51
|
Gack MU, Diamond MS. Innate immune escape by Dengue and West Nile viruses. Curr Opin Virol 2016; 20:119-128. [PMID: 27792906 DOI: 10.1016/j.coviro.2016.09.013] [Citation(s) in RCA: 61] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2016] [Revised: 09/15/2016] [Accepted: 09/27/2016] [Indexed: 12/28/2022]
Abstract
Dengue (DENV) and West Nile (WNV) viruses are mosquito-transmitted flaviviruses that cause significant morbidity and mortality worldwide. Disease severity and pathogenesis of DENV and WNV infections in humans depend on many factors, including pre-existing immunity, strain virulence, host genetics and virus-host interactions. Among the flavivirus-host interactions, viral evasion of type I interferon (IFN)-mediated innate immunity has a critical role in modulating pathogenesis. DENV and WNV have evolved effective strategies to evade immune surveillance pathways that lead to IFN induction and to block signaling downstream of the IFN-α/β receptor. Here, we discuss recent advances in our understanding of the molecular mechanisms by which DENV and WNV antagonize the type I IFN response in human cells.
Collapse
Affiliation(s)
- Michaela U Gack
- Department of Microbiology, The University of Chicago, Chicago, IL, 60637, USA.
| | - Michael S Diamond
- Department of Medicine, Washington University School of Medicine, St. Louis, MO 63110, USA; Department of Pathology & Immunology, Washington University School of Medicine, St. Louis, MO 63110, USA; Department of Molecular Microbiology, Washington University School of Medicine, St. Louis, MO 63110, USA; Center for Human Immunology and Immunotherapy Programs, Washington University School of Medicine, St. Louis, MO 63110, USA
| |
Collapse
|
52
|
Qu L, Murakami K, Broughman JR, Lay MK, Guix S, Tenge VR, Atmar RL, Estes MK. Replication of Human Norovirus RNA in Mammalian Cells Reveals Lack of Interferon Response. J Virol 2016; 90:8906-23. [PMID: 27466422 PMCID: PMC5021416 DOI: 10.1128/jvi.01425-16] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2016] [Accepted: 07/18/2016] [Indexed: 12/31/2022] Open
Abstract
UNLABELLED Human noroviruses (HuNoVs), named after the prototype strain Norwalk virus (NV), are a leading cause of acute gastroenteritis outbreaks worldwide. Studies on the related murine norovirus (MNV) have demonstrated the importance of an interferon (IFN) response in host control of virus replication, but this remains unclear for HuNoVs. Despite the lack of an efficient cell culture infection system, transfection of stool-isolated NV RNA into mammalian cells leads to viral RNA replication and virus production. Using this system, we show here that NV RNA replication is sensitