51
|
Tu SP, Chi AL, Ai W, Takaishi S, Dubeykovskaya Z, Quante M, Fox JG, Wang TC. p53 inhibition of AP1-dependent TFF2 expression induces apoptosis and inhibits cell migration in gastric cancer cells. Am J Physiol Gastrointest Liver Physiol 2009; 297:G385-96. [PMID: 19541923 PMCID: PMC2724087 DOI: 10.1152/ajpgi.90620.2008] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Overexpression of trefoil factor 2 (TFF2) is associated with increased cell migration, resistance to apoptosis, and possibly increased gastric cancer invasion. Dysregulation of p53 is frequently observed in preneoplastic conditions of the stomach. Here, we investigated the effect of p53 on the expression and function of TFF2 in gastric cancer cell lines. Gene expression was determined by reverse transcription-polymerase chain reaction, and promoter activity was assessed by dual luciferase reporter assays. Apoptosis was detected by flow cytometry, and cell migration was evaluated by the Boyden chamber assay. Exogenous expression of p53 dose dependently inhibited endogenous TFF2 mRNA, protein, and promoter activity and resulted in induction of cell apoptosis and inhibition of cell migration. Downregulation of TFF2 by small interfering RNA sensitized gastric cancer cells to drug-induced p53-dependent apoptosis. Addition of human TFF2 peptide reversed p53-dependent apoptosis and inhibition of cell migration. The p53-responsive element was mapped to an AP-1-like cis-element at -182 bp upstream of the TFF2 transcription start site. Mutation of this AP-1-like element abrogated p53-mediated inhibition of TFF2 promoter activity. Gel shift and chromatin immunoprecipitation assays demonstrated that c-Jun and c-Fos bind to this AP-1-like element. Ectopic expression of c-Jun/c-Fos or p300 or treatment of cells with phorbol 12-myristate 13-acetate (PMA) stimulated endogenous TFF2 mRNA expression and promoter activity, and p53 inhibited the effects of AP-1 and PMA on TFF2. p53 induces cell apoptosis and inhibits cell migration in part by downregulating TFF2 expression through an AP-1-like site, suggesting that TFF2 may be an important downstream target of p53.
Collapse
Affiliation(s)
- Shui Ping Tu
- Department of Medicine, Columbia College of Physicians and Surgeons, New York, New York; Department of Medicine, University of Massachusetts Medical School, Worcester, Massachusetts; University of South Carolina, Charleston, South Carolina; and Division of Comparative Medicine, Massachusetts Institute of Technology, Cambridge, Massachusetts
| | - Alfred L. Chi
- Department of Medicine, Columbia College of Physicians and Surgeons, New York, New York; Department of Medicine, University of Massachusetts Medical School, Worcester, Massachusetts; University of South Carolina, Charleston, South Carolina; and Division of Comparative Medicine, Massachusetts Institute of Technology, Cambridge, Massachusetts
| | - Walden Ai
- Department of Medicine, Columbia College of Physicians and Surgeons, New York, New York; Department of Medicine, University of Massachusetts Medical School, Worcester, Massachusetts; University of South Carolina, Charleston, South Carolina; and Division of Comparative Medicine, Massachusetts Institute of Technology, Cambridge, Massachusetts
| | - Shigeo Takaishi
- Department of Medicine, Columbia College of Physicians and Surgeons, New York, New York; Department of Medicine, University of Massachusetts Medical School, Worcester, Massachusetts; University of South Carolina, Charleston, South Carolina; and Division of Comparative Medicine, Massachusetts Institute of Technology, Cambridge, Massachusetts
| | - Zina Dubeykovskaya
- Department of Medicine, Columbia College of Physicians and Surgeons, New York, New York; Department of Medicine, University of Massachusetts Medical School, Worcester, Massachusetts; University of South Carolina, Charleston, South Carolina; and Division of Comparative Medicine, Massachusetts Institute of Technology, Cambridge, Massachusetts
| | - Michael Quante
- Department of Medicine, Columbia College of Physicians and Surgeons, New York, New York; Department of Medicine, University of Massachusetts Medical School, Worcester, Massachusetts; University of South Carolina, Charleston, South Carolina; and Division of Comparative Medicine, Massachusetts Institute of Technology, Cambridge, Massachusetts
| | - James G. Fox
- Department of Medicine, Columbia College of Physicians and Surgeons, New York, New York; Department of Medicine, University of Massachusetts Medical School, Worcester, Massachusetts; University of South Carolina, Charleston, South Carolina; and Division of Comparative Medicine, Massachusetts Institute of Technology, Cambridge, Massachusetts
| | - Timothy C. Wang
- Department of Medicine, Columbia College of Physicians and Surgeons, New York, New York; Department of Medicine, University of Massachusetts Medical School, Worcester, Massachusetts; University of South Carolina, Charleston, South Carolina; and Division of Comparative Medicine, Massachusetts Institute of Technology, Cambridge, Massachusetts
| |
Collapse
|
52
|
Zhang Z, Wang Q, Li P, Zhou Y, Li S, Yi W, Chen A, Kong P, Hu C. Overexpression of the Interferon regulatory factor 4-binding protein in human colorectal cancer and its clinical significance. Cancer Epidemiol 2009; 33:130-6. [PMID: 19679060 DOI: 10.1016/j.canep.2009.05.004] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2008] [Revised: 11/20/2008] [Accepted: 05/28/2009] [Indexed: 11/16/2022]
