, Singapore
- §Department of Pediatrics, Duke University, Durham, NC 27710, U.S.A
| |
Collapse
|
58
|
Shimizu N, Ishitani S, Sato A, Shibuya H, Ishitani T. Hipk2 and PP1c Cooperate to Maintain Dvl Protein Levels Required for Wnt Signal Transduction. Cell Rep 2014; 8:1391-404. [DOI: 10.1016/j.celrep.2014.07.040] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2013] [Revised: 06/04/2014] [Accepted: 07/23/2014] [Indexed: 11/30/2022] Open
|
59
|
Meffre D, Grenier J, Bernard S, Courtin F, Dudev T, Shackleford G, Jafarian-Tehrani M, Massaad C. Wnt and lithium: a common destiny in the therapy of nervous system pathologies? Cell Mol Life Sci 2014; 71:1123-48. [PMID: 23749084 PMCID: PMC11113114 DOI: 10.1007/s00018-013-1378-1] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2013] [Revised: 04/26/2013] [Accepted: 05/16/2013] [Indexed: 02/07/2023]
Abstract
Wnt signaling is required for neurogenesis, the fate of neural progenitors, the formation of neuronal circuits during development, neuron positioning and polarization, axon and dendrite development and finally for synaptogenesis. This signaling pathway is also implicated in the generation and differentiation of glial cells. In this review, we describe the mechanisms of action of Wnt signaling pathways and their implication in the development and correct functioning of the nervous system. We also illustrate how a dysregulated Wnt pathway could lead to psychiatric, neurodegenerative and demyelinating pathologies. Lithium, used for the treatment of bipolar disease, inhibits GSK3β, a central enzyme of the Wnt/β-catenin pathway. Thus, lithium could, to some extent, mimic Wnt pathway. We highlight the possible dialogue between lithium therapy and modulation of Wnt pathway in the treatment of the diseases of the nervous system.
Collapse
Affiliation(s)
- Delphine Meffre
- UMR 8194 CNRS, University Paris Descartes, 45 rue des Saints-Pères, 75270 Paris Cedex 6, France
| | - Julien Grenier
- UMR 8194 CNRS, University Paris Descartes, 45 rue des Saints-Pères, 75270 Paris Cedex 6, France
| | - Sophie Bernard
- UMR 8194 CNRS, University Paris Descartes, 45 rue des Saints-Pères, 75270 Paris Cedex 6, France
| | - Françoise Courtin
- UMR 8194 CNRS, University Paris Descartes, 45 rue des Saints-Pères, 75270 Paris Cedex 6, France
| | - Todor Dudev
- Institute of Biomedical Sciences, Academia Sinica, 11529 Taipei, Taiwan, R.O.C
- Faculty of Chemistry and Pharmacy, University of Sofia, 1 James Bourchier Avenue, 1164 Sofia, Bulgaria
| | | | | | - Charbel Massaad
- UMR 8194 CNRS, University Paris Descartes, 45 rue des Saints-Pères, 75270 Paris Cedex 6, France
| |
Collapse
|
60
|
Integrative ChIP-seq/microarray analysis identifies a CTNNB1 target signature enriched in intestinal stem cells and colon cancer. PLoS One 2014; 9:e92317. [PMID: 24651522 PMCID: PMC3961325 DOI: 10.1371/journal.pone.0092317] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2013] [Accepted: 02/20/2014] [Indexed: 11/23/2022] Open
Abstract
Background Deregulation of canonical Wnt/CTNNB1 (beta-catenin) pathway is one of the earliest events in the pathogenesis of colon cancer. Mutations in APC or CTNNB1 are highly frequent in colon cancer and cause aberrant stabilization of CTNNB1, which activates the transcription of Wnt target genes by binding to chromatin via the TCF/LEF transcription factors. Here we report an integrative analysis of genome-wide chromatin occupancy of CTNNB1 by chromatin immunoprecipitation coupled with high-throughput sequencing (ChIP-seq) and gene expression profiling by microarray analysis upon RNAi-mediated knockdown of CTNNB1 in colon cancer cells. Results We observed 3629 CTNNB1 binding peaks across the genome and a significant correlation between CTNNB1 binding and knockdown-induced gene expression change. Our integrative analysis led to the discovery of a direct Wnt target signature composed of 162 genes. Gene ontology analysis of this signature revealed a significant enrichment of Wnt pathway genes, suggesting multiple feedback regulations of the pathway. We provide evidence that this gene signature partially overlaps with the Lgr5+ intestinal stem cell signature, and is significantly enriched in normal intestinal stem cells as well as in clinical colorectal cancer samples. Interestingly, while the expression of the CTNNB1 target gene set does not correlate with survival, elevated expression of negative feedback regulators within the signature predicts better prognosis. Conclusion Our data provide a genome-wide view of chromatin occupancy and gene regulation of Wnt/CTNNB1 signaling in colon cancer cells.
Collapse
|
61
|
Gao C, Xiao G, Hu J. Regulation of Wnt/β-catenin signaling by posttranslational modifications. Cell Biosci 2014; 4:13. [PMID: 24594309 PMCID: PMC3977945 DOI: 10.1186/2045-3701-4-13] [Citation(s) in RCA: 180] [Impact Index Per Article: 16.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2013] [Accepted: 01/07/2014] [Indexed: 02/07/2023] Open
Abstract
The canonical Wnt signaling pathway (or Wnt/β-catenin pathway) plays a pivotal role in embryonic development and adult homeostasis; deregulation of the Wnt pathway contributes to the initiation and progression of human diseases including cancer. Despite its importance in human biology and disease, how regulation of the Wnt/β-catenin pathway is achieved remains largely undefined. Increasing evidence suggests that post-translational modifications (PTMs) of Wnt pathway components are essential for the activation of the Wnt/β-catenin pathway. PTMs create a highly dynamic relay system that responds to Wnt stimulation without requiring de novo protein synthesis and offer a platform for non-Wnt pathway components to be involved in the regulation of Wnt signaling, hence providing alternative opportunities for targeting the Wnt pathway. This review highlights the current status of PTM-mediated regulation of the Wnt/β-catenin pathway with a focus on factors involved in Wnt-mediated stabilization of β-catenin.
Collapse
Affiliation(s)
| | | | - Jing Hu
- Department of Pharmacology and Chemical Biology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213, USA.
| |
Collapse
|
62
|
Song X, Wang S, Li L. New insights into the regulation of Axin function in canonical Wnt signaling pathway. Protein Cell 2014; 5:186-93. [PMID: 24474204 PMCID: PMC3967064 DOI: 10.1007/s13238-014-0019-2] [Citation(s) in RCA: 71] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2013] [Accepted: 12/10/2013] [Indexed: 12/16/2022] Open
Abstract
The Wnt signaling pathway plays crucial roles during embryonic development, whose aberration is implicated in a variety of human cancers. Axin, a key component of canonical Wnt pathway, plays dual roles in modulating Wnt signaling: on one hand, Axin scaffolds the “β-catenin destruction complex” to promote β-catenin degradation and therefore inhibits the Wnt signal transduction; on the other hand, Axin interacts with LRP5/6 and facilitates the recruitment of GSK3 to the plasma membrane to promote LRP5/6 phosphorylation and Wnt signaling. The differential assemblies of Axin with these two distinct complexes have to be tightly controlled for appropriate transduction of the “on” or “off” Wnt signal. So far, there are multiple mechanisms revealed in the regulation of Axin activity, such as post-transcriptional modulation, homo/hetero-polymerization and auto-inhibition. These mechanisms may work cooperatively to modulate the function of Axin, thereby playing an important role in controlling the canonical Wnt signaling. In this review, we will focus on the recent progresses regarding the regulation of Axin function in canonical Wnt signaling.
Collapse
Affiliation(s)
- Xiaomin Song
- State Key Laboratory of Molecular Biology, Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, 200031, China
| | | | | |
Collapse
|
63
|
Wnt signaling in adult intestinal stem cells and cancer. Cell Signal 2013; 26:570-9. [PMID: 24308963 DOI: 10.1016/j.cellsig.2013.11.032] [Citation(s) in RCA: 293] [Impact Index Per Article: 24.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2013] [Accepted: 11/26/2013] [Indexed: 12/22/2022]
Abstract
Signaling initiated by secreted glycoproteins of the Wnt family regulates many aspects of embryonic development and it is involved in homeostasis of adult tissues. In the gastrointestinal (GI) tract the Wnt pathway maintains the self-renewal capacity of epithelial stem cells. The stem cell attributes are conferred by mutual interactions of the stem cell with its local microenvironment, the stem cell niche. The niche ensures that the threshold of Wnt signaling in the stem cell is kept in physiological range. In addition, the Wnt pathway involves various feedback loops that balance the opposing processes of cell proliferation and differentiation. Today, we have compelling evidence that mutations causing aberrant activation of the Wnt pathway promote expansion of undifferentiated progenitors and lead to cancer. The review summarizes recent advances in characterization of adult epithelial stem cells in the gut. We mainly focus on discoveries related to molecular mechanisms regulating the output of the Wnt pathway. Moreover, we present novel experimental approaches utilized to investigate the epithelial cell signaling circuitry in vivo and in vitro. Pivotal aspects of tissue homeostasis are often deduced from studies of tumor cells; therefore, we also discuss some latest results gleaned from the deep genome sequencing studies of human carcinomas of the colon and rectum.
