51
|
Satta V, Scherma M, Piscitelli F, Usai P, Castelli MP, Bisogno T, Fratta W, Fadda P. Limited Access to a High Fat Diet Alters Endocannabinoid Tone in Female Rats. Front Neurosci 2018; 12:40. [PMID: 29456490 PMCID: PMC5801427 DOI: 10.3389/fnins.2018.00040] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2017] [Accepted: 01/17/2018] [Indexed: 12/25/2022] Open
Abstract
Emerging evidence suggest an impaired endocannabinoid activity in the pathophysiology of binge eating disorder (BED). Herein, we investigated whether endocannabinoid tone could be modified as a consequence of dietary-induced binge eating in female rats. For this purpose, brain levels of the endocannabinoids anandamide (AEA) and 2-arachidonoyl glycerol (2-AG), as well as two endocannabinoid-like lipids, oleoylethanolamide (OEA) and palmitoylethanolamide (PEA), were assessed in different brain areas involved in the hedonic feeding (i.e., prefrontal cortex, nucleus accumbens, amygdala, hippocampus, and hypothalamus). The brain density of cannabinoid type-1 receptors (CB1) was also evaluated. Furthermore, we determined plasma levels of leptin, ghrelin, and corticosterone hormones, which are well-known to control the levels of endocannabioids and/or CB1 receptors in the brain. To induce binge eating behavior, rats were subject to an intermittent and limited access to a high fat diet (HFD) (margarine). Three experimental groups were used, all with ad libitum access to chow: control (CTRL), with no access to margarine; low restriction (LR), with 2 h margarine access 7 days/week; high restriction (HR), with 2 h margarine access 3 days/week. Bingeing was established when margarine intake in the HR group exceeded that of the LR group. Our results show that, compared to CTRL, AEA significantly decreased in the caudate putamen, amygdala, and hippocampus of HR group. In contrast, 2-AG significantly increased in the hippocampus while OEA decreased in the hypothalamus. Similar to the HR group, AEA and OEA decreased respectively in the amygdala and hypothalamus and 2-AG increased in the hippocampus of LR group. Moreover, LR group also had AEA decreased in the prefrontal cortex and increased in the nucleus accumbens. In both groups we found the same reduction of CB1 receptor density in the prefrontal cortex compared to CTRL. Also, LR and HR groups showed alterations in both ghrelin and corticosterone levels, while leptin remained unaltered. In conclusion, our findings show a modified endocannabinoid tone due to margarine exposure, in several brain areas that are known to influence the hedonic aspect of food. Even if not uniquely specific to binge eating, margarine-induced changes in endocannabinoid tone could contributes to the development and maintenance of this behavior.
Collapse
Affiliation(s)
- Valentina Satta
- Division of Neuroscience and Clinical Pharmacology, Department of Biomedical Sciences, University of Cagliari, Cagliari, Italy
| | - Maria Scherma
- Division of Neuroscience and Clinical Pharmacology, Department of Biomedical Sciences, University of Cagliari, Cagliari, Italy
| | - Fabiana Piscitelli
- Endocannabinoid Research Group, Institute of Biomolecular Chemistry, National Research Council, Pozzuoli, Italy
| | - Paolo Usai
- Department of Medical Sciences and Public Health, University of Cagliari, Cagliari, Italy
| | - M Paola Castelli
- Division of Neuroscience and Clinical Pharmacology, Department of Biomedical Sciences, University of Cagliari, Cagliari, Italy
| | - Tiziana Bisogno
- Endocannabinoid Research Group, Institute of Biomolecular Chemistry, National Research Council, Pozzuoli, Italy.,Department of Medicine, Campus Bio-Medico University of Rome, Rome, Italy
| | - Walter Fratta
- Division of Neuroscience and Clinical Pharmacology, Department of Biomedical Sciences, University of Cagliari, Cagliari, Italy
| | - Paola Fadda
- Division of Neuroscience and Clinical Pharmacology, Department of Biomedical Sciences, University of Cagliari, Cagliari, Italy
| |
Collapse
|
52
|
Fulmer ML, Thewke DP. The Endocannabinoid System and Heart Disease: The Role of Cannabinoid Receptor Type 2. Cardiovasc Hematol Disord Drug Targets 2018; 18:34-51. [PMID: 29412125 PMCID: PMC6020134 DOI: 10.2174/1871529x18666180206161457] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2017] [Revised: 01/01/2018] [Accepted: 01/01/2018] [Indexed: 12/24/2022]
Abstract
Decades of research has provided evidence for the role of the endocannabinoid system in human health and disease. This versatile system, consisting of two receptors (CB1 and CB2), their endogenous ligands (endocannabinoids), and metabolic enzymes has been implicated in a wide variety of disease states, ranging from neurological disorders to cancer. CB2 has gained much interest for its beneficial immunomodulatory role that can be obtained without eliciting psychotropic effects through CB1. Recent studies have shed light on a protective role of CB2 in cardiovascular disease, an ailment which currently takes more lives each year in Western countries than any other disease or injury. By use of CB2 knockout mice and CB2-selective ligands, knowledge of how CB2 signaling affects atherosclerosis and ischemia has been acquired, providing a major stepping stone between basic science and translational clinical research. Here, we summarize the current understanding of the endocannabinoid system in human pathologies and provide a review of the results from preclinical studies examining its function in cardiovascular disease, with a particular emphasis on possible CB2-targeted therapeutic interventions to alleviate atherosclerosis.
Collapse
Affiliation(s)
- Makenzie L. Fulmer
- Department of Biomedical Sciences, Center for Inflammation, Infectious Disease and Immunity, Quillen College of Medicine, East Tennessee State University, Johnson City, TN, USA
| | - Douglas P. Thewke
- Department of Biomedical Sciences, Center for Inflammation, Infectious Disease and Immunity, Quillen College of Medicine, East Tennessee State University, Johnson City, TN, USA
| |
Collapse
|
53
|
Cannabinoid Receptor 1 and Fatty Acid Amide Hydrolase Contribute to Operant Sensation Seeking in Mice. Int J Mol Sci 2017; 18:ijms18081635. [PMID: 28749428 PMCID: PMC5578025 DOI: 10.3390/ijms18081635] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2017] [Revised: 07/21/2017] [Accepted: 07/25/2017] [Indexed: 11/20/2022] Open
Abstract
A large body of evidence in humans and preclinical models supports a role for the endocannabinoid system in the proper execution of motivated or goal-directed behaviors. Operant sensation seeking (OSS) is a task that uses varied sensory stimuli as a reinforcer to maintain operant responding in mice. The purpose of the studies in this report was to begin to explore the role of endocannabinoid signaling in OSS utilizing cannabinoid receptor 1 (CB1R) and fatty acid amide hydrolase (FAAH) knock out mice. Compared to wild type littermate controls, CB1R knock out mice exhibited significantly fewer active responses and earned significantly fewer reinforcers in fixed ratio and progressive ratio schedules. On the other hand, FAAH knock out mice exhibited increased active responses and earned more reinforcers than wild type littermates in fixed ratio but not progressive ratio schedules. These findings support the role of endocannabinoid signaling in motivated behaviors and also expand our understanding of the signaling processes involved in OSS.
Collapse
|
54
|
Ning T, Zou Y, Yang M, Lu Q, Chen M, Liu W, Zhao S, Sun Y, Shi J, Ma Q, Hong J, Liu R, Wang J, Ning G. Genetic interaction of DGAT2 and FAAH in the development of human obesity. Endocrine 2017; 56:366-378. [PMID: 28243972 DOI: 10.1007/s12020-017-1261-1] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/05/2016] [Accepted: 02/06/2017] [Indexed: 01/22/2023]
Abstract
PURPOSE DGAT2 is the critical catalyzing enzyme for triglyceride biosynthesis, and excess triglyceride accumulation in fat tissues is a fundamental process for obesity. Mutations in DGAT2 or other genes interacting with DGAT2 associated with adiposity have not been reported in human to date. METHODS DGAT2 mutation was identified based on our in-home database-exome sequencing 227 young obese subjects (body-mass index (BMI), 35.1-61.7 kg/m2) and 219 lean controls (BMI, 17.5-23.0 kg/m2), further validated in 1190 lean subjects and the pedigree of the proband. The trios of the proband were further subjected to whole-exome sequencing to explore the candidate genes for obesity. The mutations in DGAT2 and FAAH were functionally evaluated in vitro. RESULTS We detected two rare variants in DGAT2 with no significant difference between obese and lean individuals. One novel heterozygous nonsense variant c.382C > T (p.R128*) was identified in one obese subject but not in 219 lean subjects and another 1190 lean subjects. Notably, in vitro study showed that R128* mutation severely damaged the TG-biosynthesis ability of DGAT2, and all other R128* carriers in the pedigree were lean. Thus, we further identified a loss-of-function variant c. 944G > T (p.R315I) in FAAH in the proband inheriting from his obese father. Importantly, FAAH overexpression inhibited DGAT2 expression and TG synthesis, while R315I mutant largely eliminated this inhibitory effect. We first report loss-of-function mutations in DGAT2 and FAAH in one obese subject, which may interact with each other to affect the adiposity penetrance, providing a model of genetic interaction associated with human obesity.
Collapse
Affiliation(s)
- Tinglu Ning
- Institute of Health Sciences, Shanghai Institutes for Biological Sciences (SIBS), Chinese Academy of Sciences (CAS) & Shanghai Jiao Tong University School of Medicine (SJTUSM), Shanghai, 200025, China
| | - Yaoyu Zou
- Institute of Health Sciences, Shanghai Institutes for Biological Sciences (SIBS), Chinese Academy of Sciences (CAS) & Shanghai Jiao Tong University School of Medicine (SJTUSM), Shanghai, 200025, China
| | - Minglan Yang
- Shanghai Clinical Center for Endocrine and Metabolic Diseases, Shanghai Institute of Endocrine and Metabolic Diseases, Department of Endocrinology and Metabolism, National Key Laboratory for Medical Genomes, China National Research Center for Metabolic Diseases, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine (SJTUSM), Shanghai, 200025, China
| | - Qianqian Lu
- Institute of Health Sciences, Shanghai Institutes for Biological Sciences (SIBS), Chinese Academy of Sciences (CAS) & Shanghai Jiao Tong University School of Medicine (SJTUSM), Shanghai, 200025, China
| | - Maopei Chen
- Shanghai Clinical Center for Endocrine and Metabolic Diseases, Shanghai Institute of Endocrine and Metabolic Diseases, Department of Endocrinology and Metabolism, National Key Laboratory for Medical Genomes, China National Research Center for Metabolic Diseases, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine (SJTUSM), Shanghai, 200025, China
| | - Wen Liu
- Shanghai Clinical Center for Endocrine and Metabolic Diseases, Shanghai Institute of Endocrine and Metabolic Diseases, Department of Endocrinology and Metabolism, National Key Laboratory for Medical Genomes, China National Research Center for Metabolic Diseases, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine (SJTUSM), Shanghai, 200025, China
| | - Shaoqian Zhao
- Shanghai Clinical Center for Endocrine and Metabolic Diseases, Shanghai Institute of Endocrine and Metabolic Diseases, Department of Endocrinology and Metabolism, National Key Laboratory for Medical Genomes, China National Research Center for Metabolic Diseases, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine (SJTUSM), Shanghai, 200025, China
| | - Yingkai Sun
- Shanghai Clinical Center for Endocrine and Metabolic Diseases, Shanghai Institute of Endocrine and Metabolic Diseases, Department of Endocrinology and Metabolism, National Key Laboratory for Medical Genomes, China National Research Center for Metabolic Diseases, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine (SJTUSM), Shanghai, 200025, China
| | - Juan Shi
- Shanghai Clinical Center for Endocrine and Metabolic Diseases, Shanghai Institute of Endocrine and Metabolic Diseases, Department of Endocrinology and Metabolism, National Key Laboratory for Medical Genomes, China National Research Center for Metabolic Diseases, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine (SJTUSM), Shanghai, 200025, China
| | - Qinyun Ma
- Shanghai Clinical Center for Endocrine and Metabolic Diseases, Shanghai Institute of Endocrine and Metabolic Diseases, Department of Endocrinology and Metabolism, National Key Laboratory for Medical Genomes, China National Research Center for Metabolic Diseases, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine (SJTUSM), Shanghai, 200025, China
| | - Jie Hong
- Shanghai Clinical Center for Endocrine and Metabolic Diseases, Shanghai Institute of Endocrine and Metabolic Diseases, Department of Endocrinology and Metabolism, National Key Laboratory for Medical Genomes, China National Research Center for Metabolic Diseases, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine (SJTUSM), Shanghai, 200025, China
| | - Ruixin Liu
- Shanghai Clinical Center for Endocrine and Metabolic Diseases, Shanghai Institute of Endocrine and Metabolic Diseases, Department of Endocrinology and Metabolism, National Key Laboratory for Medical Genomes, China National Research Center for Metabolic Diseases, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine (SJTUSM), Shanghai, 200025, China
| | - Jiqiu Wang
- Shanghai Clinical Center for Endocrine and Metabolic Diseases, Shanghai Institute of Endocrine and Metabolic Diseases, Department of Endocrinology and Metabolism, National Key Laboratory for Medical Genomes, China National Research Center for Metabolic Diseases, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine (SJTUSM), Shanghai, 200025, China.
| | - Guang Ning
- Institute of Health Sciences, Shanghai Institutes for Biological Sciences (SIBS), Chinese Academy of Sciences (CAS) & Shanghai Jiao Tong University School of Medicine (SJTUSM), Shanghai, 200025, China.
