51
|
Soga N, Kinosita K, Yoshida M, Suzuki T. Kinetic equivalence of transmembrane pH and electrical potential differences in ATP synthesis. J Biol Chem 2012; 287:9633-9. [PMID: 22253434 PMCID: PMC3308813 DOI: 10.1074/jbc.m111.335356] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2011] [Revised: 01/12/2012] [Indexed: 11/06/2022] Open
Abstract
ATP synthase is the key player of Mitchell's chemiosmotic theory, converting the energy of transmembrane proton flow into the high energy bond between ADP and phosphate. The proton motive force that drives this reaction consists of two components, the pH difference (ΔpH) across the membrane and transmembrane electrical potential (Δψ). The two are considered thermodynamically equivalent, but kinetic equivalence in the actual ATP synthesis is not warranted, and previous experimental results vary. Here, we show that with the thermophilic Bacillus PS3 ATP synthase that lacks an inhibitory domain of the ε subunit, ΔpH imposed by acid-base transition and Δψ produced by valinomycin-mediated K(+) diffusion potential contribute equally to the rate of ATP synthesis within the experimental range examined (ΔpH -0.3 to 2.2, Δψ -30 to 140 mV, pH around the catalytic domain 8.0). Either ΔpH or Δψ alone can drive synthesis, even when the other slightly opposes. Δψ was estimated from the Nernst equation, which appeared valid down to 1 mm K(+) inside the proteoliposomes, due to careful removal of K(+) from the lipid.
Collapse
Affiliation(s)
- Naoki Soga
- From the Department of Physics, Faculty of Science and Engineering, Waseda University, 3-4-1 Okubo, Shinjuku-ku, Tokyo 169-8555, Japan
| | - Kazuhiko Kinosita
- From the Department of Physics, Faculty of Science and Engineering, Waseda University, 3-4-1 Okubo, Shinjuku-ku, Tokyo 169-8555, Japan
| | - Masasuke Yoshida
- the International Cooperative Research Project (ICORP) ATP Synthesis Regulation Project, Japan Science and Technology Agency, 2-3-6 Aomi, Koto-ku, Tokyo 135-0064, Japan, and
- the Department of Molecular Bioscience, Kyoto Sangyo University, Kamigamo-Motoyama, Kyoto 603-8555, Japan
| | - Toshiharu Suzuki
- the International Cooperative Research Project (ICORP) ATP Synthesis Regulation Project, Japan Science and Technology Agency, 2-3-6 Aomi, Koto-ku, Tokyo 135-0064, Japan, and
| |
Collapse
|
52
|
New mutations in the mycobacterial ATP synthase: new insights into the binding of the diarylquinoline TMC207 to the ATP synthase C-ring structure. Antimicrob Agents Chemother 2012; 56:2326-34. [PMID: 22354303 DOI: 10.1128/aac.06154-11] [Citation(s) in RCA: 88] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
TMC207 is a new antituberculous drug belonging to the diarylquinoline class which very efficiently inhibits the ATP synthase of mycobacteria such as Mycobacterium tuberculosis, one of the most important pathogens in the world. In order to map the amino acid residues involved in the binding of the drug, we have selected in vitro TMC207-resistant mutants from M. tuberculosis and diverse atypical mycobacteria. Six distinct mutations, Asp28 → Gly, Asp28 → Ala, Leu59 → Val, Glu61 → Asp, Ala63 → Pro, and Ile66 → Met, have been identified in the subunit c forming a C ring in the ATP synthase. They were studied by evaluating the levels of resistance that they confer in the selected clones and by using an isogenic complementation system in Mycobacterium smegmatis. The rates of increase of TMC207 MIC values (8- to 133-fold) were interpreted by constructing by homology modeling a structure of the mycobacterial C ring which was used for docking simulations with TMC207. Our results suggest that the residues found to be mutated in the resistant clones, together with a tyrosine specifically conserved at position 64 in mycobacteria, define a cleft located between two adjacent c subunits in the C ring. This cleft, which encompasses the proton-binding site (Glu61), is well fitted to bind TMC207 at the level of the bromoquinoline moiety, with the drug being anchored by several ionic, hydrogen, and halogen bonds with residues Glu61, Tyr64, and Asp28, respectively. These data shed light on the molecular interactions allowing TMC207 to bind specifically and efficiently at the level of the proton-binding site of the mycobacterial C ring.
Collapse
|
53
|
Promiscuous archaeal ATP synthase concurrently coupled to Na+ and H+ translocation. Proc Natl Acad Sci U S A 2012; 109:947-52. [PMID: 22219361 DOI: 10.1073/pnas.1115796109] [Citation(s) in RCA: 86] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
ATP synthases are the primary source of ATP in all living cells. To catalyze ATP synthesis, these membrane-associated complexes use a rotary mechanism powered by the transmembrane diffusion of ions down a concentration gradient. ATP synthases are assumed to be driven either by H(+) or Na(+), reflecting distinct structural motifs in their membrane domains, and distinct metabolisms of the host organisms. Here, we study the methanogenic archaeon Methanosarcina acetivorans using assays of ATP hydrolysis and ion transport in inverted membrane vesicles, and experimentally demonstrate that the rotary mechanism of its ATP synthase is coupled to the concurrent translocation of both H(+) and Na(+) across the membrane under physiological conditions. Using free-energy molecular simulations, we explain this unprecedented observation in terms of the ion selectivity of the binding sites in the membrane rotor, which appears to have been tuned via amino acid substitutions so that ATP synthesis in M. acetivorans can be driven by the H(+) and Na(+) gradients resulting from methanogenesis. We propose that this promiscuity is a molecular mechanism of adaptation to life at the thermodynamic limit.
Collapse
|
54
|
Abstract
The rotary ATPase family of membrane protein complexes may have only three members, but each one plays a fundamental role in biological energy conversion. The F₁F(o)-ATPase (F-ATPase) couples ATP synthesis to the electrochemical membrane potential in bacteria, mitochondria and chloroplasts, while the vacuolar H⁺-ATPase (V-ATPase) operates as an ATP-driven proton pump in eukaryotic membranes. In different species of archaea and bacteria, the A₁A(o)-ATPase (A-ATPase) can function as either an ATP synthase or an ion pump. All three of these multi-subunit complexes are rotary molecular motors, sharing a fundamentally similar mechanism in which rotational movement drives the energy conversion process. By analogy to macroscopic systems, individual subunits can be assigned to rotor, axle or stator functions. Recently, three-dimensional reconstructions from electron microscopy and single particle image processing have led to a significant step forward in understanding of the overall architecture of all three forms of these complexes and have allowed the organisation of subunits within the rotor and stator parts of the motors to be more clearly mapped out. This review describes the emerging consensus regarding the organisation of the rotor and stator components of V-, A- and F-ATPases, examining core similarities that point to a common evolutionary origin, and highlighting key differences. In particular, it discusses how newly revealed variation in the complexity of the inter-domain connections may impact on the mechanics and regulation of these molecular machines.
Collapse
Affiliation(s)
- Stephen P Muench
- Institute of Membrane and Systems Biology, Faculty of Biological Sciences, The University of Leeds, Leeds, West Yorks, LS2 9JT, UK
| | | | | |
Collapse
|
55
|
Abstract
F(o)F(1)-ATP synthase is one of the most ubiquitous enzymes; it is found widely in the biological world, including the plasma membrane of bacteria, inner membrane of mitochondria and thylakoid membrane of chloroplasts. However, this enzyme has a unique mechanism of action: it is composed of two mechanical rotary motors, each driven by ATP hydrolysis or proton flux down the membrane potential of protons. The two molecular motors interconvert the chemical energy of ATP hydrolysis and proton electrochemical potential via the mechanical rotation of the rotary shaft. This unique energy transmission mechanism is not found in other biological systems. Although there are other similar man-made systems like hydroelectric generators, F(o)F(1)-ATP synthase operates on the nanometre scale and works with extremely high efficiency. Therefore, this enzyme has attracted significant attention in a wide variety of fields from bioenergetics and biophysics to chemistry, physics and nanoscience. This review summarizes the latest findings about the two motors of F(o)F(1)-ATP synthase as well as a brief historical background.
Collapse
Affiliation(s)
- Daichi Okuno
- Department of Applied Chemistry, School of Engineering, The University of Tokyo, Bunkyo-ku, Tokyo, Japan
| | | | | |
Collapse
|
56
|
Hoffmann J, Sokolova L, Preiss L, Hicks DB, Krulwich TA, Morgner N, Wittig I, Schägger H, Meier T, Brutschy B. ATP synthases: cellular nanomotors characterized by LILBID mass spectrometry. Phys Chem Chem Phys 2010; 12:13375-82. [PMID: 20820587 PMCID: PMC2955850 DOI: 10.1039/c0cp00733a] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Mass spectrometry of membrane protein complexes is still a methodological challenge due to hydrophobic and hydrophilic parts of the species and the fact that all subunits are bound non-covalently together. The present study with the novel laser induced liquid bead ion desorption mass spectrometry (LILBID-MS) reports on the determination of the subunit composition of the F(1)F(o)-ATP synthase from Bacillus pseudofirmus OF4, that of both bovine heart and, for the first time, of human heart mitochondrial F(1)F(o)-ATP synthases. Under selected buffer conditions the mass of the intact F(1)F(o)-ATP synthase of B. pseudofirmus OF4 could be measured, allowing the analysis of complex subunit stoichiometry. The agreement with theoretical masses derived from sequence databases is very good. A comparison of the ATP synthase subunit composition of 5 different ATPases reveals differences in the complexity of eukaryotic and bacterial ATP synthases. However, whereas the overall construction of eukaryotic enzymes is more complex than the bacterial ones, functionally important subunits are conserved among all ATPases.
