51
|
Yang L, Jiang Y, Wu SF, Zhou MY, Wu YL, Chen GQ. CCAAT/enhancer-binding protein alpha antagonizes transcriptional activity of hypoxia-inducible factor 1 alpha with direct protein-protein interaction. Carcinogenesis 2007; 29:291-8. [PMID: 18024476 DOI: 10.1093/carcin/bgm262] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Hypoxia-inducible factor 1 (HIF-1), a master heterodimeric transcriptional regulator consisting of HIF-1alpha and HIF-1beta subunits for cellular response to hypoxia, plays an important role in carcinogenesis, while CCAAT/enhancer-binding protein alpha (C/EBPalpha) is proposed to act as a tumor suppressor in C/EBPalpha-expressing tissues. Previously, we reported that ectopically expressed HIF-1alpha protein interacts with and enhances transcriptional activity of C/EBPalpha, which favors leukemic cell differentiation. Here we further showed that such an interaction also occurred in their endogenously expressing state of leukemic U937 cells. Glutathione S-transferase pull-down assay proposed that the protein-protein interaction was direct, and transactivation domains of C/EBPalpha and the basic helix-loop-helix domain of HIF-1alpha were essential for such an interaction. More intriguingly, we provided the first demonstration that C/EBPalpha competed with HIF-1beta for direct binding to HIF-1alpha protein. Correspondingly, C/EBPalpha overexpression significantly inhibited the DNA-binding ability of HIF-1 and expressions of hypoxia-responsive element-driven luciferase and HIF-1-targeted genes vascular endothelial growth factor, glucose transporter-1 and phosphoglycerate kinase 1. In parallel, suppression of C/EBPalpha expression by specific small hairpin RNA increased DNA-binding ability of HIF-1 and expression of these HIF-1-targeted genes in leukemic U937 cells. These results would provide new insights for antitumor potential of C/EBPalpha protein.
Collapse
Affiliation(s)
- L Yang
- Institute of Health Science, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences-Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | | | | | | | | | | |
Collapse
|
52
|
Abstract
The rapid rise of chemical biology aimed at studying signaling networks for basic cellular activities using specific, active small molecules as probes has greatly accelerated research on pathological mechanisms and target therapy of diseases. This research is especially important for malignant tumors such as leukemia, a heterogeneous group of hematopoietic malignancies that occurs worldwide. With the use of a chemical approach combined with genetic manipulation, great progress has been achieved over the past few decades on the biological, molecular and cytogenetic aspects of leukemia, and in its diagnosis and therapy. In particular, discoveries of the clinical effectiveness of all-trans retinoic acid and arsenic trioxide in the treatment of acute promyelocytic leukemia and the kinase inhibitors Imatinib and Dasatinib in the treatment of chronic myelogenous leukemia not only make target therapy of leukemia a reality, but also push mechanisms of leukemogenesis and leukemic cell activities forward. This review will outline advances in chemical biology that help our understanding of the molecular mechanisms of cell differentiation and apoptosis induction and target therapy of leukemia.
Collapse
Affiliation(s)
- Guo-qiang Chen
- Department of Pathophysiology, Key Laboratory of Cell Differentiation and Apoptosis of Chinese Ministry of Education, Shanghai Jiao Tong University School of Medicine (formerly Shanghai Second Medical University), Shanghai, China.
| | | | | | | |
Collapse
|
53
|
Peng ZG, Zhou MY, Huang Y, Qiu JH, Wang LS, Liao SH, Dong S, Chen GQ. Physical and functional interaction of Runt-related protein 1 with hypoxia-inducible factor-1alpha. Oncogene 2007; 27:839-47. [PMID: 17684492 DOI: 10.1038/sj.onc.1210676] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Angiogenesis and hematopoiesis are closely linked and interactive with each other, but few studies were given to identify possible links between angiogenesis-promoting proteins and hematopoiesis-related transcription factors. Here we investigated the potential relationship of oxygen-sensitive alpha-subunit of angiogenesis-related hypoxia-inducible factor-1alpha (HIF-1alpha) with Runt-related protein 1 (Runx1, also known as acute myeloid leukemia-1, AML-1), an important hematopoietic transcription factor. The results demonstrated that Runx1 and HIF-1alpha proteins directly interacted with each other to a degree, in which Runt homology domain of Runx1 was mainly involved. Leukemia-related abnormal Runx1 fusion protein AML1-ETO, which fuses the N-terminal 177 amino acid residues of the Runx1 protein in frame to ETO (eight-twenty-one) protein, also interacted with HIF-1alpha protein with greater ability than Runx1 itself. More intriguingly, Runx1 overexpression inhibited DNA-binding and transcriptional activity of HIF-1 protein with reduced expression of HIF-1-targeted genes such as vascular endothelial growth factor, while silence of Runx1 expression by specific small interfering RNA significantly increased transcriptional activity of HIF-1 protein, suggesting that Runx1 inhibited transcription-dependent function of HIF-1. Vice versa, HIF-1alpha increased DNA-binding ability and transcriptional activity of Runx1 protein. All these data would shed new insight to understanding Runx1 and HIF-1alpha-related hematopoietic cell differentiation and angiogenesis.