Abstract
BACKGROUND IFN regulatory factor 4-binding protein (IBP) is a novel type of activator of Rho GTPases. It has been linked with differentiation and apoptosis of lymphocytes, but its function in oncogenesis remains unclear. Here we studied the expression of endogenous IBP in four human colorectal cancer cell lines, normal, adenoma and tumor colorectal tissues. METHODS Molecular (Western blot and RT-PCR), and confocal analyses were used to investigate IBP expression in human colorectal cancer cell lines. Matched normal and tumor tissue sections of 63 patients and 15 adenoma tissue sections were analyzed for IBP expression by immunohistochemistry (IHC). RESULTS IBP was ubiquitely expressed in human colorectal cancer cell lines. The expression of IBP can be detected at both the mRNA and protein level in SW480, SW620 and HT29 cells. Clinically, IBP were elevated in human colorectal cancer specimens in comparison to normal colorectal tissues. Substantial high expression of IBP was observed in colorectal cancer tissues (67%), whereas corresponding normal tissues and 15 adenoma tissues showed consistently absent immunoreactivity of IBP. Moreover, IBP expression is correlated with the differentiation level of colorectal cancer cells (p<0.05) and clinical stage of patients (p<0.01). CONCLUSIONS Our data show, for the first time, a dysregulated expression of IBP in human colorectal cancer, offering new perspectives for its role in cancer development and progression. IBP may be a novel tumor marker and a therapeutic target for colorectal cancer.
Collapse
Affiliation(s)
- Zhujun Zhang
- Department of Clinical Biochemistry, Laboratory Science, Third Military Medical University, Chongqing, PR China
| | | | | | | | | | | | | | | | | |
Collapse
|
53
|
p53 suppresses Src-induced podosome and rosette formation and cellular invasiveness through the upregulation of caldesmon. Mol Cell Biol 2009; 29:3088-98. [PMID: 19349302 DOI: 10.1128/mcb.01816-08] [Citation(s) in RCA: 60] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
The tumor-suppressive role of p53 at the level of tumor initiation is well documented. It has also been shown previously that p53 acts against tumor progression/metastasis. However, its role in modulating cell migration and invasion leading to metastasis is poorly understood. In this study, using vascular smooth muscle cells and NIH 3T3 fibroblast cells, we have shown that p53 potently suppresses Src-induced podosome/rosette formation, extracellular matrix digestion, cell migration, and invasion. The overexpression of exogenous wild-type p53 or the activation of the endogenous p53 function suppresses, while the short hairpin RNA-mediated knockdown of p53 expression or the pageing of its function exacerbates, Src-induced migratory and invasive phenotypes. We have also found that p53 expression and function are downregulated in cells stably transformed with constitutively active Src that exhibit aggressive invasive properties. Lastly, p53 upregulates the expression of caldesmon, an actin-binding protein that has been shown to be an inhibitor of podosome/invadopodium formation. The ability of p53 to suppress Src phenotypes in transformed cells was largely abolished by knocking down caldesmon. This study reports a novel molecular mechanism (caldesmon), as well as a structural basis (podosomes/rosettes), to show how p53 can act as an anti-motility/invasion/metastasis agent.
Collapse
|
54
|
Sankpal NV, Willman MW, Fleming TP, Mayfield JD, Gillanders WE. Transcriptional repression of epithelial cell adhesion molecule contributes to p53 control of breast cancer invasion. Cancer Res 2009; 69:753-7. [PMID: 19141643 DOI: 10.1158/0008-5472.can-08-2708] [Citation(s) in RCA: 74] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
p53 is a tumor suppressor gene with well-characterized roles in cell cycle regulation, apoptosis, and maintenance of genome stability. Recent evidence suggests that p53 may also contribute to the regulation of migration and invasion. Epithelial cell adhesion molecule (EpCAM) is a transmembrane glycoprotein that is overexpressed in the majority of human epithelial carcinomas, including breast and colorectal carcinomas. We show by chromatin immunoprecipitation assays that p53 interacts with a candidate p53 binding site within the EpCAM gene. p53-mediated transcriptional repression of EpCAM was confirmed in gain-of-function and loss-of-function experimental systems. Induction of wild-type p53 was associated with a significant dose-dependent decrease in EpCAM expression; conversely, specific ablation of p53 was associated with a significant increase in EpCAM expression. At the functional level, specific ablation of p53 expression is associated with increased breast cancer invasion, and this effect is abrogated by concomitant specific ablation of EpCAM expression. Taken together, these biochemical and functional data are the first demonstration that (a) wild-type p53 protein binds to a response element within the EpCAM gene and negatively regulates EpCAM expression, and (b) transcriptional repression of EpCAM contributes to p53 control of breast cancer invasion.