Collapse
Affiliation(s)
- Jan Hoffmann
- Institute for Physical and Theoretical Chemistry, Cluster of Excellence Frankfurt “Macromolecular Complexes, Centre for Membrane Proteomics Goethe-Universität, Max-von-Laue Str. 7, 60438 Frankfurt am Main, Germany
| | - Lucie Sokolova
- Institute for Physical and Theoretical Chemistry, Cluster of Excellence Frankfurt “Macromolecular Complexes, Centre for Membrane Proteomics Goethe-Universität, Max-von-Laue Str. 7, 60438 Frankfurt am Main, Germany
| | - Laura Preiss
- Department of Structural Biology, Max-Planck Institute of Biophysics, Max-von-Laue-Str. 3, 60438 Frankfurt am Main, Germany
| | - David B. Hicks
- Department of Pharmacology and Systems Therapeutics, Mount Sinai School of Medicine, 1 Gustave L. Levy Place, New York 10029, USA
| | - Terry A. Krulwich
- Department of Pharmacology and Systems Therapeutics, Mount Sinai School of Medicine, 1 Gustave L. Levy Place, New York 10029, USA
| | - Nina Morgner
- Department of Chemistry, Physical and Theoretical Chemistry Laboratory, South Parks Road, Oxford OX1 3QZ, UK
| | - Ilka Wittig
- Molecular Bioenergetics, Medical School, Goethe-Universität Frankfurt, Theodor-Stern-Kai 7, Haus 26, D-60590 Frankfurt am Main, Germany
| | - Hermann Schägger
- Molecular Bioenergetics, Medical School, Goethe-Universität Frankfurt, Theodor-Stern-Kai 7, Haus 26, D-60590 Frankfurt am Main, Germany
| | - Thomas Meier
- Department of Structural Biology, Max-Planck Institute of Biophysics, Max-von-Laue-Str. 3, 60438 Frankfurt am Main, Germany
| | - Bernd Brutschy
- Institute for Physical and Theoretical Chemistry, Cluster of Excellence Frankfurt “Macromolecular Complexes, Centre for Membrane Proteomics Goethe-Universität, Max-von-Laue Str. 7, 60438 Frankfurt am Main, Germany
| |
Collapse
|
57
|
Pogoryelov D, Krah A, Langer JD, Yildiz Ö, Faraldo-Gómez JD, Meier T. Microscopic rotary mechanism of ion translocation in the Fo complex of ATP synthases. Nat Chem Biol 2010; 6:891-9. [DOI: 10.1038/nchembio.457] [Citation(s) in RCA: 119] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2010] [Accepted: 09/15/2010] [Indexed: 01/31/2023]
|
58
|
Todokoro Y, Kobayashi M, Sato T, Kawakami T, Yumen I, Aimoto S, Fujiwara T, Akutsu H. Structure analysis of membrane-reconstituted subunit c-ring of E. coli H+-ATP synthase by solid-state NMR. JOURNAL OF BIOMOLECULAR NMR 2010; 48:1-11. [PMID: 20596883 DOI: 10.1007/s10858-010-9432-x] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/14/2010] [Accepted: 06/15/2010] [Indexed: 05/29/2023]
Abstract
The subunit c-ring of H(+)-ATP synthase (F(o) c-ring) plays an essential role in the proton translocation across a membrane driven by the electrochemical potential. To understand its structure and function, we have carried out solid-state NMR analysis under magic-angle sample spinning. The uniformly [(13)C, (15)N]-labeled F(o) c from E. coli (EF(o) c) was reconstituted into lipid membranes as oligomers. Its high resolution two- and three-dimensional spectra were obtained, and the (13)C and (15)N signals were assigned. The obtained chemical shifts suggested that EF(o) c takes on a hairpin-type helix-loop-helix structure in membranes as in an organic solution. The results on the magnetization transfer between the EF(o) c and deuterated lipids indicated that Ile55, Ala62, Gly69 and F76 were lined up on the outer surface of the oligomer. This is in good agreement with the cross-linking results previously reported by Fillingame and his colleagues. This agreement reveals that the reconstituted EF(o) c oligomer takes on a ring structure similar to the intact one in vivo. On the other hand, analysis of the (13)C nuclei distance of [3-(13)C]Ala24 and [4-(13)C]Asp61 in the F(o) c-ring did not agree with the model structures proposed for the EF(o) c-decamer and dodecamer. Interestingly, the carboxyl group of the essential Asp61 in the membrane-embedded EF(o) c-ring turned out to be protonated as COOH even at neutral pH. The hydrophobic surface of the EF(o) c-ring carries relatively short side chains in its central region, which may allow soft and smooth interactions with the hydrocarbon chains of lipids in the liquid-crystalline state.
Collapse
Affiliation(s)
- Yasuto Todokoro
- Institute for Protein Research, Osaka University, Suita 565-0871, Japan
| | | | | | | | | | | | | | | |
Collapse
|
59
|
Dautant A, Velours J, Giraud MF. Crystal structure of the Mg·ADP-inhibited state of the yeast F1c10-ATP synthase. J Biol Chem 2010; 285:29502-10. [PMID: 20610387 DOI: 10.1074/jbc.m110.124529] [Citation(s) in RCA: 69] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The F(1)c(10) subcomplex of the yeast F(1)F(0)-ATP synthase includes the membrane rotor part c(10)-ring linked to a catalytic head, (αβ)(3), by a central stalk, γδε. The Saccharomyces cerevisiae yF(1)c(10)·ADP subcomplex was crystallized in the presence of Mg·ADP, dicyclohexylcarbodiimide (DCCD), and azide. The structure was solved by molecular replacement using a high resolution model of the yeast F(1) and a bacterial c-ring model with 10 copies of the c-subunit. The structure refined to 3.43-Å resolution displays new features compared with the original yF(1)c(10) and with the yF(1) inhibited by adenylyl imidodiphosphate (AMP-PNP) (yF(1)(I-III)). An ADP molecule was bound in both β(DP) and β(TP) catalytic sites. The α(DP)-β(DP) pair is slightly open and resembles the novel conformation identified in yF(1), whereas the α(TP)-β(TP) pair is very closed and resembles more a DP pair. yF(1)c(10)·ADP provides a model of a new Mg·ADP-inhibited state of the yeast F(1). As for the original yF(1) and yF(1)c(10) structures, the foot of the central stalk is rotated by ∼40 ° with respect to bovine structures. The assembly of the F(1) central stalk with the F(0) c-ring rotor is mainly provided by electrostatic interactions. On the rotor ring, the essential cGlu(59) carboxylate group is surrounded by hydrophobic residues and is not involved in hydrogen bonding.
Collapse
Affiliation(s)
- Alain Dautant
- Université Bordeaux 2, CNRS, Institut de Biochimie et Génétique Cellulaires, 1 rue Camille Saint-Saëns, 33077 Bordeaux Cedex, France.
| | | | | |
Collapse
|
60
|
Krah A, Pogoryelov D, Langer JD, Bond PJ, Meier T, Faraldo-Gómez JD. Structural and energetic basis for H+ versus Na+ binding selectivity in ATP synthase Fo rotors. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2010; 1797:763-72. [DOI: 10.1016/j.bbabio.2010.04.014] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/20/2010] [Revised: 04/09/2010] [Accepted: 04/13/2010] [Indexed: 10/19/2022]
|
61
|
Fiche JB, Laredo T, Tanchak O, Lipkowski J, Dutcher JR, Yada RY. Influence of an electric field on oriented films of DMPC/gramicidin bilayers: a circular dichroism study. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2010; 26:1057-1066. [PMID: 20067313 DOI: 10.1021/la902325n] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/28/2023]
Abstract
A film of oriented bilayers containing a mixture of gramicidin and dimyristoylphosphatidylcholine (DMPC) has been deposited on a fused-silica window coated with a 10 nm thick gold layer. The thin layer of gold allows the application of an electric potential across the film and the study of its influence on the structure and integrity of the bilayers. Electrochemical measurements, ellipsometry, and far-UV circular dichroism (CD) were employed to characterize the properties of the film of bilayers as a function of the potential applied to the gold electrode. For potentials across the film that are within the range approximately +300 to -150 mV the oriented film of bilayers is stable, and no change in the CD spectra of gramicidin molecule is observed. At more negative potentials, an increase in the film thickness and water content measured by ellipsometry indicated that the film swells and incorporates water, which causes a change in the circular dichroism spectrum of gramicidin molecules in the film. This transformation was interpreted as a change in the average orientation of gramicidin molecules within the film due to a decrease in the ordering of the molecules upon swelling.
Collapse
Affiliation(s)
- J B Fiche
- Department of Chemistry, University of Guelph, Guelph, Ontario N1G 2W1, Canada
| | | | | | | | | | | |
Collapse
|
62
|
Plattner H. Membrane Trafficking in Protozoa. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2010; 280:79-184. [DOI: 10.1016/s1937-6448(10)80003-6] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
|
63
|
Emergence of Animals from Heat Engines – Part 1. Before the Snowball Earths. ENTROPY 2009. [DOI: 10.3390/e11030463] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
64
|
von Ballmoos C, Wiedenmann A, Dimroth P. Essentials for ATP synthesis by F1F0 ATP synthases. Annu Rev Biochem 2009; 78:649-72. [PMID: 19489730 DOI: 10.1146/annurev.biochem.78.081307.104803] [Citation(s) in RCA: 244] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
The majority of cellular energy in the form of adenosine triphosphate (ATP) is synthesized by the ubiquitous F(1)F(0) ATP synthase. Power for ATP synthesis derives from an electrochemical proton (or Na(+)) gradient, which drives rotation of membranous F(0) motor components. Efficient rotation not only requires a significant driving force (DeltamuH(+)), consisting of membrane potential (Deltapsi) and proton concentration gradient (DeltapH), but also a high proton concentration at the source P side. In vivo this is maintained by dynamic proton movements across and along the surface of the membrane. The torque-generating unit consists of the interface of the rotating c ring and the stator a subunit. Ion translocation through this unit involves a sophisticated interplay between the c-ring binding sites, the stator arginine, and the coupling ions on both sides of the membrane. c-ring rotation is transmitted to the eccentric shaft gamma-subunit to elicit conformational changes in the catalytic sites of F(1), leading to ATP synthesis.
