51
|
Bönisch C, Schneider K, Pünzeler S, Wiedemann SM, Bielmeier C, Bocola M, Eberl HC, Kuegel W, Neumann J, Kremmer E, Leonhardt H, Mann M, Michaelis J, Schermelleh L, Hake SB. H2A.Z.2.2 is an alternatively spliced histone H2A.Z variant that causes severe nucleosome destabilization. Nucleic Acids Res 2012; 40:5951-64. [PMID: 22467210 PMCID: PMC3401452 DOI: 10.1093/nar/gks267] [Citation(s) in RCA: 85] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
The histone variant H2A.Z has been implicated in many biological processes, such as gene regulation and genome stability. Here, we present the identification of H2A.Z.2.2 (Z.2.2), a novel alternatively spliced variant of histone H2A.Z and provide a comprehensive characterization of its expression and chromatin incorporation properties. Z.2.2 mRNA is found in all human cell lines and tissues with highest levels in brain. We show the proper splicing and in vivo existence of this variant protein in humans. Furthermore, we demonstrate the binding of Z.2.2 to H2A.Z-specific TIP60 and SRCAP chaperone complexes and its active replication-independent deposition into chromatin. Strikingly, various independent in vivo and in vitro analyses, such as biochemical fractionation, comparative FRAP studies of GFP-tagged H2A variants, size exclusion chromatography and single molecule FRET, in combination with in silico molecular dynamics simulations, consistently demonstrate that Z.2.2 causes major structural changes and significantly destabilizes nucleosomes. Analyses of deletion mutants and chimeric proteins pinpoint this property to its unique C-terminus. Our findings enrich the list of known human variants by an unusual protein belonging to the H2A.Z family that leads to the least stable nucleosome known to date.
Collapse
Affiliation(s)
- Clemens Bönisch
- Department of Molecular Biology, Adolf-Butenandt-Institute, Ludwig-Maximilians-University Munich, 80336 Munich, Germany
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
52
|
Menoni H, Shukla MS, Gerson V, Dimitrov S, Angelov D. Base excision repair of 8-oxoG in dinucleosomes. Nucleic Acids Res 2011; 40:692-700. [PMID: 21930508 PMCID: PMC3258150 DOI: 10.1093/nar/gkr761] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
In this work we have studied the effect of chromatin structure on the base excision repair (BER) efficiency of 8-oxoG. As a model system we have used precisely positioned dinucleosomes assembled with linker histone H1. A single 8-oxoG was inserted either in the linker or the core particle DNA within the dinucleosomal template. We found that in the absence of histone H1 the glycosylase OGG1 removed 8-oxoG from the linker DNA and cleaved DNA with identical efficiency as in the naked DNA. In contrast, the presence of histone H1 resulted in close to 10-fold decrease in the efficiency of 8-oxoG initiation of repair in linker DNA independently of linker DNA length. The repair of 8-oxoG in nucleosomal DNA was very highly impeded in both absence and presence of histone H1. Chaperone-induced uptake of H1 restored the efficiency of the glycosylase induced removal of 8-oxoG from linker DNA, but not from the nucleosomal DNA. We show, however, that removal of histone H1 and nucleosome remodelling are both necessary and sufficient for an efficient removal of 8-oxoG in nucleosomal DNA. Finally, a model for BER of 8-oxoG in chromatin templates is suggested.
Collapse
Affiliation(s)
- Hervé Menoni
- Université de Lyon, Laboratoire de Biologie Moléculaire de la Cellule, CNRS-UMR 5239, Ecole Normale Supérieure de Lyon, 46 Allée d'Italie, 69364 Lyon cedex 07, France
| | | | | | | | | |
Collapse
|
53
|
Iwasaki W, Tachiwana H, Kawaguchi K, Shibata T, Kagawa W, Kurumizaka H. Comprehensive Structural Analysis of Mutant Nucleosomes Containing Lysine to Glutamine (KQ) Substitutions in the H3 and H4 Histone-Fold Domains. Biochemistry 2011; 50:7822-32. [DOI: 10.1021/bi201021h] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Wakana Iwasaki
- Laboratory of Structural Biology, Graduate School of Advanced Science
and Engineering, Waseda University, Shinjuku-ku,
Tokyo 162-8480, Japan
- RIKEN Advanced Science Institute, 2-1 Hirosawa, Wako-shi,
Saitama 351-0198, Japan
| | - Hiroaki Tachiwana
- Laboratory of Structural Biology, Graduate School of Advanced Science
and Engineering, Waseda University, Shinjuku-ku,
Tokyo 162-8480, Japan
| | - Koichiro Kawaguchi
- Laboratory of Structural Biology, Graduate School of Advanced Science
and Engineering, Waseda University, Shinjuku-ku,
Tokyo 162-8480, Japan
| | - Takehiko Shibata
- RIKEN Advanced Science Institute, 2-1 Hirosawa, Wako-shi,
Saitama 351-0198, Japan
| | - Wataru Kagawa
- Laboratory of Structural Biology, Graduate School of Advanced Science
and Engineering, Waseda University, Shinjuku-ku,
Tokyo 162-8480, Japan
| | - Hitoshi Kurumizaka
- Laboratory of Structural Biology, Graduate School of Advanced Science
and Engineering, Waseda University, Shinjuku-ku,
Tokyo 162-8480, Japan
| |
Collapse
|
54
|
Abstract
The cell nucleus is responsible for the storage, expression, propagation, and maintenance of the genetic material it contains. Highly organized macromolecular complexes are required for these processes to occur faithfully in an extremely crowded nuclear environment. In addition to chromosome territories, the nucleus is characterized by the presence of nuclear substructures, such as the nuclear envelope, the nucleolus, and other nuclear bodies. Other smaller structural entities assemble on chromatin in response to required functions including RNA transcription, DNA replication, and DNA repair. Experiments in living cells over the last decade have revealed that many DNA binding proteins have very short residence times on chromatin. These observations have led to a model in which the assembly of nuclear macromolecular complexes is based on the transient binding of their components. While indeed most nuclear proteins are highly dynamic, we found after an extensive survey of the FRAP literature that an important subset of nuclear proteins shows either very slow turnover or complete immobility. These examples provide compelling evidence for the establishment of stable protein complexes in the nucleus over significant fractions of the cell cycle. Stable interactions in the nucleus may, therefore, contribute to the maintenance of genome integrity. Based on our compilation of FRAP data, we propose an extension of the existing model for nuclear organization which now incorporates stable interactions. Our new “induced stability” model suggests that self-organization, self-assembly, and assisted assembly contribute to nuclear architecture and function.
Collapse
|
55
|
Wiedemann SM, Mildner SN, Bönisch C, Israel L, Maiser A, Matheisl S, Straub T, Merkl R, Leonhardt H, Kremmer E, Schermelleh L, Hake SB. Identification and characterization of two novel primate-specific histone H3 variants, H3.X and H3.Y. ACTA ACUST UNITED AC 2010; 190:777-91. [PMID: 20819935 PMCID: PMC2935562 DOI: 10.1083/jcb.201002043] [Citation(s) in RCA: 99] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
The expression of a new histone variant H3.Y increases during cellular stress to regulate cell cycle progression and gene expression. Nucleosomal incorporation of specialized histone variants is an important mechanism to generate different functional chromatin states. Here, we describe the identification and characterization of two novel primate-specific histone H3 variants, H3.X and H3.Y. Their messenger RNAs are found in certain human cell lines, in addition to several normal and malignant human tissues. In keeping with their primate specificity, H3.X and H3.Y are detected in different brain regions. Transgenic H3.X and H3.Y proteins are stably incorporated into chromatin in a similar fashion to the known H3 variants. Importantly, we demonstrate biochemically and by mass spectrometry that endogenous H3.Y protein exists in vivo, and that stress stimuli, such as starvation and cellular density, increase the abundance of H3.Y-expressing cells. Global transcriptome analysis revealed that knockdown of H3.Y affects cell growth and leads to changes in the expression of many genes involved in cell cycle control. Thus, H3.Y is a novel histone variant involved in the regulation of cellular responses to outside stimuli.
Collapse
Affiliation(s)
- Sonja M Wiedemann
- Adolf-Butenandt-Institute, Department of Molecular Biology, Ludwig Maximilians University of Munich, 80336 Munich, Germany
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
56
|
Shukla MS, Syed SH, Goutte-Gattat D, Richard JLC, Montel F, Hamiche A, Travers A, Faivre-Moskalenko C, Bednar J, Hayes JJ, Angelov D, Dimitrov S. The docking domain of histone H2A is required for H1 binding and RSC-mediated nucleosome remodeling. Nucleic Acids Res 2010; 39:2559-70. [PMID: 21131284 PMCID: PMC3074127 DOI: 10.1093/nar/gkq1174] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Histone variants within the H2A family show high divergences in their C-terminal regions. In this work, we have studied how these divergences and in particular, how a part of the H2A COOH-terminus, the docking domain, is implicated in both structural and functional properties of the nucleosome. Using biochemical methods in combination with Atomic Force Microscopy and Electron Cryo-Microscopy, we show that the H2A-docking domain is a key structural feature within the nucleosome. Deletion of this domain or replacement with the incomplete docking domain from the variant H2A.Bbd results in significant structural alterations in the nucleosome, including an increase in overall accessibility to nucleases, un-wrapping of ∼10 bp of DNA from each end of the nucleosome and associated changes in the entry/exit angle of DNA ends. These structural alterations are associated with a reduced ability of the chromatin remodeler RSC to both remodel and mobilize the nucleosomes. Linker histone H1 binding is also abrogated in nucleosomes containing the incomplete docking domain of H2A.Bbd. Our data illustrate the unique role of the H2A-docking domain in coordinating the structural-functional aspects of the nucleosome properties. Moreover, our data suggest that incorporation of a ‘defective’ docking domain may be a primary structural role of H2A.Bbd in chromatin.