Collapse
Affiliation(s)
- Z G Peng
- Institute of Health Science, Shanghai Institutes for Biological Sciences of Chinese Academy of Sciences-Shanghai Jiao-Tong University School of Medicine (SJTU-SM, formerly Shanghai Second Medical University), Shanghai, China
| | | | | | | | | | | | | | | |
Collapse
|
54
|
Song LP, Zhang J, Wu SF, Huang Y, Zhao Q, Cao JP, Wu YL, Wang LS, Chen GQ. Hypoxia-inducible factor-1α-induced differentiation of myeloid leukemic cells is its transcriptional activity independent. Oncogene 2007; 27:519-27. [PMID: 17637739 DOI: 10.1038/sj.onc.1210670] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Hypoxia or hypoxia mimetic has been shown to induce differentiation together with the accumulation of hypoxia-inducible factor-1alpha (HIF-1alpha) protein of myeloid leukemic cells and normal hematopoietic progenitors. To provide direct evidence for the role of HIF-1alpha in acute myeloid leukemia (AML) cell differentiation and its mechanisms, we generated myeloid leukemic U937T transformants, in which HIF-1alpha was tightly induced by tetracycline withdrawal. The results showed that the conditional HIF-1alpha induction triggered granulocytic differentiation of these transformants, while the suppression of HIF-1alpha expression by specific short hairpin RNAs (shRNAs) effectively inhibited hypoxia-induced differentiation of U937 cells, as evidenced by morphology, maturation-related antigens as well as expressions of myeloid differentiation signatures and hematopoietic cells-specific cytokine receptors. The specific shRNAs-inhibited expression of HIF-1beta, an essential partner for transcription activity of HIF-1, failed, while the inhibition of hematopoietic differentiation-critical CCAAT/enhancer-binding protein-alpha (C/EBPalpha) significantly eliminated HIF-1alpha-mediated myeloid leukemic cell differentiation. Collectively, this work provided several lines of direct evidence for the role of HIF-1alpha protein through its nontranscriptional activity in myeloid cell differentiation, in which C/EBPalpha elicits a role as an effector downstream to HIF-1alpha. These discoveries would shed new insights for understanding mechanisms underlying leukemogenesis and designing the new therapeutic strategy for differentiation induction of AML.
Collapse
Affiliation(s)
- L-P Song
- Institute of Health Science, Shanghai Institutes for Biological Sciences and Graduate School of Chinese Academy of Sciences-Shanghai Jiao-Tong University School of Medicine, Shanghai, China
| | | | | | | | | | | | | | | | | |
Collapse
|
55
|
Abstract
Iron overload is characterised by excessive iron deposition and consequent injury and dysfunction of target organs, especially the heart, liver, anterior pituitary, pancreas and joints. Iron overload disorders are common worldwide and occur in most major race/ethnicity groups. Physiological mechanisms to excrete iron are very limited. Thus, all patients with iron overload need safe and effective treatment that is compatible with their co-existing medical conditions. Treatments for iron overload include phlebotomy and erythrocytapheresis that remove iron predominantly as haemoglobin, and chelation therapy with drugs that bind excess iron selectively and increase its excretion. The most important potential benefits of therapy are preventing deaths due to cardiac siderosis and hepatic cirrhosis. Preventing iron-related injury to endocrine organs is critical in children. Successful treatment or prevention of iron overload increases quality of life and survival in many patients. This article characterises the major categories of iron overload disorders, tabulates methods to evaluate and treat iron overload, and describes treatment options for iron overload disorders. Research needed to advance knowledge about treatment of iron overload is proposed.
Collapse
Affiliation(s)
- James C Barton
- Southern Iron Disorders Center, Birmingham, Alabama 35209, USA.
| |
Collapse
|
56
|
Xu M, Li D, Lu Y, Chen GQ. Leukemogenic AML1-ETO fusion protein increases carcinogen-DNA adduct formation with upregulated expression of cytochrome P450-1A1 gene. Exp Hematol 2007; 35:1249-55. [PMID: 17560011 DOI: 10.1016/j.exphem.2007.04.018] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2007] [Revised: 03/26/2007] [Accepted: 04/20/2007] [Indexed: 11/28/2022]
Abstract
OBJECTIVE AML1-ETO fusion protein is a product of chromosome translocation t(8;21) frequently occurred in acute myeloid leukemia (AML), but its sole expression appears to fail to cause overt leukemia in vivo. In this study, we investigated whether AML1-ETO expression impinged on action of chemical carcinogens-DNA adduct formation. MATERIALS AND METHODS AML1-ETO fusion protein was conditionally induced in engineered U937-A/E 9/14/18 cells. The formation of polycyclic aromatic hydrocarbon (PAH)-DNA adducts and the expression of PAH-metabolizing enzymes cytochrome P450 (CYP) 1A1 and arylhydrocarbon receptor (AhR) were detected by Western blot and/or quantitative RT-PCR. Luciferase reporter system was used to detect the regulation of AML1-ETO on CYP1A1 transcription. RESULTS Our results showed that AML1-ETO induction significantly increased the formation of carcinogen benzopyrene-DNA adducts in leukemic cells. In line with the effect, we also found that AML1-ETO induction upregulated CYP1A1 expression, which was dependent on AML1-binding motif in the promotor of CYP1A1 gene. Additionally, AML1-ETO protein also increased AhR expression, a ligand-activated transcription factor that mediates PAHs-induced CYP1A1 gene expression. CONCLUSION These data, combined with its inhibitory effect on DNA repair as reported previously, propose that the presence of AML1-ETO increases the susceptibility of cells to chemical carcinogens, which favors the development of additional genetic alterations.
Collapse
Affiliation(s)
- Min Xu
- Institute of Health Science, Shanghai Jiao-Tong University School of Medicine/Shanghai Institutes of Biological Sciences and School of Graduate, Chinese Academy of Sciences, Shanghai, China
| | | | | | | |
Collapse
|
57
|
Guo M, Song LP, Jiang Y, Liu W, Yu Y, Chen GQ. Hypoxia-mimetic agents desferrioxamine and cobalt chloride induce leukemic cell apoptosis through different hypoxia-inducible factor-1alpha independent mechanisms. Apoptosis 2007; 11:67-77. [PMID: 16374551 DOI: 10.1007/s10495-005-3085-3] [Citation(s) in RCA: 79] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
Hypoxia presents pro-apoptotic and anti-apoptotic biphasic effects that appear to be dependent upon cell types and conditions around cells. The substantial reports demonstrated that commonly used hypoxia-mimetic agents cobalt chloride (CoCl(2)) and desferrioxamine (DFO) could also induce apoptosis in many different kinds of cells, but the mechanism was poorly understood. In this work, we compare the apoptosis-inducing effects of these two hypoxia-mimetic agents with acute myeloid leukemic cell lines NB4 and U937 as in vitro models. The results show that both of them induce these leukemic cells to undergo apoptosis with a loss of mitochondrial transmembrane potentials (DeltaPsi m), the activation of caspase-3/8 and the cleavage of anti-apoptotic protein Mcl-1, together with the accumulation of hypoxia-inducible factor-1 alpha (HIF-1alpha) protein, a critical regulator for the cellular response to hypoxia. Metavanadate and sodium nitroprusside significantly abrogate DFO rather than CoCl(2)-induced mitochondrial Delta Psi m collapse, caspase-3/8 activation, Mcl-1 cleavage and apoptosis, but they fail to influence DFO and CoCl(2)-induced HIF-1alpha protein accumulation. Moreover, inducible expression of HIF-1alpha gene dose not alter DFO and CoCl(2)-induced apoptosis in U937 cells. In conclusion, these results propose that although both DFO and CoCl(2)-induced leukemic cell apoptosis by mitochondrial pathway-dependent and HIF-1alpha-independent mechanisms, DFO and CoCl(2)-induced apoptosis involves different initiating signal pathways that remain to be investigated.
Collapse
Affiliation(s)
- M Guo
- Health Science Center, Shanghai Institutes for Biological Sciences and Graduate School of Chinese Academy of Sciences, Shanghai Jiaotong University School of Medicine, Shanghai, 200025, China
| | | | | | | | | | | |
Collapse
|
58
|
Choi EY, Park ZY, Choi EJ, Oh HM, Lee S, Choi SC, Lee KM, Im SH, Chun JS, Jun CD. Transcriptional regulation of IL-8 by iron chelator in human epithelial cells is independent from NF-κB but involves ERK1/2- and p38 kinase-dependent activation of AP-1. J Cell Biochem 2007; 102:1442-57. [PMID: 17471497 DOI: 10.1002/jcb.21367] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
We have shown that the bacterial iron chelator, deferoxamine (DFO), triggers inflammatory signals including the production of CXC chemokine IL-8, in human intestinal epithelial cells (IECs) by activating the ERK1/2 and p38 kinase pathways. In this study we investigated the mechanisms involved in IL-8 generation by DFO, focusing on the transcription factors involved and the roles of both mitogen-activated protein kinases (MAPKs) in the transcription factor activation. Treatment of human epithelial HT-29 cells with DFO markedly up-regulated the expression of the essential components of the transcription factor AP-1 at a transcriptional level, while it minimally affected the expression of the NF-kappaB subunits. DFO also induced AP-1-dependent transcriptional activity in HT-29 cells, and this activity was further augmented by the wild-type c-Jun transfection. In contrast, the AP-1 activity by DFO was markedly decreased by the dominant-negative c-Jun transfection. Electrophoretic mobility shift assays revealed that DFO increases the specific binding of AP-1 but not of NF-kappaB. Such AP-1 binding and transcriptional activities were blocked by the inhibitors of the ERK1/2 and p38 kinase pathways, suggesting that both mitogen-activated protein kinases (MAPKs) lie upstream of AP-1. Besides its action on AP-1, DFO also induced the specific binding of other transcription factors such as CREB and Egr-1. In summary, our results indicate that iron chelator-induced IL-8 generation in IECs involves activation of ERK1/2 and p38 kinase and downstream activation of AP-1. A possible link between iron status and two additional transcription factors, that is, CREB and Egr-1, rather than NF-kappaB, was also suggested.
Collapse
Affiliation(s)
- Eun-Young Choi
- Department of Life Science, Gwangju Institute of Science and Technology (GIST), Gwangju, Korea
| | | | | | | | | | | | | | | | | | | |
Collapse
|
59
|
Kim BM, Choi JY, Kim YJ, Woo HD, Chung HW. Desferrioxamine (DFX) has genotoxic effects on cultured human lymphocytes and induces the p53-mediated damage response. Toxicology 2007; 229:226-35. [PMID: 17147976 DOI: 10.1016/j.tox.2006.10.022] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2006] [Revised: 10/18/2006] [Accepted: 10/25/2006] [Indexed: 11/20/2022]
Abstract
Desferrioxamine (DFX), which is an iron chelator, mimics hypoxia by enhancing HIF1-alpha accumulation and upregulating inflammatory mediators. DFX is usually beneficial, with preventive effects related primarily to its ability to scavenge reactive oxygen species. However, toxic effects on skeletal and ocular organs have been reported. The cytokinesis block micronucleus test and alkaline single-cell gel (Comet) assay were used to evaluate the genotoxic effects of DFX on human blood lymphocytes. Cultured human lymphocytes treated with 130microM DFX for various periods of time showed significant differences in the incidence of micronucleated binucleate cells, as well as in the length and moment of the comet tail. Western blot analysis using antibodies to proteins involved in the p53-mediated response to DNA damage revealed that p53 was accumulated and DNA damage checkpoint kinases were activated in lymphocytes treated with DFX. On the other hand, the p53 downstream target proteins p21 and bax were not affected, which indicates that DFX does not promote the transactivational activity of p53. Apoptosis assays demonstrated DFX-induced apoptosis of lymphocytes via the caspase cascade. The observed increase in the sub-G1 fraction and enhanced caspase-3 activity indicate that DFX can promote apoptosis in human lymphocytes, and these results were confirmed by protein immunoblot analysis. As apoptotic cell death is preceded by the collapse of the mitochondrial membrane potential, we also measured the mitochondrial membrane potential (Deltapsi(m)) using DiOC6, which is a fluorescent membrane potential probe. The fluorescence intensity of DiOC6 in lymphocytes was significantly reduced in a time-dependent manner after DFX treatment. Taken together, these results indicate that DFX activates p53-mediated checkpoint signals and induces apoptosis via mitochondrial damage in human peripheral blood lymphocytes.