- Shanghai Clinical Center for Endocrine and Metabolic Diseases, Shanghai Institute of Endocrine and Metabolic Diseases, Department of Endocrinology and Metabolism, National Key Laboratory for Medical Genomes, China National Research Center for Metabolic Diseases, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine (SJTUSM), Shanghai, 200025, China.
| |
Collapse
|
55
|
Effect of endocannabinoid degradation on pain: role of FAAH polymorphisms in experimental and postoperative pain in women treated for breast cancer. Pain 2016; 157:361-369. [PMID: 26808012 DOI: 10.1097/j.pain.0000000000000398] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Fatty acid amide hydrolase (FAAH) metabolizes the endocannabinoid anandamide, which has an important role in nociception. We investigated the role of common FAAH single-nucleotide polymorphisms (SNPs) in experimentally induced and postoperative pain. One thousand women undergoing surgery for breast cancer participated in the study. They were tested for cold (n = 900) and heat pain (n = 1000) sensitivity. After surgery, their pain intensities and analgesic consumption were carefully registered. FAAH genotyping was performed using MassARRAY platform and genome-wide chip (n = 926). Association between 8 FAAH SNPs and 9 pain phenotypes was analyzed using linear regression models. The results showed that carrying 2 copies of a missense variant converting proline at position 129 to threonine (rs324420) resulted in significantly lower cold pain sensitivity and less need for postoperative analgesia. More specifically, rs324420 and another highly correlated SNP, rs1571138, associated significantly with cold pain intensity (corrected P value, 0.0014; recessive model). Patients homozygous for the minor allele (AA genotype) were less sensitive to cold pain (β = -1.48; 95% CI, -2.14 to -0.8). Two other SNPs (rs3766246 and rs4660928) showed nominal association with cold pain, and SNPs rs4141964, rs3766246, rs324420, and rs1571138 nominal association with oxycodone consumption. In conclusion, FAAH gene variation was shown to associate with cold pain sensitivity with P129T/rs324420 being the most likely causal variant as it is known to reduce the FAAH enzyme activity. The same variant showed nominal association with postoperative oxycodone consumption. Our conclusions are, however, limited by the lack of replication and the results should be replicated in an independent cohort.
Collapse
|
56
|
Pu S, Eck P, Jenkins DJA, Connelly PW, Lamarche B, Kris-Etherton PM, West SG, Liu X, Jones PJH. Interactions between dietary oil treatments and genetic variants modulate fatty acid ethanolamides in plasma and body weight composition. Br J Nutr 2016; 115:1012-23. [PMID: 26806592 DOI: 10.1017/s0007114515005425] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Fatty acid ethanolamides (FAE), a group of lipid mediators derived from long-chain fatty acids (FA), mediate biological activities including activation of cannabinoid receptors, stimulation of fat oxidation and regulation of satiety. However, how circulating FAE levels are influenced by FA intake in humans remains unclear. The objective of the present study was to investigate the response of six major circulating FAE to various dietary oil treatments in a five-period, cross-over, randomised, double-blind, clinical study in volunteers with abdominal obesity. The treatment oils (60 g/12 552 kJ per d (60 g/3000 kcal per d)) provided for 30 d were as follows: conventional canola oil, high oleic canola oil, high oleic canola oil enriched with DHA, flax/safflower oil blend and corn/safflower oil blend. Two SNP associated with FAE degradation and synthesis were studied. Post-treatment results showed overall that plasma FAE levels were modulated by dietary FA and were positively correlated with corresponding plasma FA levels; minor allele (A) carriers of SNP rs324420 in gene fatty acid amide hydrolase produced higher circulating oleoylethanolamide (OEA) (P=0·0209) and docosahexaenoylethanolamide (DHEA) levels (P=0·0002). In addition, elevated plasma DHEA levels in response to DHA intake tended to be associated with lower plasma OEA levels and an increased gynoid fat mass. In summary, data suggest that the metabolic and physiological responses to dietary FA may be influenced via circulating FAE. Genetic analysis of rs324420 might help identify a sub-population that appears to benefit from increased consumption of DHA and oleic acid.
Collapse
Affiliation(s)
- Shuaihua Pu
- 1Department of Human Nutritional Sciences,University of Manitoba,Winnipeg,MB R3T 2N2,Canada
| | - Peter Eck
- 1Department of Human Nutritional Sciences,University of Manitoba,Winnipeg,MB R3T 2N2,Canada
| | - David J A Jenkins
- 3Department of Nutritional Sciences, Faculty of Medicine,University of Toronto,Toronto,ON M5S 3E2,Canada
| | - Philip W Connelly
- 5Keenan Research Centre for Biomedical Science,St. Michael's Hospital,Toronto,ON M5B 1W8,Canada
| | - Benoît Lamarche
- 7Institute of Nutrition and Functional Foods,Université Laval,Québec,QC G1V 0A6,Canada
| | - Penny M Kris-Etherton
- 8Department of Nutritional Sciences,Pennsylvania State University,University Park,PA 16802,USA
| | - Sheila G West
- 8Department of Nutritional Sciences,Pennsylvania State University,University Park,PA 16802,USA
| | - Xiaoran Liu
- 8Department of Nutritional Sciences,Pennsylvania State University,University Park,PA 16802,USA
| | - Peter J H Jones
- 1Department of Human Nutritional Sciences,University of Manitoba,Winnipeg,MB R3T 2N2,Canada
| |
Collapse
|
57
|
Liu LY, Alexa K, Cortes M, Schatzman-Bone S, Kim AJ, Mukhopadhyay B, Cinar R, Kunos G, North TE, Goessling W. Cannabinoid receptor signaling regulates liver development and metabolism. Development 2016; 143:609-22. [PMID: 26884397 PMCID: PMC4760316 DOI: 10.1242/dev.121731] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2015] [Accepted: 01/05/2016] [Indexed: 12/21/2022]
Abstract
Endocannabinoid (EC) signaling mediates psychotropic effects and regulates appetite. By contrast, potential roles in organ development and embryonic energy consumption remain unknown. Here, we demonstrate that genetic or chemical inhibition of cannabinoid receptor (Cnr) activity disrupts liver development and metabolic function in zebrafish (Danio rerio), impacting hepatic differentiation, but not endodermal specification: loss of cannabinoid receptor 1 (cnr1) and cnr2 activity leads to smaller livers with fewer hepatocytes, reduced liver-specific gene expression and proliferation. Functional assays reveal abnormal biliary anatomy and lipid handling. Adult cnr2 mutants are susceptible to hepatic steatosis. Metabolomic analysis reveals reduced methionine content in Cnr mutants. Methionine supplementation rescues developmental and metabolic defects in Cnr mutant livers, suggesting a causal relationship between EC signaling, methionine deficiency and impaired liver development. The effect of Cnr on methionine metabolism is regulated by sterol regulatory element-binding transcription factors (Srebfs), as their overexpression rescues Cnr mutant liver phenotypes in a methionine-dependent manner. Our work describes a novel developmental role for EC signaling, whereby Cnr-mediated regulation of Srebfs and methionine metabolism impacts liver development and function.
Collapse
Affiliation(s)
- Leah Y Liu
- Genetics Division, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Kristen Alexa
- Genetics Division, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Mauricio Cortes
- Department of Pathology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02115, USA
| | | | - Andrew J Kim
- Genetics Division, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Bani Mukhopadhyay
- Laboratory of Physiological Studies, National Institute on Alcohol Abuse and Alcoholism, Bethesda, MD 20982, USA
| | - Resat Cinar
- Laboratory of Physiological Studies, National Institute on Alcohol Abuse and Alcoholism, Bethesda, MD 20982, USA
| | - George Kunos
- Laboratory of Physiological Studies, National Institute on Alcohol Abuse and Alcoholism, Bethesda, MD 20982, USA
| | - Trista E North
- Department of Pathology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02115, USA Harvard Stem Cell Institute, Cambridge, MA 02138, USA
| | - Wolfram Goessling
- Genetics Division, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA Harvard Stem Cell Institute, Cambridge, MA 02138, USA Gastroenterology Division, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA Dana-Farber Cancer Institute, Boston, MA 02215, USA Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| |
Collapse
|
58
|
Martins CJDM, Genelhu V, Pimentel MMG, Celoria BMJ, Mangia RF, Aveta T, Silvestri C, Di Marzo V, Francischetti EA. Circulating Endocannabinoids and the Polymorphism 385C>A in Fatty Acid Amide Hydrolase (FAAH) Gene May Identify the Obesity Phenotype Related to Cardiometabolic Risk: A Study Conducted in a Brazilian Population of Complex Interethnic Admixture. PLoS One 2015; 10:e0142728. [PMID: 26561012 PMCID: PMC4641669 DOI: 10.1371/journal.pone.0142728] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2015] [Accepted: 10/26/2015] [Indexed: 01/15/2023] Open
Abstract
The dysregulation of the endocannabinoid system is associated with cardiometabolic complications of obesity. Allelic variants in coding genes for this system components may contribute to differences in the susceptibility to obesity and related health hazards. These data have mostly been shown in Caucasian populations and in severely obese individuals. We investigated a multiethnic Brazilian population to study the relationships among the polymorphism 385C>A in an endocannabinoid degrading enzyme gene (FAAH), endocannabinoid levels and markers of cardiometabolic risk. Fasting plasma levels of endocannabinoids and congeners (anandamide, 2-arachidonoylglycerol, N-oleoylethanolamide and N-palmitoylethanolamide) were measured by liquid chromatography-mass spectrometry in 200 apparently healthy individuals of both genders with body mass indices from 22.5 ± 1.8 to 35.9 ± 5.5 kg/m2 (mean ± 1 SD) and ages between 18 and 60 years. All were evaluated for anthropometric parameters, blood pressure, metabolic variables, homeostatic model assessment of insulin resistance (HOMA-IR), adiponectin, leptin, C-reactive protein, and genotyping. The endocannabinoid levels increased as a function of obesity and insulin resistance. The homozygous genotype AA was associated with higher levels of anandamide and lower levels of adiponectin versus wild homozygous CC and heterozygotes combined. The levels of anandamide were independent and positively associated with the genotype AA position 385 of FAAH, C-reactive protein levels and body mass index. Our findings provide evidence for an endocannabinoid-related phenotype that may be identified by the combination of circulating anandamide levels with genotyping of the FAAH 385C>A; this phenotype is not exclusive to mono-ethnoracial populations nor to individuals with severe obesity.
Collapse
Affiliation(s)
- Cyro José de Moraes Martins
- Laboratory of Clinical and Experimental Pathophysiology (CLINEX), Rio de Janeiro State University (UERJ), Rio de Janeiro, RJ, Brazil
| | - Virginia Genelhu
- Laboratory of Clinical and Experimental Pathophysiology (CLINEX), Rio de Janeiro State University (UERJ), Rio de Janeiro, RJ, Brazil
- Pro-Rector for Research and Postgraduate Education, UNIGRANRIO, Duque de Caxias, RJ, Brazil
| | | | - Bruno Miguel Jorge Celoria
- Laboratory of Clinical and Experimental Pathophysiology (CLINEX), Rio de Janeiro State University (UERJ), Rio de Janeiro, RJ, Brazil
| | - Rogerio Fabris Mangia
- Laboratory of Clinical and Experimental Pathophysiology (CLINEX), Rio de Janeiro State University (UERJ), Rio de Janeiro, RJ, Brazil
| | - Teresa Aveta
- Endocannabinoid Research Group, Institute of Biomolecular Chemistry, Consiglio Nazionale delle Ricerche, Pozzuoli NA, Italy
| | - Cristoforo Silvestri
- Endocannabinoid Research Group, Institute of Biomolecular Chemistry, Consiglio Nazionale delle Ricerche, Pozzuoli NA, Italy
| | - Vincenzo Di Marzo
- Endocannabinoid Research Group, Institute of Biomolecular Chemistry, Consiglio Nazionale delle Ricerche, Pozzuoli NA, Italy
| | - Emilio Antonio Francischetti
- Laboratory of Clinical and Experimental Pathophysiology (CLINEX), Rio de Janeiro State University (UERJ), Rio de Janeiro, RJ, Brazil
- Pro-Rector for Research and Postgraduate Education, UNIGRANRIO, Duque de Caxias, RJ, Brazil
- * E-mail:
| |
Collapse
|
59
|
Mazier W, Saucisse N, Gatta-Cherifi B, Cota D. The Endocannabinoid System: Pivotal Orchestrator of Obesity and Metabolic Disease. Trends Endocrinol Metab 2015; 26:524-537. [PMID: 26412154 DOI: 10.1016/j.tem.2015.07.007] [Citation(s) in RCA: 139] [Impact Index Per Article: 13.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/05/2015] [Revised: 07/22/2015] [Accepted: 07/23/2015] [Indexed: 01/10/2023]
Abstract
The endocannabinoid system (ECS) functions to adjust behavior and metabolism according to environmental changes in food availability. Its actions range from the regulation of sensory responses to the development of preference for the consumption of calorically-rich food and control of its metabolic handling. ECS activity is beneficial when access to food is scarce or unpredictable. However, when food is plentiful, the ECS favors obesity and metabolic disease. We review recent advances in understanding the roles of the ECS in energy balance, and discuss newly identified mechanisms of action that, after the withdrawal of first generation cannabinoid type 1 (CB1) receptor antagonists for the treatment of obesity, have made the ECS once again an attractive target for therapy.
