51
|
Analysis of the BRAF(V600E) Mutation in Central Nervous System Tumors. Transl Oncol 2012; 5:430-6. [PMID: 23323158 DOI: 10.1593/tlo.12328] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2012] [Revised: 10/25/2012] [Accepted: 10/29/2012] [Indexed: 11/18/2022] Open
Abstract
BRAF(V600E) mutations are involved in the development of melanoma, colon cancer, and papillary thyroid carcinoma. These mutations are also found in primary brain tumors at low to moderate frequencies. In this study, we investigated a series of brain tumors to determine the prevalence and associated clinicopathologic features of BRAF(V600E) mutations. By direct sequencing, we analyzed 223 brain tumors, including 51 gangliogliomas (GGs), 45 pilocytic astrocytomas (PAs), 12 pleomorphic xanthoastrocytomas (PXAs), 35 glioblastomas (GBs), 28 anaplastic astrocytomas (AAs), 44 oligodendroglial tumors (ODGs), 3 anaplastic oligoastrocytomas, and 5 diffuse astrocytomas. Thirty-six cases (16.1%) exhibited the BRAF(V600E) mutation, including 66.7% of PXAs, 23.5% of GGs, 15.6% of PAs, and 9.7% of the malignant gliomas; the latter included 14.3% of AAs, 8.6% of GBs, and 4.5% of ODGs. Copy number aberration at the 7q34 (BRAF) locus was found in 73.1% of PAs and 50% of PXAs. 9p Homozygous deletion was found in 66.7% of PXAs, but it was not correlated with the BRAF(V600E) mutation. Patients' age, sex, histologic grade, and progression-free survival were also not correlated with the BRAF(V600E) mutation. The BRAF(V600E) mutation in brain tumors did not have prognostic value but is certainly a diagnostic marker and therapeutic target, not only for pediatric low-grade gliomas but also for malignant gliomas, even though the rate of mutation was not high. These results should be verified in a larger study with more cases and a longer follow-up period to overcome the limitation of small sample size.
Collapse
|
52
|
Abstract
Pediatric molecular neuro-oncology is a fast developing field. A multitude of molecular profiling studies in recent years has unveiled a number of genetic abnormalities unique to pediatric brain tumors. It has now become clear that brain tumors that arise in children have distinct pathogenesis and biology, compared with their adult counterparts, even for those with indistinguishable histopathology. Some of the molecular features are so specific to a particular type of tumors, such as the presence of the KIAA1549-BRAF fusion gene for pilocytic astrocytomas or SMARCB1 mutations for atypical teratoid/rhabdoid tumors, that they could practically serve as a diagnostic marker on their own. Expression profiling has resolved the existence of 4 molecular subgroups in medulloblastomas, which positively translated into improved prognostication for the patients. The currently available molecular markers, however, do not cover all tumors even within a single tumor entity. The molecular pathogenesis of a large number of pediatric brain tumors is still unaccounted for, and the hierarchy of tumors is likely to be more complex and intricate than currently acknowledged. One of the main tasks of future molecular analyses in pediatric neuro-oncology, including the ongoing genome sequencing efforts, is to elucidate the biological basis of those orphan tumors. The ultimate goal of molecular diagnostics is to accurately predict the clinical and biological behavior of any tumor by means of their molecular characteristics, which is hoped to eventually pave the way for individualized treatment.
Collapse
Affiliation(s)
- Koichi Ichimura
- Division of Brain Tumor Translational Research, National Cancer Center Research Institute, Chuo-Ku, Tokyo, Japan.
| | | | | |
Collapse
|
53
|
Abstract
The term long-term epilepsy associated tumor (LEAT) encompasses lesions identified in patients investigated for long histories (often 2 years or more) of drug-resistant epilepsy. They are generally slowly growing, low grade, cortically based tumors, more often arising in younger age groups and in many cases exhibit neuronal in addition to glial differentiation. Gangliogliomas and dysembryoplastic neuroepithelial tumors predominate in this group. LEATs are further united by cyto-architectural changes that may be present in the adjacent cortex which have some similarities to developmental focal cortical dysplasias (FCD); these are now grouped as FCD type IIIb in the updated International League Against Epilepsy (ILAE) classification. In the majority of cases, surgical treatments are beneficial from both perspectives of managing the seizures and the tumor. However, in a minority, seizures may recur, tumors may show regrowth or recurrence, and rarely undergo anaplastic progression. Predicting and identifying tumors likely to behave less favorably are key objectives of the neuropathologist. With immunohistochemistry and modern molecular pathology, it is becoming increasingly possible to refine diagnostic groups. Despite this, some LEATs remain difficult to classify, particularly tumors with "non-specific" or diffuse growth patterns. Modification of LEAT classification is inevitable with the goal of unifying terminological criteria applied between centers for accurate clinico-pathological-molecular correlative data to emerge. Finally, establishing the epileptogenic components of LEAT, either within the lesion or perilesional cortex, will elucidate the cellular mechanisms of epileptogenesis, which in turn will guide optimal surgical management of these lesions.
