51
|
Gupta KH, Nowicki C, Giurini EF, Marzo AL, Zloza A. Bacterial-Based Cancer Therapy (BBCT): Recent Advances, Current Challenges, and Future Prospects for Cancer Immunotherapy. Vaccines (Basel) 2021; 9:vaccines9121497. [PMID: 34960243 PMCID: PMC8707929 DOI: 10.3390/vaccines9121497] [Citation(s) in RCA: 47] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2021] [Accepted: 11/22/2021] [Indexed: 12/19/2022] Open
Abstract
Currently approximately 10 million people die each year due to cancer, and cancer is the cause of every sixth death worldwide. Tremendous efforts and progress have been made towards finding a cure for cancer. However, numerous challenges have been faced due to adverse effects of chemotherapy, radiotherapy, and alternative cancer therapies, including toxicity to non-cancerous cells, the inability of drugs to reach deep tumor tissue, and the persistent problem of increasing drug resistance in tumor cells. These challenges have increased the demand for the development of alternative approaches with greater selectivity and effectiveness against tumor cells. Cancer immunotherapy has made significant advancements towards eliminating cancer. Our understanding of cancer-directed immune responses and the mechanisms through which immune cells invade tumors have extensively helped us in the development of new therapies. Among immunotherapies, the application of bacteria and bacterial-based products has promising potential to be used as treatments that combat cancer. Bacterial targeting of tumors has been developed as a unique therapeutic option that meets the ongoing challenges of cancer treatment. In comparison with other cancer therapeutics, bacterial-based therapies have capabilities for suppressing cancer. Bacteria are known to accumulate and proliferate in the tumor microenvironment and initiate antitumor immune responses. We are currently well-informed regarding various methods by which bacteria can be manipulated by simple genetic engineering or synthetic bioengineering to induce the production of anti-cancer drugs. Further, bacterial-based cancer therapy (BBCT) can be either used as a monotherapy or in combination with other anticancer therapies for better clinical outcomes. Here, we review recent advances, current challenges, and prospects of bacteria and bacterial products in the development of BBCTs.
Collapse
Affiliation(s)
- Kajal H. Gupta
- Division of Hematology, Oncology, and Cell Therapy, Department of Internal Medicine, Rush University Medical Center, Chicago, IL 60612, USA; (K.H.G.); (C.N.); (E.F.G.); (A.L.M.)
- Division of Translational and Precision Medicine, Department of Internal Medicine, Rush University Medical Center, Chicago, IL 60612, USA
| | - Christina Nowicki
- Division of Hematology, Oncology, and Cell Therapy, Department of Internal Medicine, Rush University Medical Center, Chicago, IL 60612, USA; (K.H.G.); (C.N.); (E.F.G.); (A.L.M.)
- Division of Translational and Precision Medicine, Department of Internal Medicine, Rush University Medical Center, Chicago, IL 60612, USA
| | - Eileena F. Giurini
- Division of Hematology, Oncology, and Cell Therapy, Department of Internal Medicine, Rush University Medical Center, Chicago, IL 60612, USA; (K.H.G.); (C.N.); (E.F.G.); (A.L.M.)
- Division of Translational and Precision Medicine, Department of Internal Medicine, Rush University Medical Center, Chicago, IL 60612, USA
| | - Amanda L. Marzo
- Division of Hematology, Oncology, and Cell Therapy, Department of Internal Medicine, Rush University Medical Center, Chicago, IL 60612, USA; (K.H.G.); (C.N.); (E.F.G.); (A.L.M.)
- Division of Translational and Precision Medicine, Department of Internal Medicine, Rush University Medical Center, Chicago, IL 60612, USA
| | - Andrew Zloza
- Division of Hematology, Oncology, and Cell Therapy, Department of Internal Medicine, Rush University Medical Center, Chicago, IL 60612, USA; (K.H.G.); (C.N.); (E.F.G.); (A.L.M.)
- Division of Translational and Precision Medicine, Department of Internal Medicine, Rush University Medical Center, Chicago, IL 60612, USA
- Correspondence:
| |
Collapse
|
52
|
Zúñiga A, Camacho M, Chang HJ, Fristot E, Mayonove P, Hani EH, Bonnet J. Engineered l-Lactate Responding Promoter System Operating in Glucose-Rich and Anoxic Environments. ACS Synth Biol 2021; 10:3527-3536. [PMID: 34851606 PMCID: PMC8689689 DOI: 10.1021/acssynbio.1c00456] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2021] [Indexed: 12/19/2022]
Abstract
Bacteria equipped with genetically encoded lactate biosensors are promising tools for biopharmaceutical production, diagnostics, and cellular therapies. However, many applications involve glucose-rich and anoxic environments, in which current whole-cell lactate biosensors show low performance. Here we engineer an optimized, synthetic lactate biosensor system by repurposing the natural LldPRD promoter regulated by the LldR transcriptional regulator. We removed glucose catabolite and anoxic repression by designing a hybrid promoter, containing LldR operators and tuned both regulator and reporter gene expressions to optimize biosensor signal-to-noise ratio. The resulting lactate biosensor, termed ALPaGA (A Lactate Promoter Operating in Glucose and Anoxia), can operate in glucose-rich, aerobic and anoxic conditions. We show that ALPaGA works reliably in the probiotic chassisEscherichia coliNissle 1917 and can detect endogenous l-lactate produced by 3D tumor spheroids with an improved dynamic range. In the future, the ALPaGA system could be used to monitor bioproduction processes and improve the specificity of engineered bacterial cancer therapies by restricting their activity to the lactate-rich microenvironment of solid tumors.
Collapse
Affiliation(s)
- Ana Zúñiga
- Centre de Biologie Structurale (CBS),
INSERM U1054, CNRS UMR5048, University of
Montpellier, 29 Rue de Navacelles, Montpellier 34090, France
| | - Miguel Camacho
- Centre de Biologie Structurale (CBS),
INSERM U1054, CNRS UMR5048, University of
Montpellier, 29 Rue de Navacelles, Montpellier 34090, France
| | - Hung-Ju Chang
- Centre de Biologie Structurale (CBS),
INSERM U1054, CNRS UMR5048, University of
Montpellier, 29 Rue de Navacelles, Montpellier 34090, France
| | - Elsa Fristot
- Centre de Biologie Structurale (CBS),
INSERM U1054, CNRS UMR5048, University of
Montpellier, 29 Rue de Navacelles, Montpellier 34090, France
| | - Pauline Mayonove
- Centre de Biologie Structurale (CBS),
INSERM U1054, CNRS UMR5048, University of
Montpellier, 29 Rue de Navacelles, Montpellier 34090, France
| | - El-Habib Hani
- Centre de Biologie Structurale (CBS),
INSERM U1054, CNRS UMR5048, University of
Montpellier, 29 Rue de Navacelles, Montpellier 34090, France
| | - Jerome Bonnet
- Centre de Biologie Structurale (CBS),
INSERM U1054, CNRS UMR5048, University of
Montpellier, 29 Rue de Navacelles, Montpellier 34090, France
| |
Collapse
|
53
|
Khatun S, Appidi T, Rengan AK. The role played by bacterial infections in the onset and metastasis of cancer. CURRENT RESEARCH IN MICROBIAL SCIENCES 2021; 2:100078. [PMID: 34841367 PMCID: PMC8610348 DOI: 10.1016/j.crmicr.2021.100078] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2021] [Revised: 10/04/2021] [Accepted: 10/24/2021] [Indexed: 02/09/2023] Open
Abstract
Understanding various responses of cells towards change in their external environment, presence of other species and is important in identifying and correlating the mechanisms leading to malignant transformations and cancer development. Although uncovering and comprehending the association between bacteria and cancer is highly challenging, it promises excellent perspectives and approaches for successful cancer therapy. This review introduces various bacterial species, their virulence factors, and their role in cell transformations leading to cancer (particularly gastric, oral, colon, and breast cancer). Bacterial dysbiosis permutates host cells, causes inflammation, and results in tumorigenesis. This review explored bacterial-mediated host cell transformation causing chronic inflammation, immune receptor hyperactivation/absconding immune recognition, and genomic instability. Bacterial infections downregulate E-cadherin, leading to loosening of epithelial tight junction polarity and triggers metastasis. In addition to understanding the role of bacterial infections in cancer development, we have also reviewed the application of bacteria for cancer therapy. The emergence of bacteriotherapy combined with conventional therapies led to new and effective ways of overcoming challenges associated with available treatments. This review discusses the application of bacterial minicells, microswimmers, and outer cell membrane vesicles (OMV) for drug delivery applications.
Collapse
Affiliation(s)
- Sajmina Khatun
- Department of Biomedical Engineering, IIT Hyderabad, Kandi, Sangareddy 502284, Telangana, India
| | - Tejaswini Appidi
- Department of Biomedical Engineering, IIT Hyderabad, Kandi, Sangareddy 502284, Telangana, India
| | - Aravind Kumar Rengan
- Department of Biomedical Engineering, IIT Hyderabad, Kandi, Sangareddy 502284, Telangana, India
| |
Collapse
|
54
|
Jiang T, Yang X, Li G, Zhao X, Sun T, Müller R, Wang H, Li M, Zhang Y. Bacteria-Based Live Vehicle for In Vivo Bioluminescence Imaging. Anal Chem 2021; 93:15687-15695. [PMID: 34783525 DOI: 10.1021/acs.analchem.1c03568] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
The anticancer therapy strategy mediated by tumor-targeting bacteria needs better visualization tools for imaging and monitoring bacteria in vivo. The probiotic strain Escherichia coli Nissle 1917 (EcN), one of the tumor-targeting bacteria, leads to the potential application for cancer therapy. Here, we report the development and application of a live, EcN-based imageable vehicle for noninvasive in vivo bioluminescence imaging in live mice. Firefly luciferase (Fluc) and luciferin-regenerating enzyme (LRE), an enzyme that contributes to stable bioluminescence, were functionally coexpressed in EcN. The recombinant EcN strain expressing the genomically integrated Fluc-LRE cassette was demonstrated to be a valuable tool for generating robust, continuous, and red-shifted bioluminescence for bacterial tracking in vitro and in vivo, thus providing an optical tumor-targeting system for the in vivo study of bacteria-assisted cancer therapy. Additionally, in vivo imaging of the recombinant EcN strain in the mouse intestinal tract indicated the potential of this strain to be used as a tool in the study of gut.
Collapse
Affiliation(s)
- Tianyu Jiang
- State Key Laboratory of Microbial Technology, Institute of Microbial Technology, Helmholtz International Lab for Anti-Infectives, Shandong University-Helmholtz Institute of Biotechnology, Shandong University, Qingdao 266237, China.,Shenzhen Research Institute of Shandong University, Shenzhen, Guangdong 518000, China
| | - Xingye Yang
- Key Laboratory of Chemical Biology (MOE), Department of Medicinal Chemistry, School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan 250012, China
| | - Geng Li
- State Key Laboratory of Microbial Technology, Institute of Microbial Technology, Helmholtz International Lab for Anti-Infectives, Shandong University-Helmholtz Institute of Biotechnology, Shandong University, Qingdao 266237, China
| | - Xiaohan Zhao
- State Key Laboratory of Microbial Technology, Institute of Microbial Technology, Helmholtz International Lab for Anti-Infectives, Shandong University-Helmholtz Institute of Biotechnology, Shandong University, Qingdao 266237, China
| | - Tao Sun
- State Key Laboratory of Microbial Technology, Institute of Microbial Technology, Helmholtz International Lab for Anti-Infectives, Shandong University-Helmholtz Institute of Biotechnology, Shandong University, Qingdao 266237, China
| | - Rolf Müller
- Department of Microbial Natural Products, Helmholtz-Institute for Pharmaceutical Research Saarland (HIPS), Helmholtz Centre for Infection Research (HZI) and Department of Pharmacy, Saarland University, Campus E8 1, 66123 Saarbrücken, Germany
| | - Hailong Wang
- State Key Laboratory of Microbial Technology, Institute of Microbial Technology, Helmholtz International Lab for Anti-Infectives, Shandong University-Helmholtz Institute of Biotechnology, Shandong University, Qingdao 266237, China
| | - Minyong Li
- Key Laboratory of Chemical Biology (MOE), Department of Medicinal Chemistry, School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan 250012, China
| | - Youming Zhang
- State Key Laboratory of Microbial Technology, Institute of Microbial Technology, Helmholtz International Lab for Anti-Infectives, Shandong University-Helmholtz Institute of Biotechnology, Shandong University, Qingdao 266237, China
| |
Collapse
|
55
|
Yang S, Zhao W, Zhu M, Hu H, Wang W, Zang Z, Jin M, Bi J, Huang J, Liu C, Li X, Yin P, Li N. Tumor Temporal Proteome Profiling Reveals the Immunological Triple Offensive Induced by Synthetic Anti-Cancer Salmonella. Front Immunol 2021; 12:712936. [PMID: 34489962 PMCID: PMC8417115 DOI: 10.3389/fimmu.2021.712936] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2021] [Accepted: 08/03/2021] [Indexed: 01/30/2023] Open
Abstract
The engineered “obligate” anaerobic Salmonella typhimurium strain YB1 shows a prominent ability to repress tumor growth and metastasis, which has great potential as a novel cancer immunotherapy. However, the antitumor mechanism of YB1 remains unelucidated. To resolve the proteome dynamics induced by the engineered bacteria, we applied tumor temporal proteome profiling on murine bladder tumors after intravenous injection of either YB1 or PBS as a negative control. Our data suggests that during the two weeks treatment of YB1 injections, the cured tumors experienced three distinct phases of the immune response. Two days after injection, the innate immune response was activated, particularly the complement and blood coagulation pathways. In the meantime, the phagocytosis was initiated. The professional phagocytes such as macrophages and neutrophils were recruited, especially the infiltration of iNOS+ and CD68+ cells was enhanced. Seven days after injection, substantial amount of T cells was observed at the invasion margin of the tumor. As a result, the tumor shrunk significantly. Overall, the temporal proteome profiling can systematically reveal the YB1 induced immune responses in tumor, showing great promise for elucidating the mechanism of bacteria-mediated cancer immunotherapy.