Collapse
Affiliation(s)
- Wilfrid Mazier
- Institut National de la Santé et de la Recherche Médicale (INSERM), Neurocentre Magendie, Physiopathologie de la Plasticité Neuronale, Unité 862, 33000 Bordeaux, France; University of Bordeaux, Neurocentre Magendie, Physiopathologie de la Plasticité Neuronale, Unité 862, 33000 Bordeaux, France
| | - Nicolas Saucisse
- Institut National de la Santé et de la Recherche Médicale (INSERM), Neurocentre Magendie, Physiopathologie de la Plasticité Neuronale, Unité 862, 33000 Bordeaux, France; University of Bordeaux, Neurocentre Magendie, Physiopathologie de la Plasticité Neuronale, Unité 862, 33000 Bordeaux, France
| | - Blandine Gatta-Cherifi
- Institut National de la Santé et de la Recherche Médicale (INSERM), Neurocentre Magendie, Physiopathologie de la Plasticité Neuronale, Unité 862, 33000 Bordeaux, France; University of Bordeaux, Neurocentre Magendie, Physiopathologie de la Plasticité Neuronale, Unité 862, 33000 Bordeaux, France; Endocrinology Department, Haut-Lévêque Hospital, 33604 Pessac, France
| | - Daniela Cota
- Institut National de la Santé et de la Recherche Médicale (INSERM), Neurocentre Magendie, Physiopathologie de la Plasticité Neuronale, Unité 862, 33000 Bordeaux, France; University of Bordeaux, Neurocentre Magendie, Physiopathologie de la Plasticité Neuronale, Unité 862, 33000 Bordeaux, France.
| |
Collapse
|
60
|
Abstract
Brain endocannabinoid (eCB) signalling influences the motivation for natural rewards (such as palatable food, sexual activity and social interaction) and modulates the rewarding effects of addictive drugs. Pathological forms of natural and drug-induced reward are associated with dysregulated eCB signalling that may derive from pre-existing genetic factors or from prolonged drug exposure. Impaired eCB signalling contributes to dysregulated synaptic plasticity, increased stress responsivity, negative emotional states and cravings that propel addiction. Understanding the contributions of eCB disruptions to behavioural and physiological traits provides insight into the eCB influence on addiction vulnerability.
Collapse
Affiliation(s)
- Loren H Parsons
- Committee on the Neurobiology of Addictive Disorders, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, California 92037, USA
| | - Yasmin L Hurd
- Friedman Brain Institute, Departments of Psychiatry and Neuroscience, Icahn School of Medicine at Mount Sinai, 1470 Madison Avenue, New York City, New York 10029, USA
| |
Collapse
|
61
|
The potential of inhibitors of endocannabinoid metabolism as anxiolytic and antidepressive drugs--A practical view. Eur Neuropsychopharmacol 2015; 25:749-62. [PMID: 25791296 DOI: 10.1016/j.euroneuro.2015.02.005] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/19/2014] [Revised: 01/13/2015] [Accepted: 02/20/2015] [Indexed: 12/15/2022]
Abstract
The endocannabinoid system, comprising cannabinoid CB1 and CB2 receptors, their endogenous ligands anandamide and 2-arachidonoylglyerol, and their synthetic and metabolic enzymes, are involved in many biological processes in the body, ranging from appetite to bone turnover. Compounds inhibiting the breakdown of anandamide and 2-arachidonoylglycerol increase brain levels of these lipids and thus modulate endocannabinoid signalling. In the present review, the preclinical evidence that these enzymes are good targets for development of novel therapies for anxiety and depression are discussed from a practical, rather than mechanistic, point of view. It is concluded that the preclinical data are promising, albeit tempered by problems of tolerance as well as effects upon learning and memory for irreversible monoacylglycerol lipase inhibitors, and limited by a focus upon male rodents alone. Clinical data so far has been restricted to safety studies with inhibitors of anandamide hydrolysis and a hitherto unpublished study on such a compound in elderly patients with major depressive disorders, but under the dose regimes used, they are well tolerated and show no signs of "cannabis-like" behaviours.
Collapse
|
62
|
D’Addario C, Micioni Di Bonaventura M, Pucci M, Romano A, Gaetani S, Ciccocioppo R, Cifani C, Maccarrone M. Endocannabinoid signaling and food addiction. Neurosci Biobehav Rev 2014; 47:203-24. [DOI: 10.1016/j.neubiorev.2014.08.008] [Citation(s) in RCA: 75] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2014] [Revised: 07/28/2014] [Accepted: 08/18/2014] [Indexed: 10/24/2022]
|
63
|
Scherma M, Fattore L, Satta V, Businco F, Pigliacampo B, Goldberg SR, Dessi C, Fratta W, Fadda P. Pharmacological modulation of the endocannabinoid signalling alters binge-type eating behaviour in female rats. Br J Pharmacol 2014; 169:820-33. [PMID: 23072421 DOI: 10.1111/bph.12014] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2012] [Revised: 09/03/2012] [Accepted: 09/12/2012] [Indexed: 11/30/2022] Open
Abstract
BACKGROUND AND PURPOSE Binge eating disorder (BED) is characterized by excessive food intake during short periods of time. Recent evidence suggests that alterations in the endocannabinoid signalling could be involved in the pathophysiology of BED. In this study, we investigated whether pharmacological manipulation of endocannabinoid transmission may be effective in modulating the aberrant eating behaviour present in a validated rat model of BED. EXPERIMENTAL APPROACH Binge-type eating was induced in female rats by providing limited access to an optional source of dietary fat (margarine). Rats were divided into three groups, all with ad libitum access to chow and water: control (C), with no access to margarine; low restriction (LR), with 2 h margarine access 7 days a week; high restriction (HR), with 2 h margarine access 3 days a week. KEY RESULTS Compared with the LR group, the HR group consumed more margarine and this was accompanied by an increase in body weight. The cannabinoid CB₁/CB₂ receptor agonist Δ⁹-tetrahydrocannabinol significantly increased margarine intake selectively in LR rats, while the fatty acid amide hydrolase inhibitor URB597 showed no effect. The CB₁ receptor inverse agonist/antagonist rimonabant dose-dependently reduced margarine intake in HR rats. Notably, in HR rats, chronic treatment with a low dose of rimonabant induced a selective long-lasting reduction in margarine intake that did not develop tolerance, and a significant and persistent reduction in body weight. CONCLUSIONS AND IMPLICATIONS Chronic pharmacological blockade of CB₁ receptors reduces binge eating behaviour in female rats and may prove effective in treating BED, with an associated significant reduction in body weight.
Collapse
Affiliation(s)
- M Scherma
- Department of Biomedical Science, Section of Neuroscience and Clinical Pharmacology, University of Cagliari, Monserrato (Cagliari), Italy
| | | | | | | | | | | | | | | | | |
Collapse
|
64
|
Lokhov PG, Trifonova OP, Maslov DL, Balashova EE, Archakov AI, Shestakova EA, Shestakova MV, Dedov II. Diagnosing impaired glucose tolerance using direct infusion mass spectrometry of blood plasma. PLoS One 2014; 9:e105343. [PMID: 25202985 PMCID: PMC4159123 DOI: 10.1371/journal.pone.0105343] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2014] [Accepted: 07/21/2014] [Indexed: 01/16/2023] Open
Abstract
The goal of this study was to evaluate the capacity for mass spectrometry of blood plasma to diagnose impaired glucose tolerance (IGT). For this study, blood plasma samples from control subjects (n = 30) and patients with IGT (n = 20) were treated with methanol and low molecular weight fraction were then analyzed by direct infusion mass spectrometry. A total of 51 metabolite ions strongly associated with IGT were detected. The area under a receiver operating characteristic (ROC) curve (AUC) for diagnosing IGT that was based on an analysis of all these metabolites was 0.93 (accuracy 90%, specificity 90%, and sensitivity 90%). The associated reproducibility was 85%. The metabolites identified were also consistent with risk factors previously associated with the development of diabetes. Thus, direct infusion mass spectrometry of blood plasma metabolites represents a rapid, single-step, and reproducible method for the analysis of metabolites. Moreover, this method has the potential to serve as a prototype for clinical analyses that could replace the currently used glucose tolerance test with a more patient-friendly assay.
Collapse
|
65
|
Melis M, Pistis M. Targeting the interaction between fatty acid ethanolamides and nicotinic receptors: Therapeutic perspectives. Pharmacol Res 2014; 86:42-9. [DOI: 10.1016/j.phrs.2014.03.009] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/28/2014] [Revised: 03/06/2014] [Accepted: 03/24/2014] [Indexed: 12/22/2022]
|
66
|
Lipina C, Irving AJ, Hundal HS. Mitochondria: a possible nexus for the regulation of energy homeostasis by the endocannabinoid system? Am J Physiol Endocrinol Metab 2014; 307:E1-13. [PMID: 24801388 DOI: 10.1152/ajpendo.00100.2014] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
The endocannabinoid system (ECS) regulates numerous cellular and physiological processes through the activation of receptors targeted by endogenously produced ligands called endocannabinoids. Importantly, this signaling system is known to play an important role in modulating energy balance and glucose homeostasis. For example, current evidence indicates that the ECS becomes overactive during obesity whereby its central and peripheral stimulation drives metabolic processes that mimic the metabolic syndrome. Herein, we examine the role of the ECS in modulating the function of mitochondria, which play a pivotal role in maintaining cellular and systemic energy homeostasis, in large part due to their ability to tightly coordinate glucose and lipid utilization. Because of this, mitochondrial dysfunction is often associated with peripheral insulin resistance and glucose intolerance as well as the manifestation of excess lipid accumulation in the obese state. This review aims to highlight the different ways through which the ECS may impact upon mitochondrial abundance and/or oxidative capacity and, where possible, relate these findings to obesity-induced perturbations in metabolic function. Furthermore, we explore the potential implications of these findings in terms of the pathogenesis of metabolic disorders and how these may be used to strategically develop therapies targeting the ECS.
Collapse
Affiliation(s)
- Christopher Lipina
- Division of Cell Signalling and Immunology, Sir James Black Centre, College of Life Sciences, University of Dundee, Dundee, Scotland, United Kingdom
| | - Andrew J Irving
- Division of Cell Signalling and Immunology, Sir James Black Centre, College of Life Sciences, University of Dundee, Dundee, Scotland, United Kingdom
| | - Harinder S Hundal
- Division of Cell Signalling and Immunology, Sir James Black Centre, College of Life Sciences, University of Dundee, Dundee, Scotland, United Kingdom
| |
Collapse
|
67
|
Ando T, Tamura N, Mera T, Morita C, Takei M, Nakamoto C, Koide M, Hotta M, Naruo T, Kawai K, Nakahara T, Yamaguchi C, Nagata T, Ookuma K, Okamoto Y, Yamanaka T, Kiriike N, Ichimaru Y, Ishikawa T, Komaki G. Association of the c.385C>A (p.Pro129Thr) polymorphism of the fatty acid amide hydrolase gene with anorexia nervosa in the Japanese population. Mol Genet Genomic Med 2014; 2:313-8. [PMID: 25077173 PMCID: PMC4113271 DOI: 10.1002/mgg3.69] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2013] [Revised: 01/10/2014] [Accepted: 01/14/2014] [Indexed: 01/31/2023] Open
Abstract
The functional c.385C>A single-nucleotide polymorphism (SNP) in the fatty acid amide hydrolase (FAAH) gene, one of the major degrading enzymes of endocannabinoids, is reportedly associated with anorexia nervosa (AN). We genotyped the c.385C>A SNP (rs324420) in 762 lifetime AN and 605 control participants in Japan. There were significant differences in the genotype and allele frequencies of c.385C>A between the AN and control groups. The minor 385A allele was less frequent in the AN participants than in the controls (allele-wise, odds ratio = 0.799, 95% confidence interval [CI] 0.653–0.976, P = 0.028). When the cases were subdivided into lifetime restricting subtype AN and AN with a history of binge eating or purging, only the restricting AN group exhibited a significant association (allele-wise, odds ratio = 0.717, 95% CI 0.557–0.922, P = 0.0094). Our results suggest that having the minor 385A allele of the FAAH gene may be protective against AN, especially restricting AN. This finding supports the possible role of the endocannabinoid system in susceptibility to AN.