Collapse
Affiliation(s)
- Maria Thom
- Department of Clinical and Experimental Epilepsy, UCL, Institute of Neurology, Queen Square, London, UK.
| | | | | |
Collapse
|
54
|
Cooperative interactions of BRAFV600E kinase and CDKN2A locus deficiency in pediatric malignant astrocytoma as a basis for rational therapy. Proc Natl Acad Sci U S A 2012; 109:8710-5. [PMID: 22586120 DOI: 10.1073/pnas.1117255109] [Citation(s) in RCA: 67] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Although malignant astrocytomas are a leading cause of cancer-related death in children, rational therapeutic strategies are lacking. We previously identified activating mutations of v-raf murine sarcoma viral oncogene homolog B1 (BRAF) (BRAF(T1799A) encoding BRAF(V600E)) in association with homozygous cyclin-dependent kinase inhibitor 2A (CDKN2A, encoding p14ARF and p16Ink4a) deletions in pediatric infiltrative astrocytomas. Here we report that BRAF(V600E) expression in neural progenitors (NPs) is insufficient for tumorigenesis and increases NP cellular differentiation as well as apoptosis. In contrast, astrocytomas are readily generated from NPs with additional Ink4a-Arf deletion. The BRAF(V600E) inhibitor PLX4720 significantly increased survival of mice after intracranial transplant of genetically relevant murine or human astrocytoma cells. Moreover, combination therapy using PLX4720 plus the Cyclin-dependent kinase (CDK) 4/6-specific inhibitor PD0332991 further extended survival relative to either monotherapy. Our findings indicate a rational therapeutic strategy for treating a subset of pediatric astrocytomas with BRAF(V600E) mutation and CDKN2A deficiency.
Collapse
|
55
|
Hypergrowth mTORC1 signals translationally activate the ARF tumor suppressor checkpoint. Mol Cell Biol 2011; 32:348-64. [PMID: 22064482 DOI: 10.1128/mcb.06030-11] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023] Open
Abstract
The ARF tumor suppressor is a potent sensor of hyperproliferative cues emanating from oncogenic signaling. ARF responds to these cues by eliciting a cell cycle arrest, effectively abating the tumorigenic potential of these stimuli. Prior reports have demonstrated that oncogenic Ras(V12) signaling induces ARF through a mechanism mediated by the Dmp1 transcription factor. However, we now show that ARF protein is still induced in response to Ras(V12) in the absence of Dmp1 through the enhanced translation of existing Arf mRNAs. Here, we report that the progrowth Ras/tuberous sclerosis complex (TSC)/mTORC1 signaling pathway regulates ARF protein expression and triggers ARF-mediated tumor suppression through a novel translational mechanism. Hyperactivation of mTORC1 through Tsc1 loss resulted in a significant increase in ARF expression, activation of the p53 pathway, and a dramatic cell cycle arrest, which were completely reversed upon Arf deletion. ARF protein induced from Ras(V12) in the absence of Dmp1 repressed anchorage-independent colony formation in soft agar and tumor burden in an allograft model. Taken together, our data demonstrate the ability of the ARF tumor suppressor to respond to hypergrowth stimuli to prevent unwarranted tumor formation.
Collapse
|
56
|
Murray JC, Donahue DJ, Malik SI, Dzurik YB, Braly EZ, Dougherty MJ, Eaton KW, Biegel JA. Temporal lobe pleomorphic xanthoastrocytoma and acquired BRAF mutation in an adolescent with the constitutional 22q11.2 deletion syndrome. J Neurooncol 2011; 102:509-14. [PMID: 20730472 PMCID: PMC2998545 DOI: 10.1007/s11060-010-0350-2] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2010] [Accepted: 08/09/2010] [Indexed: 11/26/2022]
Abstract
DiGeorge syndrome, or velocardiofacial syndrome (DGS/VCFS), is a rare and usually sporadic congenital genetic disorder resulting from a constitutional microdeletion at chromosome 22q11.2. While rare cases of malignancy have been described, likely due to underlying immunodeficiency, central nervous system tumors have not yet been reported. We describe an adolescent boy with DGS/VCFS who developed a temporal lobe pleomorphic xanthoastrocytoma. High-resolution single nucleotide polymorphism array studies of the tumor confirmed a constitutional 22q11.21 deletion, and revealed acquired gains, losses and copy number neutral loss of heterozygosity of several chromosomal regions, including a homozygous deletion of the CDKN2A/B locus. The tumor also demonstrated a common V600E mutation in the BRAF oncogene. This is the first reported case of a patient with DiGeorge syndrome developing a CNS tumor of any histology and expands our knowledge about low-grade CNS tumor molecular genetics.
Collapse
Affiliation(s)
- Jeffrey C Murray
- Neurosciences Program, Hematology and Oncology Center, Cook Children's Medical Center, 901 Seventh Avenue, Suite 220, Fort Worth, TX 76104, USA.
