51
|
Lyczakowski JJ, Bourdon M, Terrett OM, Helariutta Y, Wightman R, Dupree P. Structural Imaging of Native Cryo-Preserved Secondary Cell Walls Reveals the Presence of Macrofibrils and Their Formation Requires Normal Cellulose, Lignin and Xylan Biosynthesis. FRONTIERS IN PLANT SCIENCE 2019; 10:1398. [PMID: 31708959 PMCID: PMC6819431 DOI: 10.3389/fpls.2019.01398] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/23/2019] [Accepted: 10/10/2019] [Indexed: 05/18/2023]
Abstract
The woody secondary cell walls of plants are the largest repository of renewable carbon biopolymers on the planet. These walls are made principally from cellulose and hemicelluloses and are impregnated with lignin. Despite their importance as the main load bearing structure for plant growth, as well as their industrial importance as both a material and energy source, the precise arrangement of these constituents within the cell wall is not yet fully understood. We have adapted low temperature scanning electron microscopy (cryo-SEM) for imaging the nanoscale architecture of angiosperm and gymnosperm cell walls in their native hydrated state. Our work confirms that cell wall macrofibrils, cylindrical structures with a diameter exceeding 10 nm, are a common feature of the native hardwood and softwood samples. We have observed these same structures in Arabidopsis thaliana secondary cell walls, enabling macrofibrils to be compared between mutant lines that are perturbed in cellulose, hemicellulose, and lignin formation. Our analysis indicates that the macrofibrils in Arabidopsis cell walls are dependent upon the proper biosynthesis, or composed, of cellulose, xylan, and lignin. This study establishes that cryo-SEM is a useful additional approach for investigating the native nanoscale architecture and composition of hardwood and softwood secondary cell walls and demonstrates the applicability of Arabidopsis genetic resources to relate fibril structure with wall composition and biosynthesis.
Collapse
Affiliation(s)
- Jan J. Lyczakowski
- Department of Biochemistry, University of Cambridge, Cambridge, United Kingdom
- Natural Material Innovation Centre, University of Cambridge, Cambridge, United Kingdom
| | - Matthieu Bourdon
- The Sainsbury Laboratory, University of Cambridge, Cambridge, United Kingdom
| | - Oliver M. Terrett
- Department of Biochemistry, University of Cambridge, Cambridge, United Kingdom
| | - Ykä Helariutta
- The Sainsbury Laboratory, University of Cambridge, Cambridge, United Kingdom
- Institute of Biotechnology/Department of Biological and Environmental Sciences, University of Helsinki, Helsinki, Finland
| | - Raymond Wightman
- The Sainsbury Laboratory, University of Cambridge, Cambridge, United Kingdom
- *Correspondence: Raymond Wightman, ; Paul Dupree,
| | - Paul Dupree
- Department of Biochemistry, University of Cambridge, Cambridge, United Kingdom
- Natural Material Innovation Centre, University of Cambridge, Cambridge, United Kingdom
- *Correspondence: Raymond Wightman, ; Paul Dupree,
| |
Collapse
|
52
|
Said N, Chatzinotas A, Schmidt M. Have an Ion on It: The Life-Cycle of Bdellovibrio bacteriovorus Viewed by Helium-Ion Microscopy. ACTA ACUST UNITED AC 2018; 3:e1800250. [PMID: 32627346 DOI: 10.1002/adbi.201800250] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2018] [Revised: 10/11/2018] [Indexed: 11/12/2022]
Abstract
Helium-ion microscopy (HIM) has so far rarely been employed to image microbial interactions. Here, the visualization of the life-cycle of the bacterial predator Bdellovibrio bacteriovorus HD100 with Escherichia coli and Pseudomonas putida, respectively, as prey is presented. The predator is brought in contact with prey and samples are taken at selected times. The system is monitored by phase-contrast microscopy and HIM. For HIM imaging, a sample preparation protocol is established that preserves the structure of Bdellovibrio, prey, and bdelloplasts. The micrographs show the attachment of the predator to its prey, the evolution of bdelloplasts, their lysis, and the release of predator progeny. The combination of HIM with two more approaches allows for investigating predator-prey interactions from different angles: First, phase-contrast micrographs provide quantitative information for the numbers of predator, prey, and bdelloplasts. Second, a numerical model solving the retarded differential equations that describe the system's time-evolution is developed and fits the experimentally determined cell numbers. In conclusion, the high resolution, the large depth of focus, and surface sensitivity of HIM hold promise to expand future studies on so far neglected ecological interactions within the microbial food web, in particular in samples with pronounced topography such as bacterial biofilms.
Collapse
Affiliation(s)
- Nedal Said
- Department of Isotope Biogeochemistry, Helmholtz Centre for Environmental Research - UFZ, Permoserstrasse 15, 04318, Leipzig, Germany
| | - Antonis Chatzinotas
- Department of Environmental Microbiology, Helmholtz Centre for Environmental Research - UFZ, Permoserstrasse 15, 04318, Leipzig, Germany.,German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, 04103, Leipzig, Germany
| | - Matthias Schmidt
- Department of Isotope Biogeochemistry, Helmholtz Centre for Environmental Research - UFZ, Permoserstrasse 15, 04318, Leipzig, Germany
| |
Collapse
|
53
|
Tigala S, Sharma AR, Sachdeva K. Health risk assessment due to biomass smoke exposure in Indian indoor environment: An empirical approach using lung deposition model. THE SCIENCE OF THE TOTAL ENVIRONMENT 2018; 640-641:935-942. [PMID: 29879675 DOI: 10.1016/j.scitotenv.2018.05.323] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/27/2018] [Revised: 05/16/2018] [Accepted: 05/25/2018] [Indexed: 05/22/2023]
Abstract
The paper subsumes a framework that assesses health risk due to exposure to different fuel combustion through articulation of modern microscopic techniques, empirical equations, lung diagnostic tools and a pre-existing model that has been extrapolated to futuristic aspects (within controlled conditions). The framework was tested on 132 household cooks belonging to different age groups and using different types of fuel. The inhalable fraction released during fuel combustion varied in morphological characteristics and deposition site. Micrographs obtained using Scanning Electron Microscope (SEM) analysis of (biomass smoke) soot indicates aggregate formation attributing to a higher level of health risk. Further, abnormal ventilatory function along with higher risk (RR > 1) was more evident within biomass fuel users. The condition further exacerbates while using dung cakes due to high levels of emissions (294.3 particles/liter) that deposit in the upper respiratory tract (0.0899). Further, the population attributable risk percent (79%) calculated on the basis of cooking behavior suggests a 'rural culture' health determinant as clean fuel usage is not practiced as an outcome of low literacy and poor income in the region. These preliminary findings highlight the drudgery of impuissant women who are exposed to high particulate emissions on a regular basis which results in reduced lung function. Nevertheless, further cogitation is required to eliminate the limitations in this study and explore further linkages between exposure and vulnerable group to generate meaningful policy recommendations.
Collapse
Affiliation(s)
- Snehlata Tigala
- Department of Energy and Environment, TERI School of Advanced Studies, 1-0, Institutional Area, Vasant Kunj, New Delhi 110070, India.
| | - Anu Rani Sharma
- Department of Natural Resources, TERI School of Advanced Studies, 10, Institutional Area, Vasant Kunj, New Delhi 110070, India.
| | - Kamna Sachdeva
- Department of Energy and Environment, TERI School of Advanced Studies, 1-0, Institutional Area, Vasant Kunj, New Delhi 110070, India.
| |
Collapse
|
54
|
Flatabø R, Agarwal A, Hobbs R, Greve MM, Holst B, Berggren KK. Exploring proximity effects and large depth of field in helium ion beam lithography: large-area dense patterns and tilted surface exposure. NANOTECHNOLOGY 2018; 29:275301. [PMID: 29652671 DOI: 10.1088/1361-6528/aabe22] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Helium ion beam lithography (HIL) is an emerging nanofabrication technique. It benefits from a reduced interaction volume compared to that of an electron beam of similar energy, and hence reduced long-range scattering (proximity effect), higher resist sensitivity and potentially higher resolution. Furthermore, the small angular spread of the helium ion beam gives rise to a large depth of field. This should enable patterning on tilted and curved surfaces without the need of any additional adjustments, such as laser-auto focus. So far, most work on HIL has been focused on exploiting the reduced proximity effect to reach single-digit nanometer resolution, and has thus been concentrated on single-pixel exposures over small areas. Here we explore two new areas of application. Firstly, we investigate the proximity effect in large-area exposures and demonstrate HIL's capabilities in fabricating precise high-density gratings on large planar surfaces (100 μm × 100 μm, with pitch down to 35 nm) using an area dose for exposure. Secondly, we exploit the large depth of field by making the first HIL patterns on tilted surfaces (sample stage tilted 45°). We demonstrate a depth of field greater than 100 μm for a resolution of about 20 nm.