Collapse
|
64
|
Tacchelly-Benites O, Wang Z, Yang E, Lee E, Ahmed Y. Toggling a conformational switch in Wnt/β-catenin signaling: regulation of Axin phosphorylation. The phosphorylation state of Axin controls its scaffold function in two Wnt pathway protein complexes. Bioessays 2013; 35:1063-70. [PMID: 24105937 DOI: 10.1002/bies.201300101] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
The precise orchestration of two opposing protein complexes - one in the cytoplasm (β-catenin destruction complex) and the other at the plasma membrane (LRP6 signaling complex) - is critical for controlling levels of the transcriptional co-factor β-catenin, and subsequent activation of the Wnt/β-catenin signal transduction pathway. The Wnt pathway component Axin acts as an essential scaffold for the assembly of both complexes. How the β-catenin destruction and LRP6 signaling complexes are modulated following Wnt stimulation remains controversial. A recent study in Science by He and coworkers reveals an underlying logic for Wnt pathway control in which Axin phosphorylation toggles a switch between the active and inactive states. This mini-review focuses on this and two other recent studies that provide insight into the initial signaling events triggered by Wnt exposure. We emphasize regulation of the β-catenin destruction and LRP6 signaling complexes and propose a framework for future work in this area.
Collapse
Affiliation(s)
- Ofelia Tacchelly-Benites
- Department of Genetics and the Norris Cotton Cancer Center, Geisel School of Medicine at Dartmouth, Hanover, NH, USA
| | | | | | | | | |
Collapse
|
65
|
Priddle TH, Crow TJ. The protocadherin 11X/Y (PCDH11X/Y) gene pair as determinant of cerebral asymmetry in modern Homo sapiens. Ann N Y Acad Sci 2013; 1288:36-47. [PMID: 23600975 PMCID: PMC3752934 DOI: 10.1111/nyas.12042] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Annett's right-shift theory proposes that human cerebral dominance (the functional and anatomical asymmetry or torque along the antero-posterior axis) and handedness are determined by a single “right-shift” gene. Familial transmission of handedness and specific deviations of cerebral dominance in sex chromosome aneuploidies implicate a locus within an X–Y homologous region of the sex chromosomes. The Xq21.3/Yp11.2 human-specific region of homology includes the protocadherin 11X/Y (PCDH11X/Y) gene pair, which encode cell adhesion molecules subject to accelerated evolution following the separation of the human and chimpanzee lineages six million years ago. PCDH11X and PCDH11Y, differentially regulated by retinoic acid, are highly expressed in the ventricular zone, subplate, and cortical plate of the developing cerebral cortex. Both proteins interact with β-catenin, a protein that plays a role in determining axis formation and regulating cortical size. In this way, the PCDH11X/Y gene pair determines cerebral asymmetry by initiating the right shift in Homo sapiens.
Collapse
Affiliation(s)
- Thomas H Priddle
- Department of Psychiatry, University of Oxford, Oxford, United Kingdom.
| | | |
Collapse
|
66
|
Kim SE, Huang H, Zhao M, Zhang X, Zhang A, Semonov MV, MacDonald BT, Zhang X, Garcia Abreu J, Peng L, He X. Wnt stabilization of β-catenin reveals principles for morphogen receptor-scaffold assemblies. Science 2013; 340:867-70. [PMID: 23579495 DOI: 10.1126/science.1232389] [Citation(s) in RCA: 194] [Impact Index Per Article: 16.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
Wnt signaling stabilizes β-catenin through the LRP6 receptor signaling complex, which antagonizes the β-catenin destruction complex. The Axin scaffold and associated glycogen synthase kinase-3 (GSK3) have central roles in both assemblies, but the transduction mechanism from the receptor to the destruction complex is contentious. We report that Wnt signaling is governed by phosphorylation regulation of the Axin scaffolding function. Phosphorylation by GSK3 kept Axin activated ("open") for β-catenin interaction and poised for engagement of LRP6. Formation of the Wnt-induced LRP6-Axin signaling complex promoted Axin dephosphorylation by protein phosphatase-1 and inactivated ("closed") Axin through an intramolecular interaction. Inactivation of Axin diminished its association with β-catenin and LRP6, thereby inhibiting β-catenin phosphorylation and enabling activated LRP6 to selectively recruit active Axin for inactivation reiteratively. Our findings reveal mechanisms for scaffold regulation and morphogen signaling.
Collapse
Affiliation(s)
- Sung-Eun Kim
- F. M. Kirby Center, Boston Children's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
67
|
Maupin KA, Droscha CJ, Williams BO. A Comprehensive Overview of Skeletal Phenotypes Associated with Alterations in Wnt/β-catenin Signaling in Humans and Mice. Bone Res 2013; 1:27-71. [PMID: 26273492 DOI: 10.4248/br201301004] [Citation(s) in RCA: 103] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2012] [Accepted: 01/20/2013] [Indexed: 12/23/2022] Open
Abstract
The Wnt signaling pathway plays key roles in differentiation and development and alterations in this signaling pathway are causally associated with numerous human diseases. While several laboratories were examining roles for Wnt signaling in skeletal development during the 1990s, interest in the pathway rose exponentially when three key papers were published in 2001-2002. One report found that loss of the Wnt co-receptor, Low-density lipoprotein related protein-5 (LRP5), was the underlying genetic cause of the syndrome Osteoporosis pseudoglioma (OPPG). OPPG is characterized by early-onset osteoporosis causing increased susceptibility to debilitating fractures. Shortly thereafter, two groups reported that individuals carrying a specific point mutation in LRP5 (G171V) develop high-bone mass. Subsequent to this, the causative mechanisms for these observations heightened the need to understand the mechanisms by which Wnt signaling controlled bone development and homeostasis and encouraged significant investment from biotechnology and pharmaceutical companies to develop methods to activate Wnt signaling to increase bone mass to treat osteoporosis and other bone disease. In this review, we will briefly summarize the cellular mechanisms underlying Wnt signaling and discuss the observations related to OPPG and the high-bone mass disorders that heightened the appreciation of the role of Wnt signaling in normal bone development and homeostasis. We will then present a comprehensive overview of the core components of the pathway with an emphasis on the phenotypes associated with mice carrying genetically engineered mutations in these genes and clinical observations that further link alterations in the pathway to changes in human bone.
Collapse
Affiliation(s)
- Kevin A Maupin
- Program for Skeletal Pathobiology and Center for Tumor Metastasis, Van Andel Research Institute , 333 Bostwick NE, Grand Rapids, MI 49503, USA
| | - Casey J Droscha
- Program for Skeletal Pathobiology and Center for Tumor Metastasis, Van Andel Research Institute , 333 Bostwick NE, Grand Rapids, MI 49503, USA
| | - Bart O Williams
- Program for Skeletal Pathobiology and Center for Tumor Metastasis, Van Andel Research Institute , 333 Bostwick NE, Grand Rapids, MI 49503, USA
| |
Collapse
|
68
|
Abstract
The canonical Wnt/β-catenin pathway is an ancient and evolutionarily conserved signaling pathway that is required for the proper development of all metazoans, from the basal demosponge Amphimedon queenslandica to humans. Misregulation of Wnt signaling is implicated in many human diseases, making this pathway an intense area of research in industry as well as academia. In this review, we explore our current understanding of the molecular steps involved in the transduction of a Wnt signal. We will focus on how the critical Wnt pathway component, β-catenin, is in a "futile cycle" of constant synthesis and degradation and how this cycle is disrupted upon pathway activation. We describe the role of the Wnt pathway in major human cancers and in the control of stem cell self-renewal in the developing organism and in adults. Finally, we describe well-accepted criteria that have been proposed as evidence for the involvement of a molecule in regulating the canonical Wnt pathway.
Collapse
Affiliation(s)
- Kenyi Saito-Diaz
- Department of Cell and Developmental Biology and Program in Developmental Biology, Vanderbilt University Medical Center, Nashville, TN 37232-8240, USA
| | | | | | | | | | | | | |
Collapse
|
69
|
The WNT signaling pathway from ligand secretion to gene transcription: molecular mechanisms and pharmacological targets. Pharmacol Ther 2013; 138:66-83. [PMID: 23328704 DOI: 10.1016/j.pharmthera.2013.01.002] [Citation(s) in RCA: 128] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2012] [Accepted: 12/20/2012] [Indexed: 12/22/2022]
Abstract
Wingless/integrase-1 (WNT) signaling is a key pathway regulating various aspects of embryonic development; however it also underlies several pathological conditions in man, including various cancers and fibroproliferative diseases in several organs. Investigating the molecular processes involved in (canonical) WNT signaling will open new avenues for generating new therapeutics to specifically target diseases in which WNT signaling is aberrantly regulated. Here we describe the complexity of WNT signal transduction starting from the processes involved in WNT ligand biogenesis and secretion by WNT producing cells followed by a comprehensive overview of the molecular signaling events ultimately resulting in enhanced transcription of specific genes in WNT receiving cells. Finally, the possible targets for therapeutic intervention and the available pharmacological inhibitors for this complex signaling pathway are discussed.