| | | | | | | | | | | | | | | |
Collapse
|
57
|
Dias-Santagata D, Lam Q, Vernovsky K, Vena N, Lennerz JK, Borger DR, Batchelor TT, Ligon KL, Iafrate AJ, Ligon AH, Louis DN, Santagata S. BRAF V600E mutations are common in pleomorphic xanthoastrocytoma: diagnostic and therapeutic implications. PLoS One 2011; 6:e17948. [PMID: 21479234 PMCID: PMC3066220 DOI: 10.1371/journal.pone.0017948] [Citation(s) in RCA: 231] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2010] [Accepted: 02/16/2011] [Indexed: 11/19/2022] Open
Abstract
Pleomorphic xanthoastrocytoma (PXA) is low-grade glial neoplasm principally affecting children and young adults. Approximately 40% of PXA are reported to recur within 10 years of primary resection. Upon recurrence, patients receive radiation therapy and conventional chemotherapeutics designed for high-grade gliomas. Genetic changes that can be targeted by selective therapeutics have not been extensively evaluated in PXA and ancillary diagnostic tests to help discriminate PXA from other pleomorphic and often more aggressive astrocytic malignancies are limited. In this study, we apply the SNaPshot multiplexed targeted sequencing platform in the analysis of brain tumors to interrogate 60 genetic loci that are frequently mutated in 15 cancer genes. In our analysis we detect BRAF V600E mutations in 12 of 20 (60%) WHO grade II PXA, in 1 of 6 (17%) PXA with anaplasia and in 1 glioblastoma arising in a PXA. Phospho-ERK was detected in all tumors independent of the BRAF mutation status. BRAF duplication was not detected in any of the PXA cases. BRAF V600E mutations were identified in only 2 of 71 (2.8%) glioblastoma (GBM) analyzed, including 1 of 9 (11.1%) giant cell GBM (gcGBM). The finding that BRAF V600E mutations are common in the majority of PXA has important therapeutic implications and may help in differentiating less aggressive PXAs from lethal gcGBMs and GBMs.
Collapse
Affiliation(s)
- Dora Dias-Santagata
- Department of Pathology and Center for Cancer Research, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts, United States of America.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
58
|
Schindler G, Capper D, Meyer J, Janzarik W, Omran H, Herold-Mende C, Schmieder K, Wesseling P, Mawrin C, Hasselblatt M, Louis DN, Korshunov A, Pfister S, Hartmann C, Paulus W, Reifenberger G, von Deimling A. Analysis of BRAF V600E mutation in 1,320 nervous system tumors reveals high mutation frequencies in pleomorphic xanthoastrocytoma, ganglioglioma and extra-cerebellar pilocytic astrocytoma. Acta Neuropathol 2011; 121:397-405. [PMID: 21274720 DOI: 10.1007/s00401-011-0802-6] [Citation(s) in RCA: 756] [Impact Index Per Article: 54.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2011] [Revised: 01/18/2011] [Accepted: 01/18/2011] [Indexed: 02/07/2023]
Abstract
Missense mutations of the V600E type constitute the vast majority of tumor-associated somatic alterations in the v-RAF murine sarcoma viral oncogene homolog B1 (BRAF) gene. Initially described in melanoma, colon and papillary thyroid carcinoma, these alterations have also been observed in primary nervous system tumors albeit at a low frequency. We analyzed exon 15 of BRAF spanning the V600 locus by direct sequencing in 1,320 adult and pediatric tumors of the nervous system including various types of glial, embryonal, neuronal and glioneuronal, meningeal, adenohypophyseal/sellar, and peripheral nervous system tumors. A total of 96 BRAF mutations were detected; 93 of the V600E type and 3 cases with a three base pair insertion between codons 599 and 600. The highest frequencies of BRAF (V600E) mutations were found in WHO grade II pleomorphic xanthoastrocytomas (42/64; 66%) and pleomorphic xanthoastrocytomas with anaplasia (15/23; 65%), as well as WHO grade I gangliogliomas (14/77; 18%), WHO grade III anaplastic gangliogliomas (3/6) and pilocytic astrocytomas (9/97; 9%). In pilocytic astrocytomas BRAF (V600E) mutation was strongly associated with extra-cerebellar location (p = 0.009) and was most frequent in diencephalic tumors (4/12; 33%). Glioblastomas and other gliomas were characterized by a low frequency or absence of mutations. No mutations were detected in non-glial tumors, including embryonal tumors, meningiomas, nerve sheath tumors and pituitary adenomas. The high mutation frequencies in pleomorphic xanthoastrocytomas, gangliogliomas and extra-cerebellar pilocytic astrocytomas implicate BRAF (V600E) mutation as a valuable diagnostic marker for these rare tumor entities. Future clinical trials should address whether BRAF (V600E) mutant brain tumor patients will benefit from BRAF (V600E)-directed targeted therapies.
Collapse
|
59
|
The evolution of the histology in pleomorphic xanthoastrocytomas in children: a study of 15 cases. Pathology 2011; 43:9-16. [DOI: 10.1097/pat.0b013e328340bb98] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
60
|
Sharma A, Sharma DN, Julka PK, Rath GK. Pleomorphic xanthoastrocytoma – a clinico-pathological review. Neurol Neurochir Pol 2011; 45:379-86. [DOI: 10.1016/s0028-3843(14)60109-2] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
61
|
Dougherty MJ, Santi M, Brose MS, Ma C, Resnick AC, Sievert AJ, Storm PB, Biegel JA. Activating mutations in BRAF characterize a spectrum of pediatric low-grade gliomas. Neuro Oncol 2010; 12:621-30. [PMID: 20156809 PMCID: PMC2940652 DOI: 10.1093/neuonc/noq007] [Citation(s) in RCA: 237] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2009] [Accepted: 11/25/2009] [Indexed: 12/24/2022] Open
Abstract
In the present study, DNA from 27 grade I and grade II pediatric gliomas, including ganglioglioma, desmoplastic infantile ganglioglioma, dysembryoplastic neuroepithelial tumor, and pleomorphic xanthoastrocytoma was analyzed using the Illumina 610K Beadchip SNP-based oligonucleotide array. Several consistent abnormalities, including gain of chromosome 7 and loss of 9p21 were observed. Based on our previous studies, in which we demonstrated BRAF mutations in 3 gangliogliomas, 31 tumors were screened for activating mutations in exons 11 and 15 of the BRAF oncogene or a KIAA1549-BRAF fusion product. There were no cases with a KIAA1549-BRAF fusion. A BRAF V600E mutation was detected in 14 of 31 tumors, which was not correlated with any consistent pattern of aberrations detected by the SNP array analysis. Tumors were also screened for mutations in codon 132 in exon 4 of IDH1, exons 2 and 3 of KRAS, and exons 2-9 of TP53. No mutations in KRAS or TP53 were identified in any of the samples, and there was only 1 IDH1 R132H mutation detected among the sample set. BRAF mutations constitute a major genetic alteration in this histologic group of pediatric brain tumors and may serve as a molecular target for biologically based inhibitors.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Jaclyn A. Biegel
- Departments of Pediatrics (M.J.D., A.J.S., J.A.B.); Pathology (M.S., J.A.B.); Medicine (M.S.B.); Otorhinolaryngology (M.S.B., C.M.); and Neurosurgery (A.C.R., P.B.S.), The Children's Hospital of Philadelphia and the University of Pennsylvania School of Medicine, Philadelphia, Pennsylvania
| |
Collapse
|
62
|
Mieulet V, Lamb RF. Tuberous sclerosis complex: linking cancer to metabolism. Trends Mol Med 2010; 16:329-35. [PMID: 20605525 DOI: 10.1016/j.molmed.2010.05.001] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2010] [Revised: 04/29/2010] [Accepted: 05/03/2010] [Indexed: 01/08/2023]
Abstract
The TSC1/TSC2 tumor-suppressor complex regulates cell growth via controlling the mTOR (mammalian target of rapamycin) signaling pathway, which contributes to several disease processes, including cancer and diabetes. Abnormal activation of mTOR uncouples anabolic cell growth processes such as protein and lipid synthesis from external growth factor or nutrient cues. However, abnormal activation of mTOR upon loss of TSC1/TSC2 complex function is now known to lead to compensatory mechanisms that restrict the development of malignant tumors. The rare occurrence of complete loss of TSC1/TSC2 function in human tumors suggests that retaining growth suppressor activity might be beneficial during tumour evolution, perhaps by promoting survival when cells grow in a nutrient-limited environment.
Collapse
Affiliation(s)
- Virginie Mieulet
- Department of Oncology, University of Alberta, Edmonton, Alberta, T6G 1Z2, Canada
| | | |
Collapse
|
63
|
Felsberg J, Wolter M, Seul H, Friedensdorf B, Göppert M, Sabel MC, Reifenberger G. Rapid and sensitive assessment of the IDH1 and IDH2 mutation status in cerebral gliomas based on DNA pyrosequencing. Acta Neuropathol 2010; 119:501-7. [PMID: 20131059 DOI: 10.1007/s00401-010-0647-4] [Citation(s) in RCA: 98] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2009] [Revised: 01/22/2010] [Accepted: 01/22/2010] [Indexed: 01/12/2023]
Abstract
Diffusely infiltrating cerebral gliomas frequently carry point mutations in codon 132 of the isocitrate dehydrogenase 1 (IDH1) gene or in codon 172 of the IDH2 gene, which are both clinically important as diagnostic and prognostic markers. Here, we report on a method that allows for the rapid detection of IDH1 and IDH2 mutations based on pyrosequencing. The method is applicable to routinely processed tissue specimens and provides quantitative mutation data within less than one working day. Due to its high sensitivity, the technique may also be used for the diagnostic assessment of IDH1 or IDH2 mutation in tissue samples with low tumor cell content, such as the infiltration zone of diffuse gliomas. Using pyrosequencing and/or conventional cycle sequencing of IDH1 and IDH2 in 262 gliomas, we confirm frequent mutations in diffuse astrocytic and oligodendroglial gliomas, corroborate a prognostic role for IDH1 mutation in primary glioblastomas and show that pleomorphic xanthoastrocytomas generally lack mutations in these genes.
Collapse
|
64
|
Riemenschneider MJ, Reifenberger G. Molecular neuropathology of low-grade gliomas and its clinical impact. Adv Tech Stand Neurosurg 2010; 35:35-64. [PMID: 20102110 DOI: 10.1007/978-3-211-99481-8_2] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/28/2023]
Abstract
The term "low-grade glioma" refers to a heterogeneous group of slowly growing glial tumors corresponding histologically to World Health Organization (WHO) grade I or II. This group includes astrocytic, oligodendroglial, oligoastrocytic and ependymal tumor entities, most of which preferentially manifest in children and young adults. Depending on histological type and WHO grade, growth patterns of low-grade gliomas are quite variable, with some tumors diffusely infiltrating the surrounding central nervous system tissue and others showing well demarcated growth. Furthermore, some entities tend to recur and show spontaneous malignant progression while others remain stable for many years. This review provides a condensed overview concerning the molecular genetics of different glioma entities subsumed under the umbrella of low-grade glioma. For a better understanding the cardinal epidemiological, histological and immunohistochemical features of each entity are shortly outlined. Multiple cytogenetic, chromosomal and genetic alterations have been identified in low-grade gliomas to date, with distinct genetic patterns being associated with the individual tumor subtypes. Some of these molecular alterations may serve as a diagnostic adjunct for tumor classification in cases with ambiguous histological features. However, to date only few molecular changes have been associated with clinical outcome, such as the combined losses of chromosome arms 1p and 19q as a favorable prognostic marker in patients with oligodendroglial tumors.