Collapse
Affiliation(s)
- Shuxin Yang
- Chinese Academy of Sciences (CAS) Key Laboratory for Quantitative Engineering Biology, Shenzhen Institute of Synthetic Biology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
| | - Wenjuan Zhao
- Chinese Academy of Sciences (CAS) Key Laboratory for Quantitative Engineering Biology, Shenzhen Institute of Synthetic Biology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
| | - Muchun Zhu
- Guangdong-Hong Kong-Macao Joint Laboratory of Human-Machine Intelligence-Synergy Systems, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
| | - Huijuan Hu
- Chinese Academy of Sciences (CAS) Key Laboratory for Quantitative Engineering Biology, Shenzhen Institute of Synthetic Biology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
| | - Weijie Wang
- Chinese Academy of Sciences (CAS) Key Laboratory for Quantitative Engineering Biology, Shenzhen Institute of Synthetic Biology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
| | - Zhongsheng Zang
- Chinese Academy of Sciences (CAS) Key Laboratory for Quantitative Engineering Biology, Shenzhen Institute of Synthetic Biology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
| | - Meiling Jin
- Chinese Academy of Sciences (CAS) Key Laboratory for Quantitative Engineering Biology, Shenzhen Institute of Synthetic Biology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
| | - Jiacheng Bi
- Chinese Academy of Sciences (CAS) Key Laboratory for Quantitative Engineering Biology, Shenzhen Institute of Synthetic Biology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
| | - Jiandong Huang
- Chinese Academy of Sciences (CAS) Key Laboratory for Quantitative Engineering Biology, Shenzhen Institute of Synthetic Biology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
| | - Chenli Liu
- Chinese Academy of Sciences (CAS) Key Laboratory for Quantitative Engineering Biology, Shenzhen Institute of Synthetic Biology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
| | - Xuefei Li
- Chinese Academy of Sciences (CAS) Key Laboratory for Quantitative Engineering Biology, Shenzhen Institute of Synthetic Biology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
| | - Peng Yin
- Guangdong-Hong Kong-Macao Joint Laboratory of Human-Machine Intelligence-Synergy Systems, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
| | - Nan Li
- Chinese Academy of Sciences (CAS) Key Laboratory for Quantitative Engineering Biology, Shenzhen Institute of Synthetic Biology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
| |
Collapse
|
56
|
Enhancing the tropism of bacteria via genetically programmed biosensors. Nat Biomed Eng 2021; 6:94-104. [PMID: 34326488 DOI: 10.1038/s41551-021-00772-3] [Citation(s) in RCA: 62] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2019] [Accepted: 06/25/2021] [Indexed: 01/01/2023]
Abstract
Engineered bacteria for therapeutic applications would benefit from control mechanisms that confine the growth of the bacteria within specific tissues or regions in the body. Here we show that the tropism of engineered bacteria can be enhanced by coupling bacterial growth with genetic circuits that sense oxygen, pH or lactate through the control of the expression of essential genes. Bacteria that were engineered with pH or oxygen sensors showed preferential growth in physiologically relevant acidic or oxygen conditions, and reduced growth outside the permissive environments when orally delivered to mice. In syngeneic mice bearing subcutaneous tumours, bacteria engineered with both hypoxia and lactate biosensors coupled through an AND gate showed increased tumour specificity. The multiplexing of genetic circuits may be more broadly applicable for enhancing the localization of bacteria to specified niches.
Collapse
|
57
|
Yang M, Yang F, Chen W, Liu S, Qiu L, Chen J. Bacteria-mediated cancer therapies: opportunities and challenges. Biomater Sci 2021; 9:5732-5744. [PMID: 34313267 DOI: 10.1039/d1bm00634g] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
In recent years, cancer therapy strategies utilizing live tumor-targeting bacteria have presented unique advantages. Engineered bacteria have the particular ability to distinguish tumors from normal tissues with less toxicity. Live bacteria are naturally capable of homing to tumors, resulting in high levels of local colonization because of insufficient oxygen and low pH in the tumor microenvironment. Bacteria initiate their antitumor effects by directly killing the tumor or by activating innate and adaptive antitumor immune responses. The bacterial vectors can be reprogrammed following advanced DNA synthesis, sophisticated genetic bioengineering, and biosensors to engineer microorganisms with complex functions, and then produce and deliver anticancer agents based on clinical needs. However, because of the lack of knowledge on the mechanisms and side effects of microbial cancer therapy, developing such smart microorganisms to treat or prevent cancer remains a significant challenge. In this review, we summarized the potential, status, opportunities and challenges of this growing field. We illustrated the mechanism of tumor regression induced by engineered bacteria and discussed the recent advances in the application of bacteria-mediated cancer therapy to improve efficacy, safety and drug delivery. Finally, we shared our insights into the future directions of tumor-targeting bacteria in cancer therapy.
Collapse
Affiliation(s)
- Meiyang Yang
- School of Pharmaceutical Sciences, Jiangnan University, Wuxi 214122, PR China.
| | | | | | | | | | | |
Collapse
|
58
|
Zhu C, Ji Z, Ma J, Ding Z, Shen J, Wang Q. Recent Advances of Nanotechnology-Facilitated Bacteria-Based Drug and Gene Delivery Systems for Cancer Treatment. Pharmaceutics 2021; 13:940. [PMID: 34202452 PMCID: PMC8308943 DOI: 10.3390/pharmaceutics13070940] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2021] [Revised: 06/17/2021] [Accepted: 06/21/2021] [Indexed: 12/13/2022] Open
Abstract
Cancer is one of the most devastating and ubiquitous human diseases. Conventional therapies like chemotherapy and radiotherapy are the most widely used cancer treatments. Despite the notable therapeutic improvements that these measures achieve, disappointing therapeutic outcome and cancer reoccurrence commonly following these therapies demonstrate the need for better alternatives. Among them, bacterial therapy has proven to be effective in its intrinsic cancer targeting ability and various therapeutic mechanisms that can be further bolstered by nanotechnology. In this review, we will discuss recent advances of nanotechnology-facilitated bacteria-based drug and gene delivery systems in cancer treatment. Therapeutic mechanisms of these hybrid nanoformulations are highlighted to provide an up-to-date understanding of this emerging field.
Collapse
Affiliation(s)
- Chaojie Zhu
- Department of Cardiology, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310003, China;
- Chu Kochen Honors College of Zhejiang University, Hangzhou 310058, China; (Z.J.); (J.M.)
- Institute of Pharmaceutics, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China
| | - Zhiheng Ji
- Chu Kochen Honors College of Zhejiang University, Hangzhou 310058, China; (Z.J.); (J.M.)
- Institute of Pharmaceutics, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China
| | - Junkai Ma
- Chu Kochen Honors College of Zhejiang University, Hangzhou 310058, China; (Z.J.); (J.M.)
- Institute of Pharmaceutics, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China
| | - Zhijie Ding
- College of Letters & Science, University of California, Berkeley, CA 94704, USA;
| | - Jie Shen
- Department of Pharmacy, School of Medicine, Zhejiang University City College, Hangzhou 310015, China
| | - Qiwen Wang
- Department of Cardiology, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310003, China;
| |
Collapse
|
59
|
Lin Q, Rong L, Jia X, Li R, Yu B, Hu J, Luo X, Badea SR, Xu C, Fu G, Lai K, Lee MC, Zhang B, Gong H, Zhou N, Chen XL, Lin SH, Fu G, Huang JD. IFN-γ-dependent NK cell activation is essential to metastasis suppression by engineered Salmonella. Nat Commun 2021; 12:2537. [PMID: 33953170 PMCID: PMC8099885 DOI: 10.1038/s41467-021-22755-3] [Citation(s) in RCA: 44] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2020] [Accepted: 03/25/2021] [Indexed: 02/07/2023] Open
Abstract
Metastasis accounts for 90% of cancer-related deaths and, currently, there are no effective clinical therapies to block the metastatic cascade. A need to develop novel therapies specifically targeting fundamental metastasis processes remains urgent. Here, we demonstrate that Salmonella YB1, an engineered oxygen-sensitive strain, potently inhibits metastasis of a broad range of cancers. This process requires both IFN-γ and NK cells, as the absence of IFN-γ greatly reduces, whilst depletion of NK cells in vivo completely abolishes, the anti-metastatic ability of Salmonella. Mechanistically, we find that IFN-γ is mainly produced by NK cells during early Salmonella infection, and in turn, IFN-γ promotes the accumulation, activation, and cytotoxicity of NK cells, which kill the metastatic cancer cells thus achieving an anti-metastatic effect. Our findings highlight the significance of a self-regulatory feedback loop of NK cells in inhibiting metastasis, pointing a possible approach to develop anti-metastatic therapies by harnessing the power of NK cells.
Collapse
Affiliation(s)
- Qiubin Lin
- grid.194645.b0000000121742757School of Biomedical Sciences, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong SAR China ,HKU-Zhejiang Institute of Research and Innovation (HKU-ZIRI), Hangzhou, China
| | - Li Rong
- grid.194645.b0000000121742757School of Biomedical Sciences, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong SAR China
| | - Xian Jia
- grid.12955.3a0000 0001 2264 7233State Key Laboratory of Cellular Stress Biology, Innovation Center for Cell Signaling Network, School of Medicine, Xiamen University, Xiamen, China
| | - Renhao Li
- grid.194645.b0000000121742757School of Biomedical Sciences, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong SAR China ,grid.194645.b0000000121742757Department of Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong SAR China
| | - Bin Yu
- grid.194645.b0000000121742757School of Biomedical Sciences, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong SAR China
| | - Jingchu Hu
- grid.9227.e0000000119573309Institute of Synthetic Biology, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
| | - Xiao Luo
- grid.9227.e0000000119573309Institute of Synthetic Biology, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
| | - S. R. Badea
- grid.194645.b0000000121742757School of Biomedical Sciences, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong SAR China
| | - Chen Xu
- grid.194645.b0000000121742757School of Biomedical Sciences, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong SAR China
| | - Guofeng Fu
- grid.12955.3a0000 0001 2264 7233State Key Laboratory of Cellular Stress Biology, Innovation Center for Cell Signaling Network, School of Medicine, Xiamen University, Xiamen, China
| | - Kejiong Lai
- grid.12955.3a0000 0001 2264 7233State Key Laboratory of Cellular Stress Biology, Innovation Center for Cell Signaling Network, School of Medicine, Xiamen University, Xiamen, China
| | - Ming-chun Lee
- grid.194645.b0000000121742757School of Biomedical Sciences, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong SAR China
| | - Baozhong Zhang
- grid.9227.e0000000119573309Institute of Synthetic Biology, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
| | - Huarui Gong
- grid.194645.b0000000121742757School of Biomedical Sciences, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong SAR China
| | - Nan Zhou
- grid.9227.e0000000119573309Institute of Synthetic Biology, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
| | - Xiao Lei Chen
- grid.12955.3a0000 0001 2264 7233State Key Laboratory of Cellular Stress Biology, Innovation Center for Cell Signaling Network, School of Medicine, Xiamen University, Xiamen, China ,grid.12955.3a0000 0001 2264 7233Cancer Research Center of Xiamen University, Xiamen, China
| | - Shu-hai Lin
- grid.12955.3a0000 0001 2264 7233State Key Laboratory of Cellular Stress Biology, Innovation Center for Cell Signaling Network, School of Medicine, Xiamen University, Xiamen, China
| | - Guo Fu
- grid.12955.3a0000 0001 2264 7233State Key Laboratory of Cellular Stress Biology, Innovation Center for Cell Signaling Network, School of Medicine, Xiamen University, Xiamen, China ,grid.12955.3a0000 0001 2264 7233Cancer Research Center of Xiamen University, Xiamen, China
| | - Jian-Dong Huang
- grid.194645.b0000000121742757School of Biomedical Sciences, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong SAR China ,HKU-Zhejiang Institute of Research and Innovation (HKU-ZIRI), Hangzhou, China ,grid.9227.e0000000119573309Institute of Synthetic Biology, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
| |
Collapse
|
60
|
Wang D, Wei X, Kalvakolanu DV, Guo B, Zhang L. Perspectives on Oncolytic Salmonella in Cancer Immunotherapy-A Promising Strategy. Front Immunol 2021; 12:615930. [PMID: 33717106 PMCID: PMC7949470 DOI: 10.3389/fimmu.2021.615930] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2020] [Accepted: 01/11/2021] [Indexed: 12/12/2022] Open
Abstract
Since the first reported spontaneous regression of tumors in patients with streptococcus infection, cancer biological therapy was born and it evolved into today's immunotherapy over the last century. Although the original strategy was unable to impart maximal therapeutic benefit at the beginning, it laid the foundations for the development of immune checkpoint blockade and CAR-T which are currently used for cancer treatment in the clinics. However, clinical applications have shown that current cancer immunotherapy can cause a series of adverse reactions and are captious for patients with preexisting autoimmune disorders. Salmonellae was first reported to exert antitumor effect in 1935. Until now, numerous studies have proved its potency as an antitumor agent in the near future. In this review, we summarize the currently available data on the antitumor effects of Salmonella, and discussed a possibility of integrating Salmonella into cancer immunotherapy to overcome current obstacles.