Collapse
|
57
|
Abstract
Embryonic development is regulated by both genetic and epigenetic mechanisms, with nearly all DNA-templated processes influenced by chromatin architecture. Sequence variations in histone proteins, core components of chromatin, provide a means to generate diversity in the chromatin structure, resulting in distinct and profound biological outcomes in the developing embryo. Emerging literature suggests that epigenetic contributions from histone variants play key roles in a number of developmental processes such as the initiation and maintenance of pericentric heterochromatin, X-inactivation, and germ cell differentiation. Here, we review the role of histone variants in the embryo with particular emphasis on early mammalian development.
Collapse
Affiliation(s)
| | - C. David Allis
- Laboratory of Chromatin Biology and Epigenetics, The Rockefeller University, 1230 York Avenue, New York, NY 10065
| | | |
Collapse
|
58
|
Structural basis of instability of the nucleosome containing a testis-specific histone variant, human H3T. Proc Natl Acad Sci U S A 2010; 107:10454-9. [PMID: 20498094 DOI: 10.1073/pnas.1003064107] [Citation(s) in RCA: 179] [Impact Index Per Article: 11.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
A histone H3 variant, H3T, is highly expressed in the testis, suggesting that it may play an important role in the chromatin reorganization required for meiosis and/or spermatogenesis. In the present study, we found that the nucleosome containing human H3T is significantly unstable both in vitro and in vivo, as compared to the conventional nucleosome containing H3.1. The crystal structure of the H3T nucleosome revealed structural differences in the H3T regions on both ends of the central alpha2 helix, as compared to those of H3.1. The H3T-specific residues (Met71 and Val111) are the source of the structural differences observed between H3T and H3.1. A mutational analysis revealed that these residues are responsible for the reduced stability of the H3T-containing nucleosome. These physical and structural properties of the H3T-containing nucleosome may provide the basis of chromatin reorganization during spermatogenesis.
Collapse
|
59
|
Li A, Yu Y, Lee SC, Ishibashi T, Lees-Miller SP, Ausió J. Phosphorylation of histone H2A.X by DNA-dependent protein kinase is not affected by core histone acetylation, but it alters nucleosome stability and histone H1 binding. J Biol Chem 2010; 285:17778-88. [PMID: 20356835 DOI: 10.1074/jbc.m110.116426] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Phosphorylation of the C-terminal end of histone H2A.X is the most characterized histone post-translational modification in DNA double-stranded breaks (DSB). DNA-dependent protein kinase (DNA-PK) is one of the three phosphatidylinositol 3 kinase-like family of kinase members that is known to phosphorylate histone H2A.X during DNA DSB repair. There is a growing body of evidence supporting a role for histone acetylation in DNA DSB repair, but the mechanism or the causative relation remains largely unknown. Using bacterially expressed recombinant mutants and stably and transiently transfected cell lines, we find that DNA-PK can phosphorylate Thr-136 in addition to Ser-139 both in vitro and in vivo. Furthermore, the phosphorylation reaction is not inhibited by the presence of H1, which in itself is a substrate of the reaction. We also show that, in contrast to previous reports, the ability of the enzyme to phosphorylate these residues is not affected by the extent of acetylation of the core histones. In vitro assembled nucleosomes and HeLa S3 native oligonucleosomes consisting of non-acetylated and acetylated histones are equally phosphorylated by DNA-PK. We demonstrate that the apparent differences in the extent of phosphorylation previously observed can be accounted for by the differential chromatin solubility under the MgCl(2) concentrations required for the phosphorylation reaction in vitro. Finally, we show that although H2A.X does not affect nucleosome conformation, it has a de-stabilizing effect that is enhanced by the DNA-PK-mediated phosphorylation and results in an impaired histone H1 binding.
Collapse
Affiliation(s)
- Andra Li
- Department of Biochemistry and Microbiology, University of Victoria, Victoria, British Columbia V8W 3P6, Canada
| | | | | | | | | | | |
Collapse
|
60
|
Abstract
Histones wrap DNA to form nucleosome particles that compact eukaryotic genomes. Variant histones have evolved crucial roles in chromosome segregation, transcriptional regulation, DNA repair, sperm packaging and other processes. 'Universal' histone variants emerged early in eukaryotic evolution and were later displaced for bulk packaging roles by the canonical histones (H2A, H2B, H3 and H4), the synthesis of which is coupled to DNA replication. Further specializations of histone variants have evolved in some lineages to perform additional tasks. Differences among histone variants in their stability, DNA wrapping, specialized domains that regulate access to DNA, and post-translational modifications, underlie the diverse functions that histones have acquired in evolution.
Collapse
|
61
|
Shaw ML, Williams EJ, Hawes S, Saffery R. Characterisation of histone variant distribution in human embryonic stem cells by transfection of in vitro transcribed mRNA. Mol Reprod Dev 2010; 76:1128-42. [PMID: 19606468 DOI: 10.1002/mrd.21077] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Recent studies, primarily in mouse embryonic stem cells, have highlighted the unique chromatin state of pluripotent stem cells, including the incorporation of histone variants into specific genomic locations, and its role in facilitating faithful expression of genes during development. However, there is little information available on the expression and subcellular localisation of histone variants in human embryonic stem cells (hESCs). In this study, we confirmed the expression of a panel of histone variant genes in several hESC lines and demonstrated the utility of transfection of in vitro transcribed, epitope-tagged mRNAs to characterise the subcellular localisation of these proteins. The subcellular localisations of variant histone H3 (CENP-A, H3.3), H2A (MACROH2A, H2AX, H2AZ, H2ABBD) and H1 (H1A, HB, H1C, H1D) were examined, revealing distinct nuclear localisation profiles for each protein. These data highlight the differences between murine (m) ESCs and hESCs, including the presence of a MACROH2A-enriched inactive X chromosome in undifferentiated XX hESC lines. We also provide the first evidence for MACROH2A accumulation on the Y-chromosome in XY hESCs.
Collapse
Affiliation(s)
- Margaret L Shaw
- Developmental Epigenetics, Department of Paediatrics, Murdoch Childrens Research Institute, Royal Children's Hospital, University of Melbourne, Parkville, Melbourne, Victoria, Australia
| | | | | | | |
Collapse
|
62
|
Dryhurst D, Ishibashi T, Rose KL, Eirín-López JM, McDonald D, Silva-Moreno B, Veldhoen N, Helbing CC, Hendzel MJ, Shabanowitz J, Hunt DF, Ausió J. Characterization of the histone H2A.Z-1 and H2A.Z-2 isoforms in vertebrates. BMC Biol 2009; 7:86. [PMID: 20003410 PMCID: PMC2805615 DOI: 10.1186/1741-7007-7-86] [Citation(s) in RCA: 80] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2009] [Accepted: 12/14/2009] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Within chromatin, the histone variant H2A.Z plays a role in many diverse nuclear processes including transcription, preventing the spread of heterochromatin and epigenetic transcriptional memory. The molecular mechanisms of how H2A.Z mediates its effects are not entirely understood. However, it is now known that H2A.Z has two protein isoforms in vertebrates, H2A.Z-1 and H2A.Z-2, which are encoded by separate genes and differ by 3 amino acid residues. RESULTS We report that H2A.Z-1 and H2A.Z-2 are expressed across a wide range of human tissues, they are both acetylated at lysine residues within the N-terminal region and they exhibit similar, but nonidentical, distributions within chromatin. Our results suggest that H2A.Z-2 preferentially associates with H3 trimethylated at lysine 4 compared to H2A.Z-1. The phylogenetic analysis of the promoter regions of H2A.Z-1 and H2A.Z-2 indicate that they have evolved separately during vertebrate evolution. CONCLUSIONS Our biochemical, gene expression, and phylogenetic data suggest that the H2A.Z-1 and H2A.Z-2 variants function similarly yet they may have acquired a degree of functional independence.
Collapse
Affiliation(s)
- Deanna Dryhurst
- Department of Biochemistry and Microbiology and The Center for Biomedical Research, University of Victoria, Petch Building, Victoria, BC, V8W 3P6, Canada.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
63
|
Ishibashi T, Li A, Eirín-López JM, Zhao M, Missiaen K, Abbott DW, Meistrich M, Hendzel MJ, Ausió J. H2A.Bbd: an X-chromosome-encoded histone involved in mammalian spermiogenesis. Nucleic Acids Res 2009; 38:1780-9. [PMID: 20008104 PMCID: PMC2847216 DOI: 10.1093/nar/gkp1129] [Citation(s) in RCA: 59] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
Despite the identification of H2A.Bbd as a new vertebrate-specific replacement histone variant several years ago, and despite the many in vitro structural characterizations using reconstituted chromatin complexes consisting of this variant, the existence of H2A.Bbd in the cell and its location has remained elusive. Here, we report that the native form of this variant is present in highly advanced spermiogenic fractions of mammalian testis at the time when histones are highly acetylated and being replaced by protamines. It is also present in the nucleosomal chromatin fraction of mature human sperm. The ectopically expressed non-tagged version of the protein is associated with micrococcal nuclease-refractory insoluble fractions of chromatin and in mouse (20T1/2) cell line, H2A.Bbd is enriched at the periphery of chromocenters. The exceedingly rapid evolution of this unique X-chromosome-linked histone variant is shared with other reproductive proteins including those associated with chromatin in the mature sperm (protamines) of many vertebrates. This common rate of evolution provides further support for the functional and structural involvement of this protein in male gametogenesis in mammals.
Collapse
Affiliation(s)
- Toyotaka Ishibashi
- Department of Biochemistry and Microbiology, University of Victoria, Victoria, BC V8W 3P6, Canada
| | | | | | | | | | | | | | | | | |
Collapse
|
64
|
Montel F, Menoni H, Castelnovo M, Bednar J, Dimitrov S, Angelov D, Faivre-Moskalenko C. The dynamics of individual nucleosomes controls the chromatin condensation pathway: direct atomic force microscopy visualization of variant chromatin. Biophys J 2009; 97:544-53. [PMID: 19619469 DOI: 10.1016/j.bpj.2009.04.042] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2009] [Revised: 04/20/2009] [Accepted: 04/21/2009] [Indexed: 10/20/2022] Open
Abstract
Chromatin organization and dynamics is studied at scales ranging from single nucleosome to nucleosomal array by using a unique combination of biochemical assays, single molecule imaging technique, and numerical modeling. We show that a subtle modification in the nucleosome structure induced by the histone variant H2A.Bbd drastically modifies the higher order organization of the nucleosomal arrays. Importantly, as directly visualized by atomic force microscopy, conventional H2A nucleosomal arrays exhibit specific local organization, in contrast to H2A.Bbd arrays, which show "beads on a string" structure. The combination of systematic image analysis and theoretical modeling allows a quantitative description relating the observed gross structural changes of the arrays to their local organization. Our results suggest strongly that higher-order organization of H1-free nucleosomal arrays is determined mainly by the fluctuation properties of individual nucleosomes. Moreover, numerical simulations suggest the existence of attractive interactions between nucleosomes to provide the degree of compaction observed for conventional chromatin fibers.