Collapse
Affiliation(s)
- M J Riemenschneider
- Department of Neuropathology, Heinrich-Heine-University, Duesseldorf, Germany
| | | |
Collapse
|
65
|
Grzendowski M, Riemenschneider MJ, Hawranke E, Stefanski A, Meyer HE, Reifenberger G, Stühler K. Simultaneous extraction of nucleic acids and proteins from tissue specimens by ultracentrifugation: A protocol using the high-salt protein fraction for quantitative proteome analysis. Proteomics 2009; 9:4985-90. [PMID: 19810030 DOI: 10.1002/pmic.200800902] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
Comprehensive molecular profiling of human tumor tissue specimens at the DNA, mRNA and protein level is often obstructed by a limited amount of available material. Homogenization of frozen tissue samples in guanidine isothiocyanate followed by ultracentrifugation over cesium chloride allows the simultaneous extraction of high-molecular weight DNA and RNA. Here, we present a protocol for quantitative proteome analysis using the high-salt protein fraction obtained as supernatant after ultracentrifugation for nucleic acid extraction. We applied this method to extracts from primary human brain tumors and demonstrate its successful application for protein expression profiling in these tumors using 2-D DIGE, MS and Western blotting.
Collapse
|
66
|
Prevalence of mutated TP53 on cDNA (but not on DNA template) in pleomorphic xanthoastrocytoma with positive TP53 immunohistochemistry. ACTA ACUST UNITED AC 2009; 193:93-7. [DOI: 10.1016/j.cancergencyto.2009.04.023] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2008] [Revised: 04/06/2009] [Accepted: 04/22/2009] [Indexed: 11/22/2022]
|
67
|
Schneider D, Monoranu CM, Huang B, Rutkowski S, Gerber NU, Krauss J, Puppe B, Roggendorf W. Pediatric supratentorial ependymomas show more frequent deletions on chromosome 9 than infratentorial ependymomas: a microsatellite analysis. ACTA ACUST UNITED AC 2009; 191:90-6. [PMID: 19446744 DOI: 10.1016/j.cancergencyto.2009.02.010] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2008] [Accepted: 02/12/2009] [Indexed: 12/23/2022]
Abstract
Numerous human malignancies, including brain tumors, have been reported to show aberrations on chromosome 9. In our previous screening study in ependymomas, we used microsatellite analysis to identify frequent aberrations on this chromosome. To refine our preliminary analysis of candidate regions, here we use 15 polymorphic microsatellite markers spanning the entire chromosome 9. A total of 48 pairs of matched normal and tumor specimens from patients with ependymoma, including 28 children (mean age, 4.4 years) and 20 adults (mean age, 44.9 years), were genotyped. Allelic imbalances were found in 30/48 patients (62.5%). Pediatric tumors, which were predominantly anaplastic, showed fewer aberrations (57.1%) than adult tumors (70%), and two common regions of deletions were identified (9p21.1 approximately p22.3 and 9q31.3 approximately q33.2). We found that 9q31.3 approximately q33.2, an approximately 8.5-megabase segment containing the DCR1 gene, exhibited the highest number of aberrations (n=33). Adults with ependymomas harboring aberrations on chromosome 9 (n=14) showed significantly longer overall survival than patients of the same group without this aberration (n=6; P=0.034), irrespective of the extent of resection in multivariate analysis. Aberrations of chromosome 9, and particularly of DCR1, may play a role in the prognostic evaluation for ependymomas in adults in the future. In pediatric patients, genetic aberrations were found significantly more often in supratentorial tumors than in tumors with infratentorial location (P=0.007). This result may underscore differences in the origin of these tumors.
Collapse
Affiliation(s)
- Doreen Schneider
- Department of Neuropathology, Institute of Pathology, University of Würzburg, Josef-Schneider-Str. 2, 97080 Wurzburg
| | | | | | | | | | | | | | | |
Collapse
|
68
|
Rosner M, Fuchs C, Siegel N, Valli A, Hengstschläger M. New insights into the role of the tuberous sclerosis genes in leukemia. Leuk Res 2009; 33:883-5. [DOI: 10.1016/j.leukres.2009.02.013] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2009] [Revised: 02/11/2009] [Accepted: 02/14/2009] [Indexed: 11/28/2022]
|
69
|
Idbaih A, Crinière E, Ligon KL, Delattre O, Delattre JY. Array-based genomics in glioma research. Brain Pathol 2009; 20:28-38. [PMID: 19298630 DOI: 10.1111/j.1750-3639.2009.00274.x] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Over the years, several relevant biomarkers with a potential clinical interest have been identified in gliomas using various techniques, such as karyotype, microsatellite analysis, fluorescent in situ hybridization and chromosome comparative genomic hybridization. Despite their pivotal contribution to our understanding of gliomas biology, clinical application of these approaches has been limited by technological and clinical complexities. In contrast, genomic arrays (array-based comparative genomic hybridization and single nucleotide polymorphisms array) have emerged as promising technologies for clinical use in the setting of gliomas. Indeed, their feasibility and reliability have been rigorously assessed in gliomas and are discussed in this review. The well-known genomic biomarkers in gliomas are in fact readily and reliably identified using genomic arrays. Moreover, it detects a multitude of new cryptic genomic markers, with potential biological and/or clinical significances. The main studies dedicated to genomic characterization of gliomas using genomic arrays are reviewed here. Interestingly, several recurrent genomic signatures have been reported by different teams, suggesting the validity of these genomic patterns. In light of this, genomic arrays are relatively simple and cost-effective techniques whose implementation in molecular diagnostic laboratories should be encouraged as a valuable clinical tool for management of glioma patients.