Collapse
Affiliation(s)
- Ding Wang
- Department of Pathophysiology and Key Laboratory of Pathobiology, Ministry of Education, College of Basic Medical Sciences, Jilin University, Changchun, China
| | - Xiaodong Wei
- Department of Pathophysiology and Key Laboratory of Pathobiology, Ministry of Education, College of Basic Medical Sciences, Jilin University, Changchun, China
| | - Dhan V. Kalvakolanu
- Department of Microbiology and Immunology and Greenebaum Comprehensive Cancer Center, School of Medicine, University of Maryland, Baltimore, Baltimore, MD, United States
| | - Baofeng Guo
- Department of Plastic Surgery, China-Japan Union Hospital, Jilin University, Changchun, China
| | - Ling Zhang
- Department of Pathophysiology and Key Laboratory of Pathobiology, Ministry of Education, College of Basic Medical Sciences, Jilin University, Changchun, China
| |
Collapse
|
61
|
Du M, Yu J, Yang Y, Yan F, Chen Z. Microbes in Oncology: Controllable Strategies for Bacteria Therapy. BIO INTEGRATION 2021. [DOI: 10.15212/bioi-2020-0025] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Abstract Bacterial therapy is an emerging method of tumor treatment. By utilizing wild-type bacteria or engineered bacteria to treat solid tumors, bacterial therapy has recently attracted attention due to its high therapeutic specificity. Although many bacterial strains have
been tested in animal models or have even advanced to clinical trials, the efficacy of bacterial therapy remains undesirable. The lack of efficient control methods could cause side effects as well as insufficient therapeutic efficiency, both of which are urgent problems for bacterial therapy.
Therefore, some studies have constructed bacteria with inducible plasmid or adsorption with responsive nanoparticles, which improved controllability and specificity during bacterial therapy. Herein, we introduce the unique advantages of bacteria in cancer treatment and highlight the issues
associated with the application of bacterial therapy, focusing on the incorporation of various methodologies in the advancement of some controllable strategies in bacterial therapy.
Collapse
Affiliation(s)
- Meng Du
- Department of Ultrasound Medicine, Laboratory of Ultrasound Molecular Imaging, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510000, P. R. China
| | - Jinsui Yu
- Department of Ultrasound Medicine, Laboratory of Ultrasound Molecular Imaging, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510000, P. R. China
| | - Yaozhang Yang
- Department of Ultrasound Medicine, Laboratory of Ultrasound Molecular Imaging, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510000, P. R. China
| | - Fei Yan
- CAS Key Laboratory of Quantitative Engineering Biology, Shenzhen Institute of Synthetic Biology, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, P. R. China
| | - Zhiyi Chen
- Department of Ultrasound Medicine, Laboratory of Ultrasound Molecular Imaging, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510000, P. R. China
| |
Collapse
|
62
|
Menghini S, Ho PS, Gwisai T, Schuerle S. Magnetospirillum magneticum as a Living Iron Chelator Induces TfR1 Upregulation and Decreases Cell Viability in Cancer Cells. Int J Mol Sci 2021; 22:ijms22020498. [PMID: 33419059 PMCID: PMC7825404 DOI: 10.3390/ijms22020498] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2020] [Revised: 12/23/2020] [Accepted: 01/04/2021] [Indexed: 11/16/2022] Open
Abstract
Interest has grown in harnessing biological agents for cancer treatment as dynamic vectors with enhanced tumor targeting. While bacterial traits such as proliferation in tumors, modulation of an immune response, and local secretion of toxins have been well studied, less is known about bacteria as competitors for nutrients. Here, we investigated the use of a bacterial strain as a living iron chelator, competing for this nutrient vital to tumor growth and progression. We established an in vitro co-culture system consisting of the magnetotactic strain Magnetospirillum magneticum AMB-1 incubated under hypoxic conditions with human melanoma cells. Siderophore production by 108 AMB-1/mL in human transferrin (Tf)-supplemented media was quantified and found to be equivalent to a concentration of 3.78 µM ± 0.117 µM deferoxamine (DFO), a potent drug used in iron chelation therapy. Our experiments revealed an increased expression of transferrin receptor 1 (TfR1) and a significant decrease of cancer cell viability, indicating the bacteria’s ability to alter iron homeostasis in human melanoma cells. Our results show the potential of a bacterial strain acting as a self-replicating iron-chelating agent, which could serve as an additional mechanism reinforcing current bacterial cancer therapies.
Collapse
|
63
|
Min JJ, Thi-Quynh Duong M, Ramar T, You SH, Kang SR. Theranostic Approaches Using Live Bacteria. Mol Imaging 2021. [DOI: 10.1016/b978-0-12-816386-3.00056-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022] Open
|
64
|
Azizian K, Pustokhina I, Ghanavati R, Hamblin MR, Amini A, Kouhsari E. The potential use of theranostic bacteria in cancer. J Cell Physiol 2020; 236:4184-4194. [PMID: 33174198 DOI: 10.1002/jcp.30152] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2020] [Revised: 10/04/2020] [Accepted: 10/29/2020] [Indexed: 02/06/2023]
Abstract
Conventional chemotherapy approaches have not been fully successful in the treatment of cancer, due to limitations imposed by the pathophysiology of solid tumors, leading to nonspecific drug uptake by healthy cells, poor bioavailability, and toxicity. Thus, novel therapeutic modalities for more efficient cancer treatment are urgently required. Living bacteria can be used as a theranostic approach for the simultaneous diagnosis and therapy of tumors. Herein, we summarize the currently available literature focused on the advantages and challenges for the use of theranostic bacteria in cancer therapy.
Collapse
Affiliation(s)
- Khalil Azizian
- Department of Laboratory Sciences, Sirjan School of Medical Sciences, Sirjan, Iran
| | - Inna Pustokhina
- I.M. Sechenov First Moscow State Medical University (Sechenov University), Moscow, Russia
| | | | - Michael R Hamblin
- Wellman Center for Photomedicine, Massachusetts General Hospital, Boston, Massachusetts, USA.,Department of Dermatology, Harvard Medical School, Boston, Massachusetts, USA.,Laser Research Centre, Faculty of Health Science, University of Johannesburg, Doornfontein, South Africa
| | - Abolfazl Amini
- Department of Medical Biotechnology, Faculty of Advanced Technologies in Medicine, Golestan University of Medical Sciences, Gorgan, Iran
| | - Ebrahim Kouhsari
- Laboratory Sciences Research Center, Golestan University of Medical Sciences, Gorgan, Iran.,Department of Laboratory Sciences, Faculty of Paramedicine, Golestan University of Medical Sciences, Gorgan, Iran
| |
Collapse
|
65
|
Oral delivery of bacteria: Basic principles and biomedical applications. J Control Release 2020; 327:801-833. [PMID: 32926886 DOI: 10.1016/j.jconrel.2020.09.011] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2020] [Accepted: 09/05/2020] [Indexed: 12/18/2022]
|
66
|
Liang K, Liu Q, Kong Q. New technologies in developing recombinant-attenuated bacteria for cancer therapy. Biotechnol Bioeng 2020; 118:513-530. [PMID: 33038015 DOI: 10.1002/bit.27596] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2020] [Revised: 09/12/2020] [Accepted: 10/06/2020] [Indexed: 12/12/2022]
Abstract
Cancer has always been a global problem, with more cases of cancer patients being diagnosed every year. Conventional cancer treatments, including radiotherapy, chemotherapy, and surgery, are still unable to bypass their obvious limitations, and developing effective targeted therapies is still required. More than one century ago, the doctor William B. Coley discovered that cancer patients had tumor regression by injection of Streptococcus bacteria. The studies of cancer therapy using bacterial microorganisms are now very widespread. In particular, the facultative anaerobic bacteria Salmonella typhimurium is widely investigated as it can selectively colonize different types of tumors, locally deliver various antitumor drugs, and inhibit tumor growth. The exciting antitumor efficacy and safety observed in animal tumor models prompted the well-known attenuated Salmonella bacterial strain VNP20009 to be tested in human clinical trials in the early 21st century. Regrettably, no patients showed significant therapeutic effects and even bacterial colonization in tumor tissue was undetectable in most patients. Salmonella bacteria are still considered as a promising agent or vehicle for cancer therapy. Recent efforts have been focused on the generation of attenuated bacterial strains with higher targeting for tumor tissue, and optimization of the delivery of therapeutic antitumor cargoes into the tumor microenvironment. This review will summarize new technologies or approaches that may improve bacteria-mediated cancer therapy.
Collapse
Affiliation(s)
- Kang Liang
- College of Veterinary Medicine, Southwest University, Chongqing, China
| | - Qing Liu
- College of Animal Science and Technology, Southwest University, Chongqing, China
| | - Qingke Kong
- College of Veterinary Medicine, Southwest University, Chongqing, China
| |
Collapse
|
67
|
Vernay T, Cannie I, Gaboriau F, Gall SDL, Tamanai-Shacoori Z, Burel A, Jolivet-Gougeon A, Loréal O, Bousarghin L. Bacteroides fragilis prevents Salmonella Heidelberg translocation in co-culture model mimicking intestinal epithelium. Benef Microbes 2020; 11:391-401. [PMID: 32720833 DOI: 10.3920/bm2020.0004] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Salmonella Heidelberg is one of the most common serovar causing foodborne illnesses. To limit the development of digestive bacterial infection, food supplements containing probiotic bacteria can be proposed. Commensal non-toxigenic Bacteroides fragilis has recently been suggested as a next-generation probiotic candidate. By using an original triple co-culture model including Caco-2 cells (representing human enterocytes), HT29-MTX (representing mucus-secreting goblet cells), and M cells differentiated from Caco-2 by addition of Raji B lymphocytes, bacterial translocation was evaluated. The data showed that S. Heidelberg could translocate in the triple co-culture model with high efficiency, whereas for B. fragilis a weak translocation was obtained. When cells were exposed to both bacteria, S. Heidelberg translocation was inhibited. The cell-free supernatant of B. fragilis also inhibited S. Heidelberg translocation without impacting epithelial barrier integrity. This supernatant did not affect the growth of S. Heidelberg. The non-toxigenic B. fragilis confers health benefits to the host by reducting bacterial translocation. These results suggested that the multicellular model provides an efficient in vitro model to evaluate the translocation of pathogens and to screen for probiotics that have a potential inhibitory effect on this translocation.
Collapse
Affiliation(s)
- T Vernay
- INSERM, Univ Rennes, INRAE, CHU Rennes, Nutrition Metabolisms and Cancer (NuMeCan), UMR-1241, Biosit, MRic/ISFR, 2 rue Henri Le Guilloux, 35033 Rennes, France
| | - I Cannie
- INSERM, Univ Rennes, INRAE, CHU Rennes, Nutrition Metabolisms and Cancer (NuMeCan), UMR-1241, Biosit, MRic/ISFR, 2 rue Henri Le Guilloux, 35033 Rennes, France
| | - F Gaboriau
- INSERM, Univ Rennes, INRAE, CHU Rennes, Nutrition Metabolisms and Cancer (NuMeCan), UMR-1241, Biosit, MRic/ISFR, 2 rue Henri Le Guilloux, 35033 Rennes, France
| | - S David-Le Gall
- INSERM, Univ Rennes, INRAE, CHU Rennes, Nutrition Metabolisms and Cancer (NuMeCan), UMR-1241, Biosit, MRic/ISFR, 2 rue Henri Le Guilloux, 35033 Rennes, France
| | - Z Tamanai-Shacoori
- INSERM, Univ Rennes, INRAE, CHU Rennes, Nutrition Metabolisms and Cancer (NuMeCan), UMR-1241, Biosit, MRic/ISFR, 2 rue Henri Le Guilloux, 35033 Rennes, France
| | - A Burel
- Plateforme microscopie électronique MRic/ISFR Biosit/campus Santé, Rennes 1, 2 Avenue du Professeur Léon Bernard, 35000 Rennes, France
| | - A Jolivet-Gougeon
- INSERM, Univ Rennes, INRAE, CHU Rennes, Nutrition Metabolisms and Cancer (NuMeCan), UMR-1241, Biosit, MRic/ISFR, 2 rue Henri Le Guilloux, 35033 Rennes, France
| | - O Loréal
- INSERM, Univ Rennes, INRAE, CHU Rennes, Nutrition Metabolisms and Cancer (NuMeCan), UMR-1241, Biosit, MRic/ISFR, 2 rue Henri Le Guilloux, 35033 Rennes, France
| | - L Bousarghin
- INSERM, Univ Rennes, INRAE, CHU Rennes, Nutrition Metabolisms and Cancer (NuMeCan), UMR-1241, Biosit, MRic/ISFR, 2 rue Henri Le Guilloux, 35033 Rennes, France
| |
Collapse
|
68
|
Shanmugaraj B, Priya LB, Mahalakshmi B, Subbiah S, Hu RM, Velmurugan BK, Baskaran R. Bacterial and viral vectors as vaccine delivery vehicles for breast cancer therapy. Life Sci 2020; 250:117550. [PMID: 32179071 DOI: 10.1016/j.lfs.2020.117550] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2019] [Revised: 03/06/2020] [Accepted: 03/12/2020] [Indexed: 12/17/2022]
|
69
|
Mansour M, Ismail S, Abou-Aisha K. Bacterial delivery of the anti-tumor azurin-like protein Laz to glioblastoma cells. AMB Express 2020; 10:59. [PMID: 32221741 PMCID: PMC7099546 DOI: 10.1186/s13568-020-00995-8] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2020] [Accepted: 03/18/2020] [Indexed: 02/02/2023] Open
Abstract
Salmonella typhimurium VNP-20009 (VNP) is a non-pathogenic attenuated strain, which, as a facultative anaerobe, preferentially accumulates in hypoxic regions of solid tumors. Here, VNP was utilized as a delivery vehicle of the anti-tumor protein Lipidated azurin, Laz, which is produced by the meningitis-causing bacterium Neisseria meningitides. In brain cancer cells, Laz has been demonstrated to induce apoptosis through an interaction with the tumor suppressor protein p53. In this study, the laz gene, including its signal sequence, was cloned downstream of a hypoxia inducible promoter (HIP-1), before being electroporated into VNP. Successful ectopic expression and export of the Laz protein by VNP under hypoxic conditions were confirmed by Western blot analysis of the cell-free culture medium. Effective expression of Laz by VNP was investigated in two glioblastoma cell lines: LN-229 and U-373, with the latter line carrying a mutated version of p53; as well as in the breast cancer line MCF-7. Cytotoxicity of the VNP-Laz was assessed by determining the fluorescence of the apoptotic marker caspases 3/7. Compared to the purified Laz, VNP-Laz, significantly induced apoptosis in MCF-7, LN-229 and, to a much lower extent in U-373 cells, suggesting a p53-linked mechanism. Our results might represent a new approach of targeted gene delivery and suggest a potential application in brain tumor therapy.