Collapse
Affiliation(s)
- Fabien Montel
- Université de Lyon, Laboratoire Joliot-Curie, CNRS USR 3010, Ecole Normale Supérieure de Lyon, 69364 Lyon Cedex 07, France
| | | | | | | | | | | | | |
Collapse
|
65
|
Syed SH, Boulard M, Shukla MS, Gautier T, Travers A, Bednar J, Faivre-Moskalenko C, Dimitrov S, Angelov D. The incorporation of the novel histone variant H2AL2 confers unusual structural and functional properties of the nucleosome. Nucleic Acids Res 2009; 37:4684-95. [PMID: 19506029 PMCID: PMC2724287 DOI: 10.1093/nar/gkp473] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2009] [Revised: 05/07/2009] [Accepted: 05/18/2009] [Indexed: 02/02/2023] Open
Abstract
In this work we have studied the properties of the novel mouse histone variant H2AL2. H2AL2 was used to reconstitute nucleosomes and the structural and functional properties of these particles were studied by a combination of biochemical approaches, atomic force microscopy (AFM) and electron cryo-microscopy. DNase I and hydroxyl radical footprinting as well as micrococcal and exonuclease III digestion demonstrated an altered structure of the H2AL2 nucleosomes all over the nucleosomal DNA length. Restriction nuclease accessibility experiments revealed that the interactions of the H2AL2 histone octamer with the ends of the nucleosomal DNA are highly perturbed. AFM imaging showed that the H2AL2 histone octamer was complexed with only approximately 130 bp of DNA. H2AL2 reconstituted trinucleosomes exhibited a type of a 'beads on a string' structure, which was quite different from the equilateral triangle 3D organization of conventional H2A trinucleosomes. The presence of H2AL2 affected both the RSC and SWI/SNF remodeling and mobilization of the variant particles. These unusual properties of the H2AL2 nucleosomes suggest a specific role of H2AL2 during mouse spermiogenesis.
Collapse
Affiliation(s)
- Sajad Hussain Syed
- Université Joseph Fourier – Grenoble 1, INSERM Institut Albert Bonniot, U823, Site Santé-BP 170, 38042 Grenoble Cedex 9, Université de Lyon, Laboratoire de Biologie Moléculaire de la Cellule, CNRS-UMR 5239/INRA 1237/IFR128 Biosciences, Ecole Normale Supérieure de Lyon, 46 Allée d'Italie, 69364 Lyon cedex 07, France, MRC Laboratory of Molecular Biology, Hills Road, Cambridge CB2 2QH, UK, CNRS/UJF, Laboratoire de Spectrométrie Physique, UMR 5588, BP87, 140 Av. de la Physique, 38402 St. Martin d'Hères Cedex, France, Charles University in Prague, Institute of Cellular Biology and Pathology, First Faculty of Medicine and Department of Cell Biology, Institute of Physiology, Academy of Sciences of the Czech Republic, Albertov 4, 128 01 Prague 2, Czech Republic and Université de Lyon, Laboratoire de Physique, CNRS UMR 5672, Ecole Normale Supérieure de Lyon, 46 Allée d'Italie, 69364 Lyon cedex 07, France
| | - Mathieu Boulard
- Université Joseph Fourier – Grenoble 1, INSERM Institut Albert Bonniot, U823, Site Santé-BP 170, 38042 Grenoble Cedex 9, Université de Lyon, Laboratoire de Biologie Moléculaire de la Cellule, CNRS-UMR 5239/INRA 1237/IFR128 Biosciences, Ecole Normale Supérieure de Lyon, 46 Allée d'Italie, 69364 Lyon cedex 07, France, MRC Laboratory of Molecular Biology, Hills Road, Cambridge CB2 2QH, UK, CNRS/UJF, Laboratoire de Spectrométrie Physique, UMR 5588, BP87, 140 Av. de la Physique, 38402 St. Martin d'Hères Cedex, France, Charles University in Prague, Institute of Cellular Biology and Pathology, First Faculty of Medicine and Department of Cell Biology, Institute of Physiology, Academy of Sciences of the Czech Republic, Albertov 4, 128 01 Prague 2, Czech Republic and Université de Lyon, Laboratoire de Physique, CNRS UMR 5672, Ecole Normale Supérieure de Lyon, 46 Allée d'Italie, 69364 Lyon cedex 07, France
| | - Manu Shubhdarshan Shukla
- Université Joseph Fourier – Grenoble 1, INSERM Institut Albert Bonniot, U823, Site Santé-BP 170, 38042 Grenoble Cedex 9, Université de Lyon, Laboratoire de Biologie Moléculaire de la Cellule, CNRS-UMR 5239/INRA 1237/IFR128 Biosciences, Ecole Normale Supérieure de Lyon, 46 Allée d'Italie, 69364 Lyon cedex 07, France, MRC Laboratory of Molecular Biology, Hills Road, Cambridge CB2 2QH, UK, CNRS/UJF, Laboratoire de Spectrométrie Physique, UMR 5588, BP87, 140 Av. de la Physique, 38402 St. Martin d'Hères Cedex, France, Charles University in Prague, Institute of Cellular Biology and Pathology, First Faculty of Medicine and Department of Cell Biology, Institute of Physiology, Academy of Sciences of the Czech Republic, Albertov 4, 128 01 Prague 2, Czech Republic and Université de Lyon, Laboratoire de Physique, CNRS UMR 5672, Ecole Normale Supérieure de Lyon, 46 Allée d'Italie, 69364 Lyon cedex 07, France
| | - Thierry Gautier
- Université Joseph Fourier – Grenoble 1, INSERM Institut Albert Bonniot, U823, Site Santé-BP 170, 38042 Grenoble Cedex 9, Université de Lyon, Laboratoire de Biologie Moléculaire de la Cellule, CNRS-UMR 5239/INRA 1237/IFR128 Biosciences, Ecole Normale Supérieure de Lyon, 46 Allée d'Italie, 69364 Lyon cedex 07, France, MRC Laboratory of Molecular Biology, Hills Road, Cambridge CB2 2QH, UK, CNRS/UJF, Laboratoire de Spectrométrie Physique, UMR 5588, BP87, 140 Av. de la Physique, 38402 St. Martin d'Hères Cedex, France, Charles University in Prague, Institute of Cellular Biology and Pathology, First Faculty of Medicine and Department of Cell Biology, Institute of Physiology, Academy of Sciences of the Czech Republic, Albertov 4, 128 01 Prague 2, Czech Republic and Université de Lyon, Laboratoire de Physique, CNRS UMR 5672, Ecole Normale Supérieure de Lyon, 46 Allée d'Italie, 69364 Lyon cedex 07, France
| | - Andrew Travers
- Université Joseph Fourier – Grenoble 1, INSERM Institut Albert Bonniot, U823, Site Santé-BP 170, 38042 Grenoble Cedex 9, Université de Lyon, Laboratoire de Biologie Moléculaire de la Cellule, CNRS-UMR 5239/INRA 1237/IFR128 Biosciences, Ecole Normale Supérieure de Lyon, 46 Allée d'Italie, 69364 Lyon cedex 07, France, MRC Laboratory of Molecular Biology, Hills Road, Cambridge CB2 2QH, UK, CNRS/UJF, Laboratoire de Spectrométrie Physique, UMR 5588, BP87, 140 Av. de la Physique, 38402 St. Martin d'Hères Cedex, France, Charles University in Prague, Institute of Cellular Biology and Pathology, First Faculty of Medicine and Department of Cell Biology, Institute of Physiology, Academy of Sciences of the Czech Republic, Albertov 4, 128 01 Prague 2, Czech Republic and Université de Lyon, Laboratoire de Physique, CNRS UMR 5672, Ecole Normale Supérieure de Lyon, 46 Allée d'Italie, 69364 Lyon cedex 07, France
| | - Jan Bednar
- Université Joseph Fourier – Grenoble 1, INSERM Institut Albert Bonniot, U823, Site Santé-BP 170, 38042 Grenoble Cedex 9, Université de Lyon, Laboratoire de Biologie Moléculaire de la Cellule, CNRS-UMR 5239/INRA 1237/IFR128 Biosciences, Ecole Normale Supérieure de Lyon, 46 Allée d'Italie, 69364 Lyon cedex 07, France, MRC Laboratory of Molecular Biology, Hills Road, Cambridge CB2 2QH, UK, CNRS/UJF, Laboratoire de Spectrométrie Physique, UMR 5588, BP87, 140 Av. de la Physique, 38402 St. Martin d'Hères Cedex, France, Charles University in Prague, Institute of Cellular Biology and Pathology, First Faculty of Medicine and Department of Cell Biology, Institute of Physiology, Academy of Sciences of the Czech Republic, Albertov 4, 128 01 Prague 2, Czech Republic and Université de Lyon, Laboratoire de Physique, CNRS UMR 5672, Ecole Normale Supérieure de Lyon, 46 Allée d'Italie, 69364 Lyon cedex 07, France
| | - Cendrine Faivre-Moskalenko
- Université Joseph Fourier – Grenoble 1, INSERM Institut Albert Bonniot, U823, Site Santé-BP 170, 38042 Grenoble Cedex 9, Université de Lyon, Laboratoire de Biologie Moléculaire de la Cellule, CNRS-UMR 5239/INRA 1237/IFR128 Biosciences, Ecole Normale Supérieure de Lyon, 46 Allée d'Italie, 69364 Lyon cedex 07, France, MRC Laboratory of Molecular Biology, Hills Road, Cambridge CB2 2QH, UK, CNRS/UJF, Laboratoire de Spectrométrie Physique, UMR 5588, BP87, 140 Av. de la Physique, 38402 St. Martin d'Hères Cedex, France, Charles University in Prague, Institute of Cellular Biology and Pathology, First Faculty of Medicine and Department of Cell Biology, Institute of Physiology, Academy of Sciences of the Czech Republic, Albertov 4, 128 01 Prague 2, Czech Republic and Université de Lyon, Laboratoire de Physique, CNRS UMR 5672, Ecole Normale Supérieure de Lyon, 46 Allée d'Italie, 69364 Lyon cedex 07, France
| | - Stefan Dimitrov