Collapse
|
70
|
Koga T, Morita A, Maruyama K, Tanaka M, Ino Y, Shibahara J, Louis DN, Reifenberger G, Itami J, Hara R, Saito N, Todo T. Long-term control of disseminated pleomorphic xanthoastrocytoma with anaplastic features by means of stereotactic irradiation. Neuro Oncol 2009; 11:446-51. [PMID: 19164434 DOI: 10.1215/15228517-2008-112] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
Pleomorphic xanthoastrocytoma (PXA) is a rare astrocytic neoplasm of the brain. Some PXAs are accompanied by anaplastic features and are difficult to manage because of frequent recurrences that lead to early death. No previous reports have demonstrated consistent efficacy of adjuvant radiotherapy or chemotherapy for this disease. We report a case of PXA with anaplastic features treated with stereotactic irradiation (STI) that resulted in long-term control of repeatedly recurring nodules throughout the neuraxis. A 47-year-old woman presented with an epileptic seizure due to a large tumor in the right frontal lobe. The tumor was resected and diagnosed as PXA with anaplastic features. Sixteen months later, a relapse at the primary site was noted and treated with stereotactic radiosurgery using Gamma Knife. Two years later, the patient developed a tumor nodule in the cervical spinal cord that histologically corresponded to a small-cell glioma with high cellularity and prominent MIB-1 (mindbomb homolog 1) labeling. In the following months, multiple nodular lesions appeared throughout the CNS, and STI was performed six times for eight intracranial lesions using Gamma Knife and twice using a linear accelerator, for three spinal cord lesions in total. All lesions treated with STI were well controlled, and the patient was free from symptomatic progression for 50 months. However, diffuse dissemination along the craniospinal axis eventually progressed, and she died 66 months after initial diagnosis. Autopsy showed that the nodules remained well demarcated from the surrounding nervous system tissue. STI may be an effective therapeutic tool for controlling nodular dissemination of PXA with anaplastic features.
Collapse
Affiliation(s)
- Tomoyuki Koga
- Department of Neurosurgery, University of Tokyo Hospital, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8655, Japan.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
71
|
Molecular neuropathology of gliomas. Int J Mol Sci 2009; 10:184-212. [PMID: 19333441 PMCID: PMC2662467 DOI: 10.3390/ijms10010184] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2008] [Revised: 01/02/2009] [Accepted: 01/05/2009] [Indexed: 01/21/2023] Open
Abstract
Gliomas are the most common primary human brain tumors. They comprise a heterogeneous group of benign and malignant neoplasms that are histologically classified according to the World Health Organization (WHO) classification of tumors of the nervous system. Over the past 20 years the cytogenetic and molecular genetic alterations associated with glioma formation and progression have been intensely studied and genetic profiles as additional aids to the definition of brain tumors have been incorporated in the WHO classification. In fact, first steps have been undertaken in supplementing classical histopathological diagnosis by the use of molecular tests, such as MGMT promoter hypermethylation in glioblastomas or detection of losses of chromosome arms 1p and 19q in oligodendroglial tumors. The tremendous progress that has been made in the use of array-based profiling techniques will likely contribute to a further molecular refinement of glioma classification and lead to the identification of glioma core pathways that can be specifically targeted by more individualized glioma therapies.
Collapse
|
72
|
Abstract
Epigenetic gene regulation of specific genes strongly affects clinical outcome of malignant glioma. MGMT is the best studied gene for the connection of promoter methylation and clinical course in glioblastoma. While MGMT promoter methylation analysis currently does not alter treatment of glioblastoma patients, mainly because of a lack of convincing therapy to radiotherapy and concomitant administration of alkylating drugs, there is increasing interest on the part of patients and physicians in having this molecular parameter assessed. This chapter gives a short overview of the physiological characteristics of the epigenome in normal cells and tissues and the changes in epigenetic gene regulation following malignant transformation. It discusses the technical aspects, advantages, and shortcomings of currently used approaches for single-gene and genome-wide methylation analyses. Finally, an outlook is given on potential therapeutic avenues and targets to overcome tumor-suppressor gene silencing by aberrant promoter methylation in gliomas.