Collapse
|
70
|
Abstract
The Wnt/β-catenin pathway is highly regulated to insure the correct temporal and spatial activation of its target genes. In the absence of a Wnt stimulus, the transcriptional coactivator β-catenin is degraded by a multiprotein "destruction complex" that includes the tumor suppressors Axin and adenomatous polyposis coli (APC), the Ser/Thr kinases GSK-3 and CK1, protein phosphatase 2A (PP2A), and the E3-ubiquitin ligase β-TrCP. The complex generates a β-TrCP recognition site by phosphorylation of a conserved Ser/Thr-rich sequence near the β-catenin amino terminus, a process that requires scaffolding of the kinases and β-catenin by Axin. Ubiquitinated β-catenin is degraded by the proteasome. The molecular mechanisms that underlie several aspects of destruction complex function are poorly understood, particularly the role of APC. Here we review the molecular mechanisms of destruction complex function and discuss several potential roles of APC in β-catenin destruction.
Collapse
Affiliation(s)
- Jennifer L Stamos
- Departments of Structural Biology and Molecular and Cellular Physiology, Stanford University School of Medicine, Stanford, CA 94305, USA
| | | |
Collapse
|
71
|
Voronkov A, Krauss S. Wnt/beta-catenin signaling and small molecule inhibitors. Curr Pharm Des 2013; 19:634-64. [PMID: 23016862 PMCID: PMC3529405 DOI: 10.2174/138161213804581837] [Citation(s) in RCA: 172] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2012] [Accepted: 09/23/2012] [Indexed: 12/27/2022]
Abstract
Wnt/β-catenin signaling is a branch of a functional network that dates back to the first metazoans and it is involved in a broad range of biological systems including stem cells, embryonic development and adult organs. Deregulation of components involved in Wnt/β-catenin signaling has been implicated in a wide spectrum of diseases including a number of cancers and degenerative diseases. The key mediator of Wnt signaling, β-catenin, serves several cellular functions. It functions in a dynamic mode at multiple cellular locations, including the plasma membrane, where β-catenin contributes to the stabilization of intercellular adhesive complexes, the cytoplasm where β-catenin levels are regulated and the nucleus where β-catenin is involved in transcriptional regulation and chromatin interactions. Central effectors of β-catenin levels are a family of cysteine-rich secreted glycoproteins, known as Wnt morphogens. Through the LRP5/6-Frizzled receptor complex, Wnts regulate the location and activity of the destruction complex and consequently intracellular β- catenin levels. However, β-catenin levels and their effects on transcriptional programs are also influenced by multiple other factors including hypoxia, inflammation, hepatocyte growth factor-mediated signaling, and the cell adhesion molecule E-cadherin. The broad implications of Wnt/β-catenin signaling in development, in the adult body and in disease render the pathway a prime target for pharmacological research and development. The intricate regulation of β-catenin at its various locations provides alternative points for therapeutic interventions.
Collapse
Affiliation(s)
- Andrey Voronkov
- SFI-CAST Biomedical Innovation Center, Unit for Cell Signaling, Oslo University Hospital, Forskningsparken, Gaustadalleén 21, 0349, Oslo, Norway
| | - Stefan Krauss
- SFI-CAST Biomedical Innovation Center, Unit for Cell Signaling, Oslo University Hospital, Forskningsparken, Gaustadalleén 21, 0349, Oslo, Norway
| |
Collapse
|
72
|
MacDonald BT, He X. Frizzled and LRP5/6 receptors for Wnt/β-catenin signaling. Cold Spring Harb Perspect Biol 2012; 4:4/12/a007880. [PMID: 23209147 DOI: 10.1101/cshperspect.a007880] [Citation(s) in RCA: 467] [Impact Index Per Article: 35.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Frizzled and LRP5/6 are Wnt receptors that upon activation lead to stabilization of cytoplasmic β-catenin. In this study, we review the current knowledge of these two families of receptors, including their structures and interactions with Wnt proteins, and signaling mechanisms from receptor activation to the engagement of intracellular partners Dishevelled and Axin, and finally to the inhibition of β-catenin phosphorylation and ensuing β-catenin stabilization.
Collapse
Affiliation(s)
- Bryan T MacDonald
- The F. M. Kirby Neurobiology Center, Boston Children's Hospital, Boston, MA 02115, USA
| | | |
Collapse
|
73
|
Expression profiles of genes regulating dairy cow fertility: recent findings, ongoing activities and future possibilities. Animal 2012; 2:1158-67. [PMID: 22443728 DOI: 10.1017/s1751731108002371] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Subfertility has negative effects for dairy farm profitability, animal welfare and sustainability of animal production. Increasing herd sizes and economic pressures restrict the amount of time that farmers can spend on counteractive management. Genetic improvement will become increasingly important to restore reproductive performance. Complementary to traditional breeding value estimation procedures, genomic selection based on genome-wide information will become more widely applied. Functional genomics, including transcriptomics (gene expression profiling), produces the information to understand the consequences of selection as it helps to unravel physiological mechanisms underlying female fertility traits. Insight into the latter is needed to develop new effective management strategies to combat subfertility. Here, the importance of functional genomics for dairy cow reproduction so far and in the near future is evaluated. Recent gene profiling studies in the field of dairy cow fertility are reviewed and new data are presented on genes that are expressed in the brains of dairy cows and that are involved in dairy cow oestrus (behaviour). Fast-developing new research areas in the field of functional genomics, such as epigenetics, RNA interference, variable copy numbers and nutrigenomics, are discussed including their promising future value for dairy cow fertility.
Collapse
|
74
|
Wnt signaling through inhibition of β-catenin degradation in an intact Axin1 complex. Cell 2012; 149:1245-56. [PMID: 22682247 DOI: 10.1016/j.cell.2012.05.002] [Citation(s) in RCA: 707] [Impact Index Per Article: 54.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2011] [Revised: 11/18/2011] [Accepted: 03/27/2012] [Indexed: 12/11/2022]
Abstract
Degradation of cytosolic β-catenin by the APC/Axin1 destruction complex represents the key regulated step of the Wnt pathway. It is incompletely understood how the Axin1 complex exerts its Wnt-regulated function. Here, we examine the mechanism of Wnt signaling under endogenous levels of the Axin1 complex. Our results demonstrate that β-catenin is not only phosphorylated inside the Axin1 complex, but also ubiquinated and degraded via the proteasome, all within an intact Axin1 complex. In disagreement with current views, we find neither a disassembly of the complex nor an inhibition of phosphorylation of Axin1-bound β-catenin upon Wnt signaling. Similar observations are made in primary intestinal epithelium and in colorectal cancer cell lines carrying activating Wnt pathway mutations. Wnt signaling suppresses β-catenin ubiquitination normally occurring within the complex, leading to complex saturation by accumulated phospho-β-catenin. Subsequently, newly synthesized β-catenin can accumulate in a free cytosolic form and engage nuclear TCF transcription factors.
Collapse
|
75
|
Sin3a acts through a multi-gene module to regulate invasion in Drosophila and human tumors. Oncogene 2012; 32:3184-97. [PMID: 22890320 DOI: 10.1038/onc.2012.326] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
Chromatin remodeling proteins regulate multiple aspects of cell homeostasis, making them ideal candidates for misregulation in transformed cells. Here, we explore Sin3A, a member of the Sin3 family of proteins linked to tumorigenesis that are thought to regulate gene expression through their role as histone deacetylases (HDACs). We identified Drosophila Sin3a as an important mediator of oncogenic Ret receptor in a fly model of Multiple Endocrine Neoplasia Type 2. Reducing Drosophila Sin3a activity led to metastasis-like behavior and, in the presence of Diap1, secondary tumors distant from the site of origin. Genetic and Chip-Seq analyses identified previously undescribed Sin3a targets including genes involved in cell motility and actin dynamics, as well as signaling pathways including Src, Jnk and Rho. A key Sin3a oncogenic target, PP1B, regulates stability of β-Catenin/Armadillo: the outcome is to oppose T-cell factor (TCF) function and Wg/Wnt pathway signaling in both fly and mammalian cancer cells. Reducing Sin3A strongly increased the invasive behavior of A549 human lung adenocarcinoma cells. We show that Sin3A is downregulated in a variety of human tumors and that Src, JNK, RhoA and PP1B/β-Catenin are regulated in a manner analogous to our Drosophila models. Our data suggest that Sin3A influences a specific step of tumorigenesis by regulating a module of genes involved in cell invasion. Tumor progression may commonly rely on such 'modules of invasion' under the control of broad transcriptional regulators.