Collapse
Affiliation(s)
- Narendra V Sankpal
- Section of Endocrine and Oncologic Surgery, Washington University School of Medicine, St Louis, Missouri 63110, USA
| | | | | | | | | |
Collapse
|
55
|
Liu YW, Surka MC, Schroeter T, Lukiyanchuk V, Schmid SL. Isoform and splice-variant specific functions of dynamin-2 revealed by analysis of conditional knock-out cells. Mol Biol Cell 2008; 19:5347-59. [PMID: 18923138 PMCID: PMC2592655 DOI: 10.1091/mbc.e08-08-0890] [Citation(s) in RCA: 120] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2008] [Revised: 10/01/2008] [Accepted: 10/03/2008] [Indexed: 01/05/2023] Open
Abstract
Dynamin (Dyn) is a multifunctional GTPase implicated in several cellular events, including endocytosis, intracellular trafficking, cell signaling, and cytokinesis. The mammalian genome encodes three isoforms, Dyn1, Dyn2, and Dyn3, and several splice variants of each, leading to the suggestion that distinct isoforms and/or distinct splice variants might mediate distinct cellular functions. We generated a conditional Dyn2 KO cell line and performed knockout and reconstitution experiments to explore the isoform- and splice variant specific cellular functions of ubiquitously expressed Dyn2. We find that Dyn2 is required for clathrin-mediated endocytosis (CME), p75 export from the Golgi, and PDGF-stimulated macropinocytosis and cytokinesis, but not for other endocytic pathways. Surprisingly, CME and p75 exocytosis were efficiently rescued by reintroduction of Dyn2, but not Dyn1, suggesting that these two isoforms function differentially in vesicular trafficking in nonneuronal cells. Both isoforms rescued macropinocytosis and cytokinesis, suggesting that dynamin function in these processes might be mechanistically distinct from its role in CME. Although all four Dyn2 splice variants could equally restore CME, Dyn2ba and -bb were more effective at restoring p75 exocytosis. This splice variant specificity correlated with their differential targeting to the Golgi. These studies reveal isoform and splice-variant specific functions for Dyn2.
Collapse
Affiliation(s)
- Ya-Wen Liu
- Department of Cell Biology, The Scripps Research Institute, La Jolla, CA 92037
| | - Mark C. Surka
- Department of Cell Biology, The Scripps Research Institute, La Jolla, CA 92037
| | - Thomas Schroeter
- Department of Cell Biology, The Scripps Research Institute, La Jolla, CA 92037
| | - Vasyl Lukiyanchuk
- Department of Cell Biology, The Scripps Research Institute, La Jolla, CA 92037
| | - Sandra L. Schmid
- Department of Cell Biology, The Scripps Research Institute, La Jolla, CA 92037
| |
Collapse
|
56
|
Rac1 GTPase Targeting Inhibits p53-Deficiency Mediated Lymphomagenesis. Blood 2008. [DOI: 10.1182/blood.v112.11.1764.1764] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Abstract
Mutation of the p53 tumor suppressor is linked to therapeutic resistance in several tumor types. p53 mutation is generally associated with disease progression and poor prognosis in patients with lymphoid malignancies and can occur in approximately 50% of Burkitt’s lymphomas [1, 2]. Thus, new therapies are needed to specifically target p53-deficient lymphomas with increased efficacy. Rac1 small GTPase signaling is linked to tumorigenesis and Rac1 activity is increased by p53 loss of function. Previous studies in primary cell culture have shown that suppression of Rac1 activity can preferentially inhibit p53-deficiency induced hyperproliferation and cause increase apoptosis [3], indicating that targeting Rac1 may have therapeutic potential for p53-deficient malignancies. In the current study, the specific impact of inhibition of Rac1 on p53-deficient B and T lymphoma cell proliferation, apoptosis, tumor formation, and spontaneous lymphoma development in in vivo mouse lymphoma models was interrogated. p53-deficiency resulted in increased Rac1 activity in both human B and murine T lymphoma lines. Suppression of Rac activity using a dominant negative mutant or the small molecule inhibitor NSC23766 was able to abrogate p53-deficient lymphoma cell proliferation through a G1 checkpoint as determined by cell cycle analysis. Immunoblot analysis revealed that the anti-proliferative effect of Rac1 targeting in lymphoma cells may involve PAK, LIMK, and Akt signaling pathways rather than the MAP kinase pathway. Further, Rac1 targeting by shRNA resulted in an increase in expression of cleaved caspase 3 and cytochrome c by immunoblot concurrent with an elevation in the annexinV/7-AAD positive apoptotic cell population. These data indicate that loss of Rac1 activity can increase apoptosis via a p53-independent mechanism in p53 mutated lymphoma lines. These effects of inhibition of active Rac1 were extended in vivo where Rac1 targeting was able to impair p53-deficient lymphoma cell growth in xenograft models and postpone lymphomagenesis onset in murine transplant models. Taken together, our studies demonstrate that Rac1 activity is inversely regulated by functional p53 and that Rac1 contributes to p53-deficiency induced hyperproliferation by modulating both cell cycle and apoptosis in B and T lymphomas. Because the Rac signaling axis constitutes a critical determinant of cell survival and tumorigenesis associated with p53 defects, it may represent an important target for therapy in the treatment of p53-deficient lymphomas.