Collapse
Affiliation(s)
- Ranveig Flatabø
- University of Bergen, Department of Physics and Technology, Allégaten 55, NO-5007 Bergen, Norway. Research Laboratory of Electronics, Massachusetts Institute of Technology, MA 02139, United States of America
| | | | | | | | | | | |
Collapse
|
55
|
Herrera MG, Pizzuto M, Lonez C, Rott K, Hütten A, Sewald N, Ruysschaert JM, Dodero VI. Large supramolecular structures of 33-mer gliadin peptide activate toll-like receptors in macrophages. NANOMEDICINE-NANOTECHNOLOGY BIOLOGY AND MEDICINE 2018; 14:1417-1427. [DOI: 10.1016/j.nano.2018.04.014] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/12/2017] [Revised: 03/23/2018] [Accepted: 04/16/2018] [Indexed: 02/08/2023]
|
56
|
Almeida GM, Leppänen M, Maasilta IJ, Sundberg LR. Bacteriophage imaging: past, present and future. Res Microbiol 2018; 169:488-494. [PMID: 29852217 DOI: 10.1016/j.resmic.2018.05.006] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2018] [Revised: 05/16/2018] [Accepted: 05/22/2018] [Indexed: 01/21/2023]
Abstract
The visualization of viral particles only became possible after the advent of the electron microscope. The first bacteriophage images were published in 1940 and were soon followed by many other publications that helped to elucidate the structure of the particles and their interaction with the bacterial hosts. As sample preparation improved and new technologies were developed, phage imaging became important approach to morphologically classify these viruses and helped to understand its importance in the biosphere. In this review we discuss the main milestones in phage imaging, how it affected our knowledge on these viruses and recent developments in the field.
Collapse
Affiliation(s)
- Gabriel Mf Almeida
- Centre of Excellence in Biological Interactions, Department of Biological and Environmental Science, Nanoscience Center, University of Jyväskylä, Survontie 9C, FI-40014, Jyväskylä, Finland.
| | - Miika Leppänen
- Centre of Excellence in Biological Interactions, Department of Biological and Environmental Science, Nanoscience Center, University of Jyväskylä, Survontie 9C, FI-40014, Jyväskylä, Finland; Department of Physics, Nanoscience Center, University of Jyväskylä, Survontie 9C, FI-40014, Jyväskylä, Finland.
| | - Ilari J Maasilta
- Department of Physics, Nanoscience Center, University of Jyväskylä, Survontie 9C, FI-40014, Jyväskylä, Finland.
| | - Lotta-Riina Sundberg
- Centre of Excellence in Biological Interactions, Department of Biological and Environmental Science, Nanoscience Center, University of Jyväskylä, Survontie 9C, FI-40014, Jyväskylä, Finland.
| |
Collapse
|
57
|
New advances in scanning microscopy and its application to study parasitic protozoa. Exp Parasitol 2018; 190:10-33. [PMID: 29702111 DOI: 10.1016/j.exppara.2018.04.018] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2017] [Revised: 04/10/2018] [Accepted: 04/23/2018] [Indexed: 12/31/2022]
Abstract
Scanning electron microscopy has been used to observe and study parasitic protozoa for at least 40 years. However, field emission electron sources, as well as improvements in lenses and detectors, brought the resolution power of scanning electron microscopes (SEM) to a new level. Parallel to the refinement of instruments, protocols for preservation of the ultrastructure, immunolabeling, exposure of cytoskeleton and inner structures of parasites and host cells were developed. This review is focused on protozoan parasites of medical and veterinary relevance, e.g., Toxoplasma gondii, Tritrichomonas foetus, Giardia intestinalis, and Trypanosoma cruzi, compilating the main achievements in describing the fine ultrastructure of their surface, cytoskeleton and interaction with host cells. Two new resources, namely, Helium Ion Microscopy (HIM) and Slice and View, using either Focused Ion Beam (FIB) abrasion or Microtome Serial Sectioning (MSS) within the microscope chamber, combined to backscattered electron imaging of fixed (chemically or by quick freezing followed by freeze substitution and resin embedded samples is bringing an exponential amount of valuable information. In HIM there is no need of conductive coating and the depth of field is much higher than in any field emission SEM. As for FIB- and MSS-SEM, high resolution 3-D models of areas and volumes larger than any other technique allows can be obtained. The main results achieved with all these technological tools and some protocols for sample preparation are included in this review. In addition, we included some results obtained with environmental/low vacuum scanning microscopy and cryo-scanning electron microscopy, both promising, but not yet largely employed SEM modalities.
Collapse
|
58
|
Prina-Mello A, Jain N, Liu B, Kilpatrick JI, Tutty MA, Bell AP, Jarvis SP, Volkov Y, Movia D. Culturing substrates influence the morphological, mechanical and biochemical features of lung adenocarcinoma cells cultured in 2D or 3D. Tissue Cell 2017; 50:15-30. [PMID: 29429514 DOI: 10.1016/j.tice.2017.11.003] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2017] [Revised: 10/31/2017] [Accepted: 11/26/2017] [Indexed: 01/04/2023]
Abstract
Alternative models such as three-dimensional (3D) cell cultures represent a distinct milestone towards capturing the realities of cancer biology in vitro and reduce animal experimentation in the preclinical stage of drug discovery. Significant work remains to be done to understand how substrates used in in vitro alternatives influence cancer cells phenotype and drug efficacy responses, so that to accurately link such models to specific in vivo disease scenarios. Our study describes how the morphological, mechanical and biochemical properties of adenocarcinoma (A549) cells change in response to a 3D environment and varying substrates. Confocal Laser Scanning (LSCM), He-Ion (HIM) and Atomic Force (AFM) microscopies, supported by ELISA and Western blotting, were used. These techniques enabled us to evaluate the shape, cytoskeletal organization, roughness, stiffness and biochemical signatures of cells grown within soft 3D matrices (PuraMatrix™ and Matrigel™), and to compare them to those of cells cultured on two-dimensional glass substrates. Cell cultures are also characterized for their biological response to docetaxel, a taxane-type drug used in Non-Small-Cell Lung Cancer (NSCLC) treatment. Our results offer an advanced biophysical insight into the properties and potential application of 3D cultures of A549 cells as in vitro alternatives in lung cancer research.