Collapse
Affiliation(s)
- Christoph von Ballmoos
- Department of Biochemistry and Biophysics, Arrhenius Laboratories for Natural Sciences, Stockholm University, Stockholm, Sweden.
| | | | | |
Collapse
|
65
|
Steed PR, Fillingame RH. Aqueous accessibility to the transmembrane regions of subunit c of the Escherichia coli F1F0 ATP synthase. J Biol Chem 2009; 284:23243-50. [PMID: 19542218 DOI: 10.1074/jbc.m109.002501] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Rotary catalysis in F(1)F(0) ATP synthase is powered by proton translocation through the membrane-embedded F(0) sector. Proton binding and release occur in the middle of the membrane at Asp-61 on transmembrane helix (TMH) 2 of subunit c. Previously the reactivity of Cys substituted into TMH2 revealed extensive aqueous access at the cytoplasmic side as probed with Ag(+) and other thiolate-directed reagents. The analysis of aqueous accessibility of membrane-embedded regions in subunit c was extended here to TMH1 and the periplasmic side of TMH2. The Ag(+) sensitivity of Cys substitutions was more limited on the periplasmic versus cytoplasmic side of TMH2. In TMH1, Ag(+) sensitivity was restricted to a pocket of four residues lying directly behind Asp-61. Aqueous accessibility was also probed using Cd(2+), a membrane-impermeant soft metal ion with properties similar to Ag(+). Cd(2+) inhibition was restricted to the I28C substitution in TMH1 and residues surrounding Asp-61 in TMH2. The overall pattern of inhibition, by all of the reagents tested, indicates highest accessibility on the cytoplasmic side of TMH2 and in a pocket of residues around Asp-61, including proximal residues in TMH1. Additionally subunit a was shown to mediate access to this region by the membrane-impermeant probe 2-(trimethylammonium)ethyl methanethiosulfonate. Based upon these results and other information, a pocket of aqueous accessible residues, bordered by the peripheral surface of TMH4 of subunit a, is proposed to extend from the cytoplasmic side of cTMH2 to Asp-61 in the center of the membrane.
Collapse
Affiliation(s)
- P Ryan Steed
- Department of Biomolecular Chemistry, School of Medicine and Public Health, University of Wisconsin, Madison, Wisconsin 53706, USA
| | | |
Collapse
|
66
|
Complete ion-coordination structure in the rotor ring of Na+-dependent F-ATP synthases. J Mol Biol 2009; 391:498-507. [PMID: 19500592 DOI: 10.1016/j.jmb.2009.05.082] [Citation(s) in RCA: 77] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2009] [Revised: 05/28/2009] [Accepted: 05/29/2009] [Indexed: 11/23/2022]
Abstract
The membrane-embedded rotors of Na(+)-dependent F-ATP synthases comprise 11 c-subunits that form a ring, with 11 Na(+) binding sites in between adjacent subunits. Following an updated crystallographic analysis of the c-ring from Ilyobacter tartaricus, we report the complete ion-coordination structure of the Na(+) sites. In addition to the four residues previously identified, there exists a fifth ligand, namely, a buried structural water molecule. This water is itself coordinated by Thr67, which, sequence analysis reveals, is the only residue involved in binding that distinguishes Na(+) synthases from H(+)-ATP synthases known to date. Molecular dynamics simulations and free-energy calculations of the c-ring in a lipid membrane lend clear support to the notion that this fifth ligand is a water molecule, and illustrate its influence on the selectivity of the binding sites. Given the evolutionary ascendancy of sodium over proton bioenergetics, this structure uncovers an ancient strategy for selective ion coupling in ATP synthases.
Collapse
|
67
|
Seeger MA, von Ballmoos C, Verrey F, Pos KM. Crucial Role of Asp408 in the Proton Translocation Pathway of Multidrug Transporter AcrB: Evidence from Site-Directed Mutagenesis and Carbodiimide Labeling. Biochemistry 2009; 48:5801-12. [DOI: 10.1021/bi900446j] [Citation(s) in RCA: 68] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Markus A. Seeger
- Institute of Physiology and Zurich Centre for Integrative Human Physiology (ZIHP), University of Zurich, Winterthurerstrasse 190, CH-8057 Zürich, Switzerland
- Institute of Microbiology, Swiss Federal Institute of Technology (ETH), Wolfgang-Pauli-Strasse 10, CH-8093 Zürich, Switzerland
| | - Christoph von Ballmoos
- Institute of Microbiology, Swiss Federal Institute of Technology (ETH), Wolfgang-Pauli-Strasse 10, CH-8093 Zürich, Switzerland
| | - François Verrey
- Institute of Physiology and Zurich Centre for Integrative Human Physiology (ZIHP), University of Zurich, Winterthurerstrasse 190, CH-8057 Zürich, Switzerland
| | - Klaas M. Pos
- Institute of Physiology and Zurich Centre for Integrative Human Physiology (ZIHP), University of Zurich, Winterthurerstrasse 190, CH-8057 Zürich, Switzerland
- Cluster of Excellence Frankfurt-Macromolecular Complexes, Institute of Biochemistry, Goethe-University Frankfurt am Main, Max-von-Laue-Strasse 9, D-60438 Frankfurt am Main, Germany
| |
Collapse
|
68
|
Claggett SB, Plancher MO, Dunn SD, Cain BD. The b subunits in the peripheral stalk of F1F0 ATP synthase preferentially adopt an offset relationship. J Biol Chem 2009; 284:16531-16540. [PMID: 19369253 DOI: 10.1074/jbc.m109.002980] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The peripheral stalk of F1F0 ATP synthase is essential for the binding of F1 to FO and for proper transfer of energy between the two sectors of the enzyme. The peripheral stalk of Escherichia coli is composed of a dimer of identical b subunits. In contrast, photosynthetic organisms express two b-like genes that form a heterodimeric peripheral stalk. Previously we generated chimeric peripheral stalks in which a portion of the tether and dimerization domains of the E. coli b subunits were replaced with homologous sequences from the b and b' subunits of Thermosynechococcus elongatus (Claggett, S. B., Grabar, T. B., Dunn, S. D., and Cain, B. D. (2007) J. Bacteriol. 189, 5463-5471). The spatial arrangement of the chimeric b and b' subunits, abbreviated Tb and Tb', has been investigated by Cu2+-mediated disulfide cross-link formation. Disulfide formation was studied both in soluble model polypeptides and between full-length subunits within intact functional F1F0 ATP synthase complexes. In both cases, disulfides were preferentially formed between TbA83C and Tb'A90C, indicating the existence of a staggered relationship between helices of the two chimeric subunits. Even under stringent conditions rapid formation of disulfides between these positions occurred. Importantly, formation of this cross-link had no detectable effect on ATP-driven proton pumping, indicating that the staggered conformation is compatible with normal enzymatic activity. Under less stringent reaction conditions, it was also possible to detect b subunits cross-linked through identical positions, suggesting that an in-register, nonstaggered parallel conformation may also exist.
Collapse
Affiliation(s)
- Shane B Claggett
- From the Department of Biochemistry and Molecular Biology, University of Florida, Gainesville, Florida 32605
| | - Mac O'Neil Plancher
- From the Department of Biochemistry and Molecular Biology, University of Florida, Gainesville, Florida 32605
| | - Stanley D Dunn
- Department of Biochemistry, University of Western Ontario, London, Ontario N6A 5C1, Canada
| | - Brian D Cain
- From the Department of Biochemistry and Molecular Biology, University of Florida, Gainesville, Florida 32605.
| |
Collapse
|
69
|
Mnatsakanyan N, Krishnakumar AM, Suzuki T, Weber J. The role of the betaDELSEED-loop of ATP synthase. J Biol Chem 2009; 284:11336-45. [PMID: 19246448 DOI: 10.1074/jbc.m900374200] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
ATP synthase uses a unique rotational mechanism to convert chemical energy into mechanical energy and back into chemical energy. The helix-turn-helix motif, termed "DELSEED-loop," in the C-terminal domain of the beta subunit was suggested to be involved in coupling between catalysis and rotation. Here, the role of the DELSEED-loop was investigated by functional analysis of mutants of Bacillus PS3 ATP synthase that had 3-7 amino acids within the loop deleted. All mutants were able to catalyze ATP hydrolysis, some at rates several times higher than the wild-type enzyme. In most cases ATP hydrolysis in membrane vesicles generated a transmembrane proton gradient, indicating that hydrolysis occurred via the normal rotational mechanism. Except for two mutants that showed low activity and low abundance in the membrane preparations, the deletion mutants were able to catalyze ATP synthesis. In general, the mutants seemed less well coupled than the wild-type enzyme, to a varying degree. Arrhenius analysis demonstrated that in the mutants fewer bonds had to be rearranged during the rate-limiting catalytic step; the extent of this effect was dependent on the size of the deletion. The results support the idea of a significant involvement of the DELSEED-loop in mechanochemical coupling in ATP synthase. In addition, for two deletion mutants it was possible to prepare an alpha(3)beta(3)gamma subcomplex and measure nucleotide binding to the catalytic sites. Interestingly, both mutants showed a severely reduced affinity for MgATP at the high affinity site.
Collapse
Affiliation(s)
- Nelli Mnatsakanyan
- Department of Chemistry and Biochemistry, Texas Tech University, Lubbock, Texas 79409-1061, USA
| | | | | | | |
Collapse
|
70
|
Constant c10 ring stoichiometry in the Escherichia coli ATP synthase analyzed by cross-linking. J Bacteriol 2009; 191:2400-4. [PMID: 19181809 DOI: 10.1128/jb.01390-08] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The subunit c stoichiometry of Escherichia coli ATP synthase was studied by intermolecular cross-linking via oxidation of bi-cysteine-substituted subunit c (cA21C/cM65C). Independent of the carbon source used for growth and independent of the presence of other FoF1 subunits, an equal pattern of cross-link formation stopping at the formation of decamers was obtained.