- Université Joseph Fourier – Grenoble 1, INSERM Institut Albert Bonniot, U823, Site Santé-BP 170, 38042 Grenoble Cedex 9, Université de Lyon, Laboratoire de Biologie Moléculaire de la Cellule, CNRS-UMR 5239/INRA 1237/IFR128 Biosciences, Ecole Normale Supérieure de Lyon, 46 Allée d'Italie, 69364 Lyon cedex 07, France, MRC Laboratory of Molecular Biology, Hills Road, Cambridge CB2 2QH, UK, CNRS/UJF, Laboratoire de Spectrométrie Physique, UMR 5588, BP87, 140 Av. de la Physique, 38402 St. Martin d'Hères Cedex, France, Charles University in Prague, Institute of Cellular Biology and Pathology, First Faculty of Medicine and Department of Cell Biology, Institute of Physiology, Academy of Sciences of the Czech Republic, Albertov 4, 128 01 Prague 2, Czech Republic and Université de Lyon, Laboratoire de Physique, CNRS UMR 5672, Ecole Normale Supérieure de Lyon, 46 Allée d'Italie, 69364 Lyon cedex 07, France
| | - Dimitar Angelov
- Université Joseph Fourier – Grenoble 1, INSERM Institut Albert Bonniot, U823, Site Santé-BP 170, 38042 Grenoble Cedex 9, Université de Lyon, Laboratoire de Biologie Moléculaire de la Cellule, CNRS-UMR 5239/INRA 1237/IFR128 Biosciences, Ecole Normale Supérieure de Lyon, 46 Allée d'Italie, 69364 Lyon cedex 07, France, MRC Laboratory of Molecular Biology, Hills Road, Cambridge CB2 2QH, UK, CNRS/UJF, Laboratoire de Spectrométrie Physique, UMR 5588, BP87, 140 Av. de la Physique, 38402 St. Martin d'Hères Cedex, France, Charles University in Prague, Institute of Cellular Biology and Pathology, First Faculty of Medicine and Department of Cell Biology, Institute of Physiology, Academy of Sciences of the Czech Republic, Albertov 4, 128 01 Prague 2, Czech Republic and Université de Lyon, Laboratoire de Physique, CNRS UMR 5672, Ecole Normale Supérieure de Lyon, 46 Allée d'Italie, 69364 Lyon cedex 07, France
| |
Collapse
|
66
|
Ugrinova I, Pashev IG, Pasheva EA. Nucleosome binding properties and Co-remodeling activities of native and in vivo acetylated HMGB-1 and HMGB-2 proteins. Biochemistry 2009; 48:6502-7. [PMID: 19522541 DOI: 10.1021/bi9004304] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The participation of HMGB-1 and -2 proteins in chromatin remodeling is investigated. Here, the ability of these proteins and their posttranslationally acetylated forms to affect SWI/SNF and RSC-dependent nucleosome mobilization was studied. Both proteins assisted nucleosome sliding induced by the two remodelers. Following acetylation, these proteins acquire the ability to bind to core particles, a property that has not yet been documented with parental proteins. We further report that compared to the nonmodified proteins, acetylated HMGB-1 and -2 exhibited both stronger binding to linker DNA-containing nucleosomes and a higher co-remodeling activity. Acetylation of HMGB-1 and -2 proteins enhanced binding of SWI/SNF to the nucleosome but did not affect its ATPase activity.
Collapse
Affiliation(s)
- Iva Ugrinova
- Institute of Molecular Biology, Bulgarian Academy of Sciences, 1113 Sofia, Bulgaria
| | | | | |
Collapse
|
67
|
Kundu S, Peterson CL. Role of chromatin states in transcriptional memory. BIOCHIMICA ET BIOPHYSICA ACTA 2009; 1790:445-55. [PMID: 19236904 PMCID: PMC2692360 DOI: 10.1016/j.bbagen.2009.02.009] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 01/06/2009] [Revised: 02/10/2009] [Accepted: 02/11/2009] [Indexed: 12/16/2022]
Abstract
Establishment of cellular memory and its faithful propagation is critical for successful development of multicellular organisms. As pluripotent cells differentiate, choices in cell fate are inherited and maintained by their progeny throughout the lifetime of the organism. A major factor in this process is the epigenetic inheritance of specific transcriptional states or transcriptional memory. In this review, we discuss chromatin transitions and mechanisms by which they are inherited by subsequent generations. We also discuss illuminating cases of cellular memory in budding yeast and evaluate whether transcriptional memory in yeast is nuclear or cytoplasmically inherited.
Collapse
Affiliation(s)
- Sharmistha Kundu
- Interdisciplinary Graduate Program, University of Massachusetts Medical School
| | - Craig L. Peterson
- Interdisciplinary Graduate Program, University of Massachusetts Medical School
| |
Collapse
|
68
|
Abstract
Histone variants and their modification have significant roles in many cellular processes. In this study, we identified and characterized the histone H2A variant h2af1o in fish and revealed its oocyte-specific expression pattern during oogenesis and embryogenesis. Moreover, posttranslational modification of H2af1o was observed that results from phosphorylation during oocyte maturation. To understand the binding dynamics of the novel core histone variant H2af1o in nucleosomes, we cloned ubiquitous gibel carp h2afx as a conventional histone control and investigated the dynamic exchange difference in chromatin by fluorescence recovery after photobleaching. H2af1o has significantly higher mobility in nucleosomes than ubiquitous H2afx. Compared with ubiquitous H2afx, H2af1o has a tightly binding C-terminal and a weakly binding N-terminal. These data indicate that fish oocytes have a novel H2A variant that destabilizes nucleosomes by protruding its N-terminal tail and stabilizes core particles by contracting its C-terminal tail. Our findings suggest that H2af1o may have intrinsic ability to modify chromatin properties during fish oogenesis, oocyte maturation, and early cleavage.
Collapse
Affiliation(s)
- Nan Wu
- State Key Laboratory of Freshwater Ecology and Biotechnology, Center for Developmental Biology, Institute of Hydrobiology, Chinese Academy of Sciences, Graduate School of the Chinese Academy of Sciences, Wuhan, China
| | | | | | | |
Collapse
|
69
|
Mietton F, Sengupta AK, Molla A, Picchi G, Barral S, Heliot L, Grange T, Wutz A, Dimitrov S. Weak but uniform enrichment of the histone variant macroH2A1 along the inactive X chromosome. Mol Cell Biol 2009; 29:150-6. [PMID: 18936163 PMCID: PMC2612491 DOI: 10.1128/mcb.00997-08] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2008] [Revised: 08/04/2008] [Accepted: 10/10/2008] [Indexed: 01/05/2023] Open
Abstract
We studied the enrichment and distribution of the histone variant mH2A1 in the condensed inactive X (Xi) chromosome. By using highly specific antibodies against mH2A1 and stable HEK 293 cell lines expressing either green fluorescent protein (GFP)-mH2A1 or GFP-H2A, we found that the Xi chromosome contains approximately 1.5-fold more mH2A1 than the autosomes. To determine the in vivo distribution of mH2A1 along the X chromosome, we used a native chromatin immunoprecipitation-on-chip technique. DNA isolated from mH2A1-immunoprecipitated nucleosomes from either male or female mouse liver were hybridized to tiling microarrays covering 5 kb around most promoters or the entire X chromosome. The data show that mH2A1 is uniformly distributed across the entire Xi chromosome. Interestingly, a stronger mH2A1 enrichment along the pseudoautosomal X chromosome region was observed in both sexes. Our results indicate a potential role for macroH2A in large-scale chromosome structure and genome stability.
Collapse
Affiliation(s)
- Flore Mietton
- Institut Albert Bonniot, INSERM/UJF-U823, Site Santé-BP 170, 38042 Grenoble Cedex 9, France
| | | | | | | | | | | | | | | | | |
Collapse
|
70
|
Park YJ, Luger K. Histone chaperones in nucleosome eviction and histone exchange. Curr Opin Struct Biol 2008; 18:282-9. [PMID: 18534842 PMCID: PMC2525571 DOI: 10.1016/j.sbi.2008.04.003] [Citation(s) in RCA: 148] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2008] [Accepted: 04/15/2008] [Indexed: 11/28/2022]
Abstract
The recent two years have led to the realization that histone chaperones contribute to the delicate balance between nucleosome assembly and re-assembly during transcription, and may in fact be involved as much in histone eviction as they are in chromatin assembly. Recent structural studies (in particular, the structure of an Asf1-H3/H4 complex) have suggested mechanisms by which this may be accomplished. The incorporation of various histone variants into nucleosomes has diverse effects on nucleosome structure, stability, and the ability of nucleosomal arrays to condense into chromatin higher order structures. It is likely that these seemingly independent ways to modify chromatin structure are interdependent.