Collapse
|
57
|
Kortlever RM, Brummelkamp TR, van Meeteren LA, Moolenaar WH, Bernards R. Suppression of the p53-dependent replicative senescence response by lysophosphatidic acid signaling. Mol Cancer Res 2008; 6:1452-60. [PMID: 18723828 DOI: 10.1158/1541-7786.mcr-08-0066] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Lysophosphatidic acid (LPA) is a lipid mediator of a large number of biological processes, including wound healing, brain development, vascular remodeling, and tumor progression. Its role in tumor progression is probably linked to its ability to induce cell proliferation, migration, and survival. In particular, the ascites of ovarian cancers is rich in LPA and has been implicated in growth and invasion of ovarian tumor cells. LPA binds to specific G protein-coupled receptors and thereby activates multiple signal transduction pathways, including those initiated by the small GTPases Ras, Rho, and Rac. We report here a genetic screen with retroviral cDNA expression libraries to identify genes that allow bypass of the p53-dependent replicative senescence response in mouse neuronal cells, conditionally immortalized by a temperature-sensitive mutant of SV40 large T antigen. Using this approach, we identified the LPA receptor type 2 (LPA(2)) and the Rho-specific guanine nucleotide exchange factor Dbs as potent inducers of senescence bypass. Enhanced expression of LPA(2) or Dbs also results in senescence bypass in primary mouse embryo fibroblasts in the presence of wild-type p53, in a Rho GTPase-dependent manner. Our results reveal a novel and unexpected link between LPA signaling and the p53 tumor-suppressive pathway.
Collapse
Affiliation(s)
- Roderik M Kortlever
- Division of Molecular Carcinogenesis, Center for Cancer Genomics, The Netherlands Cancer Institute, Amsterdam, The Netherlands
| | | | | | | | | |
Collapse
|
58
|
Ispanovic E, Serio D, Haas TL. Cdc42 and RhoA have opposing roles in regulating membrane type 1-matrix metalloproteinase localization and matrix metalloproteinase-2 activation. Am J Physiol Cell Physiol 2008; 295:C600-10. [PMID: 18562481 DOI: 10.1152/ajpcell.00460.2007] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Proteolysis of the basement membrane and interstitial matrix occurs early in the angiogenic process and requires matrix metalloproteinase (MMP) activity. Skeletal muscle microvascular endothelial cells exhibit robust actin stress fibers, low levels of membrane type 1 (MT1)-MMP expression, and minimal MMP-2 activation. Depolymerization of the actin cytoskeleton increases MT1-MMP expression and MMP-2 activation. Rho family GTPases are regulators of actin cytoskeleton dynamics, and their activity can be modulated in response to angiogenic stimuli such as vascular endothelial growth factor (VEGF). Therefore, we investigated their roles in MMP-2 and MT1-MMP production. Endothelial cells treated with H1152 [an inhibitor of Rho kinase (ROCK)] induced stress fiber depolymerization and an increase in cortical actin. Both MMP-2 and MT1-MMP mRNA increased, which translated into greater MMP-2 protein production and activation. ROCK inhibition rapidly increased cell surface localization of MT1-MMP and increased PI3K activity, which was required for MMP-2 activation. Constitutively active Cdc42 increased cortical actin polymerization, phosphatidylinositol 3-kinase activity, MT1-MMP cell surface localization, and MMP-2 activation similarly to inhibition of ROCK. Activation of Cdc42 was sufficient to decrease RhoA activity. Capillary sprout formation in a three-dimensional collagen matrix was increased in cultures treated with RhoAN19 or Cdc42QL and, conversely, decreased in cultures treated with dominant negative Cdc42N17. VEGF stimulation also induced activation of Cdc42 while inhibiting RhoA activity. Furthermore, VEGF-dependent activation of MMP-2 was reduced by inhibition of Cdc42. These results suggest that Cdc42 and RhoA have opposing roles in regulating cell surface localization of MT1-MMP and MMP-2 activation.
Collapse
Affiliation(s)
- Eric Ispanovic
- School of Kinesiology and Health Sciences, York University, Toronto, Ontario, Canada M3J 1P3
| | | | | |
Collapse
|
59
|
Ung CY, Li H, Ma XH, Jia J, Li BW, Low BC, Chen YZ. Simulation of the regulation of EGFR endocytosis and EGFR-ERK signaling by endophilin-mediated RhoA-EGFR crosstalk. FEBS Lett 2008; 582:2283-90. [PMID: 18505685 DOI: 10.1016/j.febslet.2008.05.026] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2008] [Revised: 04/28/2008] [Accepted: 05/16/2008] [Indexed: 12/24/2022]
Abstract
Deregulations of EGFR endocytosis in EGFR-ERK signaling are known to cause cancers and developmental disorders. Mutations that impaired c-Cbl-EGFR association delay EGFR endocytosis and produce higher mitogenic signals in lung cancer. ROCK, an effector of small GTPase RhoA was shown to negatively regulate EGFR endocytosis via endophilin A1. A mathematical model was developed to study how RhoA and ROCK regulate EGFR endocytosis. Our study suggested that over-expressing RhoA as well as ROCK prolonged ERK activation partly by reducing EGFR endocytosis. Overall, our study hypothesized an alternative role of RhoA in tumorigenesis in addition to its regulation of cytoskeleton and cell motility.