Collapse
Affiliation(s)
- Wolf C Mueller
- Department of Neuropathology, Institute of Pathology, Im Neuenheimer Feld 220/221, Heidelberg 69120, Germany.
| | | |
Collapse
|
73
|
Abstract
Astrocytic gliomas are the most common primary brain tumors and account for up to two thirds of all tumors of glial origin. In this review we outline the basic histological and epidemiological aspects of the different astrocytoma subtypes in adults. In addition, we summarize the key genetic alterations that have been attributed to astrocytoma patho-genesis and progression. Recent progress has been made by interpreting genetic alterations in a pathway-related context so that they can be directly targeted by the application of specific inhibitors. Also, the first steps have been taken in refining classical histopathological diagnosis by use of molecular predictive markers, for example, MGMT promoter hypermethylation in glioblastomas. Progress in this direction will be additionally accelerated by the employment of high-throughput profiling techniques, such as array-CGH and gene expression profiling. Finally, the tumor stem cell hypothesis has challenged our way of understanding astrocytoma biology by emphasizing intratumoral heterogeneity. Novel animal models will provide us with the opportunity to comprehensively study this multilayered disease and explore novel therapeutic approaches in vivo.
Collapse
|
74
|
Weber R. Array-CGH für die Analyse von Tumorgenomen. MED GENET-BERLIN 2008. [DOI: 10.1007/s11825-008-0136-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Zusammenfassung
Durch Array-CGH („comparative genomic hybridization“) können genomweit Kopienzahlveränderungen mit hoher Auflösung erfasst werden. In der letzten Dekade zeigte sich, dass diese in Tumorgenomen häufig und in größerer Anzahl vorliegen können. Über Abweichungen im Array-CGH-Profil einer Tumor-DNA können Tumorsuppressor- oder Protoonkogene kartiert werden, sodass krebsrelevante Gene identifiziert werden konnten. Weiterhin werden Aberrationsmuster erfasst, was zur molekularen Subklassifikation von Tumortypen mit diagnostischer Bedeutung führte. Auch zur Identifizierung neuer prognostischer Marker konnten Array-CGH-Analysen beitragen. In Zukunft werden eine Datenbewertung durch Einbeziehung von Analysen auf anderen molekularen Ebenen und eine gezielte Anwendung mit chromosomen- oder tumorspezifischen Mikroarrays wichtig sein.
Collapse
Affiliation(s)
- R.G. Weber
- Aff1_136 grid.10388.32 0000000122403300 Institut für Humangenetik Rheinische Friedrich-Wilhelms-Universität Wilhelmstraße 31 53111 Bonn Deutschland
| |
Collapse
|
75
|
Pfister S, Janzarik WG, Remke M, Ernst A, Werft W, Becker N, Toedt G, Wittmann A, Kratz C, Olbrich H, Ahmadi R, Thieme B, Joos S, Radlwimmer B, Kulozik A, Pietsch T, Herold-Mende C, Gnekow A, Reifenberger G, Korshunov A, Scheurlen W, Omran H, Lichter P. BRAF gene duplication constitutes a mechanism of MAPK pathway activation in low-grade astrocytomas. J Clin Invest 2008; 118:1739-49. [PMID: 18398503 DOI: 10.1172/jci33656] [Citation(s) in RCA: 375] [Impact Index Per Article: 22.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2007] [Accepted: 02/13/2008] [Indexed: 12/30/2022] Open
Abstract
The molecular pathogenesis of pediatric astrocytomas is still poorly understood. To further understand the genetic abnormalities associated with these tumors, we performed a genome-wide analysis of DNA copy number aberrations in pediatric low-grade astrocytomas by using array-based comparative genomic hybridization. Duplication of the BRAF protooncogene was the most frequent genomic aberration, and tumors with BRAF duplication showed significantly increased mRNA levels of BRAF and a downstream target, CCND1, as compared with tumors without duplication. Furthermore, denaturing HPLC showed that activating BRAF mutations were detected in some of the tumors without BRAF duplication. Similarly, a marked proportion of low-grade astrocytomas from adult patients also had BRAF duplication. Both the stable silencing of BRAF through shRNA lentiviral transduction and pharmacological inhibition of MEK1/2, the immediate downstream phosphorylation target of BRAF, blocked the proliferation and arrested the growth of cultured tumor cells derived from low-grade gliomas. Our findings implicate aberrant activation of the MAPK pathway due to gene duplication or mutation of BRAF as a molecular mechanism of pathogenesis in low-grade astrocytomas and suggest inhibition of the MAPK pathway as a potential treatment.
Collapse
Affiliation(s)
- Stefan Pfister
- Division Molecular Genetics, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
76
|
Hoischen A, Ehrler M, Fassunke J, Simon M, Baudis M, Landwehr C, Radlwimmer B, Lichter P, Schramm J, Becker AJ, Weber RG. Comprehensive characterization of genomic aberrations in gangliogliomas by CGH, array-based CGH and interphase FISH. Brain Pathol 2008; 18:326-37. [PMID: 18371186 DOI: 10.1111/j.1750-3639.2008.00122.x] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
Gangliogliomas are generally benign neuroepithelial tumors composed of dysplastic neuronal and neoplastic glial elements. We screened 61 gangliogliomas [World Health Organization (WHO) grade I] for genomic alterations by chromosomal and array-based comparative genomic hybridization (CGH). Aberrations were detected in 66% of gangliogliomas (mean +/- SEM = 2.5 +/- 0.5 alterations/tumor). Frequent gains were on chromosomes 7 (21%), 5 (16%), 8 (13%), 12 (12%); frequent losses on 22q (16%), 9 (10%), 10 (8%). Recurrent partial imbalances comprised the minimal overlapping regions dim(10)(q25) and enh(12)(q13.3-q14.1). Unsupervised cluster analysis of genomic profiles detected two major subgroups (group I: complete gain of 7 and additional gains of 5, 8 or 12; group II: no major recurring imbalances, mainly losses). A comparison with low-grade gliomas (astrocytomas WHO grade II) showed chromosome 5 gain to be significantly more frequent in gangliogliomas. Interphase fluorescence in situ hybridization (FISH) identified the aberrations to be contained in a subpopulation of glial but not in neuronal cells. Two gangliogliomas and their anaplastic recurrences (WHO grade III) were analyzed. Losses of CDKN2A/B and DMBT1 or a gain/amplification of CDK4 found in the anaplastic tumors were already present in the respective gangliogliomas by array CGH and interphase FISH. In summary, genomic profiling in a large series of gangliogliomas could distinguish genetic subgroups even in this low-grade tumor.