Collapse
Affiliation(s)
- Adriele Prina-Mello
- CRANN Institute and AMBER Centre, Trinity College Dublin, Ireland; Laboratory for Biological Characterization of Advanced Materials (LBCAM), Trinity Translational Medicine Institute (TTMI), Trinity College Dublin, Ireland; Department of Clinical Medicine, School of Medicine, Trinity College Dublin, Ireland
| | - Namrata Jain
- CRANN Institute and AMBER Centre, Trinity College Dublin, Ireland
| | - Baiyun Liu
- School of Physics, University College Dublin, Ireland
| | - Jason I Kilpatrick
- Conway Institute of Biomedical and Biomolecular Research, University College Dublin, Ireland
| | - Melissa A Tutty
- Department of Clinical Medicine, School of Medicine, Trinity College Dublin, Ireland
| | - Alan P Bell
- CRANN Institute and AMBER Centre, Trinity College Dublin, Ireland; Advanced Microscopy Laboratory (AML), Trinity College Dublin, Ireland
| | - Suzanne P Jarvis
- Department of Clinical Medicine, School of Medicine, Trinity College Dublin, Ireland; School of Physics, University College Dublin, Ireland
| | - Yuri Volkov
- CRANN Institute and AMBER Centre, Trinity College Dublin, Ireland; Laboratory for Biological Characterization of Advanced Materials (LBCAM), Trinity Translational Medicine Institute (TTMI), Trinity College Dublin, Ireland; Department of Clinical Medicine, School of Medicine, Trinity College Dublin, Ireland
| | - Dania Movia
- Laboratory for Biological Characterization of Advanced Materials (LBCAM), Trinity Translational Medicine Institute (TTMI), Trinity College Dublin, Ireland; Department of Clinical Medicine, School of Medicine, Trinity College Dublin, Ireland.
| |
Collapse
|
59
|
Laufer K, Niemeyer A, Nikeleit V, Halama M, Byrne JM, Kappler A. Physiological characterization of a halotolerant anoxygenic phototrophic Fe(II)-oxidizing green-sulfur bacterium isolated from a marine sediment. FEMS Microbiol Ecol 2017; 93:3738482. [PMID: 28431154 DOI: 10.1093/femsec/fix054] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2017] [Accepted: 04/17/2017] [Indexed: 01/20/2023] Open
Abstract
Anoxygenic photoautotrophic bacteria which use light energy and electrons from Fe(II) for growth, so-called photoferrotrophs, are suggested to have been amongst the first phototrophic microorganisms on Earth and to have contributed to the deposition of sedimentary iron mineral deposits, i.e. banded iron formations. To date only two isolates of marine photoferrotrophic bacteria exist, both of which are closely related purple non-sulfur bacteria. Here we present a novel green-sulfur photoautotrophic Fe(II) oxidizer isolated from a marine coastal sediment, Chlorobium sp. strain N1, which is closely related to the freshwater green-sulfur bacterium Chlorobium luteolum DSM273 that is incapable of Fe(II) oxidation. Besides Fe(II), our isolated strain grew phototrophically with other inorganic and organic substrates such as sulfide, hydrogen, lactate or yeast extract. Highest Fe(II) oxidation rates were measured at pH 7.0-7.3, the temperature optimum was 25°C. Mössbauer spectroscopy identified ferrihydrite as the main Fe(III) mineral and fluorescence and helium-ion microscopy revealed cell-mineral aggregates without obvious cell encrustation. In summary, our study showed that the new isolate is physiologically adapted to the conditions of its natural habitat but also to conditions as proposed for early Earth and is thus a suitable model organism for further studies addressing phototrophic Fe(II) oxidation on early Earth.
Collapse
Affiliation(s)
- Katja Laufer
- Geomicrobiology, Center for Applied Geosciences, University of Tuebingen, D-72076 Tuebingen, Germany
| | - Annika Niemeyer
- Geomicrobiology, Center for Applied Geosciences, University of Tuebingen, D-72076 Tuebingen, Germany
| | - Verena Nikeleit
- Geomicrobiology, Center for Applied Geosciences, University of Tuebingen, D-72076 Tuebingen, Germany
| | - Maximilian Halama
- Geomicrobiology, Center for Applied Geosciences, University of Tuebingen, D-72076 Tuebingen, Germany
| | - James M Byrne
- Geomicrobiology, Center for Applied Geosciences, University of Tuebingen, D-72076 Tuebingen, Germany
| | - Andreas Kappler
- Geomicrobiology, Center for Applied Geosciences, University of Tuebingen, D-72076 Tuebingen, Germany.,Center for Geomicrobiology, Department of Bioscience, Aarhus University, 8000 Aarhus, Denmark
| |
Collapse
|
60
|
Dowsett D, Wirtz T. Co-Registered In Situ Secondary Electron and Mass Spectral Imaging on the Helium Ion Microscope Demonstrated Using Lithium Titanate and Magnesium Oxide Nanoparticles. Anal Chem 2017; 89:8957-8965. [PMID: 28771307 DOI: 10.1021/acs.analchem.7b01481] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
The development of a high resolution elemental imaging platform combining coregistered secondary ion mass spectrometry and high resolution secondary electron imaging is reported. The basic instrument setup and operation are discussed and in situ image correlation is demonstrated on a lithium titanate and magnesium oxide nanoparticle mixture. The instrument uses both helium and neon ion beams generated by a gas field ion source to irradiate the sample. Both secondary electrons and secondary ions may be detected. Secondary ion mass spectrometry (SIMS) is performed using an in-house developed double focusing magnetic sector spectrometer with parallel detection. Spatial resolutions of 10 nm have been obtained in SIMS mode. Both the secondary electron and SIMS image data are very surface sensitive and have approximately the same information depth. While the spatial resolutions are approximately a factor of 10 different, switching between the different images modes may be done in situ and extremely rapidly, allowing for simple imaging of the same region of interest and excellent coregistration of data sets. The ability to correlate mass spectral images on the 10 nm scale with secondary electron images on the nanometer scale in situ has the potential to provide a step change in our understanding of nanoscale phenomena in fields from materials science to life science.
Collapse
Affiliation(s)
- D Dowsett
- Advanced Instrumentation for Ion Nano-Analytics (AINA), MRT Department, Luxembourg Institute of Science and Technology (LIST) , Belvaux, Luxembourg
| | - T Wirtz
- Advanced Instrumentation for Ion Nano-Analytics (AINA), MRT Department, Luxembourg Institute of Science and Technology (LIST) , Belvaux, Luxembourg
| |
Collapse
|
61
|
Tsuji K, Păunescu TG, Suleiman H, Xie D, Mamuya FA, Miner JH, Lu HAJ. Re-characterization of the Glomerulopathy in CD2AP Deficient Mice by High-Resolution Helium Ion Scanning Microscopy. Sci Rep 2017; 7:8321. [PMID: 28814739 PMCID: PMC5559584 DOI: 10.1038/s41598-017-08304-3] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2017] [Accepted: 07/06/2017] [Indexed: 01/22/2023] Open
Abstract
Helium ion scanning microscopy (HIM) is a novel technology that directly visualizes the cell surface ultrastructure without surface coating. Despite its very high resolution, it has not been applied extensively to study biological or pathology samples. Here we report the application of this powerful technology to examine the three-dimensional ultrastructural characteristics of proteinuric glomerulopathy in mice with CD2-associated protein (CD2AP) deficiency. HIM revealed the serial alteration of glomerular features including effacement and disorganization of the slit diaphragm, followed by foot process disappearance, flattening and fusion of major processes, and eventual transformation into a podocyte sheet as the disease progressed. The number and size of the filtration slit pores decreased. Strikingly, numerous “bleb” shaped microprojections were observed extending from podocyte processes and cell body, indicating significant membrane dynamics accompanying CD2AP deficiency. Visualizing the glomerular endothelium and podocyte-endothelium interface revealed the presence of endothelial damage, and disrupted podocyte and endothelial integrity in 6 week-old Cd2ap-KO mice. We used the HIM technology to investigate at nanometer scale resolution the ultrastructural alterations of the glomerular filtration apparatus in mice lacking the critical slit diaphragm-associated protein CD2AP, highlighting the great potential of HIM to provide new insights into the biology and (patho)physiology of glomerular diseases.