Collapse
Affiliation(s)
- Young-Jun Park
- Howard Hughes Medical Institute and Department of Biochemistry and Molecular Biology, Colorado State University, Fort Collins CO 80523-1870
| | - Karolin Luger
- Howard Hughes Medical Institute and Department of Biochemistry and Molecular Biology, Colorado State University, Fort Collins CO 80523-1870
| |
Collapse
|
71
|
Bönisch C, Nieratschker SM, Orfanos NK, Hake SB. Chromatin proteomics and epigenetic regulatory circuits. Expert Rev Proteomics 2008; 5:105-19. [PMID: 18282127 DOI: 10.1586/14789450.5.1.105] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Many phenotypic changes of eukaryotic cells due to changes in gene expression depend on alterations in chromatin structure. Processes involved in the alteration of chromatin are diverse and include post-translational modifications of histone proteins, incorporation of specific histone variants, methylation of DNA and ATP-dependent chromatin remodeling. Interconnected with these processes are the localization of chromatin domains within the nuclear architecture and the appearance of various classes of noncoding regulatory RNAs. Recent experiments underscore the role of these processes in influencing diverse biological functions. However, the evidence to date implies the importance of an interplay of all these chromatin-changing functions, generating an epigenetic regulatory circuit that is still not well understood.
Collapse
Affiliation(s)
- Clemens Bönisch
- Adolf-Butenandt-Institute & Center for Integrated Protein Science Munich (CIPSM), Department of Molecular Biology, Ludwig-Maximilians University, Schillerstr. 44, 80336 Munich, Germany.
| | | | | | | |
Collapse
|
72
|
González-Romero R, Méndez J, Ausió J, Eirín-López JM. Quickly evolving histones, nucleosome stability and chromatin folding: all about histone H2A.Bbd. Gene 2008; 413:1-7. [PMID: 18329190 DOI: 10.1016/j.gene.2008.02.003] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2007] [Revised: 02/04/2008] [Accepted: 02/07/2008] [Indexed: 11/19/2022]
Abstract
Histone H2A.Bbd (Barr body-deficient) is a novel histone variant which is largely excluded from the inactive X chromosome of mammals. Discovered only 6 years ago, H2A.Bbd displays very unusual structural and functional properties, for instance, it is relatively shorter and only 48% identical compared to H2A, lacking both the typical C-terminal tail of the H2A family and the very last sequence of the docking domain, making it the most specialized among all histone variants known to date. Indeed, molecular evolutionary analyses have shown that H2A.Bbd is a highly hypervariable and quickly evolving protein exclusive to mammalian lineages, in striking contrast to all other histones. Different studies have described a deposition pattern of H2A.Bbd in the chromatin that overlaps with regions of histone H4 acetylation suggesting its association with transcriptionally active euchromatic regions of the genome. In this regard, it is believed that this histone variant plays an important role in determining such regions by destabilizing the nucleosome and locally unfolding the chromatin fiber. This review provides a concise, comprehensive and timely summary of the work published on H2A.Bbd structure and function. Special emphasis is placed on its chromatin deposition patterns in relation to gene expression profiles and its evolutionary history, as well as on the dynamics of H2A.Bbd-containing nucleosomes.
Collapse
Affiliation(s)
- Rodrigo González-Romero
- Departamento de Biología Celular y Molecular, Universidade da Coruña, A Coruña - E15071, Spain
| | | | | | | |
Collapse
|
73
|
Ismail IH, Hendzel MJ. The gamma-H2A.X: is it just a surrogate marker of double-strand breaks or much more? ENVIRONMENTAL AND MOLECULAR MUTAGENESIS 2008; 49:73-82. [PMID: 18095327 DOI: 10.1002/em.20358] [Citation(s) in RCA: 83] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/25/2023]
Abstract
In recent years, several histone modifications have been implicated in the cellular response to DNA double-strand breaks (DSBs). One of the best characterized histone modifications important in DSB repair is the phosphorylation of histone H2A variant, H2A.X. In response to DSBs, H2A.X is phosphorylated and this phosphorylation is required for DSB signaling and the retention of repair proteins at the break site. Despite the existing picture that the function of H2A.X is to promote DNA repair, very recent data suggest that the phosphorylation of histone H2A.X has additional functions. This is analogous to histone H3 phosphorylation on serine 10, which participates in seemingly incompatible functions--transcriptional activation and mitosis. In this review, we discuss the role of histone H2A.X in maintaining genomic stability and review emerging evidence that histone H2A.X is multifunctional.
Collapse
Affiliation(s)
- Ismail Hassan Ismail
- Department of Oncology, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, Alberta, Canada
| | | |
Collapse
|
74
|
Eirín-López JM, Ishibashi T, Ausió J. H2A.Bbd: a quickly evolving hypervariable mammalian histone that destabilizes nucleosomes in an acetylation-independent way. FASEB J 2007; 22:316-26. [PMID: 17726088 DOI: 10.1096/fj.07-9255com] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Molecular evolutionary analyses revealed that histone H2A.Bbd is a highly variable quickly evolving mammalian replacement histone variant, in striking contrast to all other histones. At the nucleotide level, this variability appears to be the result of a larger amount of nonsynonymous variation, which affects to a lesser extent, the structural domain of the protein comprising the histone fold. The resulting amino acid sequence diversity can be predicted to affect the internucleosomal and intranucleosomal histone interactions. Our phylogenetic analysis has allowed us to identify several of the residues involved. The biophysical characterization of nucleosomes reconstituted with recombinant mouse H2A.Bbd and their comparison to similar data obtained with human H2A.Bbd clearly support this notion. Despite the high interspecific amino acid sequence variability, all of the H2A.Bbd variants exert similar structural effects at the nucleosome level, which result in an unfolded highly unstable nucleoprotein complex. Such structure resembles that previously described for the highly dynamically acetylated nucleosomes associated with transcriptionally active regions of the genome. Nevertheless, the structure of nucleosome core particles reconstituted from H2A.Bbd is not affected by the presence of a hyperacetylated histone complement. This suggests that replacement by H2A.Bbd provides an alternative mechanism to unfold chromatin structure, possibly in euchromatic regions, in a way that is not dependent on acetylation.
Collapse
Affiliation(s)
- José María Eirín-López
- Department of Biochemistry and Microbiology, University of Victoria, Petch Building, 258a, Victoria, BC, Canada V8W 3P6
| | | | | |
Collapse
|
75
|
Montel F, Fontaine E, St-Jean P, Castelnovo M, Faivre-Moskalenko C. Atomic force microscopy imaging of SWI/SNF action: mapping the nucleosome remodeling and sliding. Biophys J 2007; 93:566-78. [PMID: 17468167 PMCID: PMC1896249 DOI: 10.1529/biophysj.107.105569] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2007] [Accepted: 03/23/2007] [Indexed: 11/18/2022] Open
Abstract
We propose a combined experimental (atomic force microscopy) and theoretical study of the structural and dynamical properties of nucleosomes. In contrast to biochemical approaches, this method allows us to determine simultaneously the DNA-complexed length distribution and nucleosome position in various contexts. First, we show that differences in the nucleoproteic structure observed between conventional H2A and H2A.Bbd variant nucleosomes induce quantitative changes in the length distribution of DNA-complexed with histones. Then, the sliding action of remodeling complex SWI/SNF is characterized through the evolution of the nucleosome position and wrapped DNA length mapping. Using a linear energetic model for the distribution of DNA-complexed length, we extract the net-wrapping energy of DNA onto the histone octamer and compare it to previous studies.
Collapse
Affiliation(s)
- Fabien Montel
- Laboratoire Joliot-Curie (CNRS USR 3010) et Laboratoire de Physique (CNRS UMR 5672), Ecole Normale Supérieure de Lyon, 69007 Lyon, France
| | | | | | | | | |
Collapse
|
76
|
Menoni H, Gasparutto D, Hamiche A, Cadet J, Dimitrov S, Bouvet P, Angelov D. ATP-dependent chromatin remodeling is required for base excision repair in conventional but not in variant H2A.Bbd nucleosomes. Mol Cell Biol 2007; 27:5949-56. [PMID: 17591702 PMCID: PMC1952146 DOI: 10.1128/mcb.00376-07] [Citation(s) in RCA: 98] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
In eukaryotes, base excision repair (BER) is responsible for the repair of oxidatively generated lesions. The mechanism of BER on naked DNA substrates has been studied in detail, but how it operates on chromatin remains unclear. Here we have studied the mechanism of BER by introducing a single 8-oxo-7,8-dihydroguanine (8-oxoG) lesion in the DNA of reconstituted positioned conventional and histone variant H2A.Bbd nucleosomes. We found that 8-oxoguanine DNA glycosylase, apurinic/apyrimidinic endonuclease, and polymerase beta activities were strongly reduced in both types of nucleosomes. In conventional nucleosomes SWI/SNF stimulated the processing of 8-oxoG by each one of the three BER repair factors to efficiencies similar to those for naked DNA. Interestingly, SWI/SNF-induced remodeling, but not mobilization of conventional nucleosomes, was required to achieve this effect. A very weak effect of SWI/SNF on the 8-oxoG BER removal in H2A.Bbd histone variant nucleosomes was observed. The possible implications of our data for the understanding of in vivo mechanisms of BER are discussed.
Collapse
Affiliation(s)
- Hervé Menoni
- Laboratoire Joliot-Curie, CNRS-USR3010, Ecole Normale Supérieure de Lyon, 69364 Lyon Cedex 7, France
| | | | | | | | | | | | | |
Collapse
|
77
|
Svetlova M, Solovjeva L, Nishi K, Nazarov I, Siino J, Tomilin N. Elimination of radiation-induced γ-H2AX foci in mammalian nucleus can occur by histone exchange. Biochem Biophys Res Commun 2007; 358:650-4. [PMID: 17498657 DOI: 10.1016/j.bbrc.2007.04.188] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2007] [Accepted: 04/27/2007] [Indexed: 10/23/2022]
Abstract
Double-strand breaks in mammalian DNA lead to rapid phosphorylation of C-terminal serines in histone H2AX (gamma-H2AX) and formation of large nuclear gamma-H2AX foci. After DNA repair these foci disappear, but molecular mechanism of elimination of gamma-H2AX foci remains unclear. H2AX protein can be phosphorylated and dephosphorylated in vitro in the absence of chromatin. Here, we compared global exchange of GFP-H2AX with kinetics of formation and elimination of radiation-induced gamma-H2AX foci. Maximal number of gamma-H2AX foci is observed one hour after irradiation, when approximately 20% of GFP-H2AX is exchanged suggesting that formation of the foci mostly occurs by in situ H2AX phosphorylation. However, slow elimination of gamma-H2AX foci is weakly affected by an inhibitor of protein phosphatases calyculin A which is known as an agent suppressing dephosphorylation of gamma-H2AX. This indicates that elimination of gamma-H2AX foci may be independent of dephosphorylation of H2AX which can occur after its removal from the foci by exchange.