Collapse
|
71
|
Schmidt S, Biegel E, Müller V. The ins and outs of Na(+) bioenergetics in Acetobacterium woodii. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2009; 1787:691-6. [PMID: 19167341 DOI: 10.1016/j.bbabio.2008.12.015] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/03/2008] [Revised: 12/30/2008] [Accepted: 12/30/2008] [Indexed: 12/15/2022]
Abstract
The acetogenic bacterium Acetobacterium woodii uses a transmembrane electrochemical sodium ion potential for bioenergetic reactions. A primary sodium ion potential is established during carbonate (acetogenesis) as well as caffeate respiration. The electrogenic Na(+) pump connected to the Wood-Ljungdahl pathway (acetogenesis) still remains to be identified. The pathway of caffeate reduction with hydrogen as electron donor was investigated and the only membrane-bound activity was found to be a ferredoxin-dependent NAD(+) reduction. This exergonic electron transfer reaction may be catalyzed by the membrane-bound Rnf complex that was discovered recently and is suggested to couple exergonic electron transfer from ferredoxin to NAD(+) to the vectorial transport of Na(+) across the cytoplasmic membrane. Rnf may also be involved in acetogenesis. The electrochemical sodium ion potential thus generated is used to drive endergonic reactions such as flagellar rotation and ATP synthesis. The ATP synthase is a member of the F(1)F(O) class of enzymes but has an unusual and exceptional feature. Its membrane-embedded rotor is a hybrid made of F(O) and V(O)-like subunits in a stoichiometry of 9:1. This stoichiometry is apparently not variable with the growth conditions. The structure and function of the Rnf complex and the Na(+) F(1)F(O) ATP synthase as key elements of the Na(+) cycle in A. woodii are discussed.
Collapse
Affiliation(s)
- Silke Schmidt
- Institute of Molecular Biosciences, Johann Wolfgang Goethe University, Frankfurt am Main, Germany
| | | | | |
Collapse
|
72
|
Correlation between the conformational states of F1-ATPase as determined from its crystal structure and single-molecule rotation. Proc Natl Acad Sci U S A 2008; 105:20722-7. [PMID: 19075235 DOI: 10.1073/pnas.0805828106] [Citation(s) in RCA: 62] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
F(1)-ATPase is a rotary molecular motor driven by ATP hydrolysis that rotates the gamma-subunit against the alpha(3)beta(3) ring. The crystal structures of F(1), which provide the structural basis for the catalysis mechanism, have shown essentially 1 stable conformational state. In contrast, single-molecule studies have revealed that F(1) has 2 stable conformational states: ATP-binding dwell state and catalytic dwell state. Although structural and single-molecule studies are crucial for the understanding of the molecular mechanism of F(1), it remains unclear as to which catalytic state the crystal structure represents. To address this issue, we introduced cysteine residues at betaE391 and gammaR84 of F(1) from thermophilic Bacillus PS3. In the crystal structures of the mitochondrial F(1), the corresponding residues in the ADP-bound beta (beta(DP)) and gamma were in direct contact. The betaE190D mutation was additionally introduced into the beta to slow ATP hydrolysis. By incorporating a single copy of the mutant beta-subunit, the chimera F(1), alpha(3)beta(2)beta(E190D/E391C)gamma(R84C), was prepared. In single-molecule rotation assay, chimera F(1) showed a catalytic dwell pause in every turn because of the slowed ATP hydrolysis of beta(E190D/E391C). When the mutant beta and gamma were cross-linked through a disulfide bond between betaE391C and gammaR84C, F(1) paused the rotation at the catalytic dwell angle of beta(E190D/E391C), indicating that the crystal structure represents the catalytic dwell state and that beta(DP) is the catalytically active form. The former point was again confirmed in experiments where F(1) rotation was inhibited by adenosine-5'-(beta,gamma-imino)-triphosphate and/or azide, the most commonly used inhibitors for the crystallization of F(1).
Collapse
|
73
|
Kocherginsky N. Acidic lipids, H(+)-ATPases, and mechanism of oxidative phosphorylation. Physico-chemical ideas 30 years after P. Mitchell's Nobel Prize award. PROGRESS IN BIOPHYSICS AND MOLECULAR BIOLOGY 2008; 99:20-41. [PMID: 19049812 DOI: 10.1016/j.pbiomolbio.2008.10.013] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Peter D. Mitchell, who was awarded the Nobel Prize in Chemistry 30 years ago, in 1978, formulated the chemiosmotic theory of oxidative phosphorylation. This review initially analyzes the major aspects of this theory, its unresolved problems, and its modifications. A new physico-chemical mechanism of energy transformation and coupling of oxidation and phosphorylation is then suggested based on recent concepts regarding proteins, including ATPases that work as molecular motors, and acidic lipids that act as hydrogen ion (H(+)) carriers. According to this proposed mechanism, the chemical energy of a redox substrate is transformed into nonequilibrium states of electron-transporting chain (ETC) coupling proteins. This leads to nonequilibrium pumping of H(+) into the membrane. An acidic lipid, cardiolipin, binds with this H(+) and carries it to the ATP-synthase along the membrane surface. This transport generates gradients of surface tension or electric field along the membrane surface. Hydrodynamic effects on a nanolevel lead to rotation of ATP-synthase and finally to the release of ATP into aqueous solution. This model also explains the generation of a transmembrane protonmotive force that is used for regulation of transmembrane transport, but is not necessary for the coupling of electron transport and ATP synthesis.
Collapse
|
74
|
Shu YG, Lai PY. Systematic Kinetics Study of FoF1-ATPase: Analytic Results and Comparison with Experiments. J Phys Chem B 2008; 112:13453-9. [DOI: 10.1021/jp8052696] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Yao-Gen Shu
- Department of Physics, Graduate Institute of Biophysics and Center for Complex Systems, National Central University, Chung-Li, Taiwan 320, R. O. C., and Institute of Theoretical Physics, The Chinese Academy of Sciences, P.O. Box 2735, Beijing 100080, China
| | - Pik-Yin Lai
- Department of Physics, Graduate Institute of Biophysics and Center for Complex Systems, National Central University, Chung-Li, Taiwan 320, R. O. C., and Institute of Theoretical Physics, The Chinese Academy of Sciences, P.O. Box 2735, Beijing 100080, China
| |
Collapse
|
75
|
Moore KJ, Fillingame RH. Structural interactions between transmembrane helices 4 and 5 of subunit a and the subunit c ring of Escherichia coli ATP synthase. J Biol Chem 2008; 283:31726-35. [PMID: 18786930 DOI: 10.1074/jbc.m803848200] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Subunit a plays a key role in promoting H+ transport and the coupled rotary motion of the subunit c ring in F1F0-ATP synthase. H+ binding and release occur at Asp-61 in the middle of the second transmembrane helix (TMH) of F0 subunit c. H+ are thought to reach Asp-61 via aqueous pathways mapping to the surfaces of TMHs 2-5 of subunit a. TMH4 of subunit a is thought to pack close to TMH2 of subunit c based upon disulfide cross-link formation between Cys substitutions in both TMHs. Here we substituted Cys into the fifth TMH of subunit a and the second TMH of subunit c and tested for cross-linking using bis-methanethiosulfonate (bis-MTS) reagents. A total of 62 Cys pairs were tested and 12 positive cross-links were identified with variable alkyl length linkers. Cross-linking was achieved near the middle of the bilayer for the Cys pairs a248C/c62C, a248C/ c63C, a248C/c65C, a251C/c57C, a251C/c59C, a251C/c62C, a252C/c62C, and a252C/c65C. Cross-linking was achieved near the cytoplasmic side of the bilayer for Cys pairs a262C/c53C, a262C/c54C, a262C/c55C, and a263C/c54C. We conclude that both aTMH4 and aTMH5 pack proximately to cTMH2 of the c-ring. In other experiments we demonstrate that aTMH4 and aTMH5 can be simultaneously cross-linked to different subunit c monomers in the c-ring. Five mutants showed pH-dependent cross-linking consistent with aTMH5 changing conformation at lower pH values to facilitate cross-linking. We suggest that the pH-dependent conformational change may be related to the proposed role of aTMH5 in gating H+ access from the periplasm to the cAsp-61 residue in cTMH2.
Collapse
Affiliation(s)
- Kyle J Moore
- Department of Biomolecular Chemistry, School of Medicine and Public Health, University of Wisconsin, Madison, Wisconsin 53706, USA
| | | |
Collapse
|
76
|
Smirnov AY, Savel'ev S, Mourokh LG, Nori F. Proton transport and torque generation in rotary biomotors. PHYSICAL REVIEW. E, STATISTICAL, NONLINEAR, AND SOFT MATTER PHYSICS 2008; 78:031921. [PMID: 18851079 DOI: 10.1103/physreve.78.031921] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/19/2007] [Accepted: 05/29/2008] [Indexed: 05/26/2023]
Abstract
We analyze the dynamics of rotary biomotors within a simple nanoelectromechanical model, consisting of a stator part and a ring-shaped rotor having 12 proton-binding sites. This model is closely related to the membrane-embedded F0 motor of adenosine triphosphate (ATP) synthase, which converts the energy of the transmembrane electrochemical gradient of protons into mechanical motion of the rotor. It is shown that the Coulomb coupling between the negative charge of the empty rotor site and the positive stator charge, located near the periplasmic proton-conducting channel (proton source), plays a dominant role in the torque-generating process. When approaching the source outlet, the rotor site has a proton energy level higher than the energy level of the site, located near the cytoplasmic channel (proton drain). In the first stage of this torque-generating process, the energy of the electrochemical potential is converted into potential energy of the proton-binding sites on the rotor. Afterwards, the tangential component of the Coulomb force produces a mechanical torque. We demonstrate that, at low temperatures, the loaded motor works in the shuttling regime where the energy of the electrochemical potential is consumed without producing any unidirectional rotation. The motor switches to the torque-generating regime at high temperatures, when the Brownian ratchet mechanism turns on. In the presence of a significant external torque, created by ATP hydrolysis, the system operates as a proton pump, which translocates protons against the transmembrane potential gradient. Here we focus on the F0 motor, even though our analysis is applicable to the bacterial flagellar motor.