Collapse
Affiliation(s)
- Choong Yong Ung
- Bioinformatics and Drug Design Group, Department of Pharmacy, National University of Singapore, 3 Science Drive 2, Singapore 117543, Singapore
| | | | | | | | | | | | | |
Collapse
|
60
|
Chen YW, Paliwal S, Draheim K, Grossman SR, Lewis BC. p19Arf inhibits the invasion of hepatocellular carcinoma cells by binding to C-terminal binding protein. Cancer Res 2008; 68:476-82. [PMID: 18199542 PMCID: PMC2376045 DOI: 10.1158/0008-5472.can-07-1960] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
The INK4A/ARF tumor suppressor locus is frequently inactivated in hepatocellular carcinoma (HCC), yet the consequences of this remain unknown. We recently described a HCC mouse model in which loss of the Ink4a/Arf locus accelerates the development of metastasis and enhances tumor cell migration and invasion in cell culture assays. We show here that knockdown of p19Arf in an HCC cell line increases invasion in cell culture assays. Furthermore, reintroduction of p19(Arf) into HCC cell lines lacking Ink4a/Arf inhibits tumor cell invasion, without affecting cell proliferation, or cell transformation as measured by soft agar colony formation. Inhibition of cell invasion by p19(Arf) was dependent on its C-terminal binding protein (CtBP) interaction domain but independent of Mdm2 binding and nucleolar localization. Indeed, RNA interference-mediated knockdown of CtBP1 or CtBP2 decreased cell invasion, and ectopic expression of CtBP2 enhanced tumor cell migration and invasion. Thus, our data indicate a novel role for the Arf tumor suppressor protein in regulating phenotypes associated with tumor progression and metastasis in HCC cells.
Collapse
Affiliation(s)
- Ya-Wen Chen
- Program in Gene Function and Expression, University of Massachusetts Medical School, Worcester, Massachusetts 01605
| | - Seema Paliwal
- Department of Cancer Biology, University of Massachusetts Medical School, Worcester, Massachusetts 01605
| | - Kyle Draheim
- Program in Gene Function and Expression, University of Massachusetts Medical School, Worcester, Massachusetts 01605
| | - Steven R. Grossman
- Department of Cancer Biology, University of Massachusetts Medical School, Worcester, Massachusetts 01605
- Department of Medicine, University of Massachusetts Medical School, Worcester, Massachusetts 01605
- Cancer Center, University of Massachusetts Medical School, Worcester, Massachusetts 01605
| | - Brian C. Lewis
- Program in Gene Function and Expression, University of Massachusetts Medical School, Worcester, Massachusetts 01605
- Program in Molecular Medicine, University of Massachusetts Medical School, Worcester, Massachusetts 01605
- Cancer Center, University of Massachusetts Medical School, Worcester, Massachusetts 01605
| |
Collapse
|
61
|
Vinot S, Anguille C, de Toledo M, Gadea G, Roux P. Analysis of cell migration and its regulation by Rho GTPases and p53 in a three-dimensional environment. Methods Enzymol 2008; 439:413-24. [PMID: 18374180 DOI: 10.1016/s0076-6879(07)00429-6] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/02/2022]
Abstract
Cell migration plays a key role both in physiological conditions, such as tissue repair or embryonic development, and in pathological processes, including tumor metastasis. Understanding the mechanisms that allow cancer cells to invade tissues during metastasis requires studying their ability to migrate. While spectacular, the movements observed in cells growing on two-dimensional supports are likely only to represent a deformation of the physiological migratory behavior. In contrast, the analysis of cell migration on a support, which resembles the three-dimensional (3D) extracellular matrix, provides a more pertinent model of physiological relevance. This chapter provides protocols to assay the ability of cells to migrate or to invade a 3D matrix and to analyze their phenotypes. The invasion assay allows the quantification of tumor cell invasiveness, and the 3D migration assay permits the visual observation of the movements and morphology of migrating cells. This chapter also describes a method to examine the localization of different markers during 3D migration. Because Rho GTPases are clearly involved in migration and invasion, a protocol is supplied to evaluate their activation during cell migration. These techniques are especially suitable to elucidate the type of motility in a 3D matrix, particularly to discriminate between two different modes of migration adopted by cancer cells: blebbing versus elongation. Indeed, the way a cell moves may have important consequences for its invasiveness, as, for example, cancer cells adopt a rounded blebbing movement when deficient in p53.