Collapse
|
78
|
|
79
|
LI S, LIU H. Functions of histone H2A variants. Anim Sci J 2006. [DOI: 10.1111/j.1740-0929.2006.00385.x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
80
|
Yan J, Maresca TJ, Skoko D, Adams CD, Xiao B, Christensen MO, Heald R, Marko JF. Micromanipulation studies of chromatin fibers in Xenopus egg extracts reveal ATP-dependent chromatin assembly dynamics. Mol Biol Cell 2006; 18:464-74. [PMID: 17108322 PMCID: PMC1783770 DOI: 10.1091/mbc.e06-09-0800] [Citation(s) in RCA: 59] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
Abstract
We have studied assembly of chromatin using Xenopus egg extracts and single DNA molecules held at constant tension by using magnetic tweezers. In the absence of ATP, interphase extracts were able to assemble chromatin against DNA tensions of up to 3.5 piconewtons (pN). We observed force-induced disassembly and opening-closing fluctuations, indicating our experiments were in mechanochemical equilibrium. Roughly 50-nm (150-base pair) lengthening events dominated force-driven disassembly, suggesting that the assembled fibers are chiefly composed of nucleosomes. The ATP-depleted reaction was able to do mechanical work of 27 kcal/mol per 50 nm step, which provides an estimate of the free energy difference between core histone octamers on and off DNA. Addition of ATP led to highly dynamic behavior with time courses exhibiting processive runs of assembly and disassembly not observed in the ATP-depleted case. With ATP present, application of forces of 2 pN led to nearly complete fiber disassembly. Our study suggests that ATP hydrolysis plays a major role in nucleosome rearrangement and removal and that chromatin in vivo may be subject to highly dynamic assembly and disassembly processes that are modulated by DNA tension.
Collapse
Affiliation(s)
- Jie Yan
- *Department of Physics, University of Illinois at Chicago, Chicago, IL 60607-7059
- Department of Physics, National University of Singapore, Singapore 117542
| | - Thomas J. Maresca
- Department of Molecular and Cell Biology, University of California, Berkeley, CA 94720
| | - Dunja Skoko
- *Department of Physics, University of Illinois at Chicago, Chicago, IL 60607-7059
| | | | - Botao Xiao
- *Department of Physics, University of Illinois at Chicago, Chicago, IL 60607-7059
| | - Morten O. Christensen
- *Department of Physics, University of Illinois at Chicago, Chicago, IL 60607-7059
- Institute of Clinical Chemistry and Laboratory Diagnostics, Heinrich-Heine-University, Medical School, D-40225 Duesseldorf, Germany; and
| | - Rebecca Heald
- Department of Molecular and Cell Biology, University of California, Berkeley, CA 94720
| | - John F. Marko
- Departments of Biochemistry, Molecular Biology, Cell Biology, and Physics and Astronomy, Northwestern University, Evanston, IL 60208
| |
Collapse
|
81
|
Doyen CM, Montel F, Gautier T, Menoni H, Claudet C, Delacour-Larose M, Angelov D, Hamiche A, Bednar J, Faivre-Moskalenko C, Bouvet P, Dimitrov S. Dissection of the unusual structural and functional properties of the variant H2A.Bbd nucleosome. EMBO J 2006; 25:4234-44. [PMID: 16957777 PMCID: PMC1570437 DOI: 10.1038/sj.emboj.7601310] [Citation(s) in RCA: 92] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2006] [Accepted: 07/31/2006] [Indexed: 11/08/2022] Open
Abstract
The histone variant H2A.Bbd appeared to be associated with active chromatin, but how it functions is unknown. We have dissected the properties of nucleosome containing H2A.Bbd. Atomic force microscopy (AFM) and electron cryo-microscopy (cryo-EM) showed that the H2A.Bbd histone octamer organizes only approximately 130 bp of DNA, suggesting that 10 bp of each end of nucleosomal DNA are released from the octamer. In agreement with this, the entry/exit angle of the nucleosomal DNA ends formed an angle close to 180 degrees and the physico-chemical analysis pointed to a lower stability of the variant particle. Reconstitution of nucleosomes with swapped-tail mutants demonstrated that the N-terminus of H2A.Bbd has no impact on the nucleosome properties. AFM, cryo-EM and chromatin remodeling experiments showed that the overall structure and stability of the particle, but not its property to interfere with the SWI/SNF induced remodeling, were determined to a considerable extent by the H2A.Bbd docking domain. These data show that the whole H2A.Bbd histone fold domain is responsible for the unusual properties of the H2A.Bbd nucleosome.
Collapse
Affiliation(s)
- Cécile-Marie Doyen
- Institut Albert Bonniot, INSERM U309, La Tronche cedex, France
- Laboratoire Joliot-Curie, Ecole Normale Supérieure de Lyon, Lyon, France
| | - Fabien Montel
- Laboratoire Joliot-Curie, Ecole Normale Supérieure de Lyon, Lyon, France
- Laboratoire de Physique, CNRS UMR 5672, Ecole Normale Supérieure de Lyon, Lyon, France
| | - Thierry Gautier
- Institut Albert Bonniot, INSERM U309, La Tronche cedex, France
| | - Hervé Menoni
- Laboratoire Joliot-Curie, Ecole Normale Supérieure de Lyon, Lyon, France
- Laboratoire de Biologie Moléculaire de la Cellule, CNRS-UMR 5161/INRA 1237/IFR128 Biosciences, Ecole Normale Supérieure de Lyon, Lyon, France
| | - Cyril Claudet
- CNRS, Laboratoire de Spectrometrie Physique, UMR 5588, St Martin d'Heres Cedex, France
| | | | - Dimitri Angelov
- Laboratoire Joliot-Curie, Ecole Normale Supérieure de Lyon, Lyon, France
- Laboratoire de Biologie Moléculaire de la Cellule, CNRS-UMR 5161/INRA 1237/IFR128 Biosciences, Ecole Normale Supérieure de Lyon, Lyon, France
| | - Ali Hamiche
- Institut André Lwoff, CNRS UPR 9079, Villejuif, France
| | - Jan Bednar
- CNRS, Laboratoire de Spectrometrie Physique, UMR 5588, St Martin d'Heres Cedex, France
| | - Cendrine Faivre-Moskalenko
- Laboratoire Joliot-Curie, Ecole Normale Supérieure de Lyon, Lyon, France
- Laboratoire de Physique, CNRS UMR 5672, Ecole Normale Supérieure de Lyon, Lyon, France
| | - Philippe Bouvet
- Laboratoire Joliot-Curie, Ecole Normale Supérieure de Lyon, Lyon, France
- Laboratoire de Biologie Moléculaire de la Cellule, CNRS-UMR 5161/INRA 1237/IFR128 Biosciences, Ecole Normale Supérieure de Lyon, Lyon, France
- Laboratoire de Biologie Moléculaire de la Cellule, CNRS-UMR 5161/INRA 1237/IFR128 Biosciences, Ecole Normale Supérieure de Lyon, 46 Allée d'Italie, 69007 Lyon, France. Tel./Fax: +33 4 72 72 8016; E-mail:
| | - Stefan Dimitrov
- Institut Albert Bonniot, INSERM U309, La Tronche cedex, France
- Laboratoire Joliot-Curie, Ecole Normale Supérieure de Lyon, Lyon, France
- Laboratoire de Biologie Moléculaire de la Cellule, CNRS-UMR 5161/INRA 1237/IFR128 Biosciences, Ecole Normale Supérieure de Lyon, 46 Allée d'Italie, 69007 Lyon, France. Tel.: +33 4 76 54 94 73; Fax: +33 4 76 54 95 95; E-mail:
| |
Collapse
|
82
|
Bernstein E, Hake SB. The nucleosome: a little variation goes a long wayThis paper is one of a selection of papers published in this Special Issue, entitled 27th International West Coast Chromatin and Chromosome Conference, and has undergone the Journal's usual peer review process. Biochem Cell Biol 2006; 84:505-17. [PMID: 16936823 DOI: 10.1139/o06-085] [Citation(s) in RCA: 84] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Changes in the overall structure of chromatin are essential for the proper regulation of cellular processes, including gene activation and silencing, DNA repair, chromosome segregation during mitosis and meiosis, X chromosome inactivation in female mammals, and chromatin compaction during apoptosis. Such alterations of the chromatin template occur through at least 3 interrelated mechanisms: post-translational modifications of histones, ATP-dependent chromatin remodeling, and the incorporation (or replacement) of specialized histone variants into chromatin. Of these mechanisms, the exchange of variants into and out of chromatin is the least well understood. However, the exchange of conventional histones for variant histones has distinct and profound consequences within the cell. This review focuses on the growing number of mammalian histone variants, their particular biological functions and unique features, and how they may affect the structure of the nucleosome. We propose that a given nucleosome might not consist of heterotypic variants, but rather, that only specific histone variants come together to form a homotypic nucleosome, a hypothesis that we refer to as the nucleosome code. Such nucleosomes might in turn participate in marking specific chromatin domains that may contribute to epigenetic inheritance.