Collapse
Affiliation(s)
- A Yu Smirnov
- Advanced Science Institute, The Institute of Physical and Chemical Research (RIKEN), Wako-shi, Saitama, 351-0198, Japan
| | | | | | | |
Collapse
|
77
|
Abstract
F1F0 ATP synthases convert energy stored in an electrochemical gradient of H+ or Na+ across the membrane into mechanical rotation, which is subsequently converted into the chemical bond energy of ATP. The majority of cellular ATP is produced by the ATP synthase in organisms throughout the biological kingdom and therefore under diverse environmental conditions. The ATP synthase of each particular cell is confronted with specific challenges, imposed by the specific environment, and thus by necessity must adapt to these conditions for optimal operation. Examples of these adaptations include diverse mechanisms for regulating the ATP hydrolysis activity of the enzyme, the utilization of different coupling ions with distinct ion binding characteristics, different ion-to-ATP ratios reflected by variations in the size of the rotor c ring, the mode of ion delivery to the binding sites, and the different contributions of the electrical and chemical gradients to the driving force.
Collapse
Affiliation(s)
- Christoph von Ballmoos
- Institut für Mikrobiologie, ETH Zürich, Wolfgang-Pauli Strasse 10, CH-8093 Zürich, Switzerland
| | | | | |
Collapse
|
78
|
Wittig I, Schägger H. Structural organization of mitochondrial ATP synthase. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2008; 1777:592-8. [DOI: 10.1016/j.bbabio.2008.04.027] [Citation(s) in RCA: 99] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/23/2008] [Revised: 04/16/2008] [Accepted: 04/18/2008] [Indexed: 01/02/2023]
|
79
|
Solaini G, Harris DA, Lenaz G, Sgarbi G, Baracca A. The study of the pathogenic mechanism of mitochondrial diseases provides information on basic bioenergetics. BIOCHIMICA ET BIOPHYSICA ACTA 2008; 1777:941-5. [PMID: 18486591 DOI: 10.1016/j.bbabio.2008.04.034] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/30/2007] [Revised: 04/18/2008] [Accepted: 04/22/2008] [Indexed: 11/17/2022]
Abstract
Mitochondrial F(1)F(0)-ATPase was studied in lymphocytes from patients with neuropathy, ataxia, and retinitis pigmentosa (NARP), caused by a mutation at leu-156 in the ATPase 6 subunit. The mutation giving the milder phenotype (Leu156Pro) suffered a 30% reduction in proton flux, and a similar loss in ATP synthetic activity. The more severe mutation (Leu156Arg) also suffered a 30% reduction in proton flux, but ATP synthesis was virtually abolished. Oligomycin sensitivity of the proton translocation through F(0) was enhanced by both mutations. We conclude that in the Leu156Pro mutation, rotation of the c-ring is slowed but coupling of ATP synthesis to proton flux is maintained, whereas in the Leu156Arg mutation, proton flux appears to be uncoupled. Modelling indicated that, in the Leu156Arg mutation, transmembrane helix III of ATPase 6 is unable to span the membrane, terminating in an intramembrane helix II-helix III loop. We propose that the integrity of transmembrane helix III is essential for the mechanical function of ATPase 6 as a stator element in the ATP synthase, but that it is not relevant for oligomycin inhibition.
Collapse
Affiliation(s)
- Giancarlo Solaini
- Dipartimento di Biochimica G. Moruzzi, Via Irnerio, 48, Università di Bologna, Italy.
| | | | | | | | | |
Collapse
|
80
|
Mulkidjanian AY, Dibrov P, Galperin MY. The past and present of sodium energetics: may the sodium-motive force be with you. BIOCHIMICA ET BIOPHYSICA ACTA 2008; 1777:985-92. [PMID: 18485887 PMCID: PMC2695506 DOI: 10.1016/j.bbabio.2008.04.028] [Citation(s) in RCA: 110] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 02/05/2008] [Revised: 04/18/2008] [Accepted: 04/18/2008] [Indexed: 10/22/2022]
Abstract
All living cells routinely expel Na(+) ions, maintaining lower concentration of Na(+) in the cytoplasm than in the surrounding milieu. In the vast majority of bacteria, as well as in mitochondria and chloroplasts, export of Na(+) occurs at the expense of the proton-motive force. Some bacteria, however, possess primary generators of the transmembrane electrochemical gradient of Na(+) (sodium-motive force). These primary Na(+) pumps have been traditionally seen as adaptations to high external pH or to high temperature. Subsequent studies revealed, however, the mechanisms for primary sodium pumping in a variety of non-extremophiles, such as marine bacteria and certain bacterial pathogens. Further, many alkaliphiles and hyperthermophiles were shown to rely on H(+), not Na(+), as the coupling ion. We review here the recent progress in understanding the role of sodium-motive force, including (i) the conclusion on evolutionary primacy of the sodium-motive force as energy intermediate, (ii) the mechanisms, evolutionary advantages and limitations of switching from Na(+) to H(+) as the coupling ion, and (iii) the possible reasons why certain pathogenic bacteria still rely on the sodium-motive force.
Collapse
Affiliation(s)
- Armen Y. Mulkidjanian
- School of Physics, University of Osnabrück, D-49069 Osnabrück, Germany
- A.N.Belozersky Institute of Physico-Chemical Biology, Moscow State University, Moscow, 119991, Russia
| | - Pavel Dibrov
- Department of Microbiology, Faculty of Science, University of Manitoba, Winnipeg, Manitoba, R3T 2N2, Canada
| | - Michael Y. Galperin
- National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, Bethesda, Maryland 20894, USA
| |
Collapse
|
81
|
Mao HZ, Abraham CG, Krishnakumar AM, Weber J. A functionally important hydrogen-bonding network at the betaDP/alphaDP interface of ATP synthase. J Biol Chem 2008; 283:24781-8. [PMID: 18579516 DOI: 10.1074/jbc.m804142200] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
ATP synthase uses a unique rotary mechanism to couple ATP synthesis and hydrolysis to transmembrane proton translocation. The F1 subcomplex has three catalytic nucleotide binding sites, one on each beta subunit, at the interface to the adjacent alpha subunit. In the x-ray structure of F1 (Abrahams, J. P., Leslie, A. G. W., Lutter, R., and Walker, J. E. (1994) Nature 370, 621-628), the three catalytic beta/alpha interfaces differ in the extent of inter-subunit interactions between the C termini of the beta and alpha subunits. At the closed betaDP/alphaDP interface, a hydrogen-bonding network is formed between both subunits, which is absent at the more open betaTP/alphaTP interface and at the wide open betaE/alphaE interface. The hydrogen-bonding network reaches from betaL328 (Escherichia coli numbering) and betaQ441 via alphaQ399, betaR398, and alphaE402 to betaR394, and ends in a cation/pi interaction between betaR394 and alphaF406. Using mutational analysis in E. coli ATP synthase, the functional importance of the betaDP/alphaDP hydrogen-bonding network is demonstrated. Its elimination results in a severely impaired enzyme but has no pronounced effect on the binding affinities of the catalytic sites. A possible role for the hydrogen-bonding network in coupling of ATP synthesis/hydrolysis and rotation will be discussed.
Collapse
Affiliation(s)
- Hui Z Mao
- Department of Chemistry and Biochemistry, Texas Tech University, Lubbock, Texas 79409-1061, USA
| | | | | | | |
Collapse
|
82
|
Murata T, Yamato I, Kakinuma Y, Shirouzu M, Walker JE, Yokoyama S, Iwata S. Ion binding and selectivity of the rotor ring of the Na+-transporting V-ATPase. Proc Natl Acad Sci U S A 2008; 105:8607-12. [PMID: 18559856 PMCID: PMC2438407 DOI: 10.1073/pnas.0800992105] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2008] [Indexed: 11/18/2022] Open
Abstract
The vacuole-type ATPases (V-ATPases) are proton pumps in various intracellular compartments of eukaryotic cells. Prokaryotic V-ATPase of Enterococcus hirae, closely related to the eukaryotic enzymes, provides a unique opportunity to study ion translocation by V-ATPases because it transports Na(+) ions, which are easier to detect by x-ray crystallography and radioisotope experiments. The purified rotor ring (K-ring) of the E. hirae V-ATPase binds one Na(+) ion per K-monomer with high affinity, which is competitively inhibited by Li(+) or H(+), suggesting that the K-ring can also bind these ions. This finding is also supported by the K-ring structure at 2.8 A in the presence of Li(+). Association and dissociation rates of the Na(+) to and from the purified K-ring were extremely slow compared with the Na(+) translocation rate estimated from the enzymatic activity, strongly suggesting that interaction with the stator subunit (I-subunit) is essential for Na(+) binding to /release from the K-ring.