Collapse
Affiliation(s)
- Manar Mansour
- Department of Microbiology and Immunology, The German University in Cairo (GUC), Main Entrance Fifth Settlement, Cairo, Egypt.
| | - Shehab Ismail
- The Cancer Research Institute CRUK Beatson Institute, Glasgow, UK
| | - Khaled Abou-Aisha
- Department of Microbiology and Immunology, The German University in Cairo (GUC), Main Entrance Fifth Settlement, Cairo, Egypt
| |
Collapse
|
70
|
Bacteria-cancer interactions: bacteria-based cancer therapy. Exp Mol Med 2019; 51:1-15. [PMID: 31827064 PMCID: PMC6906302 DOI: 10.1038/s12276-019-0297-0] [Citation(s) in RCA: 259] [Impact Index Per Article: 43.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2019] [Revised: 04/19/2019] [Accepted: 04/30/2019] [Indexed: 12/18/2022] Open
Abstract
Recent advances in cancer therapeutics, such as targeted therapy and immunotherapy, have raised the hope for cures for many cancer types. However, there are still ongoing challenges to the pursuit of novel therapeutic approaches, including high toxicity to normal tissue and cells, difficulties in treating deep tumor tissue, and the possibility of drug resistance in tumor cells. The use of live tumor-targeting bacteria provides a unique therapeutic option that meets these challenges. Compared with most other therapeutics, tumor-targeting bacteria have versatile capabilities for suppressing cancer. Bacteria preferentially accumulate and proliferate within tumors, where they can initiate antitumor immune responses. Bacteria can be further programmed via simple genetic manipulation or sophisticated synthetic bioengineering to produce and deliver anticancer agents based on clinical needs. Therapeutic approaches using live tumor-targeting bacteria can be applied either as a monotherapy or in combination with other anticancer therapies to achieve better clinical outcomes. In this review, we introduce and summarize the potential benefits and challenges of this anticancer approach. We further discuss how live bacteria interact with tumor microenvironments to induce tumor regression. We also provide examples of different methods for engineering bacteria to improve efficacy and safety. Finally, we introduce past and ongoing clinical trials involving tumor-targeting bacteria. Live tumor-targeting bacteria can selectively induce cancer regression and, with the help of genetic engineering, be made safe and effective vehicles for delivering drugs to tumor cells. In a review article, Jung-Joon Min and colleagues from Chonnam National University Medical School in Hwasun, South Korea, discuss the clinical history of using natural or engineered bacterial strains to suppress cancer growth. Because bacteria such as Salmonella and Listeria preferentially home in on tumors or their surrounding microenvironments, researchers have harnessed these microbial agents to attack cancer cells without causing collateral damage to normal tissues. Bioengineers have also armed bacteria with stronger tumor-sensing and more targeted drug delivery capabilities, and improved control of off-target toxicities. An increasing number of therapeutic bacterial strains are now entering clinical testing, promising to enhance the efficacy of more conventional anticancer treatments.
Collapse
|
71
|
Broadway KM, Scharf BE. Salmonella Typhimurium as an Anticancer Therapy: Recent Advances and Perspectives. CURRENT CLINICAL MICROBIOLOGY REPORTS 2019. [DOI: 10.1007/s40588-019-00132-5] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
72
|
Abstract
The engineering of living cells and microbes is ushering in a new era of cancer therapy. Due to recent microbiome studies indicating the prevalence of bacteria within the human body and specifically in tumor tissue, bacteria have generated significant interest as potential targets for cancer therapy. Notably, a multitude of empirical studies over the past decades have demonstrated that administered bacteria home and grow in tumors due to reduced immune surveillance of tumor necrotic cores. Given their specificity for tumors, bacteria present a unique opportunity to be engineered as intelligent delivery vehicles for cancer therapy with synthetic biology techniques. In this review, we discuss the history, current state, and future challenges associated with using bacteria as a cancer therapy.
Collapse
|
73
|
Chen F, Zang Z, Chen Z, Cui L, Chang Z, Ma A, Yin T, Liang R, Han Y, Wu Z, Zheng M, Liu C, Cai L. Nanophotosensitizer-engineered Salmonella bacteria with hypoxia targeting and photothermal-assisted mutual bioaccumulation for solid tumor therapy. Biomaterials 2019; 214:119226. [DOI: 10.1016/j.biomaterials.2019.119226] [Citation(s) in RCA: 60] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2019] [Revised: 05/13/2019] [Accepted: 05/22/2019] [Indexed: 12/18/2022]
|
74
|
Mi Z, Feng ZC, Li C, Yang X, Ma MT, Rong PF. Salmonella-Mediated Cancer Therapy: An Innovative Therapeutic Strategy. J Cancer 2019; 10:4765-4776. [PMID: 31598148 PMCID: PMC6775532 DOI: 10.7150/jca.32650] [Citation(s) in RCA: 50] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2018] [Accepted: 07/06/2019] [Indexed: 12/31/2022] Open
Abstract
Bacterial-mediated cancer therapy (BMCT) has become a hot topic in the area of antitumor treatment. Salmonella has been recommended to specifically colonize and proliferate inside tumors and even inhibit tumor growth. Salmonella typhimurium (S. typhimurium) is one of the most promising mediators, which can be easily manipulated. S. typhimurium has been engineered and designed as cancer-targeting therapeutics, and can be improved by combining with other therapeutic methods, e.g. chemotherapy and radiotherapy, which regulate the tumor microenvironment synergistically. In view of all these strengths, the engineered attenuated strains have significant advantages for tumor diagnosis and treatment. This treatment has also been approved by the FDA for clinical trial. In this review, we summarized the recent progress and research in the field of Salmonella -mediated cancer therapy.
Collapse
Affiliation(s)
- Ze Mi
- Department of Radiology, The Third Xiangya Hospital, Central South University, Changsha, Hunan 410013, China
| | - Zhi-Chao Feng
- Department of Radiology, The Third Xiangya Hospital, Central South University, Changsha, Hunan 410013, China
| | - Cheng Li
- Department of Radiology, The Third Xiangya Hospital, Central South University, Changsha, Hunan 410013, China
| | - Xiao Yang
- Department of Radiology, The Third Xiangya Hospital, Central South University, Changsha, Hunan 410013, China
| | - Meng-Tian Ma
- Department of Radiology, The Third Xiangya Hospital, Central South University, Changsha, Hunan 410013, China
| | - Peng-Fei Rong
- Department of Radiology, The Third Xiangya Hospital, Central South University, Changsha, Hunan 410013, China
| |
Collapse
|
75
|
Bugs as Cancer Drugs: Challenges and Opportunities. Mol Cell Biol 2019; 39:MCB.00206-19. [PMID: 31085684 DOI: 10.1128/mcb.00206-19] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The first nonsurgical cancer therapy was bacterial therapy introduced in 1891 to treat solid tumors. Because in many cases it was harmful and ineffective, and with the emergence of radiotherapy and chemotherapy, bacterial therapy was discontinued. Motivated by the need to improve targeting of solid tumors and in light of recent progress made in developing microbial therapies, the National Cancer Institute has for the first time issued funding opportunities to stimulate research on bacterium-based cancer therapies for conditions under which current cancer therapies are inadequate.
Collapse
|
76
|
Pangilinan CR, Lee CH. Salmonella-Based Targeted Cancer Therapy: Updates on A Promising and Innovative Tumor Immunotherapeutic Strategy. Biomedicines 2019; 7:biomedicines7020036. [PMID: 31052558 PMCID: PMC6630963 DOI: 10.3390/biomedicines7020036] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2019] [Revised: 04/25/2019] [Accepted: 04/29/2019] [Indexed: 12/27/2022] Open
Abstract
Presently, cancer is one of the leading causes of death in the world, primarily due to tumor heterogeneity associated with high-grade malignancy. Tumor heterogeneity poses a tremendous challenge, especially with the emergence of resistance not only to chemo- and radiation- therapies, but also to immunotherapy using monoclonal antibodies. The use of Salmonella, as a highly selective and penetrative antitumor agent, has shown convincing results, thus meriting further investigation. In this review, the mechanisms used by Salmonella in combating cancer are carefully explained. In essence, Salmonella overcomes the suppressive nature of the tumor microenvironment and coaxes the activation of tumor-specific immune cells to induce cell death by apoptosis and autophagy. Furthermore, Salmonella treatment suppresses tumor aggressive behavior via inhibition of angiogenesis and delay of metastatic activity. Thus, harnessing the natural potential of Salmonella in eliminating tumors will provide an avenue for the development of a promising micro-based therapeutic agent that could be further enhanced to address a wide range of tumor types.
Collapse
Affiliation(s)
| | - Che-Hsin Lee
- Department of Biological Sciences, National Sun Yat-sen University, Kaohsiung 80424, Taiwan.
- Department of Medical Research, China Medical University Hospital, China Medical University, Taichung 404, Taiwan.
| |
Collapse
|
77
|
Liang K, Liu Q, Li P, Luo H, Wang H, Kong Q. Genetically engineered Salmonella Typhimurium: Recent advances in cancer therapy. Cancer Lett 2019; 448:168-181. [PMID: 30753837 DOI: 10.1016/j.canlet.2019.01.037] [Citation(s) in RCA: 88] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2018] [Revised: 01/27/2019] [Accepted: 01/30/2019] [Indexed: 12/13/2022]
Abstract
Bacteria have been investigated as anti-tumor therapeutic agents for more than a century, since Coley first observed successful curing of a patient with inoperable cancer by injection of streptococcal organisms. Previous studies have demonstrated that some obligate or facultative anaerobes can selectively accumulate and proliferate within tumors and suppress their growth. Developments in molecular biology as well as the complete genome sequencing of many bacterial species have increased the applicability of bacterial organisms for cancer treatment. In particular, the facultative anaerobe Salmonella Typhimurium has been widely studied and genetically engineered to improve its tumor-targeting ability as well as to reduce bacterial virulence. Moreover, the effectiveness of engineered attenuated S. Typhimurium strains employed as live delivery vectors of various anti-tumor therapeutic agents or combined with other therapies has been evaluated in a large number of animal experiments. The well-known S. Typhimurium mutant VNP20009 and its derivative strain TAPET-CD have even been applied in human clinical trials. However, Salmonella-mediated cancer therapies have not achieved the expected success, except in animal experiments. Many problems remain to be solved to exploit more promising strategies for combatting cancer with Salmonella bacteria. Here, we summarize the promising studies regarding cancer therapy mediated by Salmonella bacteria and highlight the main mechanisms of Salmonella anti-tumor activities.
Collapse
Affiliation(s)
- Kang Liang
- College of Animal Science and Technology, Southwest University, Chongqing, 400715, China
| | - Qing Liu
- College of Animal Science and Technology, Southwest University, Chongqing, 400715, China
| | - Pei Li
- College of Animal Science and Technology, Southwest University, Chongqing, 400715, China
| | - Hongyan Luo
- College of Animal Science and Technology, Southwest University, Chongqing, 400715, China
| | - Haoju Wang
- College of Animal Science and Technology, Southwest University, Chongqing, 400715, China
| | - Qingke Kong
- College of Animal Science and Technology, Southwest University, Chongqing, 400715, China; Department of Infectious Diseases and Immunology, University of Florida, Gainesville, FL, 32608, USA.
| |
Collapse
|
78
|
Gwee CP, Khoo CH, Yeap SK, Tan GC, Cheah YK. Targeted inactivation of Salmonella Agona metabolic genes by group II introns and in vivo assessment of pathogenicity and anti-tumour activity in mouse model. PeerJ 2019; 7:e5989. [PMID: 30671294 PMCID: PMC6339473 DOI: 10.7717/peerj.5989] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2018] [Accepted: 10/22/2018] [Indexed: 12/13/2022] Open
Abstract
The fight against cancer has been a never-ending battle. Limitations of conventional therapies include lack of selectivity, poor penetration and highly toxic to the host. Using genetically modified bacteria as a tumour therapy agent has gained the interest of scientist from the past few decades. Low virulence and highly tolerability of Salmonella spp. in animals and humans make it as the most studied pathogen with regards to anti-tumour therapy. The present study aims to construct a genetically modified S. Agona auxotroph as an anti-tumour agent. LeuB and ArgD metabolic genes in ΔSopBΔSopD double knockout S. Agona were successfully knocked out using a Targetron gene knockout system. The knockout was confirmed by colony PCR and the strains were characterized in vitro and in vivo. The knockout of metabolic genes causes significant growth defect in M9 minimal media. Quadruple knockout ΔSopBΔSopDΔLeuBΔArgD (BDLA) exhibited lowest virulence among all of the strains in all parameters including bacterial load, immunity profile and histopathology studies. In vivo anti-tumour study on colorectal tumour bearing-BALB/c mice revealed that all strains of S. Agona were able to suppress the growth of the large solid tumour as compared with negative control and ΔLeuBΔArgD (LA) and BDLA auxotroph showed better efficacy. Interestingly, higher level of tumour growth suppression was noticed in large tumour. However, multiple administration of bacteria dosage did not increase the tumour suppression efficacy. In this study, the virulence of BDLA knockout strain was slightly reduced and tumour growth suppression efficacy was successfully enhanced, which provide a valuable starting point for the development of S. Agona as anti-tumour agent.