Collapse
Affiliation(s)
- Emily Bernstein
- Laboratory of Chromatin Biology, The Rockefeller University, Box 78, 1230 York Avenue, NY, NY 10021, USA
| | | |
Collapse
|
83
|
Chakravarthy S, Luger K. The histone variant macro-H2A preferentially forms "hybrid nucleosomes". J Biol Chem 2006; 281:25522-31. [PMID: 16803903 DOI: 10.1074/jbc.m602258200] [Citation(s) in RCA: 60] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023] Open
Abstract
The histone domain of macro-H2A, which constitutes the N-terminal one third of this histone variant, is only 64% identical to major H2A. We have shown previously that the main structural differences in a nucleosome in which both H2A moieties have been replaced by macro-H2A reside in the only point of contact between the two histone dimers, the L1-L1 interface of macro-H2A. Here we show that the L1 loop of macro-H2A is responsible for the increased salt-dependent stability of the histone octamer, with implications for the nucleosome assembly pathway. It is unknown whether only one or both of the H2A-H2B dimers within a nucleosome are replaced with H2A variant containing nucleosomes in vivo. We demonstrate that macro-H2A preferentially forms hybrid nucleosomes containing one chain each of major H2A and macro-HA in vitro. The 2.9-A crystal structure of such a hybrid nucleosome shows significant structural differences in the L1-L1 interface when comparing with homotypic major H2A- and macro-H2A-containing nucleosomes. Both homotypic and hybrid macro-nucleosome core particles (NCPs) are resistant to chaperone-assisted H2A-H2B dimer exchange. Together, our findings suggest that the histone domain of macro-H2A modifies the dynamic properties of the nucleosome. We propose that the possibility of forming hybrid macro-NCP adds yet another level of complexity to variant nucleosome structure and function.
Collapse
Affiliation(s)
- Srinivas Chakravarthy
- Howard Hughes Medical Institute and Department of Biochemistry and Molecular Biology, Colorado State University, Fort Collins, Colorado 80523-1870, USA
| | | |
Collapse
|
84
|
Abstract
It is now widely recognized that the packaging of genomic DNA together with core histones, linker histones, and other functional proteins into chromatin profoundly influences nuclear processes such as transcription, replication, repair and recombination. How chromatin structure modulates the expression and maintenance of knowledge encoded in eukaryotic genomes, and how these processes take place within the context of a highly complex and compacted genomic chromatin environment remains a major unresolved question in biology. Here we review recent advances in our understanding of how nucleosome and chromatin structure may have to adapt to promote these vital functions.
Collapse
Affiliation(s)
- Karolin Luger
- Howard Hughes Medical Institute and Department of Biochemistry and Molecular Biology, Colorado State University, Fort Collins, 80523-1870, USA.
| |
Collapse
|
85
|
Angelov D, Bondarenko VA, Almagro S, Menoni H, Mongélard F, Hans F, Mietton F, Studitsky VM, Hamiche A, Dimitrov S, Bouvet P. Nucleolin is a histone chaperone with FACT-like activity and assists remodeling of nucleosomes. EMBO J 2006; 25:1669-79. [PMID: 16601700 PMCID: PMC1440837 DOI: 10.1038/sj.emboj.7601046] [Citation(s) in RCA: 198] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2005] [Accepted: 02/21/2006] [Indexed: 11/09/2022] Open
Abstract
Remodeling machines play an essential role in the control of gene expression, but how their activity is regulated is not known. Here we report that the nuclear protein nucleolin possesses a histone chaperone activity and that this factor greatly enhances the activity of the chromatin remodeling machineries SWI/SNF and ACF. Interestingly, nucleolin is able to induce the remodeling by SWI/SNF of macroH2A, but not of H2ABbd nucleosomes, which are otherwise resistant to remodeling. This new histone chaperone promotes the destabilization of the histone octamer, helping the dissociation of a H2A-H2B dimer, and stimulates the SWI/SNF-mediated transfer of H2A-H2B dimers. Furthermore, nucleolin facilitates transcription through the nucleosome, which is reminiscent of the activity of the FACT complex. This work defines new functions for histone chaperones in chromatin remodeling and regulation of transcription and explains how nucleolin could act on transcription.
Collapse
Affiliation(s)
- Dimitar Angelov
- Ecole Normale Supérieure de Lyon, CNRS-UMR 5161/INRA 1237/IFR128 Biosciences, Lyon-Gerland, France
- Laboratoire Joliot-Curie, Lyon, France
| | - Vladimir A Bondarenko
- Department of Pharmacology, University of Medicine and Dentistry of New Jersey, Piscataway, NJ, USA
| | - Sébastien Almagro
- Ecole Normale Supérieure de Lyon, CNRS-UMR 5161/INRA 1237/IFR128 Biosciences, Lyon-Gerland, France
- Laboratoire Joliot-Curie, Lyon, France
| | - Hervé Menoni
- Ecole Normale Supérieure de Lyon, CNRS-UMR 5161/INRA 1237/IFR128 Biosciences, Lyon-Gerland, France
- Laboratoire Joliot-Curie, Lyon, France
| | - Fabien Mongélard
- Ecole Normale Supérieure de Lyon, CNRS-UMR 5161/INRA 1237/IFR128 Biosciences, Lyon-Gerland, France
- Laboratoire Joliot-Curie, Lyon, France
| | - Fabienne Hans
- Institut Albert Bonniot, INSERM U309, La Tronche Cedex, France
| | - Flore Mietton
- Institut Albert Bonniot, INSERM U309, La Tronche Cedex, France
| | - Vasily M Studitsky
- Department of Pharmacology, University of Medicine and Dentistry of New Jersey, Piscataway, NJ, USA
| | - Ali Hamiche
- Institut André Lwoff, CNRS UPR 9079, Villejuif, France
| | - Stefan Dimitrov
- Laboratoire Joliot-Curie, Lyon, France
- Institut Albert Bonniot, INSERM U309, La Tronche Cedex, France
| | - Philippe Bouvet
- Ecole Normale Supérieure de Lyon, CNRS-UMR 5161/INRA 1237/IFR128 Biosciences, Lyon-Gerland, France
- Laboratoire Joliot-Curie, Lyon, France
| |
Collapse
|
86
|
Boulard M, Gautier T, Mbele GO, Gerson V, Hamiche A, Angelov D, Bouvet P, Dimitrov S. The NH2 tail of the novel histone variant H2BFWT exhibits properties distinct from conventional H2B with respect to the assembly of mitotic chromosomes. Mol Cell Biol 2006; 26:1518-26. [PMID: 16449661 PMCID: PMC1367197 DOI: 10.1128/mcb.26.4.1518-1526.2006] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
We have studied the functional and structural properties of nucleosomes reconstituted with H2BFWT, a recently identified putative histone variant of the H2B family with totally unknown function. We show that H2BFWT can replace the conventional histone H2B in the nucleosome. The presence of H2BFWT did not affect the overall structure of the nucleosome, and the H2BFWT nucleosomes exhibited the same stability as conventional nucleosomes. SWI/SNF was able to efficiently remodel and mobilize the H2BFWT nucleosomes. Importantly, H2BFWT, in contrast to conventional H2B, was unable to recruit chromosome condensation factors and to participate in the assembly of mitotic chromosomes. This was determined by the highly divergent (compared to conventional H2B) NH2 tail of H2BFWT. These data, in combination with the observations that H2BFWT was found by others in the sperm nuclei and appeared to be associated with the telomeric chromatin, suggest that H2BFWT could act as a specific epigenetic marker.
Collapse
Affiliation(s)
- Mathieu Boulard
- Institut Albert Bonniot, INSERM U309, 38706 La Tronche Cedex, France
| | | | | | | | | | | | | | | |
Collapse
|
87
|
Raisner RM, Madhani HD. Patterning chromatin: form and function for H2A.Z variant nucleosomes. Curr Opin Genet Dev 2006; 16:119-24. [PMID: 16503125 DOI: 10.1016/j.gde.2006.02.005] [Citation(s) in RCA: 76] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2005] [Accepted: 02/13/2006] [Indexed: 11/20/2022]
Abstract
Although many histone variants are specific to higher eukaryotes, the H2A variant H2A.Z has been conserved during eukaryotic evolution. Genetic studies have demonstrated roles for H2A.Z in antagonizing gene-silencing, chromosome stability and gene activation. Biochemical work has identified a conserved chromatin-remodeling complex responsible for H2A.Z deposition. Recent studies have shown that two H2A.Z nucleosomes flank a nucleosome-free region containing the transcription initiation site in promoters of both active and inactive genes in Saccharomyces cerevisiae. This chromatin pattern is generated through the action of a DNA deposition signal and a specific pattern of histone tail acetylation.
Collapse
Affiliation(s)
- Ryan M Raisner
- Department of Biochemistry and Biophysics, University of California, 600 16th Street, San Francisco, CA 94143-2240, USA
| | | |
Collapse
|
88
|
Doyen CM, An W, Angelov D, Bondarenko V, Mietton F, Studitsky VM, Hamiche A, Roeder RG, Bouvet P, Dimitrov S. Mechanism of polymerase II transcription repression by the histone variant macroH2A. Mol Cell Biol 2006; 26:1156-64. [PMID: 16428466 PMCID: PMC1347033 DOI: 10.1128/mcb.26.3.1156-1164.2006] [Citation(s) in RCA: 110] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
macroH2A (mH2A) is an unusual histone variant consisting of a histone H2A-like domain fused to a large nonhistone region. In this work, we show that histone mH2A represses p300- and Gal4-VP16-dependent polymerase II transcription, and we have dissected the mechanism by which this repression is realized. The repressive effect of mH2A is observed at the level of initiation but not at elongation of transcription, and mH2A interferes with p300-dependent histone acetylation. The nonhistone region of mH2A is responsible for both the repression of initiation of transcription and the inhibition of histone acetylation. In addition, the presence of this domain of mH2A within the nucleosome is able to block nucleosome remodeling and sliding of the histone octamer to neighboring DNA segments by the remodelers SWI/SNF and ACF. These data unambiguously identify mH2A as a strong transcriptional repressor and show that the repressive effect of mH2A is realized on at least two different transcription activation chromatin-dependent pathways: histone acetylation and nucleosome remodeling.