Collapse
|
76
|
Esteves SLC, Domingues SC, da Cruz e Silva OAB, Fardilha M, da Cruz e Silva EF. Protein phosphatase 1α interacting proteins in the human brain. OMICS-A JOURNAL OF INTEGRATIVE BIOLOGY 2012; 16:3-17. [PMID: 22321011 DOI: 10.1089/omi.2011.0041] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Protein Phosphatase 1 (PP1) is a major serine/threonine-phosphatase whose activity is dependent on its binding to regulatory subunits known as PP1 interacting proteins (PIPs), responsible for targeting PP1 to a specific cellular location, specifying its substrate or regulating its action. Today, more than 200 PIPs have been described involving PP1 in panoply of cellular mechanisms. Moreover, several PIPs have been identified that are tissue and event specific. In addition, the diversity of PP1/PIP complexes can further be achieved by the existence of several PP1 isoforms that can bind preferentially to a certain PIP. Thus, PP1/PIP complexes are highly specific for a particular function in the cell, and as such, they are excellent pharmacological targets. Hence, an in-depth survey was taken to identify specific PP1α PIPs in human brain by a high-throughput Yeast Two-Hybrid approach. Sixty-six proteins were recognized to bind PP1α, 39 being novel PIPs. A large protein interaction databases search was also performed to integrate with the results of the PP1α Human Brain Yeast Two-Hybrid and a total of 246 interactions were retrieved.
Collapse
Affiliation(s)
- Sara L C Esteves
- Signal Transduction Laboratory, Centre for Cell Biology, Biology Department, University of Aveiro, Portugal
| | | | | | | | | |
Collapse
|
77
|
Canals D, Roddy P, Hannun YA. Protein phosphatase 1α mediates ceramide-induced ERM protein dephosphorylation: a novel mechanism independent of phosphatidylinositol 4, 5-biphosphate (PIP2) and myosin/ERM phosphatase. J Biol Chem 2012; 287:10145-10155. [PMID: 22311981 DOI: 10.1074/jbc.m111.306456] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
ERM (ezrin, radixin, and moesin) proteins are cytoskeletal interacting proteins that bind cortical actin, the plasma membrane, and membrane proteins, which are found in specialized plasma membrane structures such as microvilli and filopodia. ERM proteins are regulated by phosphatidylinositol 4, 5-biphosphate (PIP(2)) and by phosphorylation of a C-terminal threonine, and its inactivation involves PIP(2) hydrolysis and/or myosin phosphatase (MP). Recently, we demonstrated that ERM proteins are also subject to counter regulation by the bioactive sphingolipids ceramide and sphingosine 1-phosphate. Plasma membrane ceramide induces ERM dephosphorylation whereas sphingosine 1-phosphate induces their phosphorylation. In this work, we pursue the mechanisms by which ceramide regulates dephosphorylation. We found that this dephosphorylation was independent of hydrolysis and localization of PIP(2) and MP. However, the results show that ERM dephosphorylation was blocked by treatment with protein phosphatase 1 (PP1) pharmacological inhibitors and specifically by siRNA to PP1α, whereas okadaic acid, a PP2A inhibitor, failed. Moreover, a catalytic inactive mutant of PP1α acted as dominant negative of the endogenous PP1α. Additional results showed that the ceramide mechanism of PP1α activation is largely independent of PIP(2) hydrolysis and MP. Taken together, these results demonstrate a novel, acute mechanism of ERM regulation dependent on PP1α and plasma membrane ceramide.
Collapse
Affiliation(s)
- Daniel Canals
- Department of Biochemistry and Molecular Biology, Medical University of South Carolina, Charleston, South Carolina 29425
| | - Patrick Roddy
- Department of Biochemistry and Molecular Biology, Medical University of South Carolina, Charleston, South Carolina 29425
| | - Yusuf A Hannun
- Department of Biochemistry and Molecular Biology, Medical University of South Carolina, Charleston, South Carolina 29425.
| |
Collapse
|
78
|
Kaidanovich-Beilin O, Woodgett JR. GSK-3: Functional Insights from Cell Biology and Animal Models. Front Mol Neurosci 2011; 4:40. [PMID: 22110425 PMCID: PMC3217193 DOI: 10.3389/fnmol.2011.00040] [Citation(s) in RCA: 381] [Impact Index Per Article: 27.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2011] [Accepted: 10/23/2011] [Indexed: 12/13/2022] Open
Abstract
Glycogen synthase kinase-3 (GSK-3) is a widely expressed and highly conserved serine/threonine protein kinase encoded in mammals by two genes that generate two related proteins: GSK-3α and GSK-3β. GSK-3 is active in cells under resting conditions and is primarily regulated through inhibition or diversion of its activity. While GSK-3 is one of the few protein kinases that can be inactivated by phosphorylation, the mechanisms of GSK-3 regulation are more varied and not fully understood. Precise control appears to be achieved by a combination of phosphorylation, localization, and sequestration by a number of GSK-3-binding proteins. GSK-3 lies downstream of several major signaling pathways including the phosphatidylinositol 3′ kinase pathway, the Wnt pathway, Hedgehog signaling and Notch. Specific pools of GSK-3, which differ in intracellular localization, binding partner affinity, and relative amount are differentially sensitized to several distinct signaling pathways and these sequestration mechanisms contribute to pathway insulation and signal specificity. Dysregulation of signaling pathways involving GSK-3 is associated with the pathogenesis of numerous neurological and psychiatric disorders and there are data suggesting GSK-3 isoform-selective roles in several of these. Here, we review the current knowledge of GSK-3 regulation and targets and discuss the various animal models that have been employed to dissect the functions of GSK-3 in brain development and function through the use of conventional or conditional knockout mice as well as transgenic mice. These studies have revealed fundamental roles for these protein kinases in memory, behavior, and neuronal fate determination and provide insights into possible therapeutic interventions.
Collapse
|
79
|
Li C, Ao J, Fu J, Lee DF, Xu J, Lonard D, O’Malley BW. Tumor-suppressor role for the SPOP ubiquitin ligase in signal-dependent proteolysis of the oncogenic co-activator SRC-3/AIB1. Oncogene 2011; 30:4350-64. [PMID: 21577200 PMCID: PMC3158261 DOI: 10.1038/onc.2011.151] [Citation(s) in RCA: 140] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2011] [Revised: 03/14/2011] [Accepted: 03/20/2011] [Indexed: 12/17/2022]
Abstract
Steroid receptor co-activator-3 (SRC-3/AIB1) is an oncogene that is amplified and overexpressed in many human cancers. However, the molecular mechanisms that regulate 'activated SRC-3 oncoprotein' turnover during tumorigenesis remain to be elucidated. Here, we report that speckle-type POZ protein (SPOP), a cullin 3 (CUL3)-based ubiquitin ligase, is responsible for SRC-3 ubiquitination and proteolysis. SPOP interacts directly with an SRC-3 phospho-degron in a phosphorylation-dependent manner. Casein kinase Iɛ phosphorylates the S102 in this degron and promotes SPOP-dependent turnover of SRC-3. Short hairpin RNA knockdown and overexpression experiments substantiated that the SPOP/CUL3/Rbx1 ubiquitin ligase complex promotes SRC-3 turnover. A systematic analysis of the SPOP genomic locus revealed that a high percentage of genomic loss or loss of heterozygosity occurs at this locus in breast cancers. Furthermore, we demonstrate that restoration of SPOP expression inhibited SRC-3-mediated oncogenic signaling and tumorigenesis, thus positioning SPOP as a tumor suppressor.
Collapse
Affiliation(s)
- Chao Li
- Department of Molecular and Cellular Biology, Baylor College of Medicine, One Baylor Plaza, Houston, TX 77030, USA
- State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Renji Hospital, Shanghai Jiao Tong University, Shanghai 200032, China
| | - Junping Ao
- State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Renji Hospital, Shanghai Jiao Tong University, Shanghai 200032, China
| | - Junjiang Fu
- Department of Molecular and Cellular Biology, Baylor College of Medicine, One Baylor Plaza, Houston, TX 77030, USA
| | - Dung-Fang Lee
- Department of Gene and Cell Medicine, Black Family Stem Cell Research Institute, Mount Sinai School of Medicine, New York, New York 10029, USA
| | - Jianming Xu
- Department of Molecular and Cellular Biology, Baylor College of Medicine, One Baylor Plaza, Houston, TX 77030, USA
| | - David Lonard
- Department of Molecular and Cellular Biology, Baylor College of Medicine, One Baylor Plaza, Houston, TX 77030, USA
| | - Bert W. O’Malley
- Department of Molecular and Cellular Biology, Baylor College of Medicine, One Baylor Plaza, Houston, TX 77030, USA
| |
Collapse
|
80
|
Fu Y, Zheng S, An N, Athanasopoulos T, Popplewell L, Liang A, Li K, Hu C, Zhu Y. β-catenin as a potential key target for tumor suppression. Int J Cancer 2011; 129:1541-51. [PMID: 21455986 DOI: 10.1002/ijc.26102] [Citation(s) in RCA: 86] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2011] [Revised: 03/14/2011] [Accepted: 03/17/2011] [Indexed: 01/02/2023]
Abstract
β-catenin is a multifunctional protein identified to be pivotal in embryonic patterning, organogenesis and adult homeostasis. It plays a critical structural role in mediating cadherin junctions and is also an essential transcriptional co-activator in the canonical Wnt pathway. Evidence has been documented that both the canonical Wnt pathway and cadherin junctions are deregulated or impaired in a plethora of human malignancies. In the light of this, there has been a recent surge in elucidating the mechanisms underlying the etiology of cancer development from the perspective of β-catenin. Here, we focus on the emerging roles of β-catenin in the process of tumorigenesis by discussing novel functions of old players and new proteins, mechanisms identified to mediate or interact with β-catenin and the most recently unraveled clinical implications of β-catenin regulatory pathways toward tumor suppression.
Collapse
Affiliation(s)
- Yuejun Fu
- Key Laboratory of Chemical Biology and Molecular Engineering of Ministry of Education, Institute of Biotechnology, Shanxi University, Taiyuan, People's Republic of China.
| | | | | | | | | | | | | | | | | |
Collapse
|
81
|
Cha B, Kim W, Kim YK, Hwang BN, Park SY, Yoon JW, Park WS, Cho JW, Bedford MT, Jho EH. Methylation by protein arginine methyltransferase 1 increases stability of Axin, a negative regulator of Wnt signaling. Oncogene 2011; 30:2379-2389. [PMID: 21242974 DOI: 10.1038/onc.2010.610] [Citation(s) in RCA: 64] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2010] [Revised: 12/02/2010] [Accepted: 12/06/2010] [Indexed: 12/17/2022]
Abstract
Axin, a negative regulator of Wnt signaling, is a key scaffold protein for the β-catenin destruction complex. It has been previously shown that multiple post-translational modification enzymes regulate the level of Axin. Here, we provide evidence that protein arginine methyltransferase 1 (PRMT1) directly interacts with and methylates the 378th arginine residue of Axin both in vitro and in vivo. We found that the transient expression of PRMT1 led to an increased level of Axin and that knockdown of endogenous PRMT1 by short hairpin RNA reduced the level of Axin. These results suggest that methylation by PRMT1 enhanced the stability of Axin. Methylation of Axin by PRMT1 also seemingly enhanced the interaction between Axin and glycogen synthase kinase 3β, leading to decreased ubiquitination of Axin. Consistent with the role of PRMT1 in the regulation of Axin, knockdown of PRMT1 enhanced the level of cytoplasmic β-catenin as well as β-catenin-dependent transcription activity. In summary, we show that the methylation of Axin occurred in vivo and controlled the stability of Axin. Therefore, methylation of Axin by PRMT1 may serve as a finely tuned regulation mechanism for Wnt/β-catenin signaling.
Collapse
Affiliation(s)
- B Cha
- Department of Life Science, The University of Seoul, Dongdaemun-gu, Seoul, Republic of Korea
| | | | | | | | | | | | | | | | | | | |
Collapse
|
82
|
Tang W, Yuan M, Wang R, Yang Y, Wang C, Oses-Prieto JA, Kim TW, Zhou HW, Deng Z, Gampala SS, Gendron JM, Jonassen EM, Lillo C, DeLong A, Burlingame AL, Sun Y, Wang ZY. PP2A activates brassinosteroid-responsive gene expression and plant growth by dephosphorylating BZR1. Nat Cell Biol 2011; 13:124-31. [PMID: 21258370 PMCID: PMC3077550 DOI: 10.1038/ncb2151] [Citation(s) in RCA: 363] [Impact Index Per Article: 25.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2010] [Accepted: 11/17/2010] [Indexed: 11/24/2022]
Abstract
When brassinosteroid levels are low, the GSK3-like kinase BIN2 phosphorylates and inactivates the BZR1 transcription factor to inhibit growth in plants. Brassinosteroid promotes growth by inducing dephosphorylation of BZR1, but the phosphatase that dephosphorylates BZR1 has remained unknown. Here, using tandem affinity purification, we identified protein phosphatase 2A (PP2A) as a BZR1-interacting protein. Genetic analyses demonstrated a positive role for PP2A in brassinosteroid signalling and BZR1 dephosphorylation. Members of the B' regulatory subunits of PP2A directly interact with BZR1's putative PEST domain containing the site of the bzr1-1D mutation. Interaction with and dephosphorylation by PP2A are enhanced by the bzr1-1D mutation, reduced by two intragenic bzr1-1D suppressor mutations, and abolished by deletion of the PEST domain. This study reveals a crucial function for PP2A in dephosphorylating and activating BZR1 and completes the set of core components of the brassinosteroid-signalling cascade from cell surface receptor kinase to gene regulation in the nucleus.
Collapse
Affiliation(s)
- Wenqiang Tang
- Institute of Molecular Cell Biology, College of Life Science, Hebei Normal University, Shijiazhuang, Hebei, 050016, China
- Department of Plant Biology, Carnegie Institution of Washington, Stanford, CA 94305, USA
| | - Min Yuan
- Institute of Molecular Cell Biology, College of Life Science, Hebei Normal University, Shijiazhuang, Hebei, 050016, China
- Department of Plant Biology, Carnegie Institution of Washington, Stanford, CA 94305, USA
| | - Ruiju Wang
- Department of Plant Biology, Carnegie Institution of Washington, Stanford, CA 94305, USA
- Institute of Molecular Biology, College of Life Science, Nankai University, Tianjin 300071, China
| | - Yihong Yang
- Institute of Molecular Cell Biology, College of Life Science, Hebei Normal University, Shijiazhuang, Hebei, 050016, China
| | - Chunming Wang
- Institute of Molecular Cell Biology, College of Life Science, Hebei Normal University, Shijiazhuang, Hebei, 050016, China
| | - Juan A. Oses-Prieto
- Department of Pharmaceutical Chemistry, University of California, San Francisco, CA 94143, USA
| | - Tae-Wuk Kim
- Department of Plant Biology, Carnegie Institution of Washington, Stanford, CA 94305, USA
| | - Hong-Wei Zhou
- Department of Molecular Biology, Cell Biology and Biochemistry, Brown University, Providence, Rhode Island 02912, USA
| | - Zhiping Deng
- Department of Plant Biology, Carnegie Institution of Washington, Stanford, CA 94305, USA
| | - Srinivas S. Gampala
- Department of Plant Biology, Carnegie Institution of Washington, Stanford, CA 94305, USA
| | - Joshua M. Gendron
- Department of Plant Biology, Carnegie Institution of Washington, Stanford, CA 94305, USA
| | - Else M. Jonassen
- Centre for Organelle Research, University of Stavanger, N-4036, Norway
| | - Cathrine Lillo
- Centre for Organelle Research, University of Stavanger, N-4036, Norway
| | - Alison DeLong
- Department of Molecular Biology, Cell Biology and Biochemistry, Brown University, Providence, Rhode Island 02912, USA
| | - Alma L. Burlingame
- Department of Pharmaceutical Chemistry, University of California, San Francisco, CA 94143, USA
| | - Ying Sun
- Institute of Molecular Cell Biology, College of Life Science, Hebei Normal University, Shijiazhuang, Hebei, 050016, China
- Department of Plant Biology, Carnegie Institution of Washington, Stanford, CA 94305, USA
| | - Zhi-Yong Wang
- Department of Plant Biology, Carnegie Institution of Washington, Stanford, CA 94305, USA
| |
Collapse
|
83
|
Liu S, Yu Z, Yu X, Huang SX, Luo Y, Wu L, Shen W, Yang Z, Wang L, Gunawan AM, Chan RJ, Shen B, Zhang ZY. SHP2 is a target of the immunosuppressant tautomycetin. CHEMISTRY & BIOLOGY 2011; 18:101-10. [PMID: 21276943 PMCID: PMC3034256 DOI: 10.1016/j.chembiol.2010.10.015] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 06/24/2010] [Revised: 09/23/2010] [Accepted: 10/29/2010] [Indexed: 02/02/2023]
Abstract
SHP2 phosphatase is a positive transducer of growth factor and cytokine signaling. SHP2 is also a bona fide oncogene; gain-of-function SHP2 mutations leading to increased phosphatase activity cause Noonan syndrome, as well as multiple forms of leukemia and solid tumors. We report that tautomycetin (TTN), an immunosuppressor in organ transplantation, and its engineered analog TTN D-1 are potent SHP2 inhibitors. TTN and TTN D-1 block T cell receptor-mediated tyrosine phosphorylation and ERK activation and gain-of-function mutant SHP2-induced hematopoietic progenitor hyperproliferation and monocytic differentiation. Crystal structure of the SHP2⋅TTN D-1 complex reveals that TTN D-1 occupies the SHP2 active site in a manner similar to that of a peptide substrate. Collectively, the data support the notion that SHP2 is a cellular target for TTN and provide a potential mechanism for the immunosuppressive activity of TTN. Moreover, the structure furnishes molecular insights upon which therapeutics targeting SHP2 can be developed on the basis of the TTN scaffold.