Collapse
Affiliation(s)
- Chin Piaw Gwee
- Department of Biomedical Science, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, Serdang, Selangor, Malaysia
| | - Chai Hoon Khoo
- Department of Biomedical Science, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, Serdang, Selangor, Malaysia
| | - Swee Keong Yeap
- China-ASEAN College of Marine Sciences, Xiamen University Malaysia, Selangor, Malaysia
| | - Geok Chin Tan
- Department of Pathology, Faculty of Medicine, Universiti Kebangsaan Malaysia, Cheras, Kuala Lumpur, Malaysia
| | - Yoke Kqueen Cheah
- Department of Biomedical Science, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, Serdang, Selangor, Malaysia
| |
Collapse
|
79
|
Abstract
Recent advances in targeted therapy and immunotherapy have once again raised the hope that a cure might be within reach for many cancer types. Yet, most late-stage cancers are either insensitive to the therapies to begin with or develop resistance later. Therapy with live tumour-targeting bacteria provides a unique option to meet these challenges. Compared with most other therapeutics, the effectiveness of tumour-targeting bacteria is not directly affected by the 'genetic makeup' of a tumour. Bacteria initiate their direct antitumour effects from deep within the tumour, followed by innate and adaptive antitumour immune responses. As microscopic 'robotic factories', bacterial vectors can be reprogrammed following simple genetic rules or sophisticated synthetic bioengineering principles to produce and deliver anticancer agents on the basis of clinical needs. Therapeutic approaches using live tumour-targeting bacteria can either be applied as a monotherapy or complement other anticancer therapies to achieve better clinical outcomes. In this Review, we summarize the potential benefits and challenges of this approach. We discuss how live bacteria selectively induce tumour regression and provide examples to illustrate different ways to engineer bacteria for improved safety and efficacy. Finally, we share our experience and insights on oncology clinical trials with tumour-targeting bacteria, including a discussion of the regulatory issues.
Collapse
Affiliation(s)
- Shibin Zhou
- Ludwig Center for Cancer Genetics and Therapeutics, Sidney Kimmel Comprehensive Cancer Center, The Johns Hopkins University School of Medicine, Baltimore, MD, USA.
| | - Claudia Gravekamp
- Department of Microbiology and Immunology, Albert Einstein College of Medicine, Bronx, NY, USA
| | - David Bermudes
- Department of Biology, California State University, Northridge, CA, USA
| | - Ke Liu
- Oncology Branch, Division of Clinical Evaluation, Pharmacology and Toxicology; Office of Tissues and Advanced Therapies, CBER, FDA, Silver Spring, MD, USA
| |
Collapse
|
80
|
Endostatin gene therapy delivered by attenuated Salmonella typhimurium in murine tumor models. Cancer Gene Ther 2018; 25:167-183. [DOI: 10.1038/s41417-018-0021-6] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2018] [Accepted: 03/06/2018] [Indexed: 02/06/2023]
|
81
|
Song J, Zhang Y, Zhang C, Du X, Guo Z, Kuang Y, Wang Y, Wu P, Zou K, Zou L, Lv J, Wang Q. A microfluidic device for studying chemotaxis mechanism of bacterial cancer targeting. Sci Rep 2018; 8:6394. [PMID: 29686328 PMCID: PMC5913277 DOI: 10.1038/s41598-018-24748-7] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2017] [Accepted: 04/10/2018] [Indexed: 02/05/2023] Open
Abstract
Bacterial cancer targeting may become an efficacious cancer therapy, but the mechanisms underlying bacterial specificity for cancer cells need to be explored prior to adopting it as a new clinical application. To characterize the mechanism of bacterial chemotactic preference towards cancer cells, we developed a microfluidic device for in vitro study. The device consists of a cell culture chamber on both sides of a central bacteria channel, with micro-channels used as barriers between them. The device, when used as model for lung cancer, was able to provide simultaneous three-dimensional co-culture of multiple cell lines in separate culture chambers, and when used as model for bacterial chemotaxis, established constant concentration gradients of biochemical compounds in a central channel by diffusion through micro-channels. Fluorescence intensity of green fluorescence protein (GFP)-encoding bacteria was used to measure bacterial taxis behavior due to established chemotactic gradients. Using this platform, we found that Escherichia coli (E. coli) clearly illustrated the preference for lung cancer cells (NCI-H460) which was attributed to biochemical factors secreted by carcinoma cells. Furthermore, by secretome analysis and validation experiments, clusterin (CLU) was found as a key regulator for the chemotaxis of E. coli in targeting lung cancer.
Collapse
Affiliation(s)
- Jing Song
- Department of Respiratory Medicine, The Second Hospital, Dalian Medical University, Dalian, China
| | - Yu Zhang
- Department of Radiotherapy, The Second Hospital, Dalian Medical University, Dalian, China
| | - Chengqian Zhang
- Laboratory of Protein and Peptide Pharmaceuticals and Laboratory of Proteomics, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Xiaohui Du
- Department of Scientific Research Center, The Second Hospital, Dalian Medical University, Dalian, China
| | - Zhe Guo
- Department of Respiratory Medicine, The Second Hospital, Dalian Medical University, Dalian, China
- Department of Respiratory Medicine, The first Affiliated Hospital of Shantou University Medical College, Shantou, China
| | - Yanbin Kuang
- Department of Respiratory Medicine, The Second Hospital, Dalian Medical University, Dalian, China
| | - Yingyan Wang
- Laboratory Center for Diagnostics, Dalian Medical University, Dalian, China
| | - Peng Wu
- Laboratory of Protein and Peptide Pharmaceuticals and Laboratory of Proteomics, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China
| | - Kun Zou
- Department of Radiotherapy, The First Hospital, Dalian Medical University, Dalian, China
| | - Lijuan Zou
- Department of Radiotherapy, The Second Hospital, Dalian Medical University, Dalian, China.
| | - Jianxin Lv
- Key Laboratory of Medical Genetics, Wenzhou Medical University, Wenzhou, China.
| | - Qi Wang
- Department of Respiratory Medicine, The Second Hospital, Dalian Medical University, Dalian, China.
| |
Collapse
|
82
|
In situ biomolecule production by bacteria; a synthetic biology approach to medicine. J Control Release 2018; 275:217-228. [DOI: 10.1016/j.jconrel.2018.02.023] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2017] [Revised: 02/14/2018] [Accepted: 02/15/2018] [Indexed: 02/06/2023]
|
83
|
Flentie K, Gonzalez C, Kocher B, Wang Y, Zhu H, Marasa J, Piwnica-Worms D. Nucleoside Diphosphate Kinase-3 ( NME3) Enhances TLR5-Induced NF κB Activation. Mol Cancer Res 2018. [PMID: 29523766 DOI: 10.1158/1541-7786.mcr-17-0603] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Bacterial flagellin is a potent activator of NFκB signaling, inflammation, and host innate immunity, and recent data indicate that flagellin represents a novel antitumor ligand acting through toll-like receptor 5 (TLR5) and the NFκB pathway to induce host immunity and aid in the clearance of tumor xenografts. To identify innate signaling components of TLR5 responsible for these antitumor effects, a loss-of-function high-throughput screen was employed utilizing carcinoma cells expressing a dynamic NFκB bioluminescent reporter stimulated by Salmonella typhimurium expressing flagellin. A live cell screen of a siRNA library targeting 691 known and predicted human kinases to identify novel tumor cell modulators of TLR5-induced NFκB activation uncovered several interesting positive and negative candidate regulators not previously recognized, including nucleoside diphosphate kinase 3 (NME3), characterized as an enhancer of signaling responses to flagellin. Targeted knockdown and overexpression assays confirmed the regulatory contribution of NME3 to TLR5-mediated NFκB signaling, mechanistically downstream of MyD88. Furthermore, Kaplan-Meier survival analysis showed that NME3 expression correlated highly with TLR5 expression in breast, lung, ovarian, and gastric cancers, and furthermore, high-level expression of NME3 increased overall survival for patients with breast, lung, and ovarian cancer, but the opposite in gastric cancer. Together, these data identify a previously unrecognized proinflammatory role for NME3 in signaling downstream of TLR5 that may potentiate cancer immunotherapies.Implications: Proinflammatory signaling mediated by innate immunity engagement of flagellin-activated TLR5 in tumor cells results in antitumor effects through NME3 kinase, a positive downstream regulator of flagellin-mediated NFκB signaling, enhancing survival for several human cancers. Mol Cancer Res; 16(6); 986-99. ©2018 AACR.
Collapse
Affiliation(s)
- Kelly Flentie
- Mallinckrodt Institute of Radiology, Washington University School of Medicine, St. Louis, Missouri
| | - Caleb Gonzalez
- Department of Cancer Systems Imaging, University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Brandon Kocher
- Mallinckrodt Institute of Radiology, Washington University School of Medicine, St. Louis, Missouri
| | - Yue Wang
- Department of Biostatistics, University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Hongtu Zhu
- Department of Biostatistics, University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Jayne Marasa
- Mallinckrodt Institute of Radiology, Washington University School of Medicine, St. Louis, Missouri
| | - David Piwnica-Worms
- Department of Cancer Systems Imaging, University of Texas MD Anderson Cancer Center, Houston, Texas.
| |
Collapse
|
84
|
Yang M, Xu J, Wang Q, Zhang AQ, Wang K. An obligatory anaerobic Salmonella typhimurium strain redirects M2 macrophages to the M1 phenotype. Oncol Lett 2018; 15:3918-3922. [PMID: 29456740 DOI: 10.3892/ol.2018.7742] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2016] [Accepted: 11/20/2017] [Indexed: 12/15/2022] Open
Abstract
A genetically engineered Salmonella typhimurium strain that may be applied in the medically useful therapeutic strategy of using bacterial agents to target breast cancer in a tumor-bearing nude mouse model has been previously reported. Furthermore, immune cell accumulation in breast tumor types has been observed, particularly distributed in regions surrounding the bacteria. M2 macrophages are associated with breast cancer aggressiveness, whereas M1 macrophages are prone to devouring bacteria and killing cancer cells. Therefore, this engineered tumor-targeting salmonella strain was used in an attempt to reverse the phenotype of M2 macrophages into the M1 phenotype. Subsequent to the co-culture of M2 macrophages with the bacteria for a short time, >50% of the M2 macrophages were invaded by bacteria. These M2 macrophages exhibited a decreased expression of mannose receptor (an M2 phenotypic marker) and increased expression of human leukocyte antigen-antigen D related (an M1 phenotypic marker). The results of the present study indicated that differentiated M2 macrophages may be redirected into the M1 phenotype following exposure to the engineered bacteria stimulus. This effect may be a potential mechanism by which bacteria retard tumor growth. Thus, this engineered bacterium may be a useful candidate for targeting and redirecting M2 macrophages into the M1 phenotype.
Collapse
Affiliation(s)
- Mei Yang
- Department of Breast Cancer, Cancer Center, Guangdong General Hospital, Guangdong Academy of Medical Sciences, Guangzhou, Guangdong 510080, P.R. China.,Department of Breast Cancer, Guangdong Women and Children's Hospital, Guangzhou, Guangdong 511400, P.R. China.,Department of General Surgery, General Hospital of Guangzhou Military Command of People's Liberation Army, Guangzhou, Guangdong 510010, P.R. China
| | - Juan Xu
- Department of Breast Cancer, Guangdong Women and Children's Hospital, Guangzhou, Guangdong 511400, P.R. China
| | - Qi Wang
- Department of Breast Cancer, Guangdong Women and Children's Hospital, Guangzhou, Guangdong 511400, P.R. China
| | - An-Qin Zhang
- Department of Breast Cancer, Guangdong Women and Children's Hospital, Guangzhou, Guangdong 511400, P.R. China
| | - Kun Wang
- Department of Breast Cancer, Cancer Center, Guangdong General Hospital, Guangdong Academy of Medical Sciences, Guangzhou, Guangdong 510080, P.R. China
| |
Collapse
|
85
|
Margheri G, Zoppi A, Olmi R, Trigari S, Traversi R, Severi M, Bani D, Bianchini F, Torre E, Margheri F, Chillà A, Biagioni A, Calorini L, Laurenzana A, Fibbi G, Del Rosso M. Tumor-tropic endothelial colony forming cells (ECFCs) loaded with near-infrared sensitive Au nanoparticles: A "cellular stove" approach to the photoablation of melanoma. Oncotarget 2018; 7:39846-39860. [PMID: 27223433 PMCID: PMC5129975 DOI: 10.18632/oncotarget.9511] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2016] [Accepted: 05/08/2016] [Indexed: 12/19/2022] Open
Abstract
In the photothermal treatments (PTs) of tumor, the localization of a high number of near-infrared (NIR) absorbing gold nanoparticles in the tumor mass is still a challenging issue. Here, we propose a promising strategy to deliver therapeutic chitosan-coated gold nanoparticles to tumor cells as hidden cargo of Endothelial Colony Forming Cells (ECFCs) endowed with an innate tumor-tropism. Remarkably, ECFC gold enrichement doesn't affect cell viability and preserves the endothelial lineage characteristics such as capillary morphogenesis and cell migration. We demonstrate that heavily Au-doped ECFCs are able to efficiently warm up the tumor environment, and kill the cancer cells via hyperthermic heating both in vitro as well as in vivo. Thus, we show an excellent thermotransductive property of gold enriched ECFCs and their capability to kill melanoma cells at moderate NIR light intensities.