Collapse
Affiliation(s)
- Kenji Tsuji
- Center for Systems Biology, Program in Membrane Biology and Division of Nephrology, Department of Medicine, Massachusetts General Hospital, and Harvard Medical School, Boston, MA, USA
| | - Teodor G Păunescu
- Center for Systems Biology, Program in Membrane Biology and Division of Nephrology, Department of Medicine, Massachusetts General Hospital, and Harvard Medical School, Boston, MA, USA
| | - Hani Suleiman
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO, USA.,Division of Nephrology, Department of Medicine, Washington University School of Medicine, St. Louis, MO, USA
| | - Dongping Xie
- Center for Systems Biology, Program in Membrane Biology and Division of Nephrology, Department of Medicine, Massachusetts General Hospital, and Harvard Medical School, Boston, MA, USA
| | - Fahmy A Mamuya
- Center for Systems Biology, Program in Membrane Biology and Division of Nephrology, Department of Medicine, Massachusetts General Hospital, and Harvard Medical School, Boston, MA, USA
| | - Jeffrey H Miner
- Division of Nephrology, Department of Medicine, Washington University School of Medicine, St. Louis, MO, USA
| | - Hua A Jenny Lu
- Center for Systems Biology, Program in Membrane Biology and Division of Nephrology, Department of Medicine, Massachusetts General Hospital, and Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
62
|
Di Bernardo I, Avvisati G, Mariani C, Motta N, Chen C, Avila J, Asensio MC, Lupi S, Ito Y, Chen M, Fujita T, Betti MG. Two-Dimensional Hallmark of Highly Interconnected Three-Dimensional Nanoporous Graphene. ACS OMEGA 2017; 2:3691-3697. [PMID: 31457683 PMCID: PMC6641586 DOI: 10.1021/acsomega.7b00706] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/30/2017] [Accepted: 07/05/2017] [Indexed: 05/24/2023]
Abstract
Scaling graphene from a two-dimensional (2D) ideal structure to a three-dimensional (3D) millimeter-sized architecture without compromising its remarkable electrical, optical, and thermal properties is currently a great challenge to overcome the limitations of integrating single graphene flakes into 3D devices. Herewith, highly connected and continuous nanoporous graphene (NPG) samples, with electronic and vibrational properties very similar to those of suspended graphene layers, are presented. We pinpoint the hallmarks of 2D ideal graphene scaled in these 3D porous architectures by combining the state-of-the-art spectromicroscopy and imaging techniques. The connected and bicontinuous topology, without frayed borders and edges and with low density of crystalline defects, has been unveiled via helium ion, Raman, and transmission electron microscopies down to the atomic scale. Most importantly, nanoscanning photoemission unravels a 3D NPG structure with preserved 2D electronic density of states (Dirac cone like) throughout the porous sample. Furthermore, the high spatial resolution brings to light the interrelationship between the topology and the morphology in the wrinkled and highly bent regions, where distorted sp2 C bonds, associated with sp3-like hybridization state, induce small energy gaps. This highly connected graphene structure with a 3D skeleton overcomes the limitations of small-sized individual graphene sheets and opens a new route for a plethora of applications of the 2D graphene properties in 3D devices.
Collapse
Affiliation(s)
- Iolanda Di Bernardo
- Department
of Physics, Sapienza University of Rome, Piazzale Aldo Moro 2, 00185 Rome, Italy
| | - Giulia Avvisati
- Department
of Physics, Sapienza University of Rome, Piazzale Aldo Moro 2, 00185 Rome, Italy
| | - Carlo Mariani
- Department
of Physics, Sapienza University of Rome, Piazzale Aldo Moro 2, 00185 Rome, Italy
| | - Nunzio Motta
- School
of Chemistry, Physics and Mechanical Engineering and Institute for
Future Environments, Queensland University
of Technology, 2 George
Street, 4000 Brisbane, Australia
| | - Chaoyu Chen
- Synchrotron
SOLEIL, L’Orme des Merisiers, Saint Aubin, 91190 Gif sur Yvette, France
| | - José Avila
- Synchrotron
SOLEIL, L’Orme des Merisiers, Saint Aubin, 91190 Gif sur Yvette, France
| | - Maria Carmen Asensio
- Synchrotron
SOLEIL, L’Orme des Merisiers, Saint Aubin, 91190 Gif sur Yvette, France
| | - Stefano Lupi
- Department
of Physics, CNR-IOM, Sapienza University
of Rome, Piazzale Aldo Moro 2, 00185 Rome, Italy
| | - Yoshikazu Ito
- Institute
of Applied Physics, Graduate School of Pure and Applied Sciences, University of Tsukuba, 305-8571 Tsukuba, Japan
- PRESTO,
Japan Science and Technology Agency, 332-0012 Saitama, Japan
| | - Mingwei Chen
- Advanced
Institute for Materials Research, Tohoku University, 980-8577 Sendai, Japan
| | - Takeshi Fujita
- Advanced
Institute for Materials Research, Tohoku University, 980-8577 Sendai, Japan
| | - Maria Grazia Betti
- Department
of Physics, Sapienza University of Rome, Piazzale Aldo Moro 2, 00185 Rome, Italy
| |
Collapse
|
63
|
Dykas MM, Poddar K, Yoong SL, Viswanathan V, Mathew S, Patra A, Saha S, Pastorin G, Venkatesan T. Enhancing image contrast of carbon nanotubes on cellular background using helium ion microscope by varying helium ion fluence. J Microsc 2017; 269:14-22. [PMID: 28703381 DOI: 10.1111/jmi.12604] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2017] [Revised: 06/08/2017] [Accepted: 06/22/2017] [Indexed: 01/28/2023]
Abstract
Carbon nanotubes (CNTs) have become an important nano entity for biomedical applications. Conventional methods of their imaging, often cannot be applied in biological samples due to an inadequate spatial resolution or poor contrast between the CNTs and the biological sample. Here we report a unique and effective detection method, which uses differences in conductivities of carbon nanotubes and HeLa cells. The technique involves the use of a helium ion microscope to image the sample with the surface charging artefacts created by the He+ and neutralised by electron flood gun. This enables us to obtain a few nanometre resolution images of CNTs in HeLa Cells with high contrast, which was achieved by tailoring the He+ fluence. Charging artefacts can be efficiently removed for conductive CNTs by a low amount of electrons, the fluence of which is not adequate to discharge the cell surface, resulting in high image contrast. Thus, this technique enables rapid detection of any conducting nano structures on insulating cellular background even in large fields of view and fine spatial resolution. The technique demonstrated has wider applications for researchers seeking enhanced contrast and high-resolution imaging of any conducting entity in a biological matrix - a commonly encountered issue of importance in drug delivery, tissue engineering and toxicological studies.
Collapse
Affiliation(s)
- M M Dykas
- Graduate School for Integrative Sciences and Engineering, National University of Singapore, Singapore.,Nanoscience & Nanotechnology Initiative, National University of Singapore, Singapore
| | - K Poddar
- Graduate School for Integrative Sciences and Engineering, National University of Singapore, Singapore.,Nanoscience & Nanotechnology Initiative, National University of Singapore, Singapore.,Department of Orthopedic Surgery, National University of Singapore, Singapore
| | - S L Yoong
- Graduate School for Integrative Sciences and Engineering, National University of Singapore, Singapore.,Department of Pharmacy, National University of Singapore, Singapore
| | - V Viswanathan
- Nanoscience & Nanotechnology Initiative, National University of Singapore, Singapore.,Department of Electrical and Computer Engineering, National University of Singapore, Singapore
| | - S Mathew
- Nanoscience & Nanotechnology Initiative, National University of Singapore, Singapore
| | - A Patra
- Graduate School for Integrative Sciences and Engineering, National University of Singapore, Singapore.,Nanoscience & Nanotechnology Initiative, National University of Singapore, Singapore
| | - S Saha
- Nanoscience & Nanotechnology Initiative, National University of Singapore, Singapore
| | - G Pastorin
- Graduate School for Integrative Sciences and Engineering, National University of Singapore, Singapore.,Nanoscience & Nanotechnology Initiative, National University of Singapore, Singapore.,Department of Pharmacy, National University of Singapore, Singapore
| | - T Venkatesan
- Graduate School for Integrative Sciences and Engineering, National University of Singapore, Singapore.,Nanoscience & Nanotechnology Initiative, National University of Singapore, Singapore.,Department of Electrical and Computer Engineering, National University of Singapore, Singapore.,Department of Materials Science and Engineering, National University of Singapore, Singapore.,Department of Physics, National University of Singapore, Singapore
| |
Collapse
|
64
|
Leppänen M, Sundberg LR, Laanto E, de Freitas Almeida GM, Papponen P, Maasilta IJ. Imaging Bacterial Colonies and Phage-Bacterium Interaction at Sub-Nanometer Resolution Using Helium-Ion Microscopy. ACTA ACUST UNITED AC 2017; 1:e1700070. [PMID: 32646179 DOI: 10.1002/adbi.201700070] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2017] [Revised: 06/01/2017] [Indexed: 11/11/2022]
Abstract
Imaging of microbial interactions has so far been based on well-established electron microscopy methods. This study presents a new way to study bacterial colonies and interactions between bacteria and their viruses, bacteriophages (phages), in situ on agar plates using helium ion microscopy (HIM). In biological imaging, HIM has advantages over traditional scanning electron microscopy with its sub-nanometer resolution, increased surface sensitivity, and the possibility to image nonconductive samples. Furthermore, by controlling the He beam dose or by using heavier Ne ions, the HIM instrument provides the possibility to mill out material in the samples, allowing for subsurface imaging and in situ sectioning. Here, the first HIM-images of bacterial colonies and phage-bacterium interactions are presented at different stages of the infection as they occur on an agar culture. The feasibility of neon and helium milling is also demonstrated to reveal the subsurface structures of bacterial colonies on agar substrate, and in some cases also structure inside individual bacteria after cross-sectioning. The study concludes that HIM offers great opportunities to advance the studies of microbial imaging, in particular in the area of interaction of viruses with cells.