Collapse
Affiliation(s)
- Sijiu Liu
- Department of Biochemistry and Molecular Biology, Indiana University School of Medicine, 635 Barnhill Drive, Indianapolis, Indiana 46202
| | - Zhihong Yu
- Department of Biochemistry and Molecular Biology, Indiana University School of Medicine, 635 Barnhill Drive, Indianapolis, Indiana 46202
| | - Xiao Yu
- Department of Biochemistry and Molecular Biology, Indiana University School of Medicine, 635 Barnhill Drive, Indianapolis, Indiana 46202
| | - Sheng-Xiong Huang
- Division of Pharmaceutical Sciences, University of Wisconsin, Madison, Wisconsin 53705
| | - Yinggang Luo
- Division of Pharmaceutical Sciences, University of Wisconsin, Madison, Wisconsin 53705
| | - Li Wu
- Department of Biochemistry and Molecular Biology, Indiana University School of Medicine, 635 Barnhill Drive, Indianapolis, Indiana 46202
- Chemical Genomics Core Facility, Indiana University School of Medicine, 635 Barnhill Drive, Indianapolis, Indiana 46202
| | - Weihua Shen
- Department of Biochemistry and Molecular Biology, Indiana University School of Medicine, 635 Barnhill Drive, Indianapolis, Indiana 46202
| | - Zhenyun Yang
- Department of Pediatrics, Indiana University School of Medicine, 635 Barnhill Drive, Indianapolis, Indiana 46202
| | - Lina Wang
- Department of Biochemistry and Molecular Biology, Indiana University School of Medicine, 635 Barnhill Drive, Indianapolis, Indiana 46202
| | - Andrea M. Gunawan
- Department of Biochemistry and Molecular Biology, Indiana University School of Medicine, 635 Barnhill Drive, Indianapolis, Indiana 46202
- Chemical Genomics Core Facility, Indiana University School of Medicine, 635 Barnhill Drive, Indianapolis, Indiana 46202
| | - Rebecca J. Chan
- Department of Pediatrics, Indiana University School of Medicine, 635 Barnhill Drive, Indianapolis, Indiana 46202
| | - Ben Shen
- Division of Pharmaceutical Sciences, University of Wisconsin, Madison, Wisconsin 53705
- University of Wisconsin National Cooperative Drug Discovery Group, University of Wisconsin, Madison, Wisconsin 53705
- Department of Chemistry, University of Wisconsin, Madison, Wisconsin 53705
| | - Zhong-Yin Zhang
- Department of Biochemistry and Molecular Biology, Indiana University School of Medicine, 635 Barnhill Drive, Indianapolis, Indiana 46202
| |
Collapse
|
84
|
Abstract
Wnt signaling is one of the most important developmental signaling pathways that controls cell fate decisions and tissue patterning during early embryonic and later development. It is activated by highly conserved Wnt proteins that are secreted as palmitoylated glycoproteins and act as morphogens to form a concentration gradient across a developing tissue. Wnt proteins regulate transcriptional and posttranscriptional processes depending on the distance of their origin and activate distinct intracellular cascades, commonly referred to as canonical (β-catenin-dependent) and noncanonical (β-catenin-independent) pathways. Therefore, the secretion and the diffusion of Wnt proteins needs to be tightly regulated to induce short- and long-range downstream signaling. Even though the Wnt signaling cascade has been studied intensively, key aspects and principle mechanisms, such as transport of Wnt growth factors or regulation of signaling specificity between different Wnt pathways, remain unresolved. Here, we introduce basic principles of Wnt/Wg signal transduction and highlight recent discoveries, such as the involvement of vacuolar ATPases and vesicular acidification in Wnt signaling. We also discuss recent findings regarding posttranslational modifications of Wnts, trafficking through the secretory pathway and developmental consequences of impaired Wnt secretion. Understanding the detailed mechanism and regulation of Wnt protein secretion will provide valuable insights into many human diseases based on overactivated Wnt signaling.
Collapse
Affiliation(s)
- Tina Buechling
- German Cancer Research Center (DKFZ), Division of Signaling and Functional Genomics, Department of Cell and Molecular Biology, University of Heidelberg
| | | |
Collapse
|
85
|
Abstract
The Wnt/β-catenin pathway plays an important role in development and disease. Theoretical approaches have been used to describe this pathway and have provided intriguing insights into its signalling characteristics. In the present paper, we review mathematical models of the pathway. We focus on a quantitative kinetic model for canonical Wnt/β-catenin signalling describing the reactions of the pathway's core compounds [Lee, Salic, Krüger, Heinrich and Kirschner (2003) PLoS Biol. 1, 116–132]. Numerous modifications and further analyses with respect to signalling characteristics, transcriptional feedback and cross-talk were performed. In addition, the role of β-catenin in gene expression and cell–cell adhesion as well as spatial aspects of signalling are investigated in various theoretical models.
Collapse
|
86
|
Bollen M, Peti W, Ragusa MJ, Beullens M. The extended PP1 toolkit: designed to create specificity. Trends Biochem Sci 2010; 35:450-8. [PMID: 20399103 PMCID: PMC3131691 DOI: 10.1016/j.tibs.2010.03.002] [Citation(s) in RCA: 404] [Impact Index Per Article: 26.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2010] [Revised: 03/03/2010] [Accepted: 03/04/2010] [Indexed: 01/03/2023]
Abstract
Protein Ser/Thr phosphatase-1 (PP1) catalyzes the majority of eukaryotic protein dephosphorylation reactions in a highly regulated and selective manner. Recent studies have identified an unusually diversified PP1 interactome with the properties of a regulatory toolkit. PP1-interacting proteins (PIPs) function as targeting subunits, substrates and/or inhibitors. As targeting subunits, PIPs contribute to substrate selection by bringing PP1 into the vicinity of specific substrates and by modulating substrate specificity via additional substrate docking sites or blocking substrate-binding channels. Many of the nearly 200 established mammalian PIPs are predicted to be intrinsically disordered, a property that facilitates their binding to a large surface area of PP1 via multiple docking motifs. These novel insights offer perspectives for the therapeutic targeting of PP1 by interfering with the binding of PIPs or substrates.
Collapse
Affiliation(s)
- Mathieu Bollen
- Laboratory of Biosignaling & Therapeutics, Department of Molecular Cell Biology, University of Leuven, B-3000 Leuven, Belgium.
| | | | | | | |
Collapse
|
87
|
Oh IH. Microenvironmental targeting of Wnt/β-catenin signals for hematopoietic stem cell regulation. Expert Opin Biol Ther 2010; 10:1315-29. [DOI: 10.1517/14712598.2010.504705] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
88
|
Wu H, Symes K, Seldin DC, Dominguez I. Threonine 393 of beta-catenin regulates interaction with Axin. J Cell Biochem 2010; 108:52-63. [PMID: 19565571 DOI: 10.1002/jcb.22260] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
CK2 is a regulatory kinase implicated in embryonic development and in cancer. Among the CK2 substrates is beta-catenin, a protein with dual function in Wnt signaling and cell adhesion. Previously, we reported that CK2 activity is required for beta-catenin stability and we identified threonine (T) 393 as a major CK2 phosphorylation site in beta-catenin. However, it is not known whether phosphorylation at T393 increases beta-catenin stability and if so, what is the mechanism. In this study we investigate the molecular mechanism of beta-catenin stabilization through phosphorylation at T393. We found that pseudophosphorylation of beta-catenin at T393 resulted in a stable activated form of beta-catenin with decreased affinity for Axin in vitro. This phosphomimetic mutant also displayed decreased regulation by Axin in vivo in a bioassay in Xenopus laevis embryos. In contrast, the binding of T393 pseudophosphorylated beta-catenin to E-cadherin was unaffected. Further analysis showed that pseudophosphorylation at T393 did not prevent beta-catenin phosphorylation by GSK3beta. Interestingly, we found that in the presence of pseudophophorylated beta-catenin and another activated form of beta-catenin, the recruitment of GSK3beta to Axin is enhanced. These findings indicate that phosphorylation of T393 by CK2 may affect the stability of beta-catenin through decreased binding to Axin. In addition, the increased recruitment of GSK3beta to the destruction complex in the presence of activated beta-catenin mutants could be a feedback mechanism to suppress overactive Wnt signaling.
Collapse
Affiliation(s)
- Hao Wu
- Department of Medicine, Boston University School of Medicine, Boston, Massachusetts 02118, USA
| | | | | | | |
Collapse
|
89
|
Abstract
The Wnt/beta-catenin signaling pathway plays essential roles during development and adult tissue homeostasis. Inappropriate activation of the pathway can result in a variety of malignancies. Protein kinases have emerged as key regulators at multiple steps of the Wnt pathway. In this review, we present a synthesis covering the latest information on how Wnt signaling is regulated by diverse protein kinases.
Collapse
Affiliation(s)
- Esther M Verheyen
- Department of Molecular Biology and Biochemistry, Simon Fraser University, Burnaby, BC, Canada.
| | | |
Collapse
|
90
|
Application of an integrated physical and functional screening approach to identify inhibitors of the Wnt pathway. Mol Syst Biol 2009; 5:315. [PMID: 19888210 PMCID: PMC2779086 DOI: 10.1038/msb.2009.72] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2009] [Accepted: 09/08/2009] [Indexed: 01/15/2023] Open
Abstract
Large-scale proteomic approaches have been used to study signaling pathways. However, identification of biologically relevant hits from a single screen remains challenging due to limitations inherent in each individual approach. To overcome these limitations, we implemented an integrated, multi-dimensional approach and used it to identify Wnt pathway modulators. The LUMIER protein-protein interaction mapping method was used in conjunction with two functional screens that examined the effect of overexpression and siRNA-mediated gene knockdown on Wnt signaling. Meta-analysis of the three data sets yielded a combined pathway score (CPS) for each tested component, a value reflecting the likelihood that an individual protein is a Wnt pathway regulator. We characterized the role of two proteins with high CPSs, Ube2m and Nkd1. We show that Ube2m interacts with and modulates beta-catenin stability, and that the antagonistic effect of Nkd1 on Wnt signaling requires interaction with Axin, itself a negative pathway regulator. Thus, integrated physical and functional mapping in mammalian cells can identify signaling components with high confidence and provides unanticipated insights into pathway regulators.