Collapse
Affiliation(s)
- Giancarlo Margheri
- Institute for Complex Systems, National Research Council, Sesto Fiorentino, Italy
| | - Angela Zoppi
- Department of Physics "Enrico Fermi", University of Pisa, Italy.,Present address: Plasmatech, Department of Physics "Enrico Fermi", University of Pisa, Pisa, Italy
| | - Roberto Olmi
- Institute of Applied Physics "Nello Carrara", National Research Council, Sesto Fiorentino, Italy
| | - Silvana Trigari
- Institute for Complex Systems, National Research Council, Sesto Fiorentino, Italy
| | - Rita Traversi
- Department of Chemistry "Ugo Schiff", University of Florence, Sesto Fiorentino, Italy
| | - Mirko Severi
- Department of Chemistry "Ugo Schiff", University of Florence, Sesto Fiorentino, Italy
| | - Daniele Bani
- Department of Clinical and Experimental Medicine, University of Florence, Florence, Italy
| | - Francesca Bianchini
- Department of Experimental and Clinical Biomedical Science, University of Florence, Florence, Italy
| | - Eugenio Torre
- Department of Experimental and Clinical Biomedical Science, University of Florence, Florence, Italy
| | - Francesca Margheri
- Department of Experimental and Clinical Biomedical Science, University of Florence, Florence, Italy
| | - Anastasia Chillà
- Department of Experimental and Clinical Biomedical Science, University of Florence, Florence, Italy
| | - Alessio Biagioni
- Department of Experimental and Clinical Biomedical Science, University of Florence, Florence, Italy
| | - Lido Calorini
- Department of Experimental and Clinical Biomedical Science, University of Florence, Florence, Italy.,Excellence Center for Research, Transfer and High Education 'Study at Molecular and Clinical Level of Chronic, Inflammatory, Degenerative and Neoplastic Disorders for the Development on Novel Therapies', Florence, Italy
| | - Anna Laurenzana
- Department of Experimental and Clinical Biomedical Science, University of Florence, Florence, Italy
| | - Gabriella Fibbi
- Department of Experimental and Clinical Biomedical Science, University of Florence, Florence, Italy
| | - Mario Del Rosso
- Department of Experimental and Clinical Biomedical Science, University of Florence, Florence, Italy.,Excellence Center for Research, Transfer and High Education 'Study at Molecular and Clinical Level of Chronic, Inflammatory, Degenerative and Neoplastic Disorders for the Development on Novel Therapies', Florence, Italy
| |
Collapse
|
86
|
Kocijancic D, Felgner S, Frahm M, Komoll RM, Iljazovic A, Pawar V, Rohde M, Heise U, Zimmermann K, Gunzer F, Hammer J, Crull K, Leschner S, Weiss S. Therapy of solid tumors using probiotic Symbioflor-2: restraints and potential. Oncotarget 2017; 7:22605-22. [PMID: 26981777 PMCID: PMC5008385 DOI: 10.18632/oncotarget.8027] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2016] [Accepted: 02/25/2016] [Indexed: 12/11/2022] Open
Abstract
To date, virulent bacteria remain the basis of most bacteria mediated cancer therapies. For clinical application attenuation is required. However, this might result in a drastically lowered therapeutic capacity. Herein we argue that the E. coli probiotic Symbioflor-2, with a history of safe application may constitute a viable tumor therapeutic candidate. We demonstrate that Symbioflor-2 displays a highly specific tumor targeting ability as determined in murine CT26 and RenCa tumor models. The excellent specificity was ascribed to reduced levels of adverse colonization. A high safety standard was demonstrated in WT and Rag1−/− mice. Thus, Symbioflor-2 may represent an ideal tumor targeting delivery system for therapeutic molecules. Moreover, Symbioflor-2 was capable of inducing CT26 tumor clearance as result of an adjuvant effect on tumor specific CD8+ T cells analogous to the Salmonella variant SL7207. However, lower therapeutic efficacy against RenCa tumors suggested a generally reduced therapeutic potency for probiotics. Interestingly, concurrent depletion of Gr-1+ or Ly6G+ cells installed therapeutic efficacy equal to SL7207, thus highlighting the role of innate effector cells in restraining the anti-tumor effects of Symbioflor-2. Collectively, our findings argue for a strategy of safe strain application and a more sustainable use of bacteria as a delivery system for therapeutic molecules.
Collapse
Affiliation(s)
- Dino Kocijancic
- Department of Molecular Immunology, Helmholtz Centre for Infection Research, Braunschweig, Germany
| | - Sebastian Felgner
- Department of Molecular Immunology, Helmholtz Centre for Infection Research, Braunschweig, Germany
| | - Michael Frahm
- Department of Molecular Immunology, Helmholtz Centre for Infection Research, Braunschweig, Germany
| | - Ronja-Melinda Komoll
- Department of Molecular Immunology, Helmholtz Centre for Infection Research, Braunschweig, Germany
| | - Aida Iljazovic
- Department of Molecular Immunology, Helmholtz Centre for Infection Research, Braunschweig, Germany
| | - Vinay Pawar
- Department of Molecular Immunology, Helmholtz Centre for Infection Research, Braunschweig, Germany
| | - Manfred Rohde
- Central Facility for Microscopy, Helmholtz Centre for Infection Research, Braunschweig, Germany
| | - Ulrike Heise
- Mouse-Pathology Service Unit, Helmholtz Centre for Infection Research, Braunschweig, Germany
| | | | - Florian Gunzer
- Institute of Medical Microbiology and Hygiene, Dresden University of Technology, Dresden, Germany
| | - Juliane Hammer
- Department of Molecular Immunology, Helmholtz Centre for Infection Research, Braunschweig, Germany
| | - Katja Crull
- Department of Molecular Immunology, Helmholtz Centre for Infection Research, Braunschweig, Germany
| | - Sara Leschner
- Department of Molecular Immunology, Helmholtz Centre for Infection Research, Braunschweig, Germany
| | - Siegfried Weiss
- Department of Molecular Immunology, Helmholtz Centre for Infection Research, Braunschweig, Germany.,Institute of Immunology, Medical School Hannover, Hannover, Germany
| |
Collapse
|
87
|
Chien T, Doshi A, Danino T. Advances in bacterial cancer therapies using synthetic biology. CURRENT OPINION IN SYSTEMS BIOLOGY 2017; 5:1-8. [PMID: 29881788 PMCID: PMC5986102 DOI: 10.1016/j.coisb.2017.05.009] [Citation(s) in RCA: 60] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
Synthetic biology aims to apply engineering principles to biology by modulating the behavior of living organisms. An emerging application of this field is the engineering of bacteria as a cancer therapy by the programming of therapeutic, safety, and specificity features through genetic modification. Here, we review progress in this engineering including the targeting of bacteria to tumors, specific sensing and response to tumor microenvironments, remote induction methods, and controllable release of therapeutics. We discuss the most prominent bacteria strains used and their specific properties and the types of therapeutics tested thus far. Finally, we note current challenges, such as genetic stability, that researchers must address for successful clinical implementation of this novel therapy in humans.
Collapse
Affiliation(s)
- Tiffany Chien
- Department of Biomedical Engineering, Columbia University, New York, NY 10027, USA
| | - Anjali Doshi
- Department of Biomedical Engineering, Columbia University, New York, NY 10027, USA
| | - Tal Danino
- Department of Biomedical Engineering, Columbia University, New York, NY 10027, USA
- Data Science Institute, Columbia University, New York, NY 10027, USA
- Herbert Irving Comprehensive Cancer Center, Columbia University, New York, NY 10027, USA
| |
Collapse
|
88
|
Bifidobacterium breve as a delivery vector of IL-24 gene therapy for head and neck squamous cell carcinoma in vivo. Gene Ther 2017; 24:699-705. [DOI: 10.1038/gt.2017.74] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2017] [Revised: 06/05/2017] [Accepted: 07/27/2017] [Indexed: 12/17/2022]
|
89
|
Zhao Q, Qu X, Liu K, Shi H, Yang G, Zhou B, Zhu L, Zhang W, Yan Z, Liu R, Qian S, Wang J. Microwave ablation combined with attenuated Salmonella typhimurium for treating hepatocellular carcinoma in a rat model. Oncotarget 2017; 8:47655-47664. [PMID: 28498813 PMCID: PMC5564595 DOI: 10.18632/oncotarget.17468] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2016] [Accepted: 04/11/2017] [Indexed: 11/25/2022] Open
Abstract
We aim to investigate the safety and efficacy of microwave ablation (MWA) combined with attenuated Salmonella typhimurium strain VNP20009 in treating hepatocellular carcinoma. Portions of tumor tissues were orthotopically implanted in the livers of 40 male rats weighed 150~200 g to establish tumor models. Three weeks later, the rats were randomly divided into four groups: (A) MWA plus VNP20009 group; (B) MWA group; (C) VNP20009 group; and (D) control group. Incomplete MWA was performed (20~30 W, 1~2 min) after the hepatic carcinoma was properly exposed. VNP20009 (about 1×107 cfu) was directly injected into the tumor immediately. MRI scans were performed to assess the tumor responses 7 and 14 days later, respectively. Micro CT was used to observe the lung metastases. After the animals were sacrificed or died, the tumors were cut off for the purpose of pathological and immunohistochemical analyses. The results showed that the mean tumor volumes of MWA plus VNP20009 group on the 7th and 14th day post treatment were obviously smaller than those of other groups (P < 0.05). Lung metastases rates were 20%, 60%, 30% and 100% in MWA plus VNP20009 group, MWA group, VNP20009 group and control group, respectively. The median survival of the rats in MWA plus VNP20009 group was distinctly longer than those in other groups (P < 0.05). In summary, MWA combined with VNP20009 produced better effects than MWA or VNP20009 alone in treating hepatic carcinoma. This strategy might have potential ability to decrease lung metastases and prolong the overall survival.
Collapse
Affiliation(s)
- Qing Zhao
- Department of Interventional Radiology, Zhongshan Hospital, Fudan University, Shanghai, 200032, China
| | - Xudong Qu
- Department of Interventional Radiology, Zhongshan Hospital, Fudan University, Shanghai, 200032, China.,Shanghai Institute of Medical Imaging, Shanghai, 200032, China
| | - Kai Liu
- Department of Radiology, Zhongshan Hospital, Fudan University, Shanghai, 200032, China
| | - Huibin Shi
- Department of Interventional Radiology, Zhongshan Hospital, Fudan University, Shanghai, 200032, China.,Shanghai Institute of Medical Imaging, Shanghai, 200032, China
| | - Guowei Yang
- Department of Interventional Radiology, Zhongshan Hospital, Fudan University, Shanghai, 200032, China.,Shanghai Institute of Medical Imaging, Shanghai, 200032, China
| | - Bo Zhou
- Department of Interventional Radiology, Zhongshan Hospital, Fudan University, Shanghai, 200032, China.,Shanghai Institute of Medical Imaging, Shanghai, 200032, China
| | - Liang Zhu
- Department of Interventional Radiology, Zhongshan Hospital, Fudan University, Shanghai, 200032, China.,Shanghai Institute of Medical Imaging, Shanghai, 200032, China
| | - Wei Zhang
- Department of Interventional Radiology, Zhongshan Hospital, Fudan University, Shanghai, 200032, China.,Shanghai Institute of Medical Imaging, Shanghai, 200032, China
| | - Zhiping Yan
- Department of Interventional Radiology, Zhongshan Hospital, Fudan University, Shanghai, 200032, China.,Shanghai Institute of Medical Imaging, Shanghai, 200032, China
| | - Rong Liu
- Department of Interventional Radiology, Zhongshan Hospital, Fudan University, Shanghai, 200032, China.,Shanghai Institute of Medical Imaging, Shanghai, 200032, China
| | - Sheng Qian
- Department of Interventional Radiology, Zhongshan Hospital, Fudan University, Shanghai, 200032, China.,Shanghai Institute of Medical Imaging, Shanghai, 200032, China
| | - Jianhua Wang
- Department of Interventional Radiology, Zhongshan Hospital, Fudan University, Shanghai, 200032, China.,Shanghai Institute of Medical Imaging, Shanghai, 200032, China
| |
Collapse
|
90
|
Ning BT, Yu B, Chan S, Chan JL, Huang JD, Chan GCF. Treatment of Neuroblastoma with an Engineered "Obligate" Anaerobic Salmonella typhimurium Strain YB1. J Cancer 2017; 8:1609-1618. [PMID: 28775780 PMCID: PMC5535716 DOI: 10.7150/jca.18776] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2016] [Accepted: 02/27/2017] [Indexed: 12/13/2022] Open
Abstract
Purpose Neuroblastoma is an embryonic solid tumor derived from the progenitors of the sympathetic nervous system. More than half of the patients developed metastatic disease at the time of initial diagnosis and had poor outcome with current therapeutic approaches. In recent years, some obligate and facultative anaerobic bacteria were reported to target the hypoxic and necrotic region of solid tumor models and caused tumor regression. We recently successfully constructed an "obligate" anaerobic Salmonella strain YB1 that was applied in breast cancer nude mice model by us. Here, we report the application of YB1 in neuroblastoma treatment. Methods The anti-cancer effect and side-effects of YB1 was examined in both in vitro and in vivo experiment. Previous established orthotopic neuroblastoma SCID/beige murine model using SK-NLP/luciferase cell line was adopted. ResultsIn vitro, YB1 induced apoptosis for up to 31.4% of the neuroblastoma cells under anaerobic condition, three times more than that under aerobic condition (10.9%). The expression of both Toll like Receptor 4 and 5 (TLR4 and TLR5) in cancer cells were significantly up-regulated (p<0.05, p<0.01 respectively) after the treatment of YB1 under anaerobic condition. In mouse model, YB1 preferentially accumulated inside the core of the tumors, rather than in normal tissues as our previous reported. This is suggestive of the hypoxic nature of tumor core. Tumor growth was significantly retarded in YB1 treatment group (n=6, P<0.01). Furthermore, there was no long-term organ damage noted in all the organs examined including heart, lung, liver, spleen and brain in the YB1 treated mice. Conclusion The genetic modified Salmonella strain YB1 is a promising anti-tumor strategy against the tumor bulk for neuroblastoma. Future study can be extended to other common cancer types to verify the relative efficacy on different neoplastic cells.