Collapse
Affiliation(s)
- Takeshi Murata
- Department of Cell Biology, Faculty of Medicine, Kyoto University, Yoshidakonoe-cho, Sakyo-ku, Kyoto 606-8501, Japan.
| | | | | | | | | | | | | |
Collapse
|
83
|
Krebstakies T, Aldag I, Altendorf K, Greie JC, Deckers-Hebestreit G. The Stoichiometry of Subunit c of Escherichia coli ATP Synthase Is Independent of Its Rate of Synthesis. Biochemistry 2008; 47:6907-16. [DOI: 10.1021/bi800173a] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Thomas Krebstakies
- Abteilung Mikrobiologie, Fachbereich Biologie/Chemie, Universität Osnabrück, D-49069 Osnabrück, Germany
| | - Ingo Aldag
- Abteilung Mikrobiologie, Fachbereich Biologie/Chemie, Universität Osnabrück, D-49069 Osnabrück, Germany
| | - Karlheinz Altendorf
- Abteilung Mikrobiologie, Fachbereich Biologie/Chemie, Universität Osnabrück, D-49069 Osnabrück, Germany
| | - Jörg-Christian Greie
- Abteilung Mikrobiologie, Fachbereich Biologie/Chemie, Universität Osnabrück, D-49069 Osnabrück, Germany
| | | |
Collapse
|
84
|
Wittig I, Velours J, Stuart R, Schägger H. Characterization of domain interfaces in monomeric and dimeric ATP synthase. Mol Cell Proteomics 2008; 7:995-1004. [PMID: 18245802 DOI: 10.1074/mcp.m700465-mcp200] [Citation(s) in RCA: 57] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2023] Open
Abstract
We disassembled monomeric and dimeric yeast ATP synthase under mild conditions to identify labile proteins and transiently stable subcomplexes that had not been observed before. Specific removal of subunits alpha, beta, oligomycin sensitivity conferring protein (OSCP), and h disrupted the ATP synthase at the gamma-alpha(3)beta(3) rotor-stator interface. Loss of two F(1)-parts from dimeric ATP synthase led to the isolation of a dimeric subcomplex containing membrane and peripheral stalk proteins thus identifying the membrane/peripheral stalk sectors immediately as the dimerizing parts of ATP synthase. Almost all subunit a was found associated with a ring of 10 c-subunits in two-dimensional blue native/SDS gels. We therefore postulate that c10a1-complex is a stable structure in resting ATP synthase until the entry of protons induces a breaking of interactions and stepwise rotation of the c-ring relative to the a-subunit in the catalytic mechanism. Dimeric subunit a was identified in SDS gels in association with two c10-rings suggesting that a c10a2c10-complex may constitute an important part of the monomer-monomer interface in dimeric ATP synthase that seems to be further tightened by subunits b, i, e, g, and h. In contrast to the monomer-monomer interface, the interface between dimers in higher oligomeric structures remains largely unknown. However, we could show that the natural inhibitor protein Inh1 is not required for oligomerization.
Collapse
Affiliation(s)
- Ilka Wittig
- Zentrum der Biologischen Chemie, Molekulare Bioenergetik, Cluster of Excellence "Macromolecular Complexes", Johann Wolfgang Goethe-Universität Frankfurt, D-60590 Frankfurt, Germany
| | | | | | | |
Collapse
|
85
|
Abstract
ATP synthases are rotary engines which use the energy stored in a transmembrane electrochemical gradient of protons or sodium ions to catalyze the formation of ATP by ADP and inorganic phosphate. Current models predict that protonation/deprotonation of specific amino acids of the rotating c-ring, extracting protons from one side and delivering them to the other side of the membrane, are at the core of the proton translocation mechanism of these enzymes. In this minireview, an alternative proton binding mechanism is presented, considering hydronium ion coordination as proposed earlier. Biochemical data and structural considerations provide evidence for two different proton binding modes in the c-ring of H+-translocating ATP synthases. Recent investigations in several other proton translocating membrane proteins suggest, that hydronium ion coordination by proteins might display a general principle which was so far underestimated in ATP synthases.
Collapse
Affiliation(s)
- Christoph von Ballmoos
- Institute of Microbiology, ETH Zürich, Wolfgang-Pauli Strasse 10, CH-8093 Zürich, Switzerland.
| |
Collapse
|
86
|
Vorburger T, Ebneter JZ, Wiedenmann A, Morger D, Weber G, Diederichs K, Dimroth P, von Ballmoos C. Arginine-induced conformational change in the c-ring/a-subunit interface of ATP synthase. FEBS J 2008; 275:2137-50. [DOI: 10.1111/j.1742-4658.2008.06368.x] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
87
|
Moore KJ, Angevine CM, Vincent OD, Schwem BE, Fillingame RH. The cytoplasmic loops of subunit a of Escherichia coli ATP synthase may participate in the proton translocating mechanism. J Biol Chem 2008; 283:13044-52. [PMID: 18337242 DOI: 10.1074/jbc.m800900200] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Subunit a plays a key role in promoting H(+) transport and the coupled rotary motion of the subunit c ring in F(1)F(0)-ATP synthase. H(+) binding and release occur at Asp-61 in the middle of the second transmembrane helix (TMH) of F(0) subunit c. H(+) are thought to reach Asp-61 via aqueous pathways mapping to the surfaces of TMHs 2-5 of subunit a based upon the chemical reactivity of Cys substituted into these helices. Here we substituted Cys into loops connecting TMHs 1 and 2 (loop 1-2) and TMHs 3 and 4 (loop 3-4). A large segment of loop 3-4 extending from loop residue 192 loop to residue 203 in TMH4 at the lipid bilayer surface proved to be very sensitive to inhibition by Ag(+). Cys-161 and -165 at the other end of the loop bordering TMH3 were also sensitive to inhibition by Ag(+). Further Cys substitutions in residues 86 and 93 in the middle of the 1-2 loop proved to be Ag(+)-sensitive. We next asked whether the regions of Ag(+)-sensitive residues clustered together near the surface of the membrane by combining Cys substitutions from two domains and testing for cross-linking. Cys-161 and -165 in loop 3-4 were found to cross-link with Cys-202, -203, or -205, which extend into TMH4 from the cytoplasm. Further Cys at residues 86 and 93 in loop 1-2 were found to cross-link with Cys-195 in loop 3-4. We conclude that the Ag(+)-sensitive regions of loops 1-2 and 3-4 may pack in a single domain that packs at the ends of TMHs 3 and 4. We suggest that the Ag(+)-sensitive domain may be involved in gating H(+) release at the cytoplasmic side of the aqueous access channel extending through F(0).
Collapse
Affiliation(s)
- Kyle J Moore
- Department of Biomolecular Chemistry, University of Wisconsin, Madison, Wisconsin 53706, USA
| | | | | | | | | |
Collapse
|
88
|
Steed PR, Fillingame RH. Subunit a facilitates aqueous access to a membrane-embedded region of subunit c in Escherichia coli F1F0 ATP synthase. J Biol Chem 2008; 283:12365-72. [PMID: 18332132 DOI: 10.1074/jbc.m800901200] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Rotary catalysis in F(1)F(0) ATP synthase is powered by proton translocation through the membrane-embedded F(0) sector. Proton binding and release occurs in the middle of the membrane at Asp-61 on transmembrane helix 2 of subunit c. Previously, the reactivity of cysteines substituted into F(0) subunit a revealed two regions of aqueous access, one extending from the periplasm to the middle of the membrane and a second extending from the middle of the membrane to the cytoplasm. To further characterize aqueous accessibility at the subunit a-c interface, we have substituted Cys for residues on the cytoplasmic side of transmembrane helix 2 of subunit c and probed the accessibility to these substituted positions using thiolate-reactive reagents. The Cys substitutions tested were uniformly inhibited by Ag(+) treatment, which suggested widespread aqueous access to this generally hydrophobic region. Sensitivity to N-ethylmaleimide (NEM) and methanethiosulfonate reagents was localized to a membrane-embedded pocket surrounding Asp-61. The cG58C substitution was profoundly inhibited by all the reagents tested, including membrane impermeant methanethiosulfonate reagents. Further studies of the highly reactive cG58C substitution revealed that NEM modification of a single c subunit in the oligomeric c-ring was sufficient to cause complete inhibition. In addition, NEM modification of subunit c was dependent upon the presence of subunit a. The results described here provide further evidence for an aqueous-accessible region at the interface of subunits a and c extending from the middle of the membrane to the cytoplasm.
Collapse
Affiliation(s)
- P Ryan Steed
- Department of Biomolecular Chemistry, School of Medicine and Public Health, University of Wisconsin, Madison, Wisconsin 53706, USA
| | | |
Collapse
|
89
|
Dmitriev OY, Freedman KH, Hermolin J, Fillingame RH. Interaction of transmembrane helices in ATP synthase subunit a in solution as revealed by spin label difference NMR. BIOCHIMICA ET BIOPHYSICA ACTA 2008; 1777:227-37. [PMID: 18178144 PMCID: PMC2276983 DOI: 10.1016/j.bbabio.2007.11.011] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 10/22/2007] [Revised: 11/28/2007] [Accepted: 11/29/2007] [Indexed: 11/30/2022]
Abstract
Subunit a in the membrane traversing F0 sector of Escherichia coli ATP synthase is known to fold with five transmembrane helices (TMHs) with residue 218 in TMH IV packing close to residue 248 in TMH V. In this study, we have introduced a spin label probe at Cys residues substituted at positions 222 or 223 and measured the effects on the Trp epsilon NH indole NMR signals of the seven Trp residues in the protein. The protein was purified and NMR experiments were carried out in a chloroform-methanol-H2O (4:4:1) solvent mixture. The spin label at positions 222 or 223 proved to broaden the signals of W231, W232, W235 and W241 located at the periplasmic ends of TMH IV and TMH V and the connecting loop between these helices. The broadening of W241 would require that the loop residues fold back on themselves in a hairpin-like structure much like it is predicted to fold in the native membrane. Placement of the spin label probe at several other positions also proved to have broadening effects on some of these Trp residues and provided additional constraints on folding of TMH IV and TMH V. The effects of the 223 probes on backbone amide resonances of subunit a were also measured by an HNCO experiment and the results are consistent with the two helices folding back on themselves in this solvent mixture. When Cys and Trp were substituted at residues 206 and 254 at the cytoplasmic ends of TMHs IV and V respectively, the W254 resonance was not broadened by the spin label at position 206. We conclude that the helices fold back on themselves in this solvent system and then pack at an angle such that the cytoplasmic ends of the polypeptide backbone are significantly displaced from each other.