Collapse
Affiliation(s)
- Miika Leppänen
- Nanoscience Center, Department of Physics, University of Jyvaskyla, P. O. Box 35, FI-40014, Jyväskylä, Finland.,Nanoscience Center, Center of Excellence in Biological Interactions, Department of Biological and Environmental Science, University of Jyvaskyla, FI-40014, Jyväskylä, Finland
| | - Lotta-Riina Sundberg
- Nanoscience Center, Center of Excellence in Biological Interactions, Department of Biological and Environmental Science, University of Jyvaskyla, FI-40014, Jyväskylä, Finland
| | - Elina Laanto
- Nanoscience Center, Center of Excellence in Biological Interactions, Department of Biological and Environmental Science, University of Jyvaskyla, FI-40014, Jyväskylä, Finland
| | - Gabriel Magno de Freitas Almeida
- Nanoscience Center, Center of Excellence in Biological Interactions, Department of Biological and Environmental Science, University of Jyvaskyla, FI-40014, Jyväskylä, Finland
| | - Petri Papponen
- Nanoscience Center, Center of Excellence in Biological Interactions, Department of Biological and Environmental Science, University of Jyvaskyla, FI-40014, Jyväskylä, Finland
| | - Ilari J Maasilta
- Nanoscience Center, Department of Physics, University of Jyvaskyla, P. O. Box 35, FI-40014, Jyväskylä, Finland
| |
Collapse
|
65
|
Lai WC, Lin CY, Chang WT, Li PC, Fu TY, Chang CS, Tsong TT, Hwang IS. Xenon gas field ion source from a single-atom tip. NANOTECHNOLOGY 2017; 28:255301. [PMID: 28548051 DOI: 10.1088/1361-6528/aa6ed3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Focused ion beam (FIB) systems have become powerful diagnostic and modification tools for nanoscience and nanotechnology. Gas field ion sources (GFISs) built from atomic-size emitters offer the highest brightness among all ion sources and thus can improve the spatial resolution of FIB systems. Here we show that the Ir/W(111) single-atom tip (SAT) can emit high-brightness Xe+ ion beams with a high current stability. The ion emission current versus extraction voltage was analyzed from 150 K up to 309 K. The optimal emitter temperature for maximum Xe+ ion emission was ∼150 K and the reduced brightness at the Xe gas pressure of 1 × 10-4 torr is two to three orders of magnitude higher than that of a Ga liquid metal ion source, and four to five orders of magnitude higher than that of a Xe inductively coupled plasma ion source. Most surprisingly, the SAT emitter remained stable even when operated at 309 K. Even though the ion current decreased with increasing temperature, the current at room temperature (RT) could still reach over 1 pA when the gas pressure was higher than 1 × 10-3 torr, indicating the feasibility of RT-Xe-GFIS for application to FIB systems. The operation temperature of Xe-SAT-GFIS is considerably higher than the cryogenic temperature required for the helium ion microscope (HIM), which offers great technical advantages because only simple or no cooling schemes can be adopted. Thus, Xe-GFIS-FIB would be easy to implement and may become a powerful tool for nanoscale milling and secondary ion mass spectroscopy.
Collapse
Affiliation(s)
- Wei-Chiao Lai
- Department of Physics, National Taiwan University, Taipei 10617, Taiwan, Republic of China. Institute of Physics, Academia Sinica, Taipei 11529, Taiwan, Republic of China
| | | | | | | | | | | | | | | |
Collapse
|
66
|
Li Y, Hao H, Swerdel MR, Cho HY, Lee KB, Hart RP, Lyu YL, Cai L. Top2b is involved in the formation of outer segment and synapse during late-stage photoreceptor differentiation by controlling key genes of photoreceptor transcriptional regulatory network. J Neurosci Res 2017; 95:1951-1964. [PMID: 28370415 DOI: 10.1002/jnr.24037] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2016] [Revised: 01/26/2017] [Accepted: 01/27/2017] [Indexed: 01/17/2023]
Abstract
Topoisomerase II beta (Top2b) is an enzyme that alters the topologic states of DNA during transcription. Top2b deletion in early retinal progenitor cells causes severe defects in neural differentiation and affects cell survival in all retinal cell types. However, it is unclear whether the observed severe phenotypes are the result of cell-autonomous/primary defects or non-cell-autonomous/secondary defects caused by alterations of other retinal cells. Using photoreceptor cells as a model, we first characterized the phenotypes in Top2b conditional knockout. Top2b deletion leads to malformation of photoreceptor outer segments (OSs) and synapses accompanied by dramatic cell loss at late-stage photoreceptor differentiation. Then, we performed mosaic analysis with shRNA-mediated Top2b knockdown in neonatal retina using in vivo electroportation to target rod photoreceptors in neonatal retina. Top2b knockdown causes defective OS without causing a dramatic cell loss, suggesting a Top2b cell-autonomous function. Furthermore, RNA-seq analysis reveals that Top2b controls the expression of key genes in the photoreceptor gene-regulatory network (e.g., Crx, Nr2e3, Opn1sw, Vsx2) and retinopathy-related genes (e.g., Abca4, Bbs7, Pde6b). Together, our data establish a combinatorial cell-autonomous and non-cell-autonomous role for Top2b in the late stage of photoreceptor differentiation and maturation. © 2017 The Authors Journal of Neuroscience Research Published by Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Ying Li
- Department of Biomedical Engineering, Rutgers University, Piscataway, New Jersey
| | - Hailing Hao
- Department of Biomedical Engineering, Rutgers University, Piscataway, New Jersey
| | - Mavis R Swerdel
- Department of Cell Biology and Neuroscience, Rutgers University, Piscataway, New Jersey
| | - Hyeon-Yeol Cho
- Department of Chemistry and Chemical Biology, Rutgers University, Piscataway, New Jersey
| | - Ki-Bum Lee
- Department of Chemistry and Chemical Biology, Rutgers University, Piscataway, New Jersey
| | - Ronald P Hart
- Department of Cell Biology and Neuroscience, Rutgers University, Piscataway, New Jersey
| | - Yi Lisa Lyu
- Office of Research Commercialization, Rutgers University, Piscataway, New Jersey
| | - Li Cai
- Department of Biomedical Engineering, Rutgers University, Piscataway, New Jersey
| |
Collapse
|
67
|
Wagner M, Horn H. Optical coherence tomography in biofilm research: A comprehensive review. Biotechnol Bioeng 2017; 114:1386-1402. [DOI: 10.1002/bit.26283] [Citation(s) in RCA: 98] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2016] [Revised: 02/10/2017] [Accepted: 03/01/2017] [Indexed: 01/29/2023]
Affiliation(s)
- Michael Wagner
- Karlsruhe Institute of Technology; Engler-Bunte-Institut; Chair of Water Chemistry and Water Technology; Engler-Bunte-Ring 9 76131 Karlsruhe Germany
- Karlsruhe Institute of Technology; Institute of Functional Interfaces; Eggenstein-Leopoldshafen Germany
| | - Harald Horn
- Karlsruhe Institute of Technology; Engler-Bunte-Institut; Chair of Water Chemistry and Water Technology; Engler-Bunte-Ring 9 76131 Karlsruhe Germany
| |
Collapse
|
68
|
Bandara CD, Singh S, Afara IO, Wolff A, Tesfamichael T, Ostrikov K, Oloyede A. Bactericidal Effects of Natural Nanotopography of Dragonfly Wing on Escherichia coli. ACS APPLIED MATERIALS & INTERFACES 2017; 9:6746-6760. [PMID: 28139904 DOI: 10.1021/acsami.6b13666] [Citation(s) in RCA: 219] [Impact Index Per Article: 27.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
Nanotextured surfaces (NTSs) are critical to organisms as self-adaptation and survival tools. These NTSs have been actively mimicked in the process of developing bactericidal surfaces for diverse biomedical and hygiene applications. To design and fabricate bactericidal topographies effectively for various applications, understanding the bactericidal mechanism of NTS in nature is essential. The current mechanistic explanations on natural bactericidal activity of nanopillars have not utilized recent advances in microscopy to study the natural interaction. This research reveals the natural bactericidal interaction between E. coli and a dragonfly wing's (Orthetrum villosovittatum) NTS using advanced microscopy techniques and proposes a model. Contrary to the existing mechanistic models, this experimental approach demonstrated that the NTS of Orthetrum villosovittatum dragonfly wings has two prominent nanopillar populations and the resolved interface shows membrane damage occurred without direct contact of the bacterial cell membrane with the nanopillars. We propose that the bacterial membrane damage is initiated by a combination of strong adhesion between nanopillars and bacterium EPS layer as well as shear force when immobilized bacterium attempts to move on the NTS. These findings could help guide the design of novel biomimetic nanomaterials by maximizing the synergies between biochemical and mechanical bactericidal effects.