Collapse
Affiliation(s)
- Tetsuya Ando
- Department of Psychosomatic Research, National Institute of Mental Health, National Center of Neurology and Psychiatry Kodaira, Tokyo, Japan
| | - Naho Tamura
- Department of Psychosomatic Medicine, Kohnodai Hospital, National Center for Global Health and Medicine Ichikawa, Chiba, Japan
| | - Takashi Mera
- Division of Psychosomatic Medicine, Department of Neurology, University of Occupational and Environmental Health Kitakyushu, Fukuoka, Japan ; Department of Psychosomatic Medicine, Yahata Kosei Hospital Kitakyushu, Fukuoka, Japan
| | - Chihiro Morita
- Department of Psychosomatic Medicine, Graduate School of Medical Sciences, Kyushu University Fukuoka, Fukuoka, Japan
| | | | - Chiemi Nakamoto
- Department of Psychosomatic Medicine, Saitama Social Insurance Hospital Saitama, Saitama, Japan
| | - Masanori Koide
- Department of Psychosomatic Medicine, Kamibayashi Memorial Hospital Ichinomiya, Aichi, Japan
| | - Mari Hotta
- Health Services Center, National Graduate Institute for Policy Studies Minato-ku, Tokyo, Japan
| | - Tetsuro Naruo
- Department of Psychosomatic Medicine, Nogami Hospital Kagoshima, Kagoshima, Japan
| | - Keisuke Kawai
- Department of Psychosomatic Medicine, Graduate School of Medical Sciences, Kyushu University Fukuoka, Fukuoka, Japan
| | - Toshihiro Nakahara
- Department of Psychosomatic Medicine, Family Hospital Satsuma Satsumasendai, Kagoshima, Japan
| | - Chikara Yamaguchi
- Division of General Medicine, Aichi Medical University Hospital Nagakute, Aichi, Japan ; Setoguchi Psychosomatic Clinic Seto, Aichi, Japan
| | - Toshihiko Nagata
- Department of Neuropsychiatry, Osaka City University Graduate School of Medicine Osaka, Osaka, Japan ; Mental Health Clinic of Dr. Nagata at Nanba Osaka, Osaka, Japan
| | - Kazuyoshi Ookuma
- Department of Internal Medicine, Yufuin Koseinenkin Hospital Yufuin, Oita, Japan
| | - Yuri Okamoto
- Health Service Center, Hiroshima University Higashihiroshima, Hiroshima, Japan
| | - Takao Yamanaka
- Graduate School of Welfare Society, The International University of Kagoshima Kagoshima, Kagoshima, Japan ; Nishihara Hoyouin Kaya, Kagoshima, Japan
| | - Nobuo Kiriike
- Department of Neuropsychiatry, Osaka City University Graduate School of Medicine Osaka, Osaka, Japan ; Hamadera Hospital Takaishi, Osaka, Japan
| | - Yuhei Ichimaru
- Department of Nutrition, School of Home Economics and Science, Tokyo Kasei University Itabashi-ku, Tokyo, Japan
| | - Toshio Ishikawa
- Department of Psychosomatic Medicine, Kohnodai Hospital, National Center for Global Health and Medicine Ichikawa, Chiba, Japan
| | - Gen Komaki
- Department of Psychosomatic Research, National Institute of Mental Health, National Center of Neurology and Psychiatry Kodaira, Tokyo, Japan ; School of Health Sciences at Fukuoka, International University of Health and Welfare Ohkawa, Japan
| | | |
Collapse
|
68
|
Sałaga M, Sobczak M, Fichna J. Inhibition of fatty acid amide hydrolase (FAAH) as a novel therapeutic strategy in the treatment of pain and inflammatory diseases in the gastrointestinal tract. Eur J Pharm Sci 2014; 52:173-9. [DOI: 10.1016/j.ejps.2013.11.012] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2013] [Revised: 10/18/2013] [Accepted: 11/12/2013] [Indexed: 01/26/2023]
|
69
|
Hicks JW, Parkes J, Sadovski O, Tong J, Houle S, Vasdev N, Wilson AA. Synthesis and preclinical evaluation of [11C-carbonyl]PF-04457845 for neuroimaging of fatty acid amide hydrolase. Nucl Med Biol 2013; 40:740-6. [PMID: 23731552 DOI: 10.1016/j.nucmedbio.2013.04.008] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2013] [Revised: 04/09/2013] [Accepted: 04/17/2013] [Indexed: 12/31/2022]
Abstract
INTRODUCTION Fatty acid amide hydrolase (FAAH) has a significant role in regulating endocannabinoid signaling in the central nervous system. As such, FAAH inhibitors are being actively sought for pain, addiction, and other indications. This has led to the recent pursuit of positron emission tomography (PET) radiotracers targeting FAAH. We report herein the preparation and preclinical evaluation of [(11)C-carbonyl]PF-04457845, an isotopologue of the potent irreversible FAAH inhibitor. METHODS PF-04457845 was radiolabeled at the carbonyl position via automated [(11)C]CO(2)-fixation. Ex vivo brain biodistribution of [(11)C-carbonyl]PF-04457845 was carried out in conscious rats. Specificity was determined by pre-administration of PF-04457845 or URB597 prior to [(11)C-carbonyl]PF-04457845. In a separate experiment, rats injected with the title radiotracer had whole brains excised, homogenized and extracted to examine irreversible binding to brain parenchyma. RESULTS The title compound was prepared in 5 ± 1% (n = 4) isolated radiochemical yield based on starting [(11)C]CO(2) (decay uncorrected) within 25 min from end-of-bombardment in >98% radiochemical purity and a specific activity of 73.5 ± 8.2 GBq/μmol at end-of-synthesis. Uptake of [(11)C-carbonyl]PF-04457845 into the rat brain was high (range of 1.2-4.4 SUV), heterogeneous, and in accordance with reported FAAH distribution. Saturable binding was demonstrated by a dose-dependent reduction in brain radioactivity uptake following pre-treatment with PF-04457845. Pre-treatment with the prototypical FAAH inhibitor, URB597, reduced the brain radiotracer uptake in all regions by 71-81%, demonstrating specificity for FAAH. The binding of [(11)C-carbonyl]PF-04457845 to FAAH at 40 min post injection was irreversible as 98% of the radioactivity in the brain could not be extracted. CONCLUSIONS [(11)C-carbonyl]PF-04457845 was rapidly synthesized via an automated radiosynthesis. Ex vivo biodistribution studies in conscious rodents demonstrate that [11C PF-04457845 is a promising candidate radiotracer for imaging FAAH in the brain with PET. These results coupled with the known pharmacology and toxicology of PF-04457845 should facilitate clinical translation of this radiotracer.
Collapse
Affiliation(s)
- Justin W Hicks
- Research Imaging Centre, Centre for Addiction and Mental Health, Toronto, ON, Canada
| | | | | | | | | | | | | |
Collapse
|
70
|
de Luis D, Aller R, Izaola O, Conde R, de la Fuente B, Gonzalez Sagrado M. Genetic variation in the endocannabinoid degrading enzyme fatty acid amide hydrolase (FAAH) and their influence on weight loss and insulin resistance under a high monounsaturated fat hypocaloric diet. J Diabetes Complications 2013; 27:235-9. [PMID: 23333123 DOI: 10.1016/j.jdiacomp.2012.11.001] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/04/2012] [Revised: 10/16/2012] [Accepted: 11/06/2012] [Indexed: 10/27/2022]
Abstract
BACKGROUND AND AIMS The C385A polymorphism of FAAH gene (rs324420C>A) has been associated with obesity. We investigate the role of this polymorphism on anthropometric and metabolic responses after an enriched monounsaturated fat hypocaloric diet. METHODS A sample of 95 obese individuals was analyzed at baseline and after 3 months of an enriched monounsaturated fat hypocaloric diet. RESULTS Sixty two patients (65.3%) had the genotype C385C and 33 (34.7%) patients had C385A genotype (30 patients, 31.6%) or A358A (3 patients, 3.2%) (A carriers group). In subjects with C385C genotype, insulin (-1.9±5.3 mUI/l) and HOMA-R (-0.48±0.75 U) decreased. In A carriers subjects, the decreases in weight were 3.7±3.4 kg (decrease in C385C genotype group 4.4±3.6 kg), fat mass 2.7±3.2 kg (decrease in C385C genotype group 3.4±3.2 kg) and waist circumference 3.1±3.4cm (decrease in C385 genotype group 4.4±4.6 cm). These changes were significantly higher in the C385C genotype group than the A carriers subjects. CONCLUSION After weight loss, noncarriers of the allele A385 of FAAH had an improvement on insulin and HOMA-R levels with an enriched monounsaturated fat hypocaloric diet. A better response of weight, fat mass and waist circumference was observed in C385 genotype subjects than A carriers participants.
Collapse
Affiliation(s)
- Daniel de Luis
- Institute of Endocrinology and Nutrition, Medicine School and Unit of Investigation, Hospital Rio Hortega, University of Valladolid, C/Los perales 16, Simancas 47130, Valladolid, Spain.
| | | | | | | | | | | |
Collapse
|
71
|
Abstract
The endocannabinoid signaling system regulates diverse physiologic processes and has attracted considerable attention as a potential pharmaceutical target for treating diseases, such as pain, anxiety/depression, and metabolic disorders. The principal ligands of the endocannabinoid system are the lipid transmitters N-arachidonoylethanolamine (anandamide) and 2-arachidonoylglycerol (2-AG), which activate the two major cannabinoid receptors, CB1 and CB2. Anandamide and 2-AG signaling pathways in the nervous system are terminated by enzymatic hydrolysis mediated primarily by the serine hydrolases fatty acid amide hydrolase (FAAH) and monoacylglycerol lipase (MAGL), respectively. In this review, we will discuss the development of FAAH and MAGL inhibitors and their pharmacological application to investigate the function of anandamide and 2-AG signaling pathways in preclinical models of neurobehavioral processes, such as pain, anxiety, and addiction. We will place emphasis on how these studies are beginning to discern the different roles played by anandamide and 2-AG in the nervous system and the resulting implications for advancing endocannabinoid hydrolase inhibitors as next-generation therapeutics.
Collapse
Affiliation(s)
- Jacqueline L Blankman
- Institute for Chemical Biology and Department of Chemical Physiology, The Scripps Research Institute, La Jolla, California 92037, USA.
| | | |
Collapse
|
72
|
Fonseca TL, Correa-Medina M, Campos MP, Wittmann G, Werneck-de-Castro JP, Arrojo e Drigo R, Mora-Garzon M, Ueta CB, Caicedo A, Fekete C, Gereben B, Lechan RM, Bianco AC. Coordination of hypothalamic and pituitary T3 production regulates TSH expression. J Clin Invest 2013; 123:1492-500. [PMID: 23524969 PMCID: PMC3613903 DOI: 10.1172/jci61231] [Citation(s) in RCA: 108] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2012] [Accepted: 01/31/2013] [Indexed: 02/06/2023] Open
Abstract
Type II deiodinase (D2) activates thyroid hormone by converting thyroxine (T4) to 3,5,3'-triiodothyronine (T3). This allows plasma T4 to signal a negative feedback loop that inhibits production of thyrotropin-releasing hormone (TRH) in the mediobasal hypothalamus (MBH) and thyroid-stimulating hormone (TSH) in the pituitary. To determine the relative contributions of these D2 pathways in the feedback loop, we developed 2 mouse strains with pituitary- and astrocyte-specific D2 knockdown (pit-D2 KO and astro-D2 KO mice, respectively). The pit-D2 KO mice had normal serum T3 and were systemically euthyroid, but exhibited an approximately 3-fold elevation in serum TSH levels and a 40% reduction in biological activity. This was the result of elevated serum T4 that increased D2-mediated T3 production in the MBH, thus decreasing Trh mRNA. That tanycytes, not astrocytes, are the cells within the MBH that mediate T4-to-T3 conversion was defined by studies using the astro-D2 KO mice. Despite near-complete loss of brain D2, tanycyte D2 was preserved in astro-D2 KO mice at levels that were sufficient to maintain both the T4-dependent negative feedback loop and thyroid economy. Taken together, these data demonstrated that the hypothalamic-thyroid axis is wired to maintain normal plasma T3 levels, which is achieved through coordination of T4-to-T3 conversion between thyrotrophs and tanycytes.
Collapse
Affiliation(s)
- Tatiana L. Fonseca
- Division of Endocrinology, Diabetes and Metabolism, Miller School of Medicine, University of Miami, Miami, Florida, USA.
Department of Medicine, Division of Endocrinology, Diabetes and Metabolism, Tufts Medical Center, Boston, Massachusetts, USA.
Institute of Biophysics Carlos Chagas Filho and School of Physical Education and Sports, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil.
Department of Endocrine Neurobiology, Institute of Experimental Medicine, Hungarian Academy of Sciences, Budapest, Hungary
| | - Mayrin Correa-Medina
- Division of Endocrinology, Diabetes and Metabolism, Miller School of Medicine, University of Miami, Miami, Florida, USA.
Department of Medicine, Division of Endocrinology, Diabetes and Metabolism, Tufts Medical Center, Boston, Massachusetts, USA.
Institute of Biophysics Carlos Chagas Filho and School of Physical Education and Sports, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil.
Department of Endocrine Neurobiology, Institute of Experimental Medicine, Hungarian Academy of Sciences, Budapest, Hungary
| | - Maira P.O. Campos
- Division of Endocrinology, Diabetes and Metabolism, Miller School of Medicine, University of Miami, Miami, Florida, USA.
Department of Medicine, Division of Endocrinology, Diabetes and Metabolism, Tufts Medical Center, Boston, Massachusetts, USA.
Institute of Biophysics Carlos Chagas Filho and School of Physical Education and Sports, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil.
Department of Endocrine Neurobiology, Institute of Experimental Medicine, Hungarian Academy of Sciences, Budapest, Hungary
| | - Gabor Wittmann
- Division of Endocrinology, Diabetes and Metabolism, Miller School of Medicine, University of Miami, Miami, Florida, USA.
Department of Medicine, Division of Endocrinology, Diabetes and Metabolism, Tufts Medical Center, Boston, Massachusetts, USA.
Institute of Biophysics Carlos Chagas Filho and School of Physical Education and Sports, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil.
Department of Endocrine Neurobiology, Institute of Experimental Medicine, Hungarian Academy of Sciences, Budapest, Hungary
| | - Joao P. Werneck-de-Castro
- Division of Endocrinology, Diabetes and Metabolism, Miller School of Medicine, University of Miami, Miami, Florida, USA.
Department of Medicine, Division of Endocrinology, Diabetes and Metabolism, Tufts Medical Center, Boston, Massachusetts, USA.
Institute of Biophysics Carlos Chagas Filho and School of Physical Education and Sports, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil.
Department of Endocrine Neurobiology, Institute of Experimental Medicine, Hungarian Academy of Sciences, Budapest, Hungary
| | - Rafael Arrojo e Drigo
- Division of Endocrinology, Diabetes and Metabolism, Miller School of Medicine, University of Miami, Miami, Florida, USA.
Department of Medicine, Division of Endocrinology, Diabetes and Metabolism, Tufts Medical Center, Boston, Massachusetts, USA.
Institute of Biophysics Carlos Chagas Filho and School of Physical Education and Sports, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil.
Department of Endocrine Neurobiology, Institute of Experimental Medicine, Hungarian Academy of Sciences, Budapest, Hungary
| | - Magda Mora-Garzon
- Division of Endocrinology, Diabetes and Metabolism, Miller School of Medicine, University of Miami, Miami, Florida, USA.
Department of Medicine, Division of Endocrinology, Diabetes and Metabolism, Tufts Medical Center, Boston, Massachusetts, USA.
Institute of Biophysics Carlos Chagas Filho and School of Physical Education and Sports, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil.
Department of Endocrine Neurobiology, Institute of Experimental Medicine, Hungarian Academy of Sciences, Budapest, Hungary
| | - Cintia Bagne Ueta
- Division of Endocrinology, Diabetes and Metabolism, Miller School of Medicine, University of Miami, Miami, Florida, USA.
Department of Medicine, Division of Endocrinology, Diabetes and Metabolism, Tufts Medical Center, Boston, Massachusetts, USA.
Institute of Biophysics Carlos Chagas Filho and School of Physical Education and Sports, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil.