Collapse
Affiliation(s)
- Byeong Mo Kim
- School of Public Health and Institute of Health and Environment, Seoul National University, Seoul 110-460, South Korea
| | | | | | | | | |
Collapse
|
60
|
Avramovich-Tirosh Y, Amit T, Bar-Am O, Zheng H, Fridkin M, Youdim MBH. Therapeutic targets and potential of the novel brain- permeable multifunctional iron chelator?monoamine oxidase inhibitor drug, M-30, for the treatment of Alzheimer's disease. J Neurochem 2007; 100:490-502. [PMID: 17144902 DOI: 10.1111/j.1471-4159.2006.04258.x] [Citation(s) in RCA: 107] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Novel therapeutic approaches for the treatment of neurodegenerative disorders comprise drug candidates designed specifically to act on multiple CNS targets. We have synthesized a multifunctional non-toxic, brain permeable iron chelator drug, M-30, possessing propargyl monoamine oxidase (MAO) inhibitory neuroprotective and iron-chelating moieties, from our prototype iron chelator VK-28. In the present study M-30 was shown to possess a wide range of pharmacological activities, including pro-survival neurorescue effects, induction of neuronal differentiation and regulation of amyloid precursor protein (APP) and beta-amyloid (Abeta) levels. M-30 was found to decrease apoptosis of SH-SY5Y neuroblastoma cells in a neurorescue, serum deprivation model, via reduction of the pro-apoptotic proteins Bad and Bax, and inhibition of the apoptosis-associated phosphorylated H2A.X protein (Ser 139) and caspase 3 activation. In addition, M-30 induced the outgrowth of neurites, triggered cell cycle arrest in G(0)/G(1) phase and enhanced the expression of growth associated protein-43. Furthermore, M-30 markedly reduced the levels of cellular APP and beta-C-terminal fragment (beta-CTF) and the levels of the amyloidogenic Abeta peptide in the medium of SH-SY5Y cells and Chinese hamster ovary cells stably transfected with the APP 'Swedish' mutation. Levels of the non-amyloidogenic soluble APPalpha and alpha-CTF in the medium and cell lysate respectively were coordinately increased. These properties, together with its brain selective MAO inhibitory and propargylamine- dependent neuroprotective effects, suggest that M-30 might serve as an ideal drug for neurodegenerative disorders, such as Parkinson's and Alzheimer's diseases, in which oxidative stress and iron dysregulation have been implicated.
Collapse
Affiliation(s)
- Yael Avramovich-Tirosh
- Eve Topf Centers of Excellence, Technion-Rappaport Family Faculty of Medicine and Department of Pharmacology, Haifa, Israel
| | | | | | | | | | | |
Collapse
|
61
|
Lu Y, Xu YB, Yuan TT, Song MG, Lübbert M, Fliegauf M, Chen GQ. Inducible expression of AML1-ETO fusion protein endows leukemic cells with susceptibility to extrinsic and intrinsic apoptosis. Leukemia 2006; 20:987-93. [PMID: 16598301 DOI: 10.1038/sj.leu.2404218] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
AML1-ETO, a leukemia-associated fusion protein generated by the frequently occurred chromosome translocation t(8;21) in acute myeloid leukemia, was shown to exert dichotomous functions in leukemic cells, that is, growth arrest versus differentiation block. By the analysis of oligonucleotide microarray, AML1-ETO was shown to modulate the expressions of an impressive array of pro- and anti-apoptotic genes. Here, we investigate potential effects of the ecdysone inducible AML1-ETO expression on apoptosis of leukemic U937 cell line. We show that AML1-ETO significantly stabilizes death receptor Fas protein and increases proapoptotic Bak in addition to reducing Bcl-2 expression. Accordingly, inducible AML1-ETO expression is followed by apoptosis to a lower degree. Especially, AML1-ETO endows leukemic cells with the susceptibility to anti-Fas agonist antibody, ultraviolet light and camptothecin analog NSC606985-induced apoptosis with increased activation of caspase-3/8. Considering that apoptosis-enhancing effect of AML1-ETO would not be favorable to the leukemogenesis harboring the t(8;21) translocation, it must be overcome to fulfill their leukemogenic potential. Complementary to this prediction is that two AML1-ETO-carrying leukemic cells, Kasumi-1 and SKNO-1, present similar sensitivity to apoptosis induction with AML1-ETO-negative leukemic cells. Therefore, genetic and/or epigenetic screenings of apoptosis-related genes modulated by AML1-ETO deserve to be explored for understanding the mechanisms of AML1-ETO-induced leukemogenesis.
Collapse
Affiliation(s)
- Y Lu
- The Department of Pathophysiology, Key Laboratory of Cell Differentiation and Apoptosis of Chinese Ministry of Education, Rui-Jin Hospital, Shanghai Jiao-Tong University School of Medicine, Shanghai, China
| | | | | | | | | | | | | |
Collapse
|
62
|
Li X, Xu YB, Wang Q, Lu Y, Zheng Y, Wang YC, Lübbert M, Zhao KW, Chen GQ. Leukemogenic AML1-ETO fusion protein upregulates expression of connexin 43: the role in AML 1-ETO-induced growth arrest in leukemic cells. J Cell Physiol 2006; 208:594-601. [PMID: 16741927 DOI: 10.1002/jcp.20695] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
AML1-ETO, a fusion protein generated by the chromosomal translocation t(8;21), is frequently associated with acute myeloid leukemia (AML). In addition to blocking differentiation, AML1-ETO is also shown to induce growth arrest in AML cells, which is unfavorable for leukemogenesis harboring the t(8;21) translocation. However, its precise mechanism is still unclear. Here we provide the first demonstration that the conditional expression of AML1-ETO by the ecdysone-inducible system dramatically increases the expression of connexin 43 (CX43), together with growth arrest at G1 phase in leukemic U937 cells. We also show that the CX43 induction inhibits the proliferation of U937 cells at G1 phase, while the suppression of CX43 expression by small interfering RNA (siRNA) effectively overcomes the growth-inhibitory effect of AML1 -ETO in leukemic cells. Furthermore, either AML1-ETO or CX43 induction elevates cell-cycle negative regulator P27(kip1) protein by inhibiting its degradation, which is antagonized by siRNA against CX43. Taken together, our data indicate that CX43 plays a role in AML1-ETO-induced growth arrest possibly through the accumulation of P27(kip1) protein. The potential mutation or/and epigenetic alterations of CX43 and its related gene(s) deserve to be explored in AML1-ETO-positive AML patients.
Collapse
MESH Headings
- Base Sequence
- Cell Cycle
- Cell Line, Tumor
- Chromosomes, Human, Pair 21
- Chromosomes, Human, Pair 8
- Connexin 43/genetics
- Core Binding Factor Alpha 2 Subunit/genetics
- Core Binding Factor Alpha 2 Subunit/metabolism
- DNA Primers
- Humans
- Leukemia, Myeloid, Acute
- Molecular Sequence Data
- Oncogene Proteins, Fusion/genetics
- Oncogene Proteins, Fusion/metabolism
- RNA, Small Interfering
- RUNX1 Translocation Partner 1 Protein
- Recombinant Fusion Proteins/pharmacology
- Reverse Transcriptase Polymerase Chain Reaction
- Translocation, Genetic
- U937 Cells
Collapse
Affiliation(s)
- Xi Li
- Department of Pathophysiology, Key Laboratory of Cell Differentiation and Apoptosis of Chinese Ministry of Education, Rui-Jin Hospital, Shanghai Jiao Tong University School of Medicine (SJTU-SM), Shanghai, China
| | | | | | | | | | | | | | | | | |
Collapse
|
63
|
Nguyen-Khac F, Della Valle V, Lopez RG, Ravet E, Mauchauffé M, Friedman AD, Huang LE, Fichelson S, Ghysdael J, Bernard OA. Functional analyses of the TEL-ARNT fusion protein underscores a role for oxygen tension in hematopoietic cellular differentiation. Oncogene 2006; 25:4840-7. [PMID: 16547490 DOI: 10.1038/sj.onc.1209503] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2005] [Revised: 01/25/2006] [Accepted: 02/07/2006] [Indexed: 11/08/2022]
Abstract
The transcription factor hypoxia inducible factor 1 (HIF1), an HIF1alpha-aryl hydrocarbon receptor nuclear translocator (ARNT) dimeric factor, is essential to the cellular response to hypoxia. We described a t(1;12)(q21;p13) chromosomal translocation in human acute myeloblastic leukemia that involves the translocated Ets leukemia (TEL/ETV6) and the ARNT genes and results in the expression of a TEL-ARNT fusion protein. Functional studies show that TEL-ARNT interacts with HIF1alpha and the complex binds to consensus hypoxia response element. In low oxygen tension conditions, the HIF1alpha/TEL-ARNT complex does not activate transcription but exerts a dominant-negative effect on normal HIF1 activity. Differentiation of normal human CD34+ progenitors cells along all the erythrocytic, megakaryocytic and granulocytic pathways was accelerated in low versus high oxygen tension conditions. Murine 32Dcl3 myeloid cells also show accelerated granulocytic differentiation in low oxygen tension in response to granulocyte colony-stimulating factor. Interestingly, stable expression of the TEL-ARNT in 32Dcl3 subclones resulted in impaired HIF1-mediated transcriptional response and inhibition of differentiation enhancement in hypoxic conditions. Taken together, our results underscore the role of oxygen tension in the modulation of normal hematopoietic differentiation, whose targeting can participate in human malignancies.
Collapse
Affiliation(s)
- F Nguyen-Khac
- Service d'hématologie biologique, Groupe hospitalier Pitié-Salpêtrière, and E0210 INSERM, IRNEM, Université Paris V, Hôpital Necker, Paris, France.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
64
|
Han YH, Xia L, Song LP, Zheng Y, Chen WL, Zhang L, Huang Y, Chen GQ, Wang LS. Comparative proteomic analysis of hypoxia-treated and untreated human leukemic U937 cells. Proteomics 2006; 6:3262-74. [PMID: 16622835 DOI: 10.1002/pmic.200500754] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
We reported recently that moderate hypoxia and hypoxia-mimetic agents could induce growth arrest and differentiation of leukemic cells via the mediation of hypoxia-inducible factor 1 alpha (HIF-1alpha), but the exact molecular mechanisms remain largely unknown. In this study, human acute promonocytic leukemic U937 cells were incubated under 2% O2 or in 50 microM of the hypoxia mimetic agent cobalt chloride (CoCl2) and normal oxygen for 24 h, and their protein expression profiles were compared by 2-DE coupled with MALDI-TOF/TOF MS/MS. We identified 62 and 16 proteins that were significantly deregulated by hypoxia and CoCl2 treatment, respectively. These proteins were mainly involved in metabolism, gene expression regulation, signal transduction, cell proliferation, differentiation and apoptosis. As an example, N-myc downstream regulated gene 1 (NDRG1), a putative differentiation-related gene, was up-regulated in both 2% O2- and CoCl2-treated U937 cells. Moreover, enforced HIF-1alpha expression also elevated NDRG1 mRNA and protein in U937 cells. These data will provide some clues for understanding mechanisms by which leukemic cells response to hypoxia.
Collapse
Affiliation(s)
- Yu-Hui Han
- Department of Pathophysiology, Key Laboratory of Cell Differentiation and Apoptosis of Chinese Ministry of Education, Rui-Jin Hospital, Shanghai Jiao-Tong University School of Medicine, Shanghai, P. R. China
| | | | | | | | | | | | | | | | | |
Collapse
|
65
|
Huang Y, Zhao Q, Zhou CX, Gu ZM, Li D, Xu HZ, Wiedmer T, Sims PJ, Zhao KW, Chen GQ. Antileukemic roles of human phospholipid scramblase 1 gene, evidence from inducible PLSCR1-expressing leukemic cells. Oncogene 2006; 25:6618-27. [PMID: 16702944 DOI: 10.1038/sj.onc.1209677] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Phospholipid scramblase 1 (PLSCR1) is a multiply palmitoylated protein which is localized in either the cell membrane or nucleus depending on its palmitoylated state. The increasing evidence showed the biological roles of PLSCR1 in cell signaling, maturation and apoptosis. To investigate the functions of PLSCR1 in leukemic cells, we generated an inducible PLSCR1-expressing cell line using myeloid leukemic U937 cells. In this cell line, PLSCR1 was tightly regulated and induced upon tetracycline withdrawal. Our results showed that inducible PLSCR1 expression arrested the proliferation of U937 cells at G1 phase. Meanwhile, PLSCR1-overexpressing U937 cells also underwent granulocyte-like differentiation with increased sensitivity to etoposide-induced apoptosis. Furthermore, we also found that PLSCR1 induction increased cyclin-dependent kinase inhibitors p27(Kip1) and p21(Cip1) proteins, together with downregulation of S phase kinase-associated protein 2 (SKP2), an F-box subunit of the ubiquitin-ligase complex that targets proteins for degradation. Additionally, PLSCR1 induction significantly decreased c-Myc protein and antiapoptotic Bcl-2 protein. Although the exact mechanism by which PLSCR1 regulates these cellular events and gene expression remains unresolved, our results suggest that PLSCR1 plays the antagonistic role regarding leukemia development. These data will shed new insights into understanding the biochemical and biological functions of PLSCR1 protein.
Collapse
Affiliation(s)
- Y Huang
- Institute of Health Science, Shanghai Institutes for Biological Sciences and Graduate School of Chinese Academy of Sciences, Shanghai Jiao Tong University School of Medicine (SJTU-SM, formerly Shanghai Second Medical University), Shanghai, China
| | | | | | | | | | | | | | | | | | | |
Collapse
|
66
|
Seo GS, Lee SH, Choi SC, Choi EY, Oh HM, Choi EJ, Park DS, Kim SW, Kim TH, Nah YH, Kim S, Kim SH, You SH, Jun CD. Iron chelator induces THP-1 cell differentiation potentially by modulating intracellular glutathione levels. Free Radic Biol Med 2006; 40:1502-12. [PMID: 16632111 DOI: 10.1016/j.freeradbiomed.2005.12.020] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/28/2005] [Revised: 11/12/2005] [Accepted: 12/19/2005] [Indexed: 11/21/2022]
Abstract
Iron chelators have been implicated to modulate certain inflammatory mediators and regulate inflammatory processes. Here we report that iron chelator deferoxamine (DFO) induces differentiation of monocytic THP-1 cells into functional macrophages. DFO rapidly phosphorylated both extracellular signal-regulated kinase (ERK) and p38 kinase. Blockade of ERK signaling by the MEK1/2 inhibitor PD098059 abolished DFO-induced class A scavenger receptor (SR-A) expression and phagocytic activity, indicating that ERK cascades mediate the induction of THP-1 differentiation. In contrast, in cells treated with the p38 inhibitor SB203580 or transfected with the dominant-negative variant of p38 kinase, DFO-mediated ERK activation became more prominent, and the induction of SR-A expression and phagocytic activity were significantly increased. Interestingly, differentiation by DFO was associated with decrease in cellular glutathione (GSH) level. Both MAPK inhibitors did not influence the GSH level; however, treatment with ferric citrate (Fe3+) or N-acetyl-cysteine, a major precursor of GSH, markedly recovered GSH level to a normal extent, along with the significant decrease of differentiation. Collectively, these results indicate that oxidative stress by DFO and the resulting activation of ERK cascade play dominant roles in the process of THP-1 differentiation, while p38 acts as a negative signal transmitter.
Collapse
Affiliation(s)
- Geom-Seog Seo
- Digestive Disease Research Institute, Wonkwang University School of Medicine, Iksan, Chonbuk 570-749, Korea
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
67
|
Lee SK, Lee JJ, Lee HJ, Lee J, Jeon BH, Jun CD, Lee SK, Kim EC. Iron chelator-induced growth arrest and cytochrome c-dependent apoptosis in immortalized and malignant oral keratinocytes. J Oral Pathol Med 2006; 35:218-26. [PMID: 16519769 DOI: 10.1111/j.1600-0714.2006.00415.x] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
BACKGROUND Many studies have shown the anti-proliferative effects of iron deprivation on cancer cells, but the effects of iron-chelators on oral cancer have not been clearly elucidated. METHODS To investigate the effects of an iron chelator, desferrioxamine (DFO), on the growth of immortalized human oral keratinocytes (IHOK), primary oral cancer cells (HN4), metastatic oral cancer cells (HN12) and human skin keratinocytes (HaCaT) in the MTT assay, three-dimensional (3D) raft cultures, Western blotting, cell cycle analysis, nuclear staining and cytochrome c expression for apoptosis signaling pathway were used. RESULTS Desferrioxamine inhibited the growth of immortalized IHOK and HaCaT and malignant HN4 and HN12 keratinocytes in a time- and dose-dependent manner according to the MTT assay. The 3D organotypic culture also revealed that DFO-treated cells showed less epithelial maturation, less surface keratinization and decreased epithelial thickness. The major mechanism of growth inhibition with the micromolar DFO treatment was by the induction of apoptosis, which was supported by nuclear DAPI staining, DNA fragmentation analysis and flow cytometric analysis for sub-G(1) phase arrest and Annexin V-FITC (fluorescein isothiocyanate) staining. Furthermore, Bax expression increased together with p53 and p21(WAF1/CIP1), while the Bcl-2 expression decreased in the immortalized and malignant keratinocytes treated with DFO. Time-dependent cytochrome c from mitochondria was observed in DFO-treated IHOK and oral cancer cells and was accompanied by the activation of caspase-3 in IHOK cells. CONCLUSION These results demonstrate that DFO has growth inhibitory effects on immortalized and malignant oral keratinocytes through the induction of apoptosis and suggest that further evaluation of DFO as a potential therapeutic agent for human oral precancerous lesions is warranted.
Collapse
Affiliation(s)
- Sun-Kyung Lee
- Department of Oral and Maxillofacial Pathology, College of Dentistry, Wonkwang University, Iksan, Korea
| | | | | | | | | | | | | | | |
Collapse
|
68
|
Kim JS, Cho EW, Chung HW, Kim IG. Effects of Tiron, 4,5-dihydroxy-1,3-benzene disulfonic acid, on human promyelotic HL-60 leukemia cell differentiation and death. Toxicology 2006; 223:36-45. [PMID: 16635542 DOI: 10.1016/j.tox.2006.03.004] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2006] [Revised: 02/24/2006] [Accepted: 03/04/2006] [Indexed: 10/24/2022]
Abstract
Tiron, 4,5-dihydroxy-1,3-benzene disulfonic acid, has been known to be a widely used antioxidant to rescue ROS-evoked cell death and a non-toxic chelator to alleviate an acute metal overload. In this study, we showed that Tiron is a potent inducer of cell differentiation and apoptotic cell death in human promyelotic HL-60 leukemia cell. At a low level of concentration (<0.5mM), Tiron caused HL-60 cells to induce differentiation-related alterations such as the increase of CD11b and CD14 expression or chromatin condensation. Hypoxia inducible factor-1alpha (HIF-1alpha) was also increased at mRNA and protein level, and thus the CCAAT/enhancer-binding protein alpha, which is a downstream target of HIF-1alpha and acts as a critical factor for granulocytic differentiation was increased. High dose of Tiron (>0.5mM) induced severe DNA damage in HL-60 cells, as measured by the cytokinesis-block micronucleus test and the comet assay. Consequently, high dose of Tiron led to apoptotic cell death, which showed the DNA fragmentation, the caspase activation and the unbalance between antiapoptotic (Bcl-2) and proapoptotic proteins (Bax). However, an exogenous supplement of iron (FeCl(3)) reversed all of these effects, the cell differentiation and the apoptotic cell death. Therefore, these results suggest that Tiron-mediated differentiation and cell death result from the disturbance of iron metabolism.
Collapse
Affiliation(s)
- Jin Sik Kim
- Department of Radiation Biology, Environment Radiation Research Group, Korea Atomic Energy Research Institute, P.O. Box 105, Yuseong, Daejeon 305-600, Korea
| | | | | | | |
Collapse
|
69
|
Abstract
The hypoxia-inducible factor 1 (HIF-1) was initially identified as a transcription factor that regulated erythropoietin gene expression in response to a decrease in oxygen availability in kidney tissue. Subsequently, a family of oxygen-dependent protein hydroxylases was found to regulate the abundance and activity of three oxygen-sensitive HIFalpha subunits, which, as part of the HIF heterodimer, regulated the transcription of at least 70 different effector genes. In addition to responding to a decrease in tissue oxygenation, HIF is proactively induced, even under normoxic conditions, in response to stimuli that lead to cell growth, ultimately leading to higher oxygen consumption. The growing cell thus profits from an anticipatory increase in HIF-dependent target gene expression. Growth stimuli-activated signaling pathways that influence the abundance and activity of HIFs include pathways in which kinases are activated and pathways in which reactive oxygen species are liberated. These pathways signal to the HIF protein hydroxylases, as well as to HIF itself, by means of covalent or redox modifications and protein-protein interactions. The final point of integration of all of these pathways is the hypoxia-response element (HRE) of effector genes. Here, we provide comprehensive compilations of the known growth stimuli that promote increases in HIF abundance, of protein-protein interactions involving HIF, and of the known HIF effector genes. The consensus HRE derived from a comparison of the HREs of these HIF effectors will be useful for identification of novel HIF target genes, design of oxygen-regulated gene therapy, and prediction of effects of future drugs targeting the HIF system.
Collapse
Affiliation(s)
- Roland H Wenger
- Institute of Physiology, Center for Integrative Human Physiology, University of Zürich, CH-8057 Zürich, Switzerland.
| | | | | |
Collapse
|
70
|
Liu W, Guo M, Xu YB, Li D, Zhou ZN, Wu YL, Chen Z, Kogan SC, Chen GQ. Induction of tumor arrest and differentiation with prolonged survival by intermittent hypoxia in a mouse model of acute myeloid leukemia. Blood 2005; 107:698-707. [PMID: 16166593 DOI: 10.1182/blood-2005-03-1278] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
We showed previously that mild real hypoxia and hypoxia-mimetic agents induced in vitro cell differentiation of acute myeloid leukemia (AML). We here investigate the in vivo effects of intermittent hypoxia on syngenic grafts of leukemic blasts in a PML-RARalpha transgenic mouse model of AML. For intermittent hypoxia, leukemic mice were housed in a hypoxia chamber equivalent to an altitude of 6000 m for 18 hours every consecutive day. The results show that intermittent hypoxia significantly prolongs the survival of the leukemic mice that received transplants, although it fails to cure the disease. By histologic and cytologic analyses, intermittent hypoxia is shown to inhibit the infiltration of leukemic blasts in peripheral blood, bone marrow, spleen, and liver without apoptosis induction. More intriguingly, intermittent hypoxia also induces leukemic cells to undergo differentiation with progressive increase of hypoxia-inducible factor-1alpha protein, as evidenced by morphologic criteria of maturating myeloid cells and increased expression of mouse myeloid cell differentiation-related antigens Gr-1 and Mac-1. Taken together, this study represents the first attempt to characterize the in vivo effects of hypoxia on an AML mouse model. Additional investigations may uncover ways to mimic the differentiative effects of hypoxia in a manner that will benefit human patients with AML.
Collapse
MESH Headings
- Animals
- Apoptosis
- Blast Crisis
- Bone Marrow/pathology
- Cell Differentiation
- Cell Hypoxia
- Cobalt/pharmacology
- Graft vs Leukemia Effect
- Hypoxia-Inducible Factor 1, alpha Subunit/metabolism
- Leukemia, Myeloid, Acute/metabolism
- Leukemia, Myeloid, Acute/mortality
- Leukemia, Myeloid, Acute/prevention & control
- Liver/pathology
- Macrophage-1 Antigen/metabolism
- Mice
- Mice, Transgenic
- Models, Animal
- Myeloid Cells/cytology
- Myeloid Cells/metabolism
- Neoplasm Proteins/genetics
- Neoplasm Proteins/physiology
- Oncogene Proteins, Fusion/genetics
- Oncogene Proteins, Fusion/physiology
- Receptors, Chemokine/metabolism
- Spleen/pathology
- Survival Rate
- Tumor Cells, Cultured/transplantation
Collapse
Affiliation(s)
- Wei Liu
- Department of Pathophysiology, Key Laboratory of Cell Differentiation and Apoptosis of Ministry of Education of China, Rui-Jin Hospital, Shanghai Jiao-Tong University School of Medicine
| | | | | | | | | | | | | | | | | |
Collapse
|
71
|
Xue ZH, Jiang Y, Yu Y, Wang LS, Chen GQ, Zhao Q. Metavanadate suppresses desferrioxamine-induced leukemic cell differentiation with reduced hypoxia-inducible factor-1α protein. Biochem Biophys Res Commun 2005; 332:1140-5. [PMID: 15935329 DOI: 10.1016/j.bbrc.2005.05.066] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2005] [Accepted: 05/12/2005] [Indexed: 11/19/2022]
Abstract
We recently showed that moderate hypoxia and hypoxia-mimetic agents CoCl(2) and desferrioxamine (DFO) induce differentiation of acute myeloid leukemic cells via hypoxia-inducible factor-1alpha (HIF-1alpha) that interacts with and increases the transcriptional activity of CCAAT/enhancer-binding protein alpha (C/EBPalpha), a critical factor for granulocytic differentiation. Here, we show that metavanadate antagonizes DFO-induced growth arrest and differentiation with the inhibition of HIF-1alpha protein accumulation in leukemic cells. Furthermore, DFO also increased C/EBPalpha expression rapidly but transiently, which was inhibited by metavanadate. Taken together, these findings provide further evidence for the role of HIF-1alpha and C/EBPalpha in DFO-induced leukemic cell differentiation.
Collapse
Affiliation(s)
- Zhi-Hong Xue
- Department of Pathophysiology, Rui-Jin Hospital, Shanghai Second Medical University (SSMU), Shanghai 200025, China
| | | | | | | | | | | |
Collapse
|