Collapse
Affiliation(s)
- Oleg Y. Dmitriev
- Department of Biomolecular Chemistry, University of Wisconsin School of Medicine and Public Health, 1300 University Avenue, Madison, WI 53706
| | - Karen H. Freedman
- Department of Biomolecular Chemistry, University of Wisconsin School of Medicine and Public Health, 1300 University Avenue, Madison, WI 53706
| | - Joseph Hermolin
- Department of Biomolecular Chemistry, University of Wisconsin School of Medicine and Public Health, 1300 University Avenue, Madison, WI 53706
| | - Robert H. Fillingame
- Department of Biomolecular Chemistry, University of Wisconsin School of Medicine and Public Health, 1300 University Avenue, Madison, WI 53706
| |
Collapse
|
90
|
Ishmukhametov RR, Pond JB, Al-Huqail A, Galkin MA, Vik SB. ATP synthesis without R210 of subunit a in the Escherichia coli ATP synthase. BIOCHIMICA ET BIOPHYSICA ACTA 2008; 1777:32-8. [PMID: 18068111 PMCID: PMC2258275 DOI: 10.1016/j.bbabio.2007.11.004] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 07/18/2007] [Revised: 11/02/2007] [Accepted: 11/07/2007] [Indexed: 11/29/2022]
Abstract
Interactions between subunit a and oligomeric subunit c are essential for the coupling of proton translocation to rotary motion in the ATP synthase. A pair of previously described mutants, R210Q/Q252R and P204T/R210Q/Q252R [L.P. Hatch, G.B. Cox and S.M. Howitt, The essential arginine residue at position 210 in the a subunit of the Escherichia coli ATP synthase can be transferred to position 252 with partial retention of activity, J. Biol. Chem. 270 (1995) 29407-29412] has been constructed and further analyzed. These mutants, in which the essential arginine of subunit a, R210, was switched with a conserved glutamine residue, Q252, are shown here to be capable of both ATP synthesis by oxidative phosphorylation, and ATP-driven proton translocation. In addition, lysine can replace the arginine at position 252 with partial retention of both activities. The pH dependence of ATP-driven proton translocation was determined after purification of mutant enzymes, and reconstitution into liposomes. Proton translocation by the lysine mutant, and to a lesser extent the arginine mutant, dropped off sharply above pH 7.5, consistent with the requirement for a positive charge during function. Finally, the rates of ATP synthesis and of ATP-driven proton translocation were completely inhibited by treatment with DCCD (N,N'-dicyclohexylcarbodiimide), while rates of ATP hydrolysis by the mutants were not significantly affected, indicating that DCCD modification disrupts the F(1)-F(o) interface. The results suggest that minimal requirements for proton translocation by the ATP synthase include a positive charge in subunit a and a weak interface between subunit a and oligomeric subunit c.
Collapse
Affiliation(s)
- Robert R Ishmukhametov
- Department of Biological Sciences, Box 750376, Southern Methodist University, Dallas, TX 75275-0376, USA
| | | | | | | | | |
Collapse
|
91
|
Temperature-sensitive reaction intermediate of F1-ATPase. EMBO Rep 2007; 9:84-90. [PMID: 18064048 PMCID: PMC2246616 DOI: 10.1038/sj.embor.7401135] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2007] [Revised: 10/31/2007] [Accepted: 10/31/2007] [Indexed: 12/03/2022] Open
Abstract
F1-ATPase is a rotary molecular motor that makes 120° stepping rotations, with each step being driven by a single-ATP hydrolysis. In this study, a new reaction intermediate of F1-ATPase was discovered at a temperature below 4°C, which makes a pause at the same angle in its rotation as when ATP binds. The rate constant of the intermediate reaction was strongly dependent on temperature with a Q10 factor of 19, implying that the intermediate reaction accompanies a large conformational change. Kinetic analyses showed that the intermediate state does not correspond to ATP binding or hydrolysis. The addition of ADP to the reaction mixture did not alter the angular position of the intermediate state, but specifically lengthened the time constant of this state. Conversely, the addition of inorganic phosphate caused a pause at an angle of +80° from that of the intermediate state. These observations strongly suggest that the newly found reaction intermediate is an ADP-releasing step.
Collapse
|
92
|
Stocker A, Keis S, Vonck J, Cook GM, Dimroth P. The structural basis for unidirectional rotation of thermoalkaliphilic F1-ATPase. Structure 2007; 15:904-14. [PMID: 17697996 DOI: 10.1016/j.str.2007.06.009] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2007] [Revised: 06/01/2007] [Accepted: 06/15/2007] [Indexed: 11/16/2022]
Abstract
The ATP synthase of the thermoalkaliphilic Bacillus sp. TA2.A1 operates exclusively in ATP synthesis direction. In the crystal structure of the nucleotide-free alpha(3)beta(3)gamma epsilon subcomplex (TA2F(1)) at 3.1 A resolution, all three beta subunits adopt the open beta(E) conformation. The structure shows salt bridges between the helix-turn-helix motif of the C-terminal domain of the beta(E) subunit (residues Asp372 and Asp375) and the N-terminal helix of the gamma subunit (residues Arg9 and Arg10). These electrostatic forces pull the gamma shaft out of the rotational center and impede rotation through steric interference with the beta(E) subunit. Replacement of Arg9 and Arg10 with glutamines eliminates the salt bridges and results in an activation of ATP hydrolysis activity, suggesting that these salt bridges prevent the native enzyme from rotating in ATP hydrolysis direction. A similar bending of the gamma shaft as in the TA2F(1) structure was observed by single-particle analysis of the TA2F(1)F(o) holoenzyme.
Collapse
Affiliation(s)
- Achim Stocker
- Institute of Microbiology ETH Zürich, ETH Hönggerberg, Wolfgang-Pauli-Strasse 10, CH-8093 Zürich, Switzerland
| | | | | | | | | |
Collapse
|
93
|
Identification of the betaTP site in the x-ray structure of F1-ATPase as the high-affinity catalytic site. Proc Natl Acad Sci U S A 2007; 104:18478-83. [PMID: 18003896 DOI: 10.1073/pnas.0709322104] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
ATP synthase uses a unique rotary mechanism to couple ATP synthesis and hydrolysis to transmembrane proton translocation. The F(1) subcomplex has three catalytic nucleotide binding sites, one on each beta subunit, with widely differing affinities for MgATP or MgADP. During rotational catalysis, the sites switch their affinities. The affinity of each site is determined by the position of the central gamma subunit. The site with the highest nucleotide binding affinity is catalytically active. From the available x-ray structures, it is not possible to discern the high-affinity site. Using fluorescence resonance energy transfer between tryptophan residues engineered into gamma and trinitrophenyl nucleotide analogs on the catalytic sites, we were able to determine that the high-affinity site is close to the C-terminal helix of gamma, but at considerable distance from its N terminus. Thus, the beta(TP) site in the x-ray structure [Abrahams JP, Leslie AGW, Lutter R, Walker JE (1994) Nature 370:621-628] is the high-affinity site, in agreement with the prediction of Yang et al. [Yang W, Gao YQ, Cui Q, Ma J, Karplus M (2003) Proc Natl Acad Sci USA 100:874-879]. Taking into account the known direction of rotation, the findings establish the sequence of affinities through which each catalytic site cycles during MgATP hydrolysis as low --> high --> medium --> low.
Collapse
|
94
|
Vincent OD, Schwem BE, Steed PR, Jiang W, Fillingame RH. Fluidity of structure and swiveling of helices in the subunit c ring of Escherichia coli ATP synthase as revealed by cysteine-cysteine cross-linking. J Biol Chem 2007; 282:33788-33794. [PMID: 17893141 DOI: 10.1074/jbc.m706904200] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Subunit c in the membrane-traversing F(0) sector of Escherichia coli ATP synthase is known to fold with two transmembrane helices and form an oligomeric ring of 10 or more subunits in the membrane. Models for the E. coli ring structure have been proposed based upon NMR solution structures and intersubunit cross-linking of Cys residues in the membrane. The E. coli models differ from the recent x-ray diffraction structure of the isolated Ilyobacter tartaricus c-ring. Furthermore, key cross-linking results supporting the E. coli model prove to be incompatible with the I. tartaricus structure. To test the applicability of the I. tartaricus model to the E. coli c-ring, we compared the cross-linking of a pair of doubly Cys substituted c-subunits, each of which was compatible with one model but not the other. The key finding of this study is that both A21C/M65C and A21C/I66C doubly substituted c-subunits form high yield oligomeric structures, c(2), c(3)... c(10), via intersubunit disulfide bond formation. The results indicate that helical swiveling, with resultant interconversion of the two conformers predicted by the E. coli and I. tartaricus models, must be occurring over the time course of the cross-linking experiment. In the additional experiments reported here, we tried to ascertain the preferred conformation in the membrane to help define the most likely structural model. We conclude that both structures must be able to form in the membrane, but that the helical swiveling that promotes their interconversion may not be necessary during rotary function.
Collapse
Affiliation(s)
- Owen D Vincent
- Department of Biomolecular Chemistry, School of Medicine and Public Health, University of Wisconsin, Madison, Wisconsin 53706
| | - Brian E Schwem
- Department of Biomolecular Chemistry, School of Medicine and Public Health, University of Wisconsin, Madison, Wisconsin 53706
| | - P Ryan Steed
- Department of Biomolecular Chemistry, School of Medicine and Public Health, University of Wisconsin, Madison, Wisconsin 53706
| | - Warren Jiang
- Department of Biomolecular Chemistry, School of Medicine and Public Health, University of Wisconsin, Madison, Wisconsin 53706
| | - Robert H Fillingame
- Department of Biomolecular Chemistry, School of Medicine and Public Health, University of Wisconsin, Madison, Wisconsin 53706.
| |
Collapse
|
95
|
Meier T, Morgner N, Matthies D, Pogoryelov D, Keis S, Cook GM, Dimroth P, Brutschy B. A tridecameric c ring of the adenosine triphosphate (ATP) synthase from the thermoalkaliphilic Bacillus sp. strain TA2.A1 facilitates ATP synthesis at low electrochemical proton potential. Mol Microbiol 2007; 65:1181-92. [PMID: 17645441 DOI: 10.1111/j.1365-2958.2007.05857.x] [Citation(s) in RCA: 71] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Despite the thermodynamic problem imposed on alkaliphilic bacteria of synthesizing adenosine triphosphate (ATP) against a large inverted pH gradient and consequently a low electrochemical proton potential, these bacteria still utilize a proton-coupled F(1)F(o)-ATP synthase to synthesize ATP. One potential solution to this apparent thermodynamic problem would be the operation of a larger oligomeric c ring, which would raise the ion to ATP ratio, thus facilitating the conversion of a low electrochemical potential into a significant phosphorylation potential. To address this hypothesis, we have purified the oligomeric c ring from the thermoalkaliphilic bacterium Bacillus sp. strain TA2.A1 and determined the number of c-subunits using a novel mass spectrometry method, termed 'laser-induced liquid bead ion desorption' (LILBID). This technique allows the mass determination of non-covalently assembled, detergent-solubilized membrane protein complexes, and hence enables an accurate determination of c ring stoichiometries. We show that the Bacillus sp. strain TA2.A1 ATP synthase harbours a tridecameric c ring. The operation of a c ring with 13 subunits renders the thermodynamic problem of ATP synthesis at alkaline pH less severe and may represent a strategy for ATP synthesis at low electrochemical potential.