Collapse
Affiliation(s)
- Chaturanga D Bandara
- School of Chemistry, Physics and Mechanical Engineering, Science and Engineering Faculty, Queensland University of Technology (QUT) , Brisbane, Queensland 4001, Australia
- Institute for Health and Biomedical Innovation (IHBI), Queensland University of Technology (QUT) , Kelvin Grove, Queensland 4059, Australia
| | - Sanjleena Singh
- Institute for Future Environments, Queensland University of Technology (QUT) , Brisbane, Queensland 4001, Australia
| | - Isaac O Afara
- Research and Innovation Centre, Elizade University , 1 Wuraola Ade.Ojo Avenue, P.M.B 002, Ilara-Mokin, Ondo State, Nigeria
| | - Annalena Wolff
- Institute for Future Environments, Queensland University of Technology (QUT) , Brisbane, Queensland 4001, Australia
| | - Tuquabo Tesfamichael
- Institute for Future Environments, Queensland University of Technology (QUT) , Brisbane, Queensland 4001, Australia
| | - Kostya Ostrikov
- Institute for Health and Biomedical Innovation (IHBI), Queensland University of Technology (QUT) , Kelvin Grove, Queensland 4059, Australia
- Institute for Future Environments, Queensland University of Technology (QUT) , Brisbane, Queensland 4001, Australia
| | - Adekunle Oloyede
- School of Chemistry, Physics and Mechanical Engineering, Science and Engineering Faculty, Queensland University of Technology (QUT) , Brisbane, Queensland 4001, Australia
- Research and Innovation Centre, Elizade University , 1 Wuraola Ade.Ojo Avenue, P.M.B 002, Ilara-Mokin, Ondo State, Nigeria
| |
Collapse
|
69
|
Charlier P, Weil R, Deblock R, Augias A, Deo S. Helium ion microscopy (HIM): Proof of the applicability on altered human remains (hairs of Holy Maria-Magdalena). Leg Med (Tokyo) 2016; 24:84-85. [PMID: 28081796 DOI: 10.1016/j.legalmed.2016.12.002] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2016] [Revised: 12/10/2016] [Accepted: 12/12/2016] [Indexed: 10/20/2022]
Affiliation(s)
- P Charlier
- Section of Medical and Forensic Anthropology, UFR of Health Sciences (UVSQ & EA 4569 Paris-Descartes), 2 avenue de la source de la Bièvre, 78180 Montigny-Le-Bretonneux, France; CASH & IPES, avenue de la République, 92000 Nanterre, France.
| | - R Weil
- Laboratoire de Physique des Solides, CNRS, Université Paris-Sud, Université Paris-Saclay, 91405 Orsay Cedex, France
| | - R Deblock
- Laboratoire de Physique des Solides, CNRS, Université Paris-Sud, Université Paris-Saclay, 91405 Orsay Cedex, France
| | - A Augias
- Section of Medical and Forensic Anthropology, UFR of Health Sciences (UVSQ & EA 4569 Paris-Descartes), 2 avenue de la source de la Bièvre, 78180 Montigny-Le-Bretonneux, France
| | - S Deo
- Section of Medical and Forensic Anthropology, UFR of Health Sciences (UVSQ & EA 4569 Paris-Descartes), 2 avenue de la source de la Bièvre, 78180 Montigny-Le-Bretonneux, France
| |
Collapse
|
70
|
|
71
|
Barlow AJ, Portoles JF, Sano N, Cumpson PJ. Removing Beam Current Artifacts in Helium Ion Microscopy: A Comparison of Image Processing Techniques. MICROSCOPY AND MICROANALYSIS : THE OFFICIAL JOURNAL OF MICROSCOPY SOCIETY OF AMERICA, MICROBEAM ANALYSIS SOCIETY, MICROSCOPICAL SOCIETY OF CANADA 2016; 22:939-947. [PMID: 27619633 DOI: 10.1017/s1431927616011673] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
The development of the helium ion microscope (HIM) enables the imaging of both hard, inorganic materials and soft, organic or biological materials. Advantages include outstanding topographical contrast, superior resolution down to <0.5 nm at high magnification, high depth of field, and no need for conductive coatings. The instrument relies on helium atom adsorption and ionization at a cryogenically cooled tip that is atomically sharp. Under ideal conditions this arrangement provides a beam of ions that is stable for days to weeks, with beam currents in the order of picoamperes. Over time, however, this stability is lost as gaseous contamination builds up in the source region, leading to adsorbed atoms of species other than helium, which ultimately results in beam current fluctuations. This manifests itself as horizontal stripe artifacts in HIM images. We investigate post-processing methods to remove these artifacts from HIM images, such as median filtering, Gaussian blurring, fast Fourier transforms, and principal component analysis. We arrive at a simple method for completely removing beam current fluctuation effects from HIM images while maintaining the full integrity of the information within the image.