Collapse
Affiliation(s)
- Stéphanie Vinot
- Universités Montpellier 2 et 1, CRBM, CNRS, UMR 5237, Montpellier, France
| | | | | | | | | |
Collapse
|
62
|
Mihara M. Poster 074: p53 Regulates Motility of Oral Squamous Cell Carcinoma Cells. J Oral Maxillofac Surg 2007. [DOI: 10.1016/j.joms.2007.06.343] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
63
|
Debidda M, Williams DA, Zheng Y. Rac1 GTPase Regulates Cell Genomic Stability and Senescence. J Biol Chem 2006; 281:38519-28. [PMID: 17032649 DOI: 10.1074/jbc.m604607200] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The Rho family small GTPase Rac1 has been shown to play multiple roles in cell regulation, including actin cytoskeleton organization, transcriptional activation, microtubule dynamics, and endocytosis. Here, we report a novel role of Rac1 in regulating genomic stability and cell senescence. We observed in primary mouse embryonic fibroblasts that deletion of rac1 by gene targeting, as well as expression of the constitutively active Rac1 mutant L61Rac1, led to decreased cell growth that was associated with altered cell cycle progression at both G(1)/S and G(2)/M phases, increased apoptosis, and premature senescence. The senescence induction by either loss or gain of Rac1 activity was due at least in part to an increase in cellular reactive oxygen species (ROS). rac1 gene deletion caused a compensatory up-regulation of a closely related family member, Rac3, in mouse embryonic fibroblasts, the activity of which induced ROS production independently of Rac1. Furthermore, the Rac1-regulated ROS production and senescence correlated with the extent of DNA damage in the Rac1(-/-) and L61Rac1 cells. Treatment of these cells with a ROS inhibitor inhibited phospho-H2AX-positive nuclear focus formation. Finally, phospho-Ser(15) p53 was significantly increased in L61Rac1 and Rac1(-/-) cells, and genetic deletion of p53 from these cells readily reversed the senescence phenotype, indicating that Rac1 is functionally dependent on p53 in regulating cell senescence. Taken together, our results show that Rac1 activity serves as a regulator of cell senescence through modulation of cellular ROS, genomic stability, and p53 activity.
Collapse
Affiliation(s)
- Marcella Debidda
- Division of Experimental Hematology, Cincinnati Children's Research Foundation, University of Cincinnati College of Medicine, 3333 Burnet Avenue, Cincinnati, OH 45229, USA
| | | | | |
Collapse
|
64
|
Yang L, Wang L, Zheng Y. Gene targeting of Cdc42 and Cdc42GAP affirms the critical involvement of Cdc42 in filopodia induction, directed migration, and proliferation in primary mouse embryonic fibroblasts. Mol Biol Cell 2006; 17:4675-85. [PMID: 16914516 PMCID: PMC1635400 DOI: 10.1091/mbc.e06-05-0466] [Citation(s) in RCA: 129] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
Recent studies in Cdc42 knockout mouse embryonic stem (ES) cells and ES-derived fibroblastoid cell lines raise concern on a body of literature derived by dominant mutant expression approach in a variety of cell lines implicating mammalian Cdc42 as a key regulator of filopodia induction, directional migration and cell cycle progression. To resolve the physiological function of mammalian Cdc42, we have characterized the Cdc42(-/-) and Cdc42GAP(-/-) primary mouse embryonic fibroblasts (MEFs) produced by gene targeting as the Cdc42 loss- or gain-of-activity cell model. The Cdc42(-/-) cells were defective in filopodia formation stimulated by bradykinin and in dorsal membrane ruffling stimulated by PDGF, whereas the Cdc42GAP(-/-) cells displayed spontaneous filopodia. The Cdc42 loss- or gain-of-activity cells were defective in adhesion to fibronectin, wound-healing, polarity establishment, and migration toward a serum gradient. These defects were associated with deficiencies of PAK1, GSK3beta, myosin light chain, and FAK phosphorylation. Furthermore, Cdc42(-/-) cells were defective in G1/S-phase transition and survival, correlating with deficient NF-kappaB transcription and defective JNK, p70 S6K, and ERK1/2 activation. These results demonstrate a different requirement of Cdc42 activity in primary MEFs from ES or ES-derived clonal fibroblastoid cells and suggest that Cdc42 plays cell-type-specific signaling roles.
Collapse
Affiliation(s)
- Linda Yang
- Division of Experimental Hematology, Children's Hospital Medical Center, Molecular Developmental Biology Graduate Program, University of Cincinnati, Cincinnati, OH 45229
| | - Lei Wang
- Division of Experimental Hematology, Children's Hospital Medical Center, Molecular Developmental Biology Graduate Program, University of Cincinnati, Cincinnati, OH 45229
| | - Yi Zheng
- Division of Experimental Hematology, Children's Hospital Medical Center, Molecular Developmental Biology Graduate Program, University of Cincinnati, Cincinnati, OH 45229
| |
Collapse
|
65
|
Gu J, Wu X, Dong Q, Romeo MJ, Lin X, Gutkind JS, Berman DM. A nonsynonymous single-nucleotide polymorphism in the PDZ-Rho guanine nucleotide exchange factor (Ser1416Gly) modulates the risk of lung cancer in Mexican Americans. Cancer 2006; 106:2716-24. [PMID: 16691626 DOI: 10.1002/cncr.21944] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
BACKGROUND Based on in vitro studies, Rho guanine nucleotide exchange factors (RhoGEFs) are key regulators of mitogenic and transforming pathways. At least 1 family member, PDZ-RhoGEF, also integrates signaling between monomeric Rho G proteins and heterotrimeric G proteins through a so-called regulator of G-protein signaling (RGS) domain. Recently, the authors reported that 3 single-nucleotide polymorphisms (SNPs) in 2 members of the RGS family were associated with significant reductions in the risk of cancer. METHODS For the current report, the authors studied the risk of lung cancer associated with a nonsynonymous SNP (rs868188; Ser1416Gly) in PDZ-RhoGEF in a large lung cancer case-control study of 2260 Caucasians and 369 Mexican Americans. RESULTS Compared with individuals who had the wild-type genotype (AA), Mexican Americans with the variant genotypes (AG and GG) had a significantly reduced risk for lung cancer (odds ratio [OR], 0.57; 95% confidence interval [95%CI], 0.34-0.94). The protective effect appeared to be more evident in younger individuals (OR, 0.42; 95%CI, 0.20-0.91), men (OR, 0.36; 95%CI, 0.18-0.71), and ever smokers (OR, 0.50; 95%CI, 0.29-0.88). A joint effect was observed between Ser1416Gly and polymorphisms in 2 cell-cycle control genes: p53 (intron 3) and cyclin D1 (CCND1). Tallying the variant alleles of the 4 RGS gene SNPs, a gene-dosage effect was apparent. Compared with individuals who had < 3 variant alleles, patients with > or = 3 variant alleles had a 51% reduction in lung cancer risk (OR, 0.49; 95%CI, 0.28-0.88). CONCLUSIONS To the authors' knowledge, this is the first epidemiological study to link PDZ-RhoGEF polymorphisms with cancer risk. The results suggest that there are interactions between RGS2, RGS6, and PDZ-RhoGEF and validate this family of proteins as key regulators of tumorigenesis.
Collapse
Affiliation(s)
- Jian Gu
- Department of Epidemiology, The University of Texas M. D. Anderson Cancer Center, Houston, Texas, USA
| | | | | | | | | | | | | |
Collapse
|
66
|
Mizuarai S, Yamanaka K, Kotani H. Mutant p53 Induces the GEF-H1 Oncogene, a Guanine Nucleotide Exchange Factor-H1 for RhoA, Resulting in Accelerated Cell Proliferation in Tumor Cells. Cancer Res 2006; 66:6319-26. [PMID: 16778209 DOI: 10.1158/0008-5472.can-05-4629] [Citation(s) in RCA: 84] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
The tumor suppressor gene p53 is known to induce G1-S and G2-M cell cycle arrest and apoptosis by transactivating various wild-type (WT) p53 regulatory genes. Mutational inactivation of p53 is detected in more than half of human cancers, depriving the p53 protein of its tumor-suppressive functions. Recent studies have shown that mutant p53 provides tumor cells with gain-of-function properties, such as accelerated cell proliferation, increased metastasis, and apoptosis resistance. However, the mechanism underlying the elevated tumorigenicity by p53 mutation remains to be elucidated. In the present study, we showed that GEF-H1, a guanine exchange factor-H1 for RhoA, is transcriptionally activated by the induction of mutant p53 proteins, thereby accelerating tumor cell proliferation. Osteosarcoma U2OS cell lines, which express inducible p53 mutants (V157F, R175H, and R248Q), were established, and the expression profiles of each cell line were then analyzed to detect genes specifically induced by mutant p53. We identified GEF-H1 as one of the consensus genes whose expression was significantly induced by the three mutants. The GEF-H1 expression level strongly correlated with p53 status in a panel of 32 cancer cell lines, and GEF-H1 induction caused activation of RhoA. Furthermore, growth of mutant p53 cells was dependent on GEF-H1 expression, whereas that of WT p53 cells was not. These results suggest that increased GEF-H1 expression contributes to the tumor progression phenotype associated with the p53 mutation.
Collapse
Affiliation(s)
- Shinji Mizuarai
- Functional Genomics, Banyu Tsukuba Research Institute, Merck Research Laboratory, Tsukuba, Ibaraki, Japan
| | | | | |
Collapse
|
67
|
Guo F, Debidda M, Yang L, Williams DA, Zheng Y. Genetic deletion of Rac1 GTPase reveals its critical role in actin stress fiber formation and focal adhesion complex assembly. J Biol Chem 2006; 281:18652-9. [PMID: 16698790 DOI: 10.1074/jbc.m603508200] [Citation(s) in RCA: 141] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
Rac1 is an intracellular signal transducer regulating a variety of cell functions. Previous studies by overexpression of dominant-negative or constitutively active mutants of Rac1 in clonal cell lines have established that Rac1 plays a key role in actin lamellipodia induction, cell-matrix adhesion, and cell anoikis. In the present studies, we have examined the cellular behaviors of Rac1 gene-targeted primary mouse embryonic fibroblasts (MEFs) after Cre recombinase-mediated deletion of Rac1 gene. Rac1-null MEFs became contracted and elongated in morphology and were defective in lamellipodia formation, cell spreading, cell-fibronectin adhesion, and focal contact formation in response to platelet-derived growth factor or serum. Unexpectedly, deletion of Rac1 also abolished actin stress fibers in the cells without detectable alteration of endogenous RhoA activity. Although the expression and/or activation status of focal adhesion complex components such as Src, FAK, and vinculin were not affected by Rac1 deletion, the number and size of adhesion plaques were significantly reduced, and the molecular complex between Src, FAK, and vinculin was dissembled in Rac1-null cells. Overexpression of an active RhoA mutant or ROK failed to rescue the stress fiber and adhesion plaque defects of the Rac1-null cells. Although Rac1 deletion caused a significant reduction in phospho-PAK1, -AKT, and -ERK under serum stimulation, reconstitution of active PAK1, but not AKT or MEK1, was able to rescue the actin cytoskeleton and adhesion phenotypes of the Rac1-deficient cells. Furthermore, Rac1 deletion led to a marked increase in spontaneous apoptosis that could be rescued by active PAK1, AKT, or MEK1 expression. Our results obtained from gene-targeted primary MEFs indicate that Rac1 is essential not only for lamellipodia induction but also for the RhoA-regulated actin stress fiber and focal adhesion complex formation and that Rac1 is involved in cell survival regulation through anoikis-dependent as well as -independent mechanisms.