Collapse
Affiliation(s)
- Thomas Meier
- Max-Planck-Institute of Biophysics, Max-von-Laue-Str. 3, 60438 Frankfurt am Main, Germany.
| | | | | | | | | | | | | | | |
Collapse
|
96
|
McMillan DGG, Keis S, Dimroth P, Cook GM. A specific adaptation in the a subunit of thermoalkaliphilic F1FO-ATP synthase enables ATP synthesis at high pH but not at neutral pH values. J Biol Chem 2007; 282:17395-404. [PMID: 17434874 DOI: 10.1074/jbc.m611709200] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Analysis of the atp operon from the thermoalkaliphilic Bacillus sp. TA2.A1 and comparison with other atp operons from alkaliphilic bacteria reveals the presence of a conserved lysine residue at position 180 (Bacillus sp. TA2.A1 numbering) within the a subunit of these F(1)F(o)-ATP synthases. We hypothesize that the basic nature of this residue is ideally suited to capture protons from the bulk phase at high pH. To test this hypothesis, a heterologous expression system for the ATP synthase from Bacillus sp. TA2.A1 (TA2F(1)F(o)) was developed in Escherichia coli DK8 (Deltaatp). Amino acid substitutions were made in the a subunit of TA2F(1)F(o) at position 180. Lysine (aK180) was substituted for the basic residues histidine (aK180H) or arginine (aK180R), and the uncharged residue glycine (aK180G). ATP synthesis experiments were performed in ADP plus P(i)-loaded right-side-out membrane vesicles energized by ascorbate-phenazine methosulfate. When these enzyme complexes were examined for their ability to perform ATP synthesis over the pH range from 7.0 to 10.0, TA2F(1)F(o) and aK180R showed a similar pH profile having optimum ATP synthesis rates at pH 9.0-9.5 with no measurable ATP synthesis at pH 7.5. Conversely, aK180H and aK180G showed maximal ATP synthesis at pH values 8.0 and 7.5, respectively. ATP synthesis under these conditions for all enzyme forms was sensitive to DCCD. These data strongly imply that amino acid residue Lys(180) is a specific adaptation within the a subunit of TA2F(1)F(o) to facilitate proton capture at high pH. At pH values near the pK(a) of Lys(180), the trapped protons readily dissociate to reach the subunit c binding sites, but this dissociation is impeded at neutral pH values causing either a blocking of the proposed H(+) channel and/or mechanism of proton translocation, and hence ATP synthesis is inhibited.
Collapse
Affiliation(s)
- Duncan G G McMillan
- Department of Microbiology and Immunology, Otago School of Medical Sciences, University of Otago, Dunedin, New Zealand
| | | | | | | |
Collapse
|
97
|
Siu SWI, Böckmann RA. Electric field effects on membranes: Gramicidin A as a test ground. J Struct Biol 2007; 157:545-56. [PMID: 17116406 DOI: 10.1016/j.jsb.2006.10.005] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2006] [Revised: 07/25/2006] [Accepted: 10/03/2006] [Indexed: 11/19/2022]
Abstract
Electric fields due to transmembrane potential differences or ionic gradients across the membrane are presumably crucial for many reactions across membranes or close to membranes like signal transduction, control of ion channels or the generation of neural impulses. Molecular dynamics simulations have been used to study the influence of external electric fields on a mixed gramicidin/phospholipid bilayer system. At high field strengths, formation of membrane electropores occurred both close and distal to the gramicidin. Gramicidin was found to stabilize the membrane adjacent to the protein but also at larger distances of up to 2-3 nm. As a result, membrane pore formation was found to be significantly suppressed for the mixed gramicidin/DMPC system. Moderate field strengths only weakly affected the structure and dynamics of the gramicidin. Spontaneous potassium passage events in external electric fields were observed for both the head-to-head helical conformation as well as for the double helical conformation of gramicidin A. The double-helical conformation was found to facilitate ion passage compared to the head-to-head helical dimer.
Collapse
Affiliation(s)
- Shirley W I Siu
- Saarland University, Center for Bioinformatics Saar, Theoretical and Computational Membrane Biology, P.O. Box 15 11 50, 66041 Saarbrücken, Germany
| | | |
Collapse
|
98
|
Ganti S, Vik SB. Chemical modification of mono-cysteine mutants allows a more global look at conformations of the epsilon subunit of the ATP synthase from Escherichia coli. J Bioenerg Biomembr 2007; 39:99-107. [PMID: 17318395 DOI: 10.1007/s10863-006-9066-6] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2006] [Accepted: 10/31/2006] [Indexed: 12/01/2022]
Abstract
The epsilon subunit of the ATP synthase from E. coli undergoes conformational changes while rotating through 360 degrees during catalysis. The conformation of epsilon was probed in the membrane-bound ATP synthase by reaction of mono-cysteine mutants with 3-N-maleimidyl-propionyl biocytin (MPB) under resting conditions, during ATP hydrolysis, and after inhibition by ADP-AlF(3). The relative extents of labeling were quantified after electrophoresis and blotting of the partially purified epsilon subunit. Residues from the N-terminal beta-sandwich domain showed a position-specific pattern of labeling, consistent with prior structural studies. Some residues near the epsilon-gamma interface showed changes up to two-fold if labeling occurred during ATP hydrolysis or after inhibition by ADP-AlF(3). In contrast, residues found in the C-terminal alpha-helices were all labeled to a moderate or high level with a pattern that was consistent with a partially opened helical hairpin. The results indicate that the two C-terminal alpha-helices do not adopt a fixed conformation under resting conditions, but rather exhibit intrinsic flexibility.
Collapse
Affiliation(s)
- Sangeeta Ganti
- Department of Biological Sciences, Southern Methodist University, Dallas, TX 75275-0376, USA
| | | |
Collapse
|
99
|
Angevine CM, Herold KAG, Vincent OD, Fillingame RH. Aqueous access pathways in ATP synthase subunit a. Reactivity of cysteine substituted into transmembrane helices 1, 3, and 5. J Biol Chem 2007; 282:9001-7. [PMID: 17234633 DOI: 10.1074/jbc.m610848200] [Citation(s) in RCA: 49] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Subunit a is thought to play a key role in H+ transport-driven rotation of the subunit c ring in Escherichia coli F1F0 ATP synthase. In the membrane-traversing F0 sector of the enzyme, H+ binding and release occurs at Asp-61 in the middle of the second transmembrane helix (TMH) of subunit c. Protons are thought to reach Asp-61 via aqueous channels formed at least in part by one or more of the five TMHs of subunit a. Aqueous access to surfaces of TMHs 2, 4, and 5 was previously suggested based upon the chemical reactivity of cysteine residues substituted into these helices. Here we have substituted Cys into TMH1 and TMH3 and extended the substitutions in TMH5 to the cytoplasmic surface. One region of TMH3 proved to be moderately Ag+-sensitive and may connect with the Ag+-sensitive region found previously on the periplasmic side of TMH2. A single Cys substitution in TMH1 proved to be both N-ethylmaleimide (NEM)-sensitive and Ag+-sensitive and suggests a possible packing interaction of TMH1 with TMH2 and TMH3. New Ag+- and NEM-sensitive residues were found at the cytoplasmic end of TMH5 and suggest a possible connection of this region to the NEM- and Ag+-sensitive region of TMH4 described previously. From the now complete pattern of TMH residue reactivity, we conclude that aqueous access from the periplasmic side of F0 to cAsp-61 at the center of the membrane is likely to be mediated by residues of TMHs 2, 3, 4, and 5 at the center of a four-helix bundle. Further, aqueous access between cAsp-61 and the cytoplasmic surface is likely to be mediated by residues in TMH4 and TMH5 at the exterior of the four-helix bundle that are in contact with the c-ring.
Collapse
Affiliation(s)
- Christine M Angevine
- Department of Biomolecular Chemistry, School of Medicine and Public Health, University of Wisconsin, Madison, Wisconsin 53706, USA
| | | | | | | |
Collapse
|
100
|
Abstract
Adenosine triphosphate (ATP) is used as a general energy source by all living cells. The free energy released by hydrolyzing its terminal phosphoric acid anhydride bond to yield ADP and phosphate is utilized to drive various energy-consuming reactions. The ubiquitous F(1)F(0) ATP synthase produces the majority of ATP by converting the energy stored in a transmembrane electrochemical gradient of H(+) or Na(+) into mechanical rotation. While the mechanism of ATP synthesis by the ATP synthase itself is universal, diverse biological reactions are used by different cells to energize the membrane. Oxidative phosphorylation in mitochondria or aerobic bacteria and photophosphorylation in plants are well-known processes. Less familiar are fermentation reactions performed by anaerobic bacteria, wherein the free energy of the decarboxylation of certain metabolites is converted into an electrochemical gradient of Na(+) ions across the membrane (decarboxylation phosphorylation). This chapter will focus on the latter mechanism, presenting an updated survey on the Na(+)-translocating decarboxylases from various organisms. In the second part, we provide a detailed description of the F(1)F(0) ATP synthases with special emphasis on the Na(+)-translocating variant of these enzymes.
Collapse
|