Collapse
|
89
|
Okuwaki M, Kato K, Shimahara H, Tate SI, Nagata K. Assembly and disassembly of nucleosome core particles containing histone variants by human nucleosome assembly protein I. Mol Cell Biol 2005; 25:10639-51. [PMID: 16287874 PMCID: PMC1291234 DOI: 10.1128/mcb.25.23.10639-10651.2005] [Citation(s) in RCA: 74] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Histone variants play important roles in the maintenance and regulation of the chromatin structure. In order to characterize the biochemical properties of the chromatin structure containing histone variants, we investigated the dynamic status of nucleosome core particles (NCPs) that were assembled with recombinant histones. We found that in the presence of nucleosome assembly protein I (NAP-I), a histone chaperone, H2A-Barr body deficient (H2A.Bbd) confers the most flexible nucleosome structure among the mammalian histone H2A variants known thus far. NAP-I mediated the efficient assembly and disassembly of the H2A.Bbd-H2B dimers from NCPs. This reaction was accomplished more efficiently when the NCPs contained H3.3, a histone H3 variant known to be localized in the active chromatin, than when the NCPs contained the canonical H3. These observations indicate that the histone variants H2A.Bbd and H3.3 are involved in the formation and maintenance of the active chromatin structure. We also observed that acidic histone binding proteins, TAF-I/SET and B23.1, demonstrated dimer assembly and disassembly activity, but the efficiency of their activity was considerably lower than that of NAP-I. Thus, both the acidic nature of NAP-I and its other functional structure(s) may be essential to mediate the assembly and disassembly of the dimers in NCPs.
Collapse
Affiliation(s)
- Mitsuru Okuwaki
- Graduate School of Comprehensive Human Sciences and Institute of Basic Medical Sciences, University of Tsukuba, 1-1-1 Tennohdai, Tsukuba 305-8575, Japan.
| | | | | | | | | |
Collapse
|
90
|
Abstract
Recent research suggests that minor changes in the primary sequence of the conserved histones may become major determinants for the chromatin structure regulating gene expression and other DNA-related processes. An analysis of the involvement of different core histone variants in different nuclear processes and the structure of different variant nucleosome cores shows that this may indeed be so. Histone variants may also be involved in demarcating functional regions of the chromatin. We discuss in this review why two of the four core histones show higher variation. A comparison of the status of variants in yeast with those from higher eukaryotes suggests that histone variants have evolved in synchrony with functional requirement of the cell.
Collapse
|
91
|
Chakravarthy S, Bao Y, Roberts VA, Tremethick D, Luger K. Structural characterization of histone H2A variants. COLD SPRING HARBOR SYMPOSIA ON QUANTITATIVE BIOLOGY 2005; 69:227-34. [PMID: 16117653 DOI: 10.1101/sqb.2004.69.227] [Citation(s) in RCA: 48] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Affiliation(s)
- S Chakravarthy
- Department of Biochemistry and Molecular Biology, Colorado State University, Fort Collins, Colorado 80523-1870, USA
| | | | | | | | | |
Collapse
|
92
|
Abstract
Histone proteins play essential structural and functional roles in the transition between active and inactive chromatin states. Although histones have a high degree of conservation due to constraints to maintain the overall structure of the nucleosomal octameric core, variants have evolved to assume diverse roles in gene regulation and epigenetic silencing. Histone variants, post-translational modifications and interactions with chromatin remodeling complexes influence DNA replication, transcription, repair and recombination. The authors review recent findings on the structure of chromatin that confirm previous interparticle interactions observed in crystal structures.
Collapse
Affiliation(s)
- Leonardo Mariño-Ramírez
- Computational Biology Branch, National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, Bethesda, MD 20894, USA.
| | | | | | | |
Collapse
|
93
|
Pinto R, Ivaldi C, Reyes M, Doyen C, Mietton F, Mongelard F, Alvarez M, Molina A, Dimitrov S, Krauskopf M, Vera MI, Bouvet P. Seasonal environmental changes regulate the expression of the histone variant macroH2A in an eurythermal fish. FEBS Lett 2005; 579:5553-8. [PMID: 16213499 DOI: 10.1016/j.febslet.2005.09.019] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2005] [Revised: 09/01/2005] [Accepted: 09/13/2005] [Indexed: 11/24/2022]
Abstract
Adaptation to cold and warm conditions requires dramatic change in gene expression. The acclimatization process of the common carp Cyprinus carpio L. in its natural habitat has been used to study how organisms respond to natural environmental changes. At the cellular level, adaptation to cold condition is accompanied by a dramatic alteration in nucleolar structure and a down regulation of the expression of ribosomal genes. We show that the enrichment of condensed chromatin in winter adapted cells is not correlated with an increase of the heterochromatin marker trimethyl and monomethyl K20H4. However, the expression of the tri methyl K4 H3 and of the variant histone macroH2A is significantly increased during the winter season together with a hypermethylation of CpG residues. Taking into account the properties of macroH2A toward chromatin structure and dynamics and its role in gene repression our data suggest that the increased expression of macroH2A and the hypermethylation of DNA which occurs upon winter-acclimatization plays a major role for the reorganization of chromatin structure and the regulation of gene expression during the physiological adaptation to a colder environment.
Collapse
Affiliation(s)
- Rodrigo Pinto
- Millennium Institute for Fundamental and Applied Biology and Biological Sciences Department, Universidad Andres Bello, Santiago, Chile
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
94
|
Abstract
The latest development of imaging technology and fluorescent proteins has enabled us to visualize the dynamics of chromatin proteins in living cells. Particularly, photobleaching techniques like fluorescence recovery after photobleaching (FRAP) revealed the mobility of many nuclear proteins including histones. Although most nucleosomal histones are maintained over cell generations to maintain epigenetic marks on their tails, some exhibit dynamic exchange. In general, histone H3-H4 tetramers stably bind to DNA once assembled during DNA replication; in contrast, the H2A-H2B dimers exchange slowly in euchromatin and are evicted during transcription. Recent data further indicate that different histone variants have different localization and kinetics. The replacement H3 variant, H3.3, is incorporated into transcriptionally active chromatin independently of DNA replication, and the centromeric variant, CENP-A, appears to assemble into nucleosomes in centromeres during G2 phase by replacing canonical H3. Different behaviors of H2A variants are also demonstrated. Importantly, the mobility of histones, and other nuclear proteins, is altered in response to changes in cellular physiology and various stimuli. Whereas we know little about how these dynamics are regulated, distinct complexes that mediate assembly and exchange of specific variants have been isolated, thus future analyses will reveal the molecular mechanisms underlying the phenomena in living cells.
Collapse
Affiliation(s)
- Hiroshi Kimura
- Nuclear Function and Dynamics Unit, HMRO, School of Medicine, Kyoto University, Yoshida Konoe-cho, Sakyo-ku, Kyoto 606-8501, Japan.
| |
Collapse
|
95
|
Abstract
A fascinating aspect of how chromatin structure impacts on gene expression and cellular identity is the transmission of information from mother to daughter cells, independently of the primary DNA sequence. This epigenetic information seems to be contained within the covalent modifications of histone polypeptides and the distinctive characteristics of variant histone subspecies. There are specific deposition pathways for some histone variants, which provide invaluable mechanistic insights into processes whereby the major histones are exchanged for their more specialized counterparts.
Collapse
Affiliation(s)
- Kavitha Sarma
- Howard Hughes Medical Institute, Division of Nucleic Acids Enzymology, Department of Biochemistry, Robert Wood Johnson Medical School, Piscataway, New Jersey 08854, USA
| | | |
Collapse
|
96
|
Abbott DW, Chadwick BP, Thambirajah AA, Ausió J. Beyond the Xi: macroH2A chromatin distribution and post-translational modification in an avian system. J Biol Chem 2005; 280:16437-45. [PMID: 15718235 DOI: 10.1074/jbc.m500170200] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
MacroH2A (mH2A) is a histone variant that is enriched in the inactivated X-chromosomes of mammalian females. To characterize the role of this protein in other nuclear processes we isolated chromatin particles from chicken liver, a vertebrate system that does not undergo X-inactivation. Chromatin digestion and fractionation studies determined that mH2A is evenly distributed at several levels of chromatin structure and stabilizes the nucleosome core particle in solution. However, at the level of the chromatosome, selective salt precipitation showed the existence of a mutually exclusive relationship between mH2A and H1, which may reveal functional redundancy between these proteins. Two-dimensional gel electrophoresis demonstrated the presence of one major population of mH2A containing nucleosomes, which may become ADP-ribosylated. This report provides new clues into how mH2A distribution and a previously unidentified post-translational modification may help regulate the repression of autosomal chromatin.
Collapse
Affiliation(s)
- D Wade Abbott
- Department of Biochemistry and Microbiology, University of Victoria, Victoria, British Columbia V8W 3P6, Canada
| | | | | | | |
Collapse
|
97
|
Abstract
Histones are a major component of chromatin, the protein-DNA complex fundamental to genome packaging, function, and regulation. A fraction of histones are nonallelic variants that have specific expression, localization, and species-distribution patterns. Here we discuss recent progress in understanding how histone variants lead to changes in chromatin structure and dynamics to carry out specific functions. In addition, we review histone variant assembly into chromatin, the structure of the variant chromatin, and post-translational modifications that occur on the variants.
Collapse
|
98
|
Chakravarthy S, Park YJ, Chodaparambil J, Edayathumangalam RS, Luger K. Structure and dynamic properties of nucleosome core particles. FEBS Lett 2004; 579:895-8. [PMID: 15680970 DOI: 10.1016/j.febslet.2004.11.030] [Citation(s) in RCA: 49] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2004] [Accepted: 11/04/2004] [Indexed: 11/16/2022]
Abstract
It is now widely recognized that the packaging of genomic DNA, together with core histones, linker histones, and other functional proteins into chromatin profoundly influences nuclear processes such as transcription, replication, DNA repair, and recombination. Whereas earlier structural studies portrayed nucleosomes (the basic repeating unit of chromatin) as monolithic and static macromolecular assemblies, we now know that they are highly dynamic and capable of extensive crosstalk with the cellular machinery. Histone variants have evolved to locally alter chromatin structure, whereas histone chaperones and other cellular factors promote histone exchange and chromatin fluidity. Both of these phenomena likely facilitate interconversion between different chromatin states that show varying degrees of transcriptional activity.
Collapse
Affiliation(s)
- Srinivas Chakravarthy
- Department of Biochemistry and Molecular Biology, Colorado State University, Fort Collins, CO 80523-1870, USA
| | | | | | | | | |
Collapse
|