Collapse
Affiliation(s)
- Anders J Barlow
- National EPSRC XPS Users' Service (NEXUS),School of Mechanical and Systems Engineering,Newcastle University,Newcastle upon Tyne,Tyne and Wear,NE1 7RU,UK
| | - Jose F Portoles
- National EPSRC XPS Users' Service (NEXUS),School of Mechanical and Systems Engineering,Newcastle University,Newcastle upon Tyne,Tyne and Wear,NE1 7RU,UK
| | - Naoko Sano
- National EPSRC XPS Users' Service (NEXUS),School of Mechanical and Systems Engineering,Newcastle University,Newcastle upon Tyne,Tyne and Wear,NE1 7RU,UK
| | - Peter J Cumpson
- National EPSRC XPS Users' Service (NEXUS),School of Mechanical and Systems Engineering,Newcastle University,Newcastle upon Tyne,Tyne and Wear,NE1 7RU,UK
| |
Collapse
|
72
|
Joddar B, Garcia E, Casas A, Stewart CM. Development of functionalized multi-walled carbon-nanotube-based alginate hydrogels for enabling biomimetic technologies. Sci Rep 2016; 6:32456. [PMID: 27578567 PMCID: PMC5006027 DOI: 10.1038/srep32456] [Citation(s) in RCA: 73] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2016] [Accepted: 08/05/2016] [Indexed: 12/03/2022] Open
Abstract
Alginate is a hydrogel commonly used for cell culture by ionically crosslinking in the presence of divalent Ca(2+) ions. However these alginate gels are mechanically unstable, not permitting their use as scaffolds to engineer robust biological bone, breast, cardiac or tumor tissues. This issue can be addressed via encapsulation of multi-walled carbon nanotubes (MWCNT) serving as a reinforcing phase while being dispersed in a continuous phase of alginate. We hypothesized that adding functionalized MWCNT to alginate, would yield composite gels with distinctively different mechanical, physical and biological characteristics in comparison to alginate alone. Resultant MWCNT-alginate gels were porous, and showed significantly less degradation after 14 days compared to alginate alone. In vitro cell-studies showed enhanced HeLa cell adhesion and proliferation on the MWCNT-alginate compared to alginate. The extent of cell proliferation was greater when cultured atop 1 and 3 mg/ml MWCNT-alginate; although all MWCNT-alginates lead to enhanced cell cluster formation compared to alginate alone. Among all the MWCNT-alginates, the 1 mg/ml gels showed significantly greater stiffness compared to all other cases. These results provide an important basis for the development of the MWCNT-alginates as novel substrates for cell culture applications, cell therapy and tissue engineering.
Collapse
Affiliation(s)
- Binata Joddar
- Department of Metallurgical, Materials and Biomedical Engineering, The University of Texas at El Paso, 500 W University Avenue, El Paso, TX 79968, USA
- Border Biomedical Research Center, The University of Texas at El Paso, 500 W University Avenue, El Paso, TX 79968, USA
| | - Eduardo Garcia
- Department of Mechanical Engineering, The University of Texas at El Paso, 500 W University Avenue, El Paso, TX 79968, USA
| | - Atzimba Casas
- Department of Biological Sciences, The University of Texas at El Paso, 500 W University Avenue, El Paso, TX 79968, USA
| | - Calvin M. Stewart
- Department of Mechanical Engineering, The University of Texas at El Paso, 500 W University Avenue, El Paso, TX 79968, USA
| |
Collapse
|
73
|
Schwaiger R, Schneider J, Bourret GR, Diwald O. Hydration of magnesia cubes: a helium ion microscopy study. BEILSTEIN JOURNAL OF NANOTECHNOLOGY 2016; 7:302-9. [PMID: 27335725 PMCID: PMC4901542 DOI: 10.3762/bjnano.7.28] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/04/2015] [Accepted: 02/10/2016] [Indexed: 05/09/2023]
Abstract
Physisorbed water originating from exposure to the ambient can have a strong impact on the structure and chemistry of oxide nanomaterials. The effect can be particularly pronounced when these oxides are in physical contact with a solid substrate such as the ones used for immobilization to perform electron or ion microscopy imaging. We used helium ion microscopy (HIM) and investigated morphological changes of vapor-phase-grown MgO cubes after vacuum annealing and pressing into foils of soft and high purity indium. The indium foils were either used as obtained or, for reference, subjected to vacuum drying. After four days of storage in the vacuum chamber of the microscope and at a base pressure of p < 10(-7) mbar, we observed on these cubic particles the attack of residual physisorbed water molecules from the indium substrate. As a result, thin magnesium hydroxide layers spontaneously grew, giving rise to characteristic volume expansion effects, which depended on the size of the particles. Rounding of the originally sharp cube edges leads to a significant loss of the morphological definition specific to the MgO cubes. Comparison of different regions within one sample before and after exposure to liquid water reveals different transformation processes, such as the formation of Mg(OH)2 shells that act as diffusion barriers for MgO dissolution or the evolution of brucite nanosheets organized in characteristic flower-like microstructures. The findings underline the significant metastability of nanomaterials under both ambient and high-vacuum conditions and show the dramatic effect of ubiquitous water films during storage and characterization of oxide nanomaterials.
Collapse
Affiliation(s)
- Ruth Schwaiger
- Institute for Applied Materials (IAM) and Karlsruhe Nano Micro Facility (KNMF), Karlsruhe Institute of Technology (KIT), Hermann-von-Helmholtz-Platz 1, D-76344 Eggenstein-Leopoldshafen, Germany
| | - Johannes Schneider
- Department of Chemistry and Physics of Materials, University of Salzburg, Hellbrunnerstrasse 34/ III, A-5020 Salzburg, Austria
| | - Gilles R Bourret
- Department of Chemistry and Physics of Materials, University of Salzburg, Hellbrunnerstrasse 34/ III, A-5020 Salzburg, Austria
| | - Oliver Diwald
- Department of Chemistry and Physics of Materials, University of Salzburg, Hellbrunnerstrasse 34/ III, A-5020 Salzburg, Austria
| |
Collapse
|
74
|
Schürmann M, Frese N, Beyer A, Heimann P, Widera D, Mönkemöller V, Huser T, Kaltschmidt B, Kaltschmidt C, Gölzhäuser A. Helium Ion Microscopy Visualizes Lipid Nanodomains in Mammalian Cells. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2015; 11:5781-5789. [PMID: 26436577 DOI: 10.1002/smll.201501540] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/01/2015] [Revised: 07/16/2015] [Indexed: 06/05/2023]
Abstract
Cell membranes are composed of 2D bilayers of amphipathic lipids, which allow a lateral movement of the respective membrane components. These components are arranged in an inhomogeneous manner as transient micro- and nanodomains, which are believed to be crucially involved in the regulation of signal transduction pathways in mammalian cells. Because of their small size (diameter 10-200 nm), membrane nanodomains cannot be directly imaged using conventional light microscopy. Here, direct visualization of cell membrane nanodomains by helium ion microscopy (HIM) is presented. It is shown that HIM is capable to image biological specimens without any conductive coating and that HIM images clearly allow the identification of nanodomains in the ultrastructure of membranes with 1.5 nm resolution. The shape of these nanodomains is preserved by fixation of the surrounding unsaturated fatty acids while saturated fatty acids inside the nanodomains are selectively removed. Atomic force microscopy, fluorescence microscopy, 3D structured illumination microscopy, and direct stochastic optical reconstruction microscopy provide additional evidence that the structures in the HIM images of cell membranes originate from membrane nanodomains. The nanodomains observed by HIM have an average diameter of 20 nm and are densely arranged with a minimal nearest neighbor distance of ≈ 15 nm.
Collapse
Affiliation(s)
| | - Natalie Frese
- Faculty of Physics, Bielefeld University, 33501, Bielefeld, Germany
| | - André Beyer
- Faculty of Physics, Bielefeld University, 33501, Bielefeld, Germany
| | - Peter Heimann
- Faculty of Biology, Bielefeld University, 33501, Bielefeld, Germany
| | - Darius Widera
- Faculty of Biology, Bielefeld University, 33501, Bielefeld, Germany
- Reading School of Pharmacy, University of Reading, Reading RG6 6UB, UK
| | | | - Thomas Huser
- Faculty of Physics, Bielefeld University, 33501, Bielefeld, Germany
| | | | | | - Armin Gölzhäuser
- Faculty of Physics, Bielefeld University, 33501, Bielefeld, Germany
| |
Collapse
|
75
|
de Souza W, Attias M. New views of the Toxoplasma gondii parasitophorous vacuole as revealed by Helium Ion Microscopy (HIM). J Struct Biol 2015; 191:76-85. [PMID: 26004092 DOI: 10.1016/j.jsb.2015.05.003] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2015] [Revised: 05/13/2015] [Accepted: 05/14/2015] [Indexed: 11/27/2022]
Abstract
The Helium Ion Microscope (HIM) is a new technology that uses a highly focused helium ion beam to scan and interact with the sample, which is not coated. The images have resolution and depth of field superior to field emission scanning electron microscopes. In this paper, we used HIM to study LLC-MK2 cells infected with Toxoplasma gondii. These samples were chemically fixed and, after critical point drying, were scraped with adhesive tape to expose the inner structure of the cell and parasitophorous vacuoles. We confirmed some of the previous findings made by field emission-scanning electron microscopy and showed that the surface of the parasite is rich in structures suggestive of secretion, that the nanotubules of the intravacuolar network (IVN) are not always straight, and that bifurcations are less frequent than previously thought. Fusion of the tubules with the parasite membrane or the parasitophorous vacuole membrane (PVM) was also infrequent. Tiny adhesive links were observed for the first time connecting the IVN tubules. The PVM showed openings of various sizes that even allowed the observation of endoplasmic reticulum membranes in the cytoplasm of the host cell. These findings are discussed in relation to current knowledge on the cell biology of T. gondii.