Collapse
|
91
|
MacDonald BT, Tamai K, He X. Wnt/beta-catenin signaling: components, mechanisms, and diseases. Dev Cell 2009. [PMID: 19619488 DOI: 10.1016/j.devcel] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Signaling by the Wnt family of secreted glycolipoproteins via the transcriptional coactivator beta-catenin controls embryonic development and adult homeostasis. Here we review recent progress in this so-called canonical Wnt signaling pathway. We discuss Wnt ligands, agonists, and antagonists, and their interactions with Wnt receptors. We also dissect critical events that regulate beta-catenin stability, from Wnt receptors to the cytoplasmic beta-catenin destruction complex, and nuclear machinery that mediates beta-catenin-dependent transcription. Finally, we highlight some key aspects of Wnt/beta-catenin signaling in human diseases including congenital malformations, cancer, and osteoporosis, and discuss potential therapeutic implications.
Collapse
Affiliation(s)
- Bryan T MacDonald
- F. M. Kirby Neurobiology Center, Children's Hospital Boston, Harvard Medical School, Boston, MA 02115, USA
| | | | | |
Collapse
|
92
|
Abstract
Signaling by the Wnt family of secreted glycolipoproteins via the transcriptional coactivator beta-catenin controls embryonic development and adult homeostasis. Here we review recent progress in this so-called canonical Wnt signaling pathway. We discuss Wnt ligands, agonists, and antagonists, and their interactions with Wnt receptors. We also dissect critical events that regulate beta-catenin stability, from Wnt receptors to the cytoplasmic beta-catenin destruction complex, and nuclear machinery that mediates beta-catenin-dependent transcription. Finally, we highlight some key aspects of Wnt/beta-catenin signaling in human diseases including congenital malformations, cancer, and osteoporosis, and discuss potential therapeutic implications.
Collapse
Affiliation(s)
- Bryan T MacDonald
- F. M. Kirby Neurobiology Center, Children's Hospital Boston, Harvard Medical School, Boston, MA 02115, USA
| | | | | |
Collapse
|
93
|
Mo R, Chew TL, Maher MT, Bellipanni G, Weinberg ES, Gottardi CJ. The terminal region of beta-catenin promotes stability by shielding the Armadillo repeats from the axin-scaffold destruction complex. J Biol Chem 2009; 284:28222-28231. [PMID: 19706613 DOI: 10.1074/jbc.m109.045039] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Post-translational stabilization of beta-catenin is a key step in Wnt signaling, but the features of beta-catenin required for stabilization are incompletely understood. We show that forms of beta-catenin lacking the unstructured C-terminal domain (CTD) show faster turnover than full-length or minimally truncated beta-catenins. Mutants that exhibit faster turnover show enhanced association with axin in co-transfected cells, and excess CTD polypeptide can compete binding of the beta-catenin armadillo (arm) repeat domain to axin in vitro, indicating that the CTD may restrict beta-catenin binding to the axin-scaffold complex. Fluorescent resonance energy transmission (FRET) analysis of cyan fluorescent protein (CFP)-arm-CTD-yellow fluorescent protein beta-catenin reveals that the CTD of beta-catenin can become spatially close to the N-terminal arm repeat region of beta-catenin. FRET activity is strongly diminished by the coexpression of beta-catenin binding partners, indicating that an unliganded groove is absolutely required for an orientation that allows FRET. Amino acids 733-759 are critical for beta-catenin FRET activity and stability. These data indicate that an N-terminal orientation of the CTD is required for beta-catenin stabilization and suggest a model where the CTD extends toward the N-terminal arm repeats, shielding these repeats from the beta-catenin destruction complex.
Collapse
Affiliation(s)
- Rigen Mo
- Department of Medicine, Northwestern University Feinberg School of Medicine, Chicago, Illinois 60611
| | - Teng-Leong Chew
- Cellular and Molecular Biology, Northwestern University Feinberg School of Medicine, Chicago, Illinois 60611
| | - Meghan T Maher
- Department of Medicine, Northwestern University Feinberg School of Medicine, Chicago, Illinois 60611; Integrated Graduate Program in the Life Sciences, Northwestern University Feinberg School of Medicine, Chicago, Illinois 60611
| | | | - Eric S Weinberg
- Department of Biology, University of Pennsylvania, Philadelphia, Pennsylvania 19106
| | - Cara J Gottardi
- Department of Medicine, Northwestern University Feinberg School of Medicine, Chicago, Illinois 60611; Robert Lurie Cancer Center, Northwestern University Feinberg School of Medicine, Chicago, Illinois 60611.
| |
Collapse
|
94
|
Zhang W, Yang J, Liu Y, Chen X, Yu T, Jia J, Liu C. PR55 alpha, a regulatory subunit of PP2A, specifically regulates PP2A-mediated beta-catenin dephosphorylation. J Biol Chem 2009; 284:22649-56. [PMID: 19556239 PMCID: PMC2755672 DOI: 10.1074/jbc.m109.013698] [Citation(s) in RCA: 91] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2009] [Revised: 06/24/2009] [Indexed: 12/15/2022] Open
Abstract
A central question in Wnt signaling is the regulation of beta-catenin phosphorylation and degradation. Multiple kinases, including CKI alpha and GSK3, are involved in beta-catenin phosphorylation. Protein phosphatases such as PP2A and PP1 have been implicated in the regulation of beta-catenin. However, which phosphatase dephosphorylates beta-catenin in vivo and how the specificity of beta-catenin dephosphorylation is regulated are not clear. In this study, we show that PP2A regulates beta-catenin phosphorylation and degradation in vivo. We demonstrate that PP2A is required for Wnt/beta-catenin signaling in Drosophila. Moreover, we have identified PR55 alpha as the regulatory subunit of PP2A that controls beta-catenin phosphorylation and degradation. PR55 alpha, but not the catalytic subunit, PP2Ac, directly interacts with beta-catenin. RNA interference knockdown of PR55 alpha elevates beta-catenin phosphorylation and decreases Wnt signaling, whereas overexpressing PR55 alpha enhances Wnt signaling. Taken together, our results suggest that PR55 alpha specifically regulates PP2A-mediated beta-catenin dephosphorylation and plays an essential role in Wnt signaling.
Collapse
Affiliation(s)
- Wen Zhang
- the Department of Molecular and Cellular Biochemistry, Markey Cancer Center, University of Kentucky, Lexington, Kentucky 40506
| | - Jun Yang
- From the Department of Biochemistry and Molecular Biology, University of Texas Medical Branch, Galveston, Texas 77555 and
| | - Yajuan Liu
- the Department of Molecular and Cellular Biochemistry, Markey Cancer Center, University of Kentucky, Lexington, Kentucky 40506
| | - Xi Chen
- the Department of Molecular and Cellular Biochemistry, Markey Cancer Center, University of Kentucky, Lexington, Kentucky 40506
| | - Tianxin Yu
- From the Department of Biochemistry and Molecular Biology, University of Texas Medical Branch, Galveston, Texas 77555 and
| | - Jianhang Jia
- the Department of Molecular and Cellular Biochemistry, Markey Cancer Center, University of Kentucky, Lexington, Kentucky 40506
| | - Chunming Liu
- From the Department of Biochemistry and Molecular Biology, University of Texas Medical Branch, Galveston, Texas 77555 and
- the Department of Molecular and Cellular Biochemistry, Markey Cancer Center, University of Kentucky, Lexington, Kentucky 40506
| |
Collapse
|
95
|
Jiang Y, Luo W, Howe PH. Dab2 stabilizes Axin and attenuates Wnt/beta-catenin signaling by preventing protein phosphatase 1 (PP1)-Axin interactions. Oncogene 2009; 28:2999-3007. [PMID: 19581931 PMCID: PMC2804437 DOI: 10.1038/onc.2009.157] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2008] [Revised: 05/18/2009] [Accepted: 05/18/2009] [Indexed: 12/19/2022]
Abstract
Wnt/beta-catenin signaling plays a pivotal role in modulating cellular proliferation, differentiation, tissue organization and embryonic development. Earlier, we found that the endocytic adaptor disabled-2 (Dab2) could attenuate Wnt/beta-catenin signaling by stabilizing Axin and preventing its translocation to the membrane. Recently, protein phosphatase 1 (PP1) has been shown to interact with, and dephosphorylate Axin, leading to its destabilization. Here, we show that Dab2 functions upstream of PP1 to block the interaction between Axin and PP1, inhibiting Axin dephosphorylation and thereby stabilizing its expression, ultimately leading to inhibition of Wnt/beta-catenin. We show that Dab2 acts as a competitive inhibitor of PP1 by binding to the same C-terminal domain of Axin. Both PP1 and Axin bind to the N-terminus of Dab2 and a Dab2 truncation mutant consisting of the N-terminal phosphotyrosine binding domain blocks PP1-Axin interactions and inhibits Wnt signaling. We confirm the inhibitory effect of Dab2 on Wnt/beta-catenin signaling in zebrafish embryos, showing that its ectopic expression phenocopies Axin overexpression resulting in altered dorsoventral patterning. We conclude that Dab2 stabilizes Axin and attenuates Wnt/beta-catenin signaling by preventing PP1 from binding Axin.