Collapse
Affiliation(s)
- Alexander Hoischen
- Department of Human Genetics, Rheinische Friedrich-Wilhelms-University of Zürich, Zürich, Switerland
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
77
|
Khwaja FW. Prognostic markers of astrocytoma: how to predict the unpredictable? ACTA ACUST UNITED AC 2007; 1:463-79. [PMID: 23496354 DOI: 10.1517/17530059.1.4.463] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
Astrocytomas are the most frequent tumors originating in the human nervous system. They carry a dismal prognosis as high-grade astroctyoma patients (World Health Organization [WHO] grade III and IV) rarely live beyond 5 years. At present, these tumors are mainly diagnosed through the difficult task of histologic examination of tissue obtained through stereotactic biopsy or tumor resection. In addition to determining the malignancy grade through histologic studies, the only other prognostic factors used in clinical setting are patient age and performance status. To overcome current limitations, research is underway to develop molecular approaches for glioma classification. These include identification, characterization and expansion of clinical (patient characteristics and imaging variables), histologic (WHO classification criteria) and molecular (genetic and proteomic) factors with prognostic potential. In this review the established classification characteristics, along with recent advances that may lead to the addition of new parameters and thus improve patient management and survival, are discussed.
Collapse
Affiliation(s)
- Fatima W Khwaja
- Shaukat Khanum Memorial Cancer Hospital and Research Center, Basic Science Lab, Abdul Hafeez Research Wing, 77A, Block R/8, Lahore, 54000, Pakistan +92 042 5180727 ext. 2523 ; +92 042 5945207 ;
| |
Collapse
|
78
|
Kim HS, Yim SV, Jung KH, Zheng LT, Kim YH, Lee KH, Chung SY, Rha HK. Altered DNA copy number in patients with different seizure disorder type: by array-CGH. Brain Dev 2007; 29:639-43. [PMID: 17573221 DOI: 10.1016/j.braindev.2007.04.006] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/23/2006] [Revised: 03/30/2007] [Accepted: 04/23/2007] [Indexed: 10/23/2022]
Abstract
Epilepsy is one of the most common but genetically complex neurological disorders in children. Previous studies have showed that chromosomal abnormalities confer susceptibility to epilepsy. To identify new chromosomal abnormalities associated with epilepsy, DNA samples from patients with idiopathic generalized epilepsy (IGE), partial epilepsy (PE), and febrile seizures (FS) were analyzed using array comparative genome hybridization technique (array-CGH). Genomic aberrations were detected throughout whole chromosome. The most frequently altered loci were gains noted in: 1p (60%), 5p (55%), 8q (55%), 10q (55%), and losses in 7q (55%). The most frequent chromosomal aberrations for each seizure type were: IGE-1p (60%), 5p (55%), and 10q (55%), PE-11p (45%), 21q (45%) and FS-8q (55%), and losses in 7q (55%). To validate the array-CGH results, real time PCR was performed for several genes (EPM2AIP1, OSM, AFP, CYP19A1, SLC6A13, and COL6A2). The results from the real time PCR were consistent with those from the array-CGH. Therefore, we found that the three types of seizures disorder studied have different chromosomal aberrations. These results might be used for further investigation of the pathogenesis of epilepsy.
Collapse
Affiliation(s)
- Hye Sung Kim
- Catholic Neuroscience Center, The Catholic University of Korea, Seoul 137-701, Republic of Korea
| | | | | | | | | | | | | | | |
Collapse
|
79
|
Michels E, De Preter K, Van Roy N, Speleman F. Detection of DNA copy number alterations in cancer by array comparative genomic hybridization. Genet Med 2007; 9:574-84. [PMID: 17873645 DOI: 10.1097/gim.0b013e318145b25b] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023] Open
Abstract
Over the past few years, various reliable platforms for high-resolution detection of DNA copy number changes have become widely available. Together with optimized protocols for labeling and hybridization and algorithms for data analysis and representation, this has lead to a rapid increase in the application of this technology in the study of copy number variation in the human genome in normal cells and copy number imbalances in genetic diseases, including cancer. In this review, we briefly discuss specific technical issues relevant for array comparative genomic hybridization analysis in cancer tissues. We specifically focus on recent successes of array comparative genomic hybridization technology in the progress of our understanding of oncogenesis in a variety of cancer types. A third section highlights the potential of sensitive genome-wide detection of patterns of DNA imbalances or molecular portraits for class discovery and therapeutic stratification.
Collapse
Affiliation(s)
- Evi Michels
- Center for Medical Genetics, Ghent University Hospital, Ghent, Belgium
| | | | | | | |
Collapse
|