Collapse
Affiliation(s)
- Wanderley de Souza
- Laboratório de Ultraestrutura Celular Hertha Meyer, Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Centro de Ciências da Saúde, Bloco G, Ilha do Fundão, 21941-902 Rio de Janeiro, RJ, Brazil; Instituto Nacional de Biologia Estrutural e Biomagem-INBEB, and Centro Nacional de Biologia Estrutural e Biomagem-CENABIO, Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ, Brazil; Instituto Nacional de Metrologia, Qualidade e Tecnologia-INMETRO, Duque de Caxias, RJ, Brazil
| | - Marcia Attias
- Laboratório de Ultraestrutura Celular Hertha Meyer, Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Centro de Ciências da Saúde, Bloco G, Ilha do Fundão, 21941-902 Rio de Janeiro, RJ, Brazil; Instituto Nacional de Biologia Estrutural e Biomagem-INBEB, and Centro Nacional de Biologia Estrutural e Biomagem-CENABIO, Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ, Brazil.
| |
Collapse
|
76
|
Petrov YV, Vyvenko OF. Scanning reflection ion microscopy in a helium ion microscope. BEILSTEIN JOURNAL OF NANOTECHNOLOGY 2015; 6:1125-1137. [PMID: 26171289 PMCID: PMC4463972 DOI: 10.3762/bjnano.6.114] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/02/2015] [Accepted: 04/15/2015] [Indexed: 06/04/2023]
Abstract
Reflection ion microscopy (RIM) is a technique that uses a low angle of incidence and scattered ions to form an image of the specimen surface. This paper reports on the development of the instrumentation and the analysis of the capabilities and limitations of the scanning RIM in a helium ion microscope (HIM). The reflected ions were detected by their "conversion" to secondary electrons on a platinum surface. An angle of incidence in the range 5-10° was used in the experimental setup. It was shown that the RIM image contrast was determined mostly by surface morphology but not by the atomic composition. A simple geometrical analysis of the reflection process was performed together with a Monte Carlo simulation of the angular dependence of the reflected ion yield. An interpretation of the RIM image formation and a quantification of the height of the surface steps were performed. The minimum detectable step height was found to be approximately 5 nm. RIM imaging of an insulator surface without the need for charge compensation was successfully demonstrated.
Collapse
Affiliation(s)
- Yuri V Petrov
- Interdisciplinary Resource Center for Nanotechnology, Saint-Petersburg State University, Ulyanovskaya 1, Saint-Petersburg 198504, Russia
| | - Oleg F Vyvenko
- Faculty of Physics, Saint-Petersburg State University, Ulyanovskaya 1, Saint-Petersburg 198504, Russia
| |
Collapse
|
77
|
Masters RC, Pearson AJ, Glen TS, Sasam FC, Li L, Dapor M, Donald AM, Lidzey DG, Rodenburg C. Sub-nanometre resolution imaging of polymer-fullerene photovoltaic blends using energy-filtered scanning electron microscopy. Nat Commun 2015; 6:6928. [PMID: 25906738 PMCID: PMC4423221 DOI: 10.1038/ncomms7928] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2014] [Accepted: 03/16/2015] [Indexed: 12/02/2022] Open
Abstract
The resolution capability of the scanning electron microscope has increased immensely in recent years, and is now within the sub-nanometre range, at least for inorganic materials. An equivalent advance has not yet been achieved for imaging the morphologies of nanostructured organic materials, such as organic photovoltaic blends. Here we show that energy-selective secondary electron detection can be used to obtain high-contrast, material-specific images of an organic photovoltaic blend. We also find that we can differentiate mixed phases from pure material phases in our data. The lateral resolution demonstrated is twice that previously reported from secondary electron imaging. Our results suggest that our energy-filtered scanning electron microscopy approach will be able to make major inroads into the understanding of complex, nano-structured organic materials. Morphological characterization of organic photovoltaic active layers is restricted by the lack of accurate chemical mapping tools. Here, the authors demonstrate an energy-filtered scanning electron microscopy technique, which enables sub-nanometre resolution imaging of an organic photovoltaic blend.
Collapse
Affiliation(s)
- Robert C Masters
- Department of Materials Science and Engineering, University of Sheffield, Sir Robert Hadfield Building, Mappin Street, Sheffield S1 3JD, UK
| | - Andrew J Pearson
- Department of Physics, University of Cambridge, Cavendish Laboratory, 19 JJ Thomson Avenue, Cambridge CB3 0HE, UK
| | - Tom S Glen
- Department of Physics, University of Cambridge, Cavendish Laboratory, 19 JJ Thomson Avenue, Cambridge CB3 0HE, UK
| | - Fabian-Cyril Sasam
- FEI Co. Europe NanoPort, Achtseweg Noord 5, Eindhoven, 5651 GG, The Netherlands
| | - Letian Li
- FEI Co. Europe NanoPort, Achtseweg Noord 5, Eindhoven, 5651 GG, The Netherlands
| | - Maurizio Dapor
- European Centre for Theoretical Studies in Nuclear Physics and Related Areas (ECT*-FBK) and Trento Institute for Fundamental Physics and Applications (TIFPA-INFN), via Sommarive 18, Trento I-38123, Italy
| | - Athene M Donald
- Department of Physics, University of Cambridge, Cavendish Laboratory, 19 JJ Thomson Avenue, Cambridge CB3 0HE, UK
| | - David G Lidzey
- Department of Physics and Astronomy, University of Sheffield, Hicks Building, Hounsfield Road, Sheffield S3 7RH, UK
| | - Cornelia Rodenburg
- Department of Materials Science and Engineering, University of Sheffield, Sir Robert Hadfield Building, Mappin Street, Sheffield S1 3JD, UK
| |
Collapse
|
78
|
Solomonov I, Talmi-Frank D, Milstein Y, Addadi S, Aloshin A, Sagi I. Introduction of correlative light and airSEM™ microscopy imaging for tissue research under ambient conditions. Sci Rep 2014; 4:5987. [PMID: 25100357 PMCID: PMC5154511 DOI: 10.1038/srep05987] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2014] [Accepted: 07/22/2014] [Indexed: 11/09/2022] Open
Abstract
A complete fingerprint of a tissue sample requires a detailed description of its cellular and extracellular components while minimizing artifacts. We introduce the application of a novel scanning electron microscope (airSEM™) in conjunction with light microscopy for functional analysis of tissue preparations at nanometric resolution (<10 nm) and under ambient conditions. Our metal-staining protocols enable easy and detailed visualization of tissues and their extracellular scaffolds. A multimodality imaging setup, featuring airSEM™ and a light microscope on the same platform, provides a convenient and easy-to-use system for obtaining structural and functional correlative data. The airSEM™ imaging station complements other existing imaging solutions and shows great potential for studies of complex biological systems.
Collapse
Affiliation(s)
- Inna Solomonov
- Department of Biological Regulation, Weizmann Institute of Science, Rehovot 76100, Israel
- These authors contributed equally to this work
| | - Dalit Talmi-Frank
- Department of Biological Regulation, Weizmann Institute of Science, Rehovot 76100, Israel
- These authors contributed equally to this work
| | | | | | - Anna Aloshin
- Department of Biological Regulation, Weizmann Institute of Science, Rehovot 76100, Israel
| | - Irit Sagi
- Department of Biological Regulation, Weizmann Institute of Science, Rehovot 76100, Israel
| |
Collapse
|