Collapse
Affiliation(s)
- Y Jiang
- Department of Cancer Biology NB4, Lerner Research Institute, Cleveland Clinic, Cleveland, OH, USA
| | - W Luo
- Department of Oncological Sciences, Center for Children, Huntsman Cancer Institute, University of Utah, Salt Lake City, UT, USA
| | - PH Howe
- Department of Cancer Biology NB4, Lerner Research Institute, Cleveland Clinic, Cleveland, OH, USA
| |
Collapse
|
96
|
Hansen C, Howlin J, Tengholm A, Dyachok O, Vogel WF, Nairn AC, Greengard P, Andersson T. Wnt-5a-induced phosphorylation of DARPP-32 inhibits breast cancer cell migration in a CREB-dependent manner. J Biol Chem 2009; 284:27533-43. [PMID: 19651774 DOI: 10.1074/jbc.m109.048884] [Citation(s) in RCA: 62] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Tumor cell migration plays a central role in the process of cancer metastasis. We recently identified dopamine and cAMP-regulated phosphoprotein of 32 kDa (DARPP-32) as an antimigratory phosphoprotein in breast cancer cells. Here we link this effect of DARPP-32 to Wnt-5a signaling by demonstrating that recombinant Wnt-5a triggers cAMP elevation at the plasma membrane and Thr34-DARPP-32 phosphorylation in MCF-7 cells. In agreement, both protein kinase A (PKA) inhibitors and siRNA-mediated knockdown of Frizzled-3 receptor or Galpha(s) expression abolished Wnt-5a-induced phosphorylation of DARPP-32. Furthermore, Wnt-5a induced DARPP-32-dependent inhibition of MCF-7 cell migration. Phospho-Thr-34-DARPP-32 interacted with protein phosphatase-1 (PP1) and potentiated the Wnt-5a-mediated phosphorylation of CREB, a well-known PP1 substrate, but had no effect on CREB phosphorylation by itself. Moreover, inhibition of the Wnt-5a/DARPP-32/CREB pathway, by expression of dominant negative CREB (DN-CREB), diminished the antimigratory effect of Wnt-5a-induced phospho-Thr-34-DARPP-32. Phalloidin-staining revealed that that the presence of phospho-Thr-34-DARPP-32 in MCF-7 cells results in reduced filopodia formation. In accordance, the activity of the Rho GTPase Cdc42, known to be crucial for filopodia formation, was reduced in MCF-7 cells expressing phospho-Thr-34-DARPP-32. The effects of DARPP-32 on cell migration and filopodia formation could be reversed in T47D breast cancer cells that were depleted of their endogenous DARPP-32 by siRNA targeting. Consequently, Wnt-5a activates a Frizzled-3/Galpha(s)/cAMP/PKA signaling pathway that triggers a DARPP-32- and CREB-dependent antimigratory response in breast cancer cells, representing a novel mechanism whereby Wnt-5a can inhibit breast cancer cell migration.
Collapse
Affiliation(s)
- Christian Hansen
- Experimental Pathology, Department of Laboratory Medicine, Lund University, CRC, 205 02 Malmö, Sweden
| | | | | | | | | | | | | | | |
Collapse
|
97
|
Abstract
Signaling by the Wnt family of secreted glycolipoproteins via the transcriptional coactivator beta-catenin controls embryonic development and adult homeostasis. Here we review recent progress in this so-called canonical Wnt signaling pathway. We discuss Wnt ligands, agonists, and antagonists, and their interactions with Wnt receptors. We also dissect critical events that regulate beta-catenin stability, from Wnt receptors to the cytoplasmic beta-catenin destruction complex, and nuclear machinery that mediates beta-catenin-dependent transcription. Finally, we highlight some key aspects of Wnt/beta-catenin signaling in human diseases including congenital malformations, cancer, and osteoporosis, and discuss potential therapeutic implications.
Collapse
Affiliation(s)
- Bryan T MacDonald
- F. M. Kirby Neurobiology Center, Children's Hospital Boston, Harvard Medical School, Boston, MA 02115, USA
| | | | | |
Collapse
|
98
|
Kennell J, Cadigan KM. APC and beta-catenin degradation. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2009; 656:1-12. [PMID: 19928348 DOI: 10.1007/978-1-4419-1145-2_1] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Affiliation(s)
- Jennifer Kennell
- Molecular, Cellular and Developmental Biology, University of Michigan, Ann Arbor, MI, USA
| | | |
Collapse
|
99
|
Upadhyay G, Goessling W, North TE, Xavier R, Zon LI, Yajnik V. Molecular association between beta-catenin degradation complex and Rac guanine exchange factor DOCK4 is essential for Wnt/beta-catenin signaling. Oncogene 2008; 27:5845-55. [PMID: 18641688 PMCID: PMC4774646 DOI: 10.1038/onc.2008.202] [Citation(s) in RCA: 49] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2008] [Revised: 05/12/2008] [Accepted: 05/19/2008] [Indexed: 01/07/2023]
Abstract
The canonical Wnt/beta-catenin pathway is a highly conserved signaling cascade that is involved in development and stem cell renewal. The deregulation of this pathway is often associated with increased cell growth and neoplasia. The small GTPase Rac has been shown to influence canonical Wnt signaling by regulating beta-catenin stability through an unknown mechanism. We report that DOCK4, a guanine nucleotide exchange factor (GEF) for Rac and a member of the CDM family of unconventional GEFs, mediates Wnt-induced Rac activation in the canonical Wnt/beta-catenin pathway. DOCK4 expression regulates cellular beta-catenin levels in response to the Wnt signal, in vitro. Biochemical studies demonstrate that DOCK4 interacts with the beta-catenin degradation complex, consisting of the proteins adenomatosis polyposis coli, Axin and glycogen synthase kinase 3beta (GSK3beta). This molecular interaction enhances beta-catenin stability and Axin degradation. Furthermore, we observe that DOCK4 is phosphorylated by GSK3beta, which enhances Wnt-induced Rac activation. Using a T-cell factor reporter zebrafish we confirm that DOCK4 is required for Wnt/beta-catenin activity, in vivo. These results elucidate a novel intracellular signaling mechanism in which a Rac GEF, DOCK4 acts as a scaffold protein in the Wnt/beta-catenin pathway.
Collapse
Affiliation(s)
- G Upadhyay
- Department of Medicine, Gastrointestinal Unit, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA.
| | | | | | | | | | | |
Collapse
|
100
|
Li C, Liang YY, Feng XH, Tsai SY, Tsai MJ, O’Malley BW. Essential phosphatases and a phospho-degron are critical for regulation of SRC-3/AIB1 coactivator function and turnover. Mol Cell 2008; 31:835-49. [PMID: 18922467 PMCID: PMC2597059 DOI: 10.1016/j.molcel.2008.07.019] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2008] [Revised: 05/30/2008] [Accepted: 07/18/2008] [Indexed: 11/26/2022]
Abstract
SRC-3/AIB1 is a master growth coactivator and oncogene, and phosphorylation activates it into a powerful coregulator. Dephosphorylation is a potential regulatory mechanism for SRC-3 function, but the identity of such phosphatases remains unexplored. Herein, we report that, using functional genomic screening of human Ser/Thr phosphatases targeting SRC-3's known phosphorylation sites, the phosphatases PDXP, PP1, and PP2A were identified to be key negative regulators of SRC-3 transcriptional coregulatory activity in steroid receptor signalings. PDXP and PP2A dephosphorylate SRC-3 and inhibit its ligand-dependent association with estrogen receptor. PP1 stabilizes SRC-3 protein by blocking its proteasome-dependent turnover through dephosphorylation of two previously unidentified phosphorylation sites (Ser101 and S102) required for activity. These two sites are located within a degron of SRC-3 and are primary determinants of SRC-3 turnover. Moreover, PP1 regulates the oncogenic cell proliferation and invasion functions of SRC-3 in breast cancer cells.
Collapse
Affiliation(s)
- Chao Li
- Department of Molecular and Cellular Biology, Baylor College of Medicine, One Baylor Plaza, Houston, TX 77030
| | - Yao-Yun Liang
- Department of Molecular and Cellular Biology, Baylor College of Medicine, One Baylor Plaza, Houston, TX 77030
| | - Xin-Hua Feng
- Department of Molecular and Cellular Biology, Baylor College of Medicine, One Baylor Plaza, Houston, TX 77030
| | - Sophia Y. Tsai
- Department of Molecular and Cellular Biology, Baylor College of Medicine, One Baylor Plaza, Houston, TX 77030
| | - Ming-Jer Tsai
- Department of Molecular and Cellular Biology, Baylor College of Medicine, One Baylor Plaza, Houston, TX 77030
| | - Bert W. O’Malley
- Department of Molecular and Cellular Biology, Baylor College of Medicine, One Baylor Plaza, Houston, TX 77030
| |
Collapse
|