Collapse
Affiliation(s)
- Fukun Guo
- Division of Experimental Hematology, Children's Hospital Research Foundation, University of Cincinnati, Cincinnati, Ohio 45229, USA
| | | | | | | | | |
Collapse
|
68
|
Abstract
Much remains to be learned about how cancer cells acquire the property of migration, a prerequisite for invasiveness and metastasis. Loss of p53 functions is assumed to be a crucial step in the development of many types of cancers, leading to dysregulation of cell cycle checkpoint controls and apoptosis. However, emerging evidence shows that the contribution of the tumour suppressor p53 to the control of tumorigenesis is not restricted to its well-known anti-proliferative activities, but is extended to other stages of cancer development, i.e. the modulation of cell migration. This interesting alternative function has been proposed in light of the effect of p53 on specific features of migrating cells, including cell spreading, establishment of cell polarization and the production of protrusions. The effects of p53 on cell motility are largely mediated through the regulation of Rho signalling, thereby controlling actin cytoskeletal organization. These recent studies connect the regulation of proliferation to the control of cell migration and define a new concept of p53 function as a tumour suppressor gene, suggesting that p53 might be involved in tumour invasion and metastasis. This review focuses on emerging data concerning the properties of p53 that contribute to its atypical role in the regulation of cell migration.
Collapse
Affiliation(s)
- Lauréline Roger
- Centre de Recherche en Biochimie Macromoléculaire, CNRS FRE 2593, IFR 24, 1919 route de Mende, F-34293 Montpellier cedex 5, France
| | | | | |
Collapse
|
69
|
Swant JD, Rendon BE, Symons M, Mitchell RA. Rho GTPase-dependent signaling is required for macrophage migration inhibitory factor-mediated expression of cyclin D1. J Biol Chem 2005; 280:23066-72. [PMID: 15840582 PMCID: PMC1201442 DOI: 10.1074/jbc.m500636200] [Citation(s) in RCA: 60] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Our previous studies demonstrated that the proinflammatory peptide, macrophage migration inhibitory factor (MIF), functions as an autocrine mediator of both growth factor- and integrin-dependent sustained ERK MAPK activation, cyclin D1 expression, and cell cycle progression. We now report that MIF promotes the activation of the canonical ERK MAPK cascade and cyclin D1 expression by stimulating the activity of the Rho GTPase and downstream signaling to stress fiber formation. Rho-dependent stress fiber accumulation promotes the sustained activation of ERK and subsequent cyclin D1 expression during G(1)-S phase cell cycle progression. This pathway is reported to be dependent upon myosin light chain (MLC) kinase, integrin clustering, and subsequent activation of focal adhesion kinase, leading to sustained MAPK activity. Our studies reveal that recombinant MIF induces cyclin D1 expression in a Rho-, Rho kinase-, MLC kinase-, and ERK-dependent manner in asynchronous NIH 3T3 fibroblasts. Moreover, MIF(-/-) murine embryonic fibroblasts display aberrant cyclin D1 expression that is linked to defective Rho activity, stress fiber formation, and MLC phosphorylation. These results suggest that MIF is an integral autocrine mediator of Rho GTPase-dependent signaling events and provide mechanistic insight into how MIF regulates proliferative, migratory, and oncogenic processes.
Collapse
Affiliation(s)
- James D. Swant
- From the Department of Biochemistry and Molecular Biology and
| | - Beatriz E. Rendon
- J. G. Brown Cancer Center, University of Louisville, Louisville, Kentucky 40202
| | - Marc Symons
- North Shore-Long Island Jewish Research Institute, Manhasset, New York, 11030, and the
| | - Robert A. Mitchell
- From the Department of Biochemistry and Molecular Biology and
- J. G. Brown Cancer Center, University of Louisville, Louisville, Kentucky 40202
- Department of Medicine, University of Louisville, Louisville, Kentucky 40202
| |
Collapse
|