Department of Endocrine Neurobiology, Institute of Experimental Medicine, Hungarian Academy of Sciences, Budapest, Hungary
| | - Alejandro Caicedo
- Division of Endocrinology, Diabetes and Metabolism, Miller School of Medicine, University of Miami, Miami, Florida, USA.
Department of Medicine, Division of Endocrinology, Diabetes and Metabolism, Tufts Medical Center, Boston, Massachusetts, USA.
Institute of Biophysics Carlos Chagas Filho and School of Physical Education and Sports, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil.
Department of Endocrine Neurobiology, Institute of Experimental Medicine, Hungarian Academy of Sciences, Budapest, Hungary
| | - Csaba Fekete
- Division of Endocrinology, Diabetes and Metabolism, Miller School of Medicine, University of Miami, Miami, Florida, USA.
Department of Medicine, Division of Endocrinology, Diabetes and Metabolism, Tufts Medical Center, Boston, Massachusetts, USA.
Institute of Biophysics Carlos Chagas Filho and School of Physical Education and Sports, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil.
Department of Endocrine Neurobiology, Institute of Experimental Medicine, Hungarian Academy of Sciences, Budapest, Hungary
| | - Balazs Gereben
- Division of Endocrinology, Diabetes and Metabolism, Miller School of Medicine, University of Miami, Miami, Florida, USA.
Department of Medicine, Division of Endocrinology, Diabetes and Metabolism, Tufts Medical Center, Boston, Massachusetts, USA.
Institute of Biophysics Carlos Chagas Filho and School of Physical Education and Sports, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil.
Department of Endocrine Neurobiology, Institute of Experimental Medicine, Hungarian Academy of Sciences, Budapest, Hungary
| | - Ronald M. Lechan
- Division of Endocrinology, Diabetes and Metabolism, Miller School of Medicine, University of Miami, Miami, Florida, USA.
Department of Medicine, Division of Endocrinology, Diabetes and Metabolism, Tufts Medical Center, Boston, Massachusetts, USA.
Institute of Biophysics Carlos Chagas Filho and School of Physical Education and Sports, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil.
Department of Endocrine Neurobiology, Institute of Experimental Medicine, Hungarian Academy of Sciences, Budapest, Hungary
| | - Antonio C. Bianco
- Division of Endocrinology, Diabetes and Metabolism, Miller School of Medicine, University of Miami, Miami, Florida, USA.
Department of Medicine, Division of Endocrinology, Diabetes and Metabolism, Tufts Medical Center, Boston, Massachusetts, USA.
Institute of Biophysics Carlos Chagas Filho and School of Physical Education and Sports, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil.
Department of Endocrine Neurobiology, Institute of Experimental Medicine, Hungarian Academy of Sciences, Budapest, Hungary
| |
Collapse
|
73
|
Chronic activation of cannabinoid receptors in vitro does not compromise mouse islet function. Clin Sci (Lond) 2013; 124:467-78. [PMID: 23078523 DOI: 10.1042/cs20120447] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
We have demonstrated previously that mouse and human islets express ECS (endocannabinoid system) elements, and that short-term activation of islet cannabinoid CB1r and CB2r (cannabinoid type 1 and 2 receptors respectively) stimulates insulin secretion in vitro. There is evidence that the ECS is overactive in Type 2 diabetes, impairing glucose homoeostasis, but little is known about whether it is implicated in islet dysfunction. Therefore the aim of the present study was to investigate the effect of chronic exposure of isolated mouse islets to cannabinoid receptor agonists on islet gene expression and function. Quantitative RT-PCR (reverse transcription-PCR) indicated that mRNAs encoding synthesis [NAPE-PLD (N-acyl-phosphatidyl ethanolamide-hydrolysing phospholipase D)] and degradation [FAAH (fatty acid amide hydrolase)] of the endocannabinoid AEA (anandamide) were the most abundant ECS elements in mouse islets, with much lower levels of CB1r, CB2r, DAGL (diacylglycerol lipase) and MAGL (monoacylglycerol lipase) mRNAs. Maintenance of islets for up to 7 days in the presence of the CB1r agonist ACEA [N-(2-chloroethyl)-5Z,8Z,11Z,14Z-eiscosatetraenamide] or the CB2r agonist JWH015 [(2-methyl-1propyl-1H-indol3-yl)-1-napthalenylmethanone] did not compromise islet viability, as assessed by islet morphology and caspase activities, but there were some changes in mRNAs encoding ECS components. Neither glucose-stimulated insulin secretion nor acute insulin secretory responses to ACEA or JWH015 at 16 mM glucose were substantially modified by a 48 h or 7 day pre-exposure to these cannabinoid receptor agonists, but the stimulation of secretion at 3 mM glucose by 100 nM ACEA was significantly reduced after prolonged treatment with ACEA. Despite JWH015-induced reductions in islet glucagon content at 48 h and 7 days, there were no reductions in arginine-induced glucagon secretion from islets pre-exposed to JWH015 or ACEA. These data indicate that treatment of islets with agonists of CB1r and CB2r for up to 7 days does not have any major impact on islet function, suggesting that the impairments in glucose homoeostasis observed following overactivation of the ECS should be sought in relation to insulin resistance rather than β-cell dysfunction.
Collapse
|
74
|
Wilson AA, Hicks JW, Sadovski O, Parkes J, Tong J, Houle S, Fowler CJ, Vasdev N. Radiosynthesis and evaluation of [¹¹C-carbonyl]-labeled carbamates as fatty acid amide hydrolase radiotracers for positron emission tomography. J Med Chem 2012; 56:201-9. [PMID: 23214511 PMCID: PMC3544278 DOI: 10.1021/jm301492y] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
![]()
Fatty acid amide hydrolase (FAAH) plays a key role in
regulating
the tone of the endocannabinoid system. Radiotracers are required
to image and quantify FAAH activity in vivo. We have synthesized a
series of potent FAAH inhibitors encompassing two classes of N-alkyl-O-arylcarbamates and radiolabeled
eight of them with carbon-11. The [11C-carbonyl]-radiotracers were evaluated in vitro and ex vivo in rats as potential
FAAH imaging agents for positron emission tomography (PET). Both sets
of [11C]O-arylcarbamates showed good to
excellent brain penetration and an appropriate regional distribution.
Pretreatments with a FAAH inhibitor demonstrated that 80–95%
of brain uptake of radioactivity constituted binding of the radiotracers
to FAAH. Brain extraction measurements showed that binding to FAAH
was irreversible and kinetically different for the two classes of
carbamates. These promising results are discussed in terms of the
requirements of a suitable radiotracer for the in vivo imaging of
FAAH using PET.
Collapse
Affiliation(s)
- Alan A Wilson
- Research Imaging Centre, Centre for Addiction and Mental Health, Toronto, Ontario M5T 1R8, Canada.
| | | | | | | | | | | | | | | |
Collapse
|
75
|
Tejera P, Meyer NJ, Chen F, Feng R, Zhao Y, O'Mahony DS, Li L, Sheu CC, Zhai R, Wang Z, Su L, Bajwa E, Ahasic AM, Clardy PF, Gong MN, Frank AJ, Lanken PN, Thompson BT, Christie JD, Wurfel MM, O'Keefe GE, Christiani DC. Distinct and replicable genetic risk factors for acute respiratory distress syndrome of pulmonary or extrapulmonary origin. J Med Genet 2012; 49:671-80. [PMID: 23048207 DOI: 10.1136/jmedgenet-2012-100972] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
BACKGROUND The role of genetics in the development of acute lung injury (ALI)/acute respiratory distress syndrome (ARDS) from direct or indirect lung injury has not been specifically investigated. The aim of this study was to identify genetic variants contributing to ALI/ARDS from pulmonary or extrapulmonary causes. METHODS We conducted a multistage genetic association study. We first performed a large-scale genotyping (50K ITMAT-Broad_CARe Chip) in 1717 critically ill Caucasian patients with either pulmonary or extrapulmonary injury, to identify single nucleotide polymorphisms (SNPs) associated with the development of ARDS from direct or indirect insults to the lung. Identified SNPs (p≤0.0005) were validated in two separated populations (Stage II), with trauma (Population I; n=765) and pneumonia/pulmonary sepsis (Population II; n=838), as causes for ALI/ARDS. Genetic variants replicating their association with trauma related-ALI in Stage II were validated in a second trauma-associated ALI population (n=224, Stage III). RESULTS In Stage I, non-overlapping SNPs were significantly associated with ARDS from direct/indirect lung injury, respectively. The association between rs1190286 (POPDC3) and reduced risk of ARDS from pulmonary injury was validated in Stage II (p<0.003). SNP rs324420 (FAAH) was consistently associated with increased risk of ARDS from extrapulmonary causes in two independent ALI-trauma populations (p<0.006, Stage II; p<0.05, Stage III). Meta-analysis confirmed these associations. CONCLUSIONS Different genetic variants may influence ARDS susceptibility depending on direct versus indirect insults. Functional SNPs in POPDC3 and FAAH genes may be driving the association with direct and indirect ALI/ARDS, respectively.
Collapse
Affiliation(s)
- Paula Tejera
- Department of Environmental Health, Harvard School of Public Health, Boston, MA 02115, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
76
|
Abstract
Obesity is a complex disease that affects all ethnic populations worldwide. The etiology of this disease is based on the interaction of genetic factors, environment and lifestyles indicators. Genetic contribution to the epidemic has gained attention from 2 sources: monogenic syndromes that display severe obesity, and the polygenic model of common obesity. Single mutations can render a syndrome with severe obesity resulting from alteration in central o peripheral appetite control mechanisms. The interaction of several polymorphisms and epigenetic modifications constitute the basic plot for common obesity, molecular ingredients that should not confuse the investigator-they make this riddle even harder to decipher.
Collapse
|
77
|
Fatty acid amide hydrolase ablation promotes ectopic lipid storage and insulin resistance due to centrally mediated hypothyroidism. Proc Natl Acad Sci U S A 2012; 109:14966-71. [PMID: 22912404 DOI: 10.1073/pnas.1212887109] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Fatty acid amide hydrolase (FAAH) knockout mice are prone to excess energy storage and adiposity, whereas mutations in FAAH are associated with obesity in humans. However, the molecular mechanism by which FAAH affects energy expenditure (EE) remains unknown. Here we show that reduced energy expenditure in FAAH(-/-) mice could be attributed to decreased circulating triiodothyronine and thyroxine concentrations secondary to reduced mRNA expression of both pituitary thyroid-stimulating hormone and hypothalamic thyrotropin-releasing hormone. These reductions in the hypothalamic-pituitary-thyroid axis were associated with activation of hypothalamic peroxisome proliferating-activated receptor γ (PPARγ), and increased hypothalamic deiodinase 2 expression. Infusion of NAEs (anandamide and palmitoylethanolamide) recapitulated increases in PPARγ-mediated decreases in EE. FAAH(-/-) mice were also prone to diet-induced hepatic insulin resistance, which could be attributed to increased hepatic diacylglycerol content and protein kinase Cε activation. Our data indicate that FAAH deletion, and the resulting increases in NAEs, predispose mice to ectopic lipid storage and hepatic insulin resistance by promoting centrally mediated hypothyroidism.
Collapse
|
78
|
Lipina C, Rastedt W, Irving AJ, Hundal HS. New vistas for treatment of obesity and diabetes? Endocannabinoid signalling and metabolism in the modulation of energy balance. Bioessays 2012; 34:681-91. [PMID: 22674489 DOI: 10.1002/bies.201200031] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Growing evidence suggests that pathological overactivation of the endocannabinoid system (ECS) is associated with dyslipidemia, obesity and diabetes. Indeed, this signalling system acting through cannabinoid receptors has been shown to function both centrally and peripherally to regulate feeding behaviour as well as energy expenditure and metabolism. Consequently, modulation of these receptors can promote significant alterations in body weight and associated metabolic profile. Importantly, blocking cannabinoid receptor type 1 function has been found to prevent obesity and metabolic dysfunction in various murine models and in humans. Here we provide a detailed account of the known physiological role of the ECS in energy balance, and explore how recent studies have delivered novel insights into the potential targeting of this system as a therapeutic means for treating obesity and related metabolic disorders.
Collapse
Affiliation(s)
- Christopher Lipina
- Division of Cell Signalling and Immunology, Sir James Black Centre, College of Life Sciences, University of Dundee, Dundee, Scotland
| | | | | | | |
Collapse
|
79
|
de Luis DA, Aller R, Izaola O, Conde R, Sagrado MG, Primo D, Castro MJ. Relationship among metabolic syndrome, C358A polymorphism of the endocannabinoid degrading enzyme fatty acid amide hydrolase (FAAH) and insulin resistance. J Diabetes Complications 2012; 26:328-32. [PMID: 22609216 DOI: 10.1016/j.jdiacomp.2012.04.002] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/06/2010] [Revised: 04/02/2012] [Accepted: 04/06/2012] [Indexed: 11/21/2022]
Abstract
BACKGROUND It has been demonstrated that the polymorphism 385 C/A of FAAH (fatty acid amide hydrolase) was associated with obesity and metabolic disorders. OBJECTIVE The aim of our study was to investigate the relationship of the polymorphism (cDNA 385 C->A) of FAAH gene and insulin resistance in obese patients with and without metabolic syndrome. DESIGN A population of 799 obese patients was analyzed in cross-sectional survey. A bioimpedance, blood pressure, serial assessment of nutritional intake with 3 days written food records and biochemical analysis were performed. Genotype of FAAH gene polymorphism was studied. RESULTS Prevalence of metabolic syndrome (MS) with ATP III definition was 49.8% (398 patients) and 50.2% patients without MS (n=401 patients). Prevalence of FAAH genotypes was similar in patients with metabolic syndrome (69.6% wild genotype and 30.4% mutant genotype) and without metabolic syndrome (66.6% wild genotype and 33.4% mutant genotype). In patients without metabolic syndrome, insulin and HOMA levels were higher in mutant genotype than wild type group. CONCLUSION The main finding is the lack of association of the FAAH genotypes with metabolic syndrome prevalence. Patients with mutant genotype group of FAAH gene and without metabolic syndrome have higher insulin and HOMA levels than wild type group.
Collapse
Affiliation(s)
- D A de Luis
- Center of Investigation of Endocrinology and Clinical Nutrition, Medicine School and Unit of Investigation, Hospital Rio Hortega, University of Valladolid, Valladolid, Spain.
| | | | | | | | | | | | | |
Collapse
|
80
|
Bermudez-Silva FJ, Cardinal P, Cota D. The role of the endocannabinoid system in the neuroendocrine regulation of energy balance. J Psychopharmacol 2012; 26:114-24. [PMID: 21824982 DOI: 10.1177/0269881111408458] [Citation(s) in RCA: 98] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Animal and human studies carried out so far have established a role for the endocannabinoid system (ECS) in the regulation of energy balance. Here we critically discuss the role of the endocannabinoid signalling in brain structures, such as the hypothalamus and reward-related areas, and its interaction with neurotransmitter and neuropeptide systems involved in the regulation of food intake and body weight. The ECS has been found to interact with peripheral signals, like leptin, insulin, ghrelin and satiety hormones and the resulting effects on both central and peripheral mechanisms affecting energy balance and adiposity will be described. Furthermore, ECS dysregulation has been associated with the development of dyslipidemia, glucose intolerance and obesity; phenomena that are often accompanied by a plethora of neuroendocrine alterations which might play a causal role in determining ECS dysregulation. Despite the withdrawal of the first generation of cannabinoid type 1 receptor (CB1) antagonists from the pharmaceutical market due to the occurrence of psychiatric adverse events, new evidence suggests that peripherally restricted CB1 antagonists might be efficacious for the treatment of obesity and its associated metabolic disorders. Thus, a perspective on new promising strategies to selectively target the ECS in the context of energy balance regulation is given.
Collapse
|
81
|
Ruby MA, Nomura DK, Hudak CSS, Barber A, Casida JE, Krauss RM. Acute overactive endocannabinoid signaling induces glucose intolerance, hepatic steatosis, and novel cannabinoid receptor 1 responsive genes. PLoS One 2011; 6:e26415. [PMID: 22073164 PMCID: PMC3208546 DOI: 10.1371/journal.pone.0026415] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2011] [Accepted: 09/26/2011] [Indexed: 01/08/2023] Open
Abstract
Endocannabinoids regulate energy balance and lipid metabolism by stimulating the cannabinoid receptor type 1 (CB1). Genetic deletion and pharmacological antagonism have shown that CB1 signaling is necessary for the development of obesity and related metabolic disturbances. However, the sufficiency of endogenously produced endocannabinoids to cause hepatic lipid accumulation and insulin resistance, independent of food intake, has not been demonstrated. Here, we show that a single administration of isopropyl dodecylfluorophosphonate (IDFP), perhaps the most potent pharmacological inhibitor of endocannabinoid degradation, increases hepatic triglycerides (TG) and induces insulin resistance in mice. These effects involve increased CB1 signaling, as they are mitigated by pre-administration of a CB1 antagonist (AM251) and in CB1 knockout mice. Despite the strong physiological effects of CB1 on hepatic lipid and glucose metabolism, little is known about the downstream targets responsible for these effects. To elucidate transcriptional targets of CB1 signaling, we performed microarrays on hepatic RNA isolated from DMSO (control), IDFP and AM251/IDFP-treated mice. The gene for the secreted glycoprotein lipocalin 2 (lcn2), which has been implicated in obesity and insulin resistance, was among those most responsive to alterations in CB1 signaling. The expression pattern of IDFP mice segregated from DMSO mice in hierarchal cluster analysis and AM251 pre-administration reduced (>50%) the majority (303 of 533) of the IDFP induced alterations. Pathway analysis revealed that IDFP altered expression of genes involved in lipid, fatty acid and steroid metabolism, the acute phase response, and amino acid metabolism in a CB1-dependent manner. PCR confirmed array results of key target genes in multiple independent experiments. Overall, we show that acute IDFP treatment induces hepatic TG accumulation and insulin resistance, at least in part through the CB1 receptor, and identify novel cannabinoid responsive genes.
Collapse
Affiliation(s)
- Maxwell A. Ruby
- Department of Atherosclerosis Research, Children's Hospital Oakland Research Institute, Oakland, California, United States of America
| | - Daniel K. Nomura
- Department of Nutritional Sciences and Toxicology, University of California, Berkeley, California, United States of America
| | - Carolyn S. S. Hudak
- Department of Nutritional Sciences and Toxicology, University of California, Berkeley, California, United States of America
| | - Anne Barber
- Department of Atherosclerosis Research, Children's Hospital Oakland Research Institute, Oakland, California, United States of America
| | - John E. Casida
- Department of Nutritional Sciences and Toxicology, University of California, Berkeley, California, United States of America
| | - Ronald M. Krauss
- Department of Atherosclerosis Research, Children's Hospital Oakland Research Institute, Oakland, California, United States of America
- * E-mail:
| |
Collapse
|
82
|
Kirsz K, Zieba DA. Ghrelin-mediated appetite regulation in the central nervous system. Peptides 2011; 32:2256-64. [PMID: 21524673 DOI: 10.1016/j.peptides.2011.04.010] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/03/2011] [Revised: 04/07/2011] [Accepted: 04/08/2011] [Indexed: 11/28/2022]
Abstract
The gut hormone and neuropeptide ghrelin was initially identified in the periphery as a compound released in the bloodstream in response to a negative energetic status. In the central nervous system (CNS), ghrelin mainly acts on the hypothalamus and the limbic system, with its best-known biological role being the regulation of appetitive functions. Recent research has shown that ghrelin is not an indispensable factor in the regulation of food intake. However, it plays a key role in the metabolic changes of lipids, mainly those involving hypothalamic NOS, AMPK, CaMKK2, CPT1 and UCP2 proteins. Ghrelin participates in the regulation of memory processes and the feeling of pleasure resulting from eating, both of which are metabolism-dependent and may be essential for the successful achievement of adaptive appetitive behavior. Ghrelin exerts its biological effect through a complicated network of neuroendocrine links, including the melanocortin and endocannabinoid systems. The activity of ghrelin is connected with circadian and annual fluctuations, which depend on seasons and food availability.
Collapse
Affiliation(s)
- Katarzyna Kirsz
- Department of Swine and Small Ruminant Breeding, Laboratory of Genomics and Biotechnology, University of Agriculture, Krakow 30-059, Poland
| | | |
Collapse
|
83
|
Liao YC, Chou WW, Li YN, Chuang SC, Lin WY, Lakkakula BVKS, Yu ML, Juo SHH. Apelin gene polymorphism influences apelin expression and obesity phenotypes in Chinese women. Am J Clin Nutr 2011; 94:921-928. [PMID: 21775567 DOI: 10.3945/ajcn.110.008813] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
BACKGROUND Apelin, which is a newly identified adipokine, is related to obesity and insulin resistance. A positive correlation between plasma apelin concentrations and obesity traits was reported. OBJECTIVE We tested associations between apelin gene (APLN) polymorphisms, BMI, and waist circumference (WC) and compared APLN expression levels in cells of different genotypes. DESIGN Four tagging single nucleotide polymorphisms (SNPs) and one promoter SNP were genotyped in 1627 Chinese subjects. Because APLN was located on the chromosome X, statistical analyses were conducted in a sex-specific manner. Adipocytes of different genotypes were derived from the omental fat tissue of 10 women. We treated the primary adipocytes with high glucose plus insulin because of a close relation between insulin resistance and obesity. RESULTS SNP rs3115757 was significantly associated with BMI and WC in women. Compared with the CG or GG genotype, the CC genotype had an OR of 2.07 (95% CI: 1.23, 3.49) for having a high WC (P = 0.006) and an OR of 2.29 (95% CI: 1.25, 4.19) for having a BMI (in kg/m(2)) ≥27 (P = 0.007). None of the SNPs was associated with BMI or WC in men. In adipocytes that carried the CC genotype of rs3115757, APLN messenger RNA levels and protein concentrations were higher in cells treated with high glucose plus insulin than in those with normal glucose. There was no difference between the 2 conditions in adipocytes of the CG or GG genotype. CONCLUSION Both association and functional studies suggested that APLN polymorphisms were associated with risks of obesity phenotypes.
Collapse
Affiliation(s)
- Yi-Chu Liao
- Graduate Institute of Medicine, College of Medicine, Kaohsiung Medical University Hospital, Taiwan
| | | | | | | | | | | | | | | |
Collapse
|
84
|
The Endocannabinoid System as Pharmacological Target Derived from Its CNS Role in Energy Homeostasis and Reward. Applications in Eating Disorders and Addiction. Pharmaceuticals (Basel) 2011; 4:1101-1136. [PMID: 32143540 PMCID: PMC4058662 DOI: 10.3390/ph4081101] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2011] [Revised: 07/18/2011] [Accepted: 07/28/2011] [Indexed: 01/26/2023] Open
Abstract
The endocannabinoid system (ECS) has been implicated in many physiological functions, including the regulation of appetite, food intake and energy balance, a crucial involvement in brain reward systems and a role in psychophysiological homeostasis (anxiety and stress responses). We first introduce this important regulatory system and chronicle what is known concerning the signal transduction pathways activated upon the binding of endogenous cannabinoid ligands to the Gi/0-coupled CB1 cannabinoid receptor, as well as its interactions with other hormones and neuromodulators which can modify endocannabinoid signaling in the brain. Anorexia nervosa (AN) and bulimia nervosa (BN) are severe and disabling psychiatric disorders, characterized by profound eating and weight alterations and body image disturbances. Since endocannabinoids modulate eating behavior, it is plausible that endocannabinoid genes may contribute to the biological vulnerability to these diseases. We present and discuss data suggesting an impaired endocannabinoid signaling in these eating disorders, including association of endocannabinoid components gene polymorphisms and altered CB1-receptor expression in AN and BN. Then we discuss recent findings that may provide new avenues for the identification of therapeutic strategies based on the endocannabinod system. In relation with its implications as a reward-related system, the endocannabinoid system is not only a target for cannabis but it also shows interactions with other drugs of abuse. On the other hand, there may be also a possibility to point to the ECS as a potential target for treatment of drug-abuse and addiction. Within this framework we will focus on enzymatic machinery involved in endocannabinoid inactivation (notably fatty acid amide hydrolase or FAAH) as a particularly interesting potential target. Since a deregulated endocannabinoid system may be also related to depression, anxiety and pain symptomatology accompanying drug-withdrawal states, this is an area of relevance to also explore adjuvant treatments for improving these adverse emotional reactions.
Collapse
|
85
|
Cable JC, Tan GD, Alexander SPH, O'Sullivan SE. The activity of the endocannabinoid metabolising enzyme fatty acid amide hydrolase in subcutaneous adipocytes correlates with BMI in metabolically healthy humans. Lipids Health Dis 2011; 10:129. [PMID: 21813022 PMCID: PMC3161878 DOI: 10.1186/1476-511x-10-129] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2011] [Accepted: 08/04/2011] [Indexed: 12/28/2022] Open
Abstract
Background The endocannabinoid system (ECS) is a ubiquitously expressed signalling system, with involvement in lipid metabolism and obesity. There are reported changes in obesity of blood concentrations of the endocannabinoids anandamide (AEA) and 2-arachidonoylglcyerol (2-AG), and of adipose tissue expression levels of the two key catabolic enzymes of the ECS, fatty acid amide hydrolase (FAAH) and monoacylglycerol lipase (MGL). Surprisingly, however, the activities of these enzymes have not been assayed in conditions of increasing adiposity. The aim of the current study was to investigate whether FAAH and MGL activities in human subcutaneous adipocytes are affected by body mass index (BMI), or other markers of adiposity and metabolism. Methods Subcutaneous abdominal mature adipocytes, fasting blood samples and anthropometric measurements were obtained from 28 metabolically healthy subjects representing a range of BMIs. FAAH and MGL activities were assayed in mature adipocytes using radiolabelled substrates. Serum glucose, insulin and adipokines were determined using ELISAs. Results MGL activity showed no relationship with BMI or other adiposity indices, metabolic markers (fasting serum insulin or glucose) or serum adipokine levels (adiponectin, leptin or resistin). In contrast, FAAH activity in subcutaneous adipocytes correlated positively with BMI and waist circumference, but not with skinfold thickness, metabolic markers or serum adipokine levels. Conclusions In this study, novel evidence is provided that FAAH activity in subcutaneous mature adipocytes increases with BMI, whereas MGL activity does not. These findings support the hypothesis that some components of the ECS are upregulated with increasing adiposity in humans, and that AEA and 2-AG may be regulated differently.
Collapse
Affiliation(s)
- Jemma C Cable
- School of Graduate Entry Medicine and Health, University of Nottingham, Derby, DE22 3DT, UK.
| | | | | | | |
Collapse
|
86
|
Vazquez-Roque MI, Camilleri M, Vella A, Carlson P, Laugen J, Zinsmeister AR. Association of genetic variation in cannabinoid mechanisms and gastric motor functions and satiation in overweight and obesity. Neurogastroenterol Motil 2011; 23:637-e257. [PMID: 21477106 PMCID: PMC3117918 DOI: 10.1111/j.1365-2982.2011.01711.x] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
BACKGROUND The endocannabinoid system is associated with food intake. We hypothesized that genes regulating cannabinoids are associated with obesity. Genetic variations in fatty acid amide hydroxylase (FAAH) and cannabinoid receptor 1 (CNR1) are associated with satiation and gastric motor function. METHODS In 62 overweight or obese adults of European ancestry, single nucleotide polymorphisms of rs806378 (nearest gene CNR1) and rs324420 (nearest gene FAAH) were genotyped and the associations with gastric emptying (GE) of solids and liquids, gastric volume (GV), and satiation [maximum tolerated volume (MTV) and symptoms after Ensure(®) nutrient drink test] were explored using a dominant genetic model, with gender and BMI as covariates. KEY RESULTS rs806378 CC genotype was associated with reduced fasting GV (210.2±11.0mL for CC group compared to 242.5±11.3mL for CT/TT group, P=0.031) and a modest, non-significant association with GE of solids (P=0.17). rs324420 genotype was not associated with alterations in gastric motor functions; however, there was a difference in the Ensure(®) MTV (1174.6±37.2mL for CC group compared to 1395.0±123.1mL for CA/AA group, P=0.046) suggesting higher satiation with CC genotype. CONCLUSIONS & INFERENCES Our data suggest that CNR1 and FAAH are associated with altered gastric functions or satiation that may predispose to obesity.
Collapse
Affiliation(s)
- Maria I. Vazquez-Roque
- Clinical Enteric Neuroscience Translational and Epidemiological Research (CENTER), Mayo Clinic, Rochester, Minnesota
| | - Michael Camilleri
- Clinical Enteric Neuroscience Translational and Epidemiological Research (CENTER), Mayo Clinic, Rochester, Minnesota
| | - Adrian Vella
- Division of Endocrinology, Diabetes, Metabolism, and Nutrition, Mayo Clinic, Rochester, Minnesota
| | - Paula Carlson
- Clinical Enteric Neuroscience Translational and Epidemiological Research (CENTER), Mayo Clinic, Rochester, Minnesota
| | - Jeanette Laugen
- Division of Endocrinology, Diabetes, Metabolism, and Nutrition, Mayo Clinic, Rochester, Minnesota
| | - Alan R. Zinsmeister
- Division of Biomedical Statistics and Informatics, Department of Health Sciences Research, Mayo Clinic, Rochester, Minnesota
| |
Collapse
|
87
|
Zeng J, Li J, Huang G. 385 C/A polymorphism of the fatty acid amide hydrolase gene is associated with metabolic syndrome in the Chinese Han population. Arch Med Sci 2011; 7:423-7. [PMID: 22295023 PMCID: PMC3258756 DOI: 10.5114/aoms.2011.23406] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/13/2010] [Revised: 12/05/2010] [Accepted: 12/26/2010] [Indexed: 12/02/2022] Open
Abstract
INTRODUCTION The endocannabinoid system participates in food intake, energy balance and lipid and glucose metabolism. The biological effects of cannabinoids are limited by the activation of the endocannabinoid degrading enzyme fatty acid amide hydrolase (FAAH). This study aims to analyse whether 385 C/A polymorphism of FAAH is associated with metabolic syndrome (MetS) in the Chinese Han population. MATERIAL AND METHODS A total of 112 subjects at risk for MetS and 80 healthy controls from Fuzhou, China were genotyped for 385 C/A polymorphism of FAAH using TaqMan assay. Anthropometric measurements and biochemical assessments such as BMI, waist circumference, blood pressure, serum triglycerides (TG), serum total cholesterol, high-density lipoprotein-cholesterol, low-density lipoprotein-cholesterol, fasting plasma glucose, and plasma insulin levels were performed. RESULTS CA and AA genotypes of FAAH had higher incidence in MetS subjects than in control subjects. CA and AA genotypes of FAAH in subjects with MetS had relatively elevated levels of waist circumference, body mass index, homeostasis model assessment of insulin resistance (HOMA-IR) and serum triglycerides, and lowered level of high-density lipoprotein cholesterol (HDL-c) compared with CC genotype in MetS subjects. CONCLUSIONS Results suggest that 385 C/A polymorphism of the FAAH gene may confer an increased risk of MetS in the Chinese Han population.
Collapse
Affiliation(s)
- Jinyang Zeng
- Department of Endocrinology, Union Hospital, Fujian Medical University, and Fujian Institute of Endocrinology, Fuzhou, P. R. China
| | | | | |
Collapse
|
88
|
Wilson AA, Garcia A, Parkes J, Houle S, Tong J, Vasdev N. [11C]CURB: Evaluation of a novel radiotracer for imaging fatty acid amide hydrolase by positron emission tomography. Nucl Med Biol 2011; 38:247-53. [PMID: 21315280 DOI: 10.1016/j.nucmedbio.2010.08.001] [Citation(s) in RCA: 53] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2010] [Revised: 08/05/2010] [Accepted: 08/08/2010] [Indexed: 01/02/2023]
Abstract
INTRODUCTION Fatty acid amide hydrolase (FAAH) is the enzyme responsible for metabolising the endogenous cannabinoid, anandamide, and thus represents an important target for molecular imaging. To date, no radiotracer has been shown to be useful for imaging of FAAH using either positron emission tomography (PET) or single photon emission computed tomography (SPECT). We here determine the suitability of a novel carbon-11-labeled inhibitor of FAAH via ex vivo biodistribution studies in rat brain in conjunction with pharmacological challenges. METHODS A potent irreversible inhibitor of FAAH, URB694, radiolabeled with carbon-11 in the carbonyl position ([(11)C]CURB), was administered to male rats via tail-vein injection. Rats were sacrificed at various time points postinjection, and tissue samples were dissected, counted and weighed. Specific binding to FAAH was investigated by pretreatment of animals with URB694 or URB597. For metabolism and mechanism of binding studies, whole brains were excised post-radiotracer injection, homogenised and extracted exhaustively with 80% aq. acetonitrile to determine the time course and fraction of radioactivity that was irreversibly bound to brain parenchyma. RESULTS Upon intravenous injection into rats, [(11)C]CURB showed high brain uptake [standard uptake value (SUV) of 1.6-2.4 at 5 min] with little washout over time, which is characteristic of irreversible binding. Highest uptake of radioactivity was seen in the cortex, intermediate in the cerebellum and lowest in the hypothalamus, reflecting the reported distribution of FAAH. Brain uptake of radioactivity was decreased in a dose-dependent manner by pretreatment with increasing amounts of URB694, demonstrating that binding was saturable. Pretreatment with the well-characterised FAAH inhibitor, URB597, reduced binding in all brain regions by 70-80%. Homogenised brain extraction experiments demonstrated unequivocally that [(11)C]CURB was irreversibly bound to FAAH. CONCLUSIONS The title radiotracer demonstrates favourable properties such as good brain uptake, regional heterogeneity and specificity of binding based on ex vivo biodistribution studies in conscious rat brain. [(11)C]CURB represents a highly promising radiotracer for the imaging of FAAH using PET.
Collapse
Affiliation(s)
- Alan A Wilson
- PET Centre, Centre for Addiction and Mental Health, Toronto, Ontario, Canada.
| | | | | | | | | | | |
Collapse
|
89
|
de Luis DA, Gonzalez Sagrado M, Aller R, Izaola O, Conde R. Effects of C358A missense polymorphism of the endocannabinoid degrading enzyme fatty acid amide hydrolase on weight loss after a hypocaloric diet. Metabolism 2011; 60:730-4. [PMID: 20716455 DOI: 10.1016/j.metabol.2010.07.007] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/03/2010] [Revised: 07/07/2010] [Accepted: 07/08/2010] [Indexed: 11/28/2022]
Abstract
The Pro129THr, C385A, polymorphism of FAAH gene (rs324420C>A) has been associated with overweight and obesity. We investigate the role of this polymorphism on anthropometric and metabolic responses to a weight loss program. Obese individuals (n = 122) were assessed at baseline and after 3 months of a hypocaloric diet. There were 76.2% (n = 93) homozygotes for the C allele, 23.8% (n = 27) AC heterozygotes, and 1.6% (n = 2) homozygotes for the A allele. After the dietary intervention, all individuals decreased their body weight (in kilograms), body mass index (in kilograms per square meter), fat mass (in kilograms), waist circumference (in centimeters), and systolic blood pressure (in millimeters of mercury). In mutant-type group, the decrease in weight was 3.5 ± 3.6 kg (decrease in wild-type group, 2.4 ± 3.8 kg); and the decrease in waist circumference was 5.4 ± 6.4 cm (decrease in wild-type group, 2.6 ± 4.8 cm). Individuals with the A/C or AA genotype had a significant reduction (P < .05) in glucose (96.5 ± 12.5 vs 92.3 ± 10.5 mg/dL; difference, 2.68 ± 1.81 mg/dL), total cholesterol (215.3 ± 49 vs 193.3 ± 27.6 mg/dL; difference, 14.31 ± 7.21 mg/dL), and low-density lipoprotein cholesterol (133.6 ± 53 vs 106.7 ± 39.2 mg/dL; difference, 15.87 ± 9.61 mg/dL) levels. The A allele at rs324420 in the FAAH gene was associated with larger improvements in glucose, total cholesterol, low-density lipoprotein cholesterol, body mass, and waist circumference after a dietary intervention.
Collapse
Affiliation(s)
- Daniel Antonio de Luis
- Center of Investigation in Endocrinology and Clinical Nutrition, Medicine School and Unit of Investigation, Hospital Rio Hortega, University of Valladolid, Valladolid Spain.
| | | | | | | | | |
Collapse
|
90
|
Valenzuela CA, Castillo VA, Aguirre CA, Ronco AM, Llanos MN. The CB₁ receptor antagonist SR141716A reverses adult male mice overweight and metabolic alterations induced by early stress. Obesity (Silver Spring) 2011; 19:29-35. [PMID: 20559305 DOI: 10.1038/oby.2010.131] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
Perinatal stress may cause metabolic and hormonal disruptions during adulthood. The aim of this study was to evaluate the effects of early postnatal nociceptive stimulation (NS) on body weight and other metabolic parameters during adulthood and to determine whether CB₁ endocannabinoid receptors (CB₁Rs) may be involved in these effects. Male mice were subjected to NS during lactation with a daily subcutaneous injection of saline solution. Subsequently, both control and NS-mice were treated from day 40 to 130, with an oral dose (1 µg/g body weight) of SR141716A, a specific CB₁R antagonist/inverse agonist. Mice body weight and food intake was periodically evaluated. Adult animals were then killed to evaluate epididymal fat pads and metabolic parameters. NS did not influence food intake in adult animals, but caused significant increases in body weight, epididymal fat pads, and circulating levels of leptin, corticosterone, and triglycerides (TGs). Chronic treatment with SR141716A normalized these parameters, with the exception of corticosterone levels. This treatment also reduced plasma levels of glucose, insulin, and total cholesterol in both adult control and NS-mice. In addition, fatty acid (FA) amide hydrolase (FAAH) activity (the enzyme able to hydrolyze endocannabinoids) from liver and epididymal fat of adult NS-mice was decreased by 40-50% in comparison to activities found in same tissues of control mice. Results suggest that overactive liver and epididymal fat CB₁R due to early NS may be involved in late metabolic alterations, which are sensitive to chronic treatment with SR141716A.
Collapse
Affiliation(s)
- Carina A Valenzuela
- Laboratorio de Nutrición y Regulación Metabólica, Instituto de Nutrición y Tecnología de los Alimentos (INTA), Universidad de Chile, Santiago, Chile
| | | | | | | | | |
Collapse
|
91
|
|
92
|
Population sequencing of two endocannabinoid metabolic genes identifies rare and common regulatory variants associated with extreme obesity and metabolite level. Genome Biol 2010; 11:R118. [PMID: 21118518 PMCID: PMC3156957 DOI: 10.1186/gb-2010-11-11-r118] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2010] [Revised: 08/28/2010] [Accepted: 11/30/2010] [Indexed: 01/15/2023] Open
Abstract
BACKGROUND Targeted re-sequencing of candidate genes in individuals at the extremes of a quantitative phenotype distribution is a method of choice to gain information on the contribution of rare variants to disease susceptibility. The endocannabinoid system mediates signaling in the brain and peripheral tissues involved in the regulation of energy balance, is highly active in obese patients, and represents a strong candidate pathway to examine for genetic association with body mass index (BMI). RESULTS We sequenced two intervals (covering 188 kb) encoding the endocannabinoid metabolic enzymes fatty-acid amide hydrolase (FAAH) and monoglyceride lipase (MGLL) in 147 normal controls and 142 extremely obese cases. After applying quality filters, we called 1,393 high quality single nucleotide variants, 55% of which are rare, and 143 indels. Using single marker tests and collapsed marker tests, we identified four intervals associated with BMI: the FAAH promoter, the MGLL promoter, MGLL intron 2, and MGLL intron 3. Two of these intervals are composed of rare variants and the majority of the associated variants are located in promoter sequences or in predicted transcriptional enhancers, suggesting a regulatory role. The set of rare variants in the FAAH promoter associated with BMI is also associated with increased level of FAAH substrate anandamide, further implicating a functional role in obesity. CONCLUSIONS Our study, which is one of the first reports of a sequence-based association study using next-generation sequencing of candidate genes, provides insights into study design and analysis approaches and demonstrates the importance of examining regulatory elements rather than exclusively focusing on exon sequences.
Collapse
|
93
|
Bhatia G, Bansal V, Harismendy O, Schork NJ, Topol EJ, Frazer K, Bafna V. A covering method for detecting genetic associations between rare variants and common phenotypes. PLoS Comput Biol 2010; 6:e1000954. [PMID: 20976246 PMCID: PMC2954823 DOI: 10.1371/journal.pcbi.1000954] [Citation(s) in RCA: 72] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2010] [Accepted: 09/08/2010] [Indexed: 11/19/2022] Open
Abstract
Genome wide association (GWA) studies, which test for association between common genetic markers and a disease phenotype, have shown varying degrees of success. While many factors could potentially confound GWA studies, we focus on the possibility that multiple, rare variants (RVs) may act in concert to influence disease etiology. Here, we describe an algorithm for RV analysis, RareCover. The algorithm combines a disparate collection of RVs with low effect and modest penetrance. Further, it does not require the rare variants be adjacent in location. Extensive simulations over a range of assumed penetrance and population attributable risk (PAR) values illustrate the power of our approach over other published methods, including the collapsing and weighted-collapsing strategies. To showcase the method, we apply RareCover to re-sequencing data from a cohort of 289 individuals at the extremes of Body Mass Index distribution (NCT00263042). Individual samples were re-sequenced at two genes, FAAH and MGLL, known to be involved in endocannabinoid metabolism (187Kbp for 148 obese and 150 controls). The RareCover analysis identifies exactly one significantly associated region in each gene, each about 5 Kbp in the upstream regulatory regions. The data suggests that the RVs help disrupt the expression of the two genes, leading to lowered metabolism of the corresponding cannabinoids. Overall, our results point to the power of including RVs in measuring genetic associations. We focus on the problem of detecting multiple rare variants (RVs) that act together to influence disease phenotypes. In considering this problem, we argue that the detection of causal rare variants must necessarily be different from typical single-marker analysis used for common variants and propose a novel algorithm, RareCover, to accomplish this analysis. RareCover combines a disparate collection of RVs, each with very low effect and modest penetrance. Extensive simulations over a range of values for penetrance and population attributable risk (PAR) illustrate the power of our approach over other published methods, including the collapsing and weighted-sum strategies. To showcase the method, we applied RareCover to data from 289 individuals at the extremes of Body Mass Index distribution (NCT00263042), sequenced around the FAAH and MGLL genes. RareCover analysis identified exactly one significantly associated region in each gene, each about 5Kbp in the upstream regulatory regions. The data suggests that the RVs help disrupt the expression of the two genes leading to lowered metabolism of the corresponding endocannabinoids previously linked with obesity. Overall, our results point to the power of including RVs in measuring genetic associations, and suggest that whole genome, DNA sequencing-based association studies investigating RV effects are feasible.
Collapse
Affiliation(s)
- Gaurav Bhatia
- Department of Computer Science and Engineering, University of California San Diego, La Jolla, California, USA.
| | | | | | | | | | | | | |
Collapse
|
94
|
Karvela A, Rojas-Gil AP, Samkinidou E, Papadaki H, Pappa A, Georgiou G, Spiliotis BE. Endocannabinoid (EC) receptor, CB1, and EC enzymes' expression in primary adipocyte cultures of lean and obese pre-pubertal children in relation to adiponectin and insulin. J Pediatr Endocrinol Metab 2010; 23:1011-24. [PMID: 21158212 DOI: 10.1515/jpem.2010.162] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
AIM The over-expression of CB1 in adult obesity is associated with insulin resistance (IR),but it is not elucidated in childhood obesity. We studied CB1 and endocannabinoid enzymes (EE), Adiponectin (Ad), and Insulin (SI) in lean and obese pre-pubertal (PP) children. METHODS CB1 mRNA and protein (Pr) expression were studied by RT-PCR, western immunoblotting and immunohistochemistry in primary cultures of adipose tissue. The EE(NAPE-PLD, DAGL-alpha, FAAH, MAGL) expression was assessed by Real-Time PCR. Ad and SI were measured by ELISA and IR by HOMA-IR index. RESULTS In the older obese vs older lean children: (1) CB1 Pr was decreased, (2) FAAHmRNA and DAGL-alpha mRNA were increased. Ad was decreased and SI and HOMA-IR increased in the older PP children. CONCLUSIONS Increased CB1 and decreased adiponectin in older lean PP children may facilitate fat deposition and "physiologic" IR necessary for the increased body growth of puberty. The reduced expression of CB1 in the older obese may be an attempt to reduce lipogenesis to avoid greater insulin resistance.
Collapse
Affiliation(s)
- Alexia Karvela
- Research Laboratory of the Division of Pediatric Endocrinology and Diabetes, Department of Pediatrics, University of Patras School of Medicine, Patras, Greece
| | | | | | | | | | | | | |
Collapse
|
95
|
Deluis DA, Sagrado MG, Aller R, Izaola O, Conde R. Effects of C358A missense polymorphism of the degrading enzyme fatty acid amide hydrolase on weight loss, adipocytokines, and insulin resistance after 2 hypocaloric diets. Metabolism 2010; 59:1387-92. [PMID: 20102775 DOI: 10.1016/j.metabol.2009.12.029] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/16/2009] [Revised: 12/23/2009] [Accepted: 12/29/2009] [Indexed: 11/25/2022]
Abstract
It has been demonstrated that the polymorphism 385 C/A of fatty acid amide hydrolase was associated with obesity. We decided to investigate the role of a polymorphism (cDNA 385 C->A) on insulin resistance and weight loss secondary to a low-fat vs a low-carbohydrate diet. A population of 248 patients with obesity was analyzed. Basal measurements were performed, and values were compared to those at the end of a 3-month period in which subjects received either diet I (low fat) or diet II (low carbohydrate). One hundred seventy-eight patients (71.8%) had the genotype C358C (wild-type group), and 70 (28.2%) patients had the genotype C358A (62 patients, 25%) or A358A (8 patients, 3.2%) (mutant-type group). With diet I, body mass index, weight, fat mass, waist circumference, and systolic blood pressures decreased in the wild-type and mutant-type groups. With diet II, body mass index, weight, fat mass, waist circumference, and systolic blood pressures decreased in both genotypes. With diet I, leptin, glucose, total cholesterol, triglyceride, insulin, and homeostasis model assessment for insulin sensitivity (HOMA) decreased in the wild-type group. In the mutant-type group, only cholesterol decreased in a significant way. With diet II, leptin, interleukin-6, glucose, total cholesterol, low-density lipoprotein cholesterol, insulin, HOMA, and C-reactive protein decreased in the wild-type genotype. The allele A358 of fatty acid amide hydrolase was associated with a lack of improvement on glucose insulin, HOMA, and leptin levels in both diets after weight loss.
Collapse
Affiliation(s)
- Daniel Antonio Deluis
- Institute of Endocrinology and Nutrition, Medicine School and Unit of Investigation, Hospital Rio Hortega, University of Valladolid, Valladolid, Spain
| | | | | | | | | |
Collapse
|
96
|
de Luis D, Sagrado MG, Pacheco D, Terroba M, Martin T, Cuellar L, Ventosa M. Effects of C358A missense polymorphism of the endocannabinoid degrading enzyme fatty acid amide hydrolase on weight loss and cardiovascular risk factors 1 year after biliopancreatic diversion surgery. Surg Obes Relat Dis 2010; 6:516-20. [DOI: 10.1016/j.soard.2010.01.005] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2009] [Revised: 01/25/2010] [Accepted: 01/27/2010] [Indexed: 10/19/2022]
|
97
|
Endocannabinoid Pro129Thr FAAH functional polymorphism but not 1359G/A CNR1 polymorphism is associated with antipsychotic-induced weight gain. J Clin Psychopharmacol 2010; 30:441-5. [PMID: 20631561 DOI: 10.1097/jcp.0b013e3181e742c5] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
Several candidate genes have been associated with antipsychotic-induced body weight (BW) gain. Because the endocannabinoid system is deeply involved in BW regulation, endocannabinoid genes may have a role in the antipsychotic-induced weight gain. Therefore, we investigated the 1359 G/A (rs1049353) single nucleotide polymorphisms (SNP) of the cannabinoid receptor 1 (CNR1) gene, which codes the endocannabinoid CB1 receptor, and the complementary DNA (cDNA) 385C/A (rs324420) SNP of the FAAH gene, which codes the endocannabinoid degrading enzyme, for their role in BW changes induced by antipsychotic drugs. Eighty-three white psychotic patients who underwent a naturalistic treatment with different antipsychotics (clozapine, olanzapine, risperidone, quetiapine, and haloperidol) and completed a 24-week treatment period were included into the study together with 80 age- and sex-matched white healthy controls. At the 24th week of treatment, 41 patients gained more than 7% of their baseline BW. No significant differences between patients and controls emerged in genotype and allele frequencies of both SNPs. Genotype and allele frequencies of the FAAH cDNA 385C/A SNP but not of the CNR1 1359 G/A SNP significantly differed between subjects who gained more than 7% of BW and those who did not, with both AC and AA genotypes and the A allele being significantly more frequent in patients who gained more than 7% of their baseline BW. Present findings, although obtained in a small population and in a naturalistic setting, suggest that the cDNA 385C/A SNP of the FAAH gene may predispose subjects to get a clinically meaningful weight gain after antipsychotic exposure.
Collapse
|
98
|
Schleinitz D, Carmienke S, Böttcher Y, Tönjes A, Berndt J, Klöting N, Enigk B, Müller I, Dietrich K, Breitfeld J, Scholz GH, Engeli S, Stumvoll M, Blüher M, Kovacs P. Role of genetic variation in the cannabinoid type 1 receptor gene (CNR1) in the pathophysiology of human obesity. Pharmacogenomics 2010; 11:693-702. [PMID: 20415562 DOI: 10.2217/pgs.10.42] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
AIMS The endocannabinoid system may contribute to the association of visceral fat accumulation with metabolic diseases. Here we investigated the effects of genetic variation in the cannabinoid type 1 receptor gene (CNR1) on its mRNA expression in adipose tissue from visceral and subcutaneous depots and on the development of obesity. MATERIALS & METHODS CNR1 was sequenced in 48 nonrelated German Caucasians to detect genetic variation. Five representative variants including HapMap tagging SNPs (rs12720071, rs806368, rs806370, rs1049353 and rs806369) were genotyped for subsequent association studies in two independent cohorts (total n = 2774) with detailed metabolic testing: subjects from the Leipzig Study (n = 1857) and a self-contained population of Sorbs from Germany (n = 917). RESULTS In a case-control study of lean (BMI <25 kg/m(2)) versus obese (BMI >30 kg/m(2)) subjects, rs806368 was found to be nominally associated with obesity in the Sorbian cohort (adjusted p < 0.05), but not in the Leipzig cohort. Also, several SNPs (rs806368, rs806370 and rs12720071) were nominally associated with serum leptin levels (p < 0.05 after adjusting for age, sex and BMI). However, none of these associations remained significant after accounting for multiple testing. Furthermore, none of the SNPs were related to CNR1 mRNA expression in visceral and subcutaneous fat. CONCLUSION The data suggest that common genetic variation in the CNR1 gene does not influence mRNA expression in adipose tissue nor does it play a significant role in the pathophysiology of obesity in German and Sorbian populations.
Collapse
Affiliation(s)
- Dorit Schleinitz
- Interdisciplinary Centre for Clinical Research, Medical Faculty, University of Leipzig, Leipzig, Germany
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
99
|
Maccarrone M, Gasperi V, Catani MV, Diep TA, Dainese E, Hansen HS, Avigliano L. The Endocannabinoid System and Its Relevance for Nutrition. Annu Rev Nutr 2010; 30:423-40. [DOI: 10.1146/annurev.nutr.012809.104701] [Citation(s) in RCA: 96] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Mauro Maccarrone
- Department of Biomedical Sciences, University of Teramo, Teramo, Italy; ,
- European Center for Brain Research (CERC)/Santa Lucia Foundation, Rome, Italy
| | - Valeria Gasperi
- Department of Experimental Medicine and Biochemical Sciences, University of Rome, Tor Vergata, Rome, Italy; , ,
| | - Maria Valeria Catani
- Department of Experimental Medicine and Biochemical Sciences, University of Rome, Tor Vergata, Rome, Italy; , ,
| | - Thi Ai Diep
- Department of Pharmacology and Pharmacotherapy, Faculty of Pharmaceutical Sciences, University of Copenhagen, Copenhagen, Denmark; ,
| | - Enrico Dainese
- Department of Biomedical Sciences, University of Teramo, Teramo, Italy; ,
| | - Harald S. Hansen
- Department of Pharmacology and Pharmacotherapy, Faculty of Pharmaceutical Sciences, University of Copenhagen, Copenhagen, Denmark; ,
| | - Luciana Avigliano
- Department of Experimental Medicine and Biochemical Sciences, University of Rome, Tor Vergata, Rome, Italy; , ,
| |
Collapse
|
100
|
André A, Gonthier MP. The endocannabinoid system: its roles in energy balance and potential as a target for obesity treatment. Int J Biochem Cell Biol 2010; 42:1788-801. [PMID: 20541029 DOI: 10.1016/j.biocel.2010.06.002] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2010] [Revised: 05/28/2010] [Accepted: 06/02/2010] [Indexed: 01/28/2023]
Abstract
Obesity and cardiometabolic risk continue to be major public health concerns. A better understanding of the physiopathological mechanisms leading to obesity may help to identify novel therapeutic targets. The endocannabinoid system discovered in the early 1990s is believed to influence body weight regulation and cardiometabolic risk factors. This article aims to review the literature on the endocannabinoid system including the biological roles of its major components, namely, the cannabinoid receptors, their endogenous ligands the endocannabinoids and the ligand-metabolising enzymes. The review also discusses evidence that the endocannabinoid system constitutes a new physiological pathway occurring in the central nervous system and peripheral tissues that has a key role in the control of food intake and energy expenditure, insulin sensitivity, as well as glucose and lipid metabolism. Based on the important finding that there is a close association between obesity and the hyperactivity of the endocannabinoid system, interest in blocking stimulation of this pathway to aid weight loss and reduce cardiometabolic risk factor development has become an important area of research. Among the pharmacological strategies proposed, the antagonism of the cannabinoid receptors has been particularly investigated and several clinical trials have been conducted. One challenging pharmacological task will be to target the endocannabinoid system in a more selective, and hence, safe way. As the management of obesity also requires lifestyle modifications in terms of healthy eating and physical activity, the targeting of the endocannabinoid system may represent a novel approach for a multifactorial therapeutic strategy.
Collapse
Affiliation(s)
- Aurore André
- Groupe d'Etude sur l'Inflammation Chronique et l'Obésité, Laboratoire de Biochimie et Génétique Moléculaire, Université de La Réunion, La Réunion, France
| | | |
Collapse
|