Collapse
Affiliation(s)
- Bo-Tao Ning
- Pediatric Intensive Care Unit, Shanghai Children's medical Center affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, PR China.,Department of Peadiatrics & Adolescent, Queen Mary Hospital, LKS Faculty of Medicine, the University of Hong Kong, Pokfulam, Hong Kong SAR, PR China
| | - Bin Yu
- Department of Biochemistry, LKS Faculty of Medicine, the University of Hong Kong, Pokfulam, Hong Kong SAR, PR China
| | - Shing Chan
- Department of Peadiatrics & Adolescent, Queen Mary Hospital, LKS Faculty of Medicine, the University of Hong Kong, Pokfulam, Hong Kong SAR, PR China
| | - Jian-Liang Chan
- Department of Peadiatrics & Adolescent, Queen Mary Hospital, LKS Faculty of Medicine, the University of Hong Kong, Pokfulam, Hong Kong SAR, PR China
| | - Jian-Dong Huang
- Department of Biochemistry, LKS Faculty of Medicine, the University of Hong Kong, Pokfulam, Hong Kong SAR, PR China
| | - Godfrey Chi-Fung Chan
- Department of Peadiatrics & Adolescent, Queen Mary Hospital, LKS Faculty of Medicine, the University of Hong Kong, Pokfulam, Hong Kong SAR, PR China.,Center of Cancer Research, LKS Faculty of Medicine, the University of Hong Kong, Pokfulam, Hong Kong SAR, PR China
| |
Collapse
|
91
|
Abstract
Physiological characteristics of diseases bring about both challenges and opportunities for targeted drug delivery. Various drug delivery platforms have been devised ranging from macro- to micro- and further into the nanoscopic scale in the past decades. Recently, the favorable physicochemical properties of nanomaterials, including long circulation, robust tissue and cell penetration attract broad interest, leading to extensive studies for therapeutic benefits. Accumulated knowledge about the physiological barriers that affect the in vivo fate of nanomedicine has led to more rational guidelines for tailoring the nanocarriers, such as size, shape, charge, and surface ligands. Meanwhile, progresses in material chemistry and molecular pharmaceutics generate a panel of physiological stimuli-responsive modules that are equipped into the formulations to prepare “smart” drug delivery systems. The capability of harnessing physiological traits of diseased tissues to control the accumulation of or drug release from nanomedicine has further improved the controlled drug release profiles with a precise manner. Successful clinical translation of a few nano-formulations has excited the collaborative efforts from the research community, pharmaceutical industry, and the public towards a promising future of smart drug delivery.
Collapse
Affiliation(s)
- Wujin Sun
- Joint Department of Biomedical Engineering, University of North Carolina at Chapel Hill and North Carolina State University, Raleigh, North Carolina; Division of Molecular Pharmaceutics and Center for Nanotechnology in Drug Delivery, Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina; and Department of Medicine, University of North Carolina School of Medicine, Chapel Hill, North Carolina
| | - Quanyin Hu
- Joint Department of Biomedical Engineering, University of North Carolina at Chapel Hill and North Carolina State University, Raleigh, North Carolina; Division of Molecular Pharmaceutics and Center for Nanotechnology in Drug Delivery, Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina; and Department of Medicine, University of North Carolina School of Medicine, Chapel Hill, North Carolina
| | - Wenyan Ji
- Joint Department of Biomedical Engineering, University of North Carolina at Chapel Hill and North Carolina State University, Raleigh, North Carolina; Division of Molecular Pharmaceutics and Center for Nanotechnology in Drug Delivery, Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina; and Department of Medicine, University of North Carolina School of Medicine, Chapel Hill, North Carolina
| | - Grace Wright
- Joint Department of Biomedical Engineering, University of North Carolina at Chapel Hill and North Carolina State University, Raleigh, North Carolina; Division of Molecular Pharmaceutics and Center for Nanotechnology in Drug Delivery, Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina; and Department of Medicine, University of North Carolina School of Medicine, Chapel Hill, North Carolina
| | - Zhen Gu
- Joint Department of Biomedical Engineering, University of North Carolina at Chapel Hill and North Carolina State University, Raleigh, North Carolina; Division of Molecular Pharmaceutics and Center for Nanotechnology in Drug Delivery, Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina; and Department of Medicine, University of North Carolina School of Medicine, Chapel Hill, North Carolina
| |
Collapse
|
92
|
Shi L, Yu B, Cai CH, Huang JD. Angiogenic inhibitors delivered by the type III secretion system of tumor-targeting Salmonella typhimurium safely shrink tumors in mice. AMB Express 2016; 6:56. [PMID: 27558018 PMCID: PMC4996802 DOI: 10.1186/s13568-016-0226-8] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2016] [Accepted: 08/10/2016] [Indexed: 12/19/2022] Open
Abstract
Despite of a growing number of bacterial species that apparently exhibit intrinsic tumor-targeting properties, no bacterium is able to inhibit tumor growth completely in the immunocompetent hosts, due to its poor dissemination inside the tumors. Oxygen and inflammatory reaction form two barriers and restrain the spread of the bacteria inside the tumors. Here, we engineered a Salmonella typhimurium strain named ST8 which is safe and has limited ability to spread beyond the anaerobic regions of tumors. When injected systemically to tumor-bearing immunocompetent mice, ST8 accumulated in tumors at levels at least 100-fold greater than parental obligate anaerobic strain ST4. ST8/pSEndo harboring therapeutic plasmids encoding Endostatin fused with a secreted protein SopA could target vasculature at the tumor periphery, can stably maintain and safely deliver a therapeutic vector, release angiogenic inhibitors through a type III secretion system (T3SS) to interfere with the pro-angiogenic action of growth factors in tumors. Mice with murine CT26 colon cancer that had been injected with ST8/pSEndo showed efficient tumor suppression by inducing more severe necrosis and inhibiting blooding vessel density within tumors. Our findings provide a therapeutic platform for indirectly acting therapeutic strategies such as anti-angiogenesis and immune therapy.
Collapse
|
93
|
Li CX, Yu B, Shi L, Geng W, Lin QB, Ling CC, Yang M, Ng KTP, Huang JD, Man K. 'Obligate' anaerobic Salmonella strain YB1 suppresses liver tumor growth and metastasis in nude mice. Oncol Lett 2016; 13:177-183. [PMID: 28123538 PMCID: PMC5245073 DOI: 10.3892/ol.2016.5453] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2014] [Accepted: 02/04/2016] [Indexed: 11/05/2022] Open
Abstract
The antitumor properties of bacteria have been demonstrated over the past decades. However, the efficacy is limited and unclear. Furthermore, systemic infection remains a serious concern in bacteria treatment. In this study, the effect of YB1, a rationally designed 'obligate' anaerobic Salmonella typhimurium strain, on liver tumor growth and metastasis in a nude mouse orthotopic liver tumor model was investigated. The orthotopic liver tumor model was established in nude mice using the hepatocellular carcinoma cell line MHCC-97L. Two weeks after orthotopic liver tumor implantation, YB1, SL7207 and saline were respectively administered through the tail vein of the mice. Longitudinal monitoring of tumor growth and metastasis was performed using Xenogen IVIS, and direct measurements of tumor volume were taken 3 weeks after treatment. In vitro, MHCC-97L and PLC cells were incubated with YB1 or SL7207 under anaerobic conditions. YB1 was observed to invade tumor cells and induce tumor cell apoptosis and death. The results revealed that all mice in the YB1 group were alive 3 weeks after YB1 injection while all mice in the SL7207 group died within 11 days of the SL7207 injection. The body weight decreased by ~9% on day 1 after YB1 injection and but subsequently recovered. Liver tumor growth and metastases were significantly inhibited following YB1 treatment. By contrast to the control group, a large number of Gr1-positive cells were detected on days 1 to 21 following YB1 treatment. Furthermore, YB1 also effectively invaded tumor cells and induced tumor cell apoptosis and death. In conclusion, YB1 suppressed liver tumor growth and metastasis in a nude mice liver tumor model. The potential mechanism may be through enhancing innate immune response and inducing tumor cell apoptosis and cell death.
Collapse
Affiliation(s)
- Chang-Xian Li
- Department of Surgery and Centre for Cancer Research, University of Hong Kong, Hong Kong 999077, SAR, P.R. China
| | - Bin Yu
- Department of Biochemistry and Shenzhen Institute of Research and Innovation, University of Hong Kong, Hong Kong 999077, SAR, P.R. China; Key Laboratory of Optoelectronic Devices and Systems of Ministry of Education and Guangdong College of Optoelectronic Engineering, Shenzhen University, Shenzhen, Guangdong 518060, P.R. China
| | - Lei Shi
- Department of Biochemistry and Shenzhen Institute of Research and Innovation, University of Hong Kong, Hong Kong 999077, SAR, P.R. China
| | - Wei Geng
- Department of Surgery and Centre for Cancer Research, University of Hong Kong, Hong Kong 999077, SAR, P.R. China
| | - Qiu-Bin Lin
- Department of Biochemistry and Shenzhen Institute of Research and Innovation, University of Hong Kong, Hong Kong 999077, SAR, P.R. China
| | - Chang-Chun Ling
- Department of Surgery and Centre for Cancer Research, University of Hong Kong, Hong Kong 999077, SAR, P.R. China
| | - Mei Yang
- Department of Biochemistry and Shenzhen Institute of Research and Innovation, University of Hong Kong, Hong Kong 999077, SAR, P.R. China
| | - Kevin T P Ng
- Department of Surgery and Centre for Cancer Research, University of Hong Kong, Hong Kong 999077, SAR, P.R. China
| | - Jian-Dong Huang
- Department of Biochemistry and Shenzhen Institute of Research and Innovation, University of Hong Kong, Hong Kong 999077, SAR, P.R. China; Centre for Synthetic Biology Engineering Research, Shenzhen Institutes of Advanced Technology, Shenzhen, Guangdong 518055, P.R. China
| | - Kwan Man
- Department of Surgery and Centre for Cancer Research, University of Hong Kong, Hong Kong 999077, SAR, P.R. China
| |
Collapse
|
94
|
Yang YW, Zhang CM, Huang XJ, Zhang XX, Zhang LK, Li JH, Hua ZC. Tumor-targeted delivery of a C-terminally truncated FADD (N-FADD) significantly suppresses the B16F10 melanoma via enhancing apoptosis. Sci Rep 2016; 6:34178. [PMID: 27767039 PMCID: PMC5073321 DOI: 10.1038/srep34178] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2016] [Accepted: 09/08/2016] [Indexed: 01/21/2023] Open
Abstract
Fas-associated protein with death domain (FADD), a pivotal adaptor protein transmitting apoptotic signals, is indispensable for the induction of extrinsic apoptosis. However, overexpression of FADD can form large, filamentous aggregates, termed death effector filaments (DEFs) by self-association and initiate apoptosis independent of receptor cross-linking. A mutant of FADD, which is truncated of the C-terminal tail (m-FADD, 182–205 aa) named N-FADD (m-FADD, 1–181 aa), can dramatically up-regulate the strength of FADD self-association and increase apoptosis. In this study, it was found that over-expression of FADD or N-FADD caused apoptosis of B16F10 cells in vitro, even more, N-FADD showed a more potent apoptotic effect than FADD. Meanwhile, Attenuated Salmonella Typhimurium strain VNP20009 was engineered to express FADD or N-FADD under the control of a hypoxia-induced NirB promoter and each named VNP-pN-FADD and VNP-pN-N-FADD. The results showed both VNP-pN-FADD and VNP-pN-N-FADD delayed tumor growth in B16F10 mice model, while VNP-pN-N-FADD suppressed melanoma growth more significantly than VNP-pN-FADD. Additionally, VNP-pN-FADD and VNP-pN-N-FADD induced apoptosis of tumor cells by activating caspase-dependent apoptotic pathway. Our results show that N-FADD is a more potent apoptotic inducer and VNP20009-mediated targeted expression of N-FADD provides a possible cancer gene therapeutic approach for the treatment of melanoma.
Collapse
Affiliation(s)
- Yun-Wen Yang
- The State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing, 210023, Jiangsu, China
| | - Chun-Mei Zhang
- The State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing, 210023, Jiangsu, China
| | - Xian-Jie Huang
- The State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing, 210023, Jiangsu, China
| | - Xiao-Xin Zhang
- The State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing, 210023, Jiangsu, China
| | - Lin-Kai Zhang
- The State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing, 210023, Jiangsu, China
| | - Jia-Huang Li
- The State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing, 210023, Jiangsu, China.,Changzhou High-Tech Research Institute of Nanjing University and Jiangsu TargetPharma Laboratories Inc., Changzhou, 213164, Jiangsu, China
| | - Zi-Chun Hua
- The State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing, 210023, Jiangsu, China.,Changzhou High-Tech Research Institute of Nanjing University and Jiangsu TargetPharma Laboratories Inc., Changzhou, 213164, Jiangsu, China
| |
Collapse
|
95
|
Zhao C, He J, Cheng H, Zhu Z, Xu H. Enhanced therapeutic effect of an antiangiogenesis peptide on lung cancer in vivo combined with salmonella VNP20009 carrying a Sox2 shRNA construct. J Exp Clin Cancer Res 2016; 35:107. [PMID: 27371094 PMCID: PMC4930618 DOI: 10.1186/s13046-016-0381-4] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2016] [Accepted: 06/21/2016] [Indexed: 12/22/2022] Open
Abstract
BACKGROUND HM-3 is a polypeptide inhibiting angiogenesis. Recent reports suggest that the antitumor effect of angiogenesis inhibitors administered alone might be limited. Cancer stem cells can survive the lack of oxygen and nutrients. To achieve better anti-tumor effect, HM-3 was administered in combination with the attenuated Salmonella typhimurium VNP20009 transformed with a shRNA construct against sex determining region Y-box 2 (Sox2). METHODS Cell invasion assay and soft agar colony formation assay were used to assess the migration and growth capability of A549 cells once Sox2 was knocked down with the shRNA construct. The shRNA construct targeting Sox2 was transformed into VNP20009. After the mouse xenograft model of A549 was established, HM-3 was co-administered with VNP20009 carrying the shRNA construct. The growth of tumor was checked to compare the effectiveness of different therapies. Western blotting assay and immunohistochemistry staining of the tumor tissue were used to measure the levels of proteins associated with the apoptosis pathway. RESULTS Sox2 was necessary for the migration and growth of A549 cells. The expression of Sox2 was down regulated in the tumor tissue of the combined treatment group of HM-3 with VNP20009 carrying the Sox2 shRNA construct. Together with the accumulation of salmonella in tumor and the inhibition of angiogenesis by HM-3, more tumor cells went through cell apoptosis with increased expression of Bax, cleaved Caspase 3 and decreased expression of Bcl2. CONCLUSIONS The results suggest the combination of antiangiogenesis agent HM-3 with gene therapy targeting Sox2 delivered by salmonella as a promising strategy for the treatment of lung cancer.
Collapse
Affiliation(s)
- Changhong Zhao
- />The Engineering Research Center of Peptide Drug Discovery and Development, China Pharmaceutical University, 24 Tongjia Xiang, Nanjing, 210009 People’s Republic of China
| | - Junjin He
- />The Engineering Research Center of Peptide Drug Discovery and Development, China Pharmaceutical University, 24 Tongjia Xiang, Nanjing, 210009 People’s Republic of China
| | - Haoran Cheng
- />The Engineering Research Center of Peptide Drug Discovery and Development, China Pharmaceutical University, 24 Tongjia Xiang, Nanjing, 210009 People’s Republic of China
| | - Zhaohao Zhu
- />The Engineering Research Center of Peptide Drug Discovery and Development, China Pharmaceutical University, 24 Tongjia Xiang, Nanjing, 210009 People’s Republic of China
| | - Hanmei Xu
- />The Engineering Research Center of Peptide Drug Discovery and Development, China Pharmaceutical University, 24 Tongjia Xiang, Nanjing, 210009 People’s Republic of China
- />State Key Laboratory of Natural Medicines, Ministry of Education, China Pharmaceutical University, 24 Tongjia Xiang, Nanjing, 210009 People’s Republic of China
| |
Collapse
|
96
|
Zhou S, Zhao Z, Lin Y, Gong S, Li F, Pan J, Li X, Gao Z, Zhao AZ. Suppression of pancreatic ductal adenocarcinoma growth by intratumoral delivery of attenuated Salmonella typhimurium using a dual fluorescent live tracking system. Cancer Biol Ther 2016; 17:732-40. [PMID: 27089121 PMCID: PMC4970537 DOI: 10.1080/15384047.2016.1177683] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023] Open
Abstract
Pancreatic ductal adenocarcinoma (PDAC) has the poorest prognosis among all malignancies and is resistant to almost all current therapies. Attenuated Salmonella typhimurium strain VNP20009 has been deployed as powerful anticancer agent in a variety of animal cancer models, and previous phase 1 clinical trials have proven its safety profiles. However, thus far, little is known about its effect on PDAC. Here, we established CFPAC-1 cell lines expressing an mKate2 protein and thus emitting far-red fluorescence in the subsequent xenograft implant. VNP20009 strain was further engineered to carry a luciferase cDNA, which catalyzes the light-emitting reaction to allow the observation of salmonella distribution and accumulation within tumor with live imaging. Using such VNP20009 strain and intratumoral delivery, we could reduce the growth of pancreatic cancer by inducing apoptosis and severe necrosis in a dosage dependent manner. Consistent with this finding, intratumoral delivery of VNP20009 also increase caspase-3 activity and the expression of Bax protein. In summary, we revealed that VNP20009 is a promising bacterial agent for the treatment of PDAC, and that we have established a dual fluorescent imaging system as a valuable tool for noninvasive live imaging of solid tumor and engineered bacterial drug.
Collapse
Affiliation(s)
- Sujin Zhou
- a Collaborative Innovation Center for Cancer Medicine, The Center of Metabolic Disease Research, Nanjing Medical University , Nanjing , Jiangsu Province , China
| | - Zhenggang Zhao
- a Collaborative Innovation Center for Cancer Medicine, The Center of Metabolic Disease Research, Nanjing Medical University , Nanjing , Jiangsu Province , China
| | - Yan Lin
- a Collaborative Innovation Center for Cancer Medicine, The Center of Metabolic Disease Research, Nanjing Medical University , Nanjing , Jiangsu Province , China
| | - Sijia Gong
- a Collaborative Innovation Center for Cancer Medicine, The Center of Metabolic Disease Research, Nanjing Medical University , Nanjing , Jiangsu Province , China
| | - Fanghong Li
- a Collaborative Innovation Center for Cancer Medicine, The Center of Metabolic Disease Research, Nanjing Medical University , Nanjing , Jiangsu Province , China
| | - Jinshun Pan
- a Collaborative Innovation Center for Cancer Medicine, The Center of Metabolic Disease Research, Nanjing Medical University , Nanjing , Jiangsu Province , China
| | - Xiaoxi Li
- a Collaborative Innovation Center for Cancer Medicine, The Center of Metabolic Disease Research, Nanjing Medical University , Nanjing , Jiangsu Province , China
| | - Zhuo Gao
- b Department of Clinical Laboratory , The Fourth Affiliated Hospital of Harbin Medical University , Harbin , Heilongjiang , China
| | - Allan Z Zhao
- a Collaborative Innovation Center for Cancer Medicine, The Center of Metabolic Disease Research, Nanjing Medical University , Nanjing , Jiangsu Province , China
| |
Collapse
|
97
|
Strains, Mechanism, and Perspective: Salmonella-Based Cancer Therapy. Int J Microbiol 2016; 2016:5678702. [PMID: 27190519 PMCID: PMC4848419 DOI: 10.1155/2016/5678702] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2015] [Revised: 03/11/2016] [Accepted: 03/20/2016] [Indexed: 01/21/2023] Open
Abstract
Recently, investigation of bacterial-based tumor therapy has regained focus due to progress in molecular, cellular, and microbial biology. Many bacteria such as Salmonella, Listeria, Escherichia, and Clostridium have proved to have tumor targeting and in some cases even tumor-destroying phenotypes. Furthermore, bacterial clinical treatments for cancer have been improved by combination with other therapeutic methods such as chemotherapeutic drugs and radioactive agents. Synthetic biology techniques have also driven the development of new bacterial-based cancer therapies. However, basic questions about the mechanisms of bacterial-mediated tumor targeting and destruction are still being elucidated. In this review, we focus on three tumor-therapeutic Salmonella models, the most intensively studied bacterial genus in this field. One of these Salmonella models is our Salmonella enterica serovar Typhimurium LT2 derived strain CRC2631, engineered to minimize toxicity but maximize tumor-targeting and destruction effects. The other two are VNP20009 and A1-R. We compare the means by which these therapeutic candidate strain models were selected for study, their tumor targeting and tumor destruction phenotypes in vitro and in vivo, and what is currently known about the mechanisms by which they target and destroy tumors.
Collapse
|
98
|
Shi L, Yu B, Cai CH, Huang W, Zheng BJ, Smith DK, Huang JD. Combined prokaryotic-eukaryotic delivery and expression of therapeutic factors through a primed autocatalytic positive-feedback loop. J Control Release 2016; 222:130-40. [PMID: 26682504 DOI: 10.1016/j.jconrel.2015.12.005] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2015] [Revised: 11/16/2015] [Accepted: 12/06/2015] [Indexed: 01/04/2023]
Abstract
Progress in bacterial therapy for cancer and infectious diseases is hampered by the absence of safe and efficient vectors. Sustained delivery and high gene expression levels are critical for the therapeutic efficacy. Here we developed a Salmonella typhimrium strain to maintain and safely deliver a plasmid vector to target tissues. This vector is designed to allow dual transcription of therapeutic factors, such as cytotoxic proteins, short hairpin RNAs or combinations, in the nucleus or cytoplasm of eukaryotic cells, with this expression sustained by an autocatalytic positive-feedback loop. Mechanisms to prime the system and maintain the plasmid in the bacterium are also provided. Synergistic effects of attenuated Salmonella and our inter-kingdom system allow the precise expression of Diphtheria toxin A chain (DTA) gene in tumor microenvironment and eradicate large established tumors in immunocompetent animals. In the experiments reported here, 26% of mice (n=5/19) with aggressive tumors were cured and the others all survived until the end of the experiment. We also demonstrated that ST4 packaged with shRNA-encoding plasmids has sustained knockdown effects in nude mice bearing human MDA-MB-231 xenografts. Three weeks after injection of 5×10(6) ST4/pIKT-shPlk, PLK1 transcript levels in tumors were 62.5±18.6% lower than the vector control group (P=0.015). The presence of PLK1 5' RACE-PCR cleavage products confirmed a sustained RNAi-mediated mechanism of action. This innovative technology provides an effective and versatile vehicle for efficient inter-kingdom gene delivery that can be applied to cancer therapy and other purposes.
Collapse
Affiliation(s)
- Lei Shi
- School of Biomedical Sciences, The University of Hong Kong, Pokfulam, 999077, Hong Kong; Shenzhen Institute of Research and Innovation, The University of Hong Kong, Pokfulam, 999077, Hong Kong
| | - Bin Yu
- School of Biomedical Sciences, The University of Hong Kong, Pokfulam, 999077, Hong Kong; Shenzhen Institute of Research and Innovation, The University of Hong Kong, Pokfulam, 999077, Hong Kong; Key Laboratory of Optoelectronic Devices and Systems of Ministry of Education and Guangdong Province, College of Optoelectronic Engineering, Shenzhen University, Shenzhen 518060, PR China
| | - Chun-Hui Cai
- Department of Obstetrics and Gynaecology, The University of Hong Kong, Pokfulam, 999077, Hong Kong; Advanced Institute of Translational Medicine, Tongji University School of Medicine, Shanghai 200092, PR China
| | - Wei Huang
- Faculty of Biology, South University of Science and Technology of China, Shenzhen 518055, PR China
| | - Bo-Jian Zheng
- Department of Microbiology, The University of Hong Kong, Pokfulam, 999077, Hong Kong
| | - David Keith Smith
- School of Public Health, The University of Hong Kong, Pokfulam, 999077, Hong Kong
| | - Jian-Dong Huang
- School of Biomedical Sciences, The University of Hong Kong, Pokfulam, 999077, Hong Kong; Shenzhen Institute of Research and Innovation, The University of Hong Kong, Pokfulam, 999077, Hong Kong; The Centre for Synthetic Biology Engineering Research, Shenzhen Institutes of Advanced Technology, Shenzhen 518055, PR China.
| |
Collapse
|
99
|
Chen J, Diamond DJ, Manuel ER. Developing Effective Salmonella-based Approaches to Treat Pancreatic Cancer. ACTA ACUST UNITED AC 2016; 6:1-2. [PMID: 26925306 PMCID: PMC4764990 DOI: 10.4172/2165-7092.1000167] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Affiliation(s)
- Jeremy Chen
- Department of Experimental Therapeutics, City of Hope, Duarte CA, USA
| | - Don J Diamond
- Department of Experimental Therapeutics, City of Hope, Duarte CA, USA
| | - Edwin R Manuel
- Department of Experimental Therapeutics, City of Hope, Duarte CA, USA
| |
Collapse
|
100
|
Li Z, Huang H, Tang S, Li Y, Yu XF, Wang H, Li P, Sun Z, Zhang H, Liu C, Chu PK. Small gold nanorods laden macrophages for enhanced tumor coverage in photothermal therapy. Biomaterials 2016; 74:144-54. [DOI: 10.1016/j.biomaterials.2015.09.038] [Citation(s) in RCA: 191] [Impact Index Per Article: 21.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2015] [Revised: 09/25/2015] [Accepted: 09/26/2015] [Indexed: 10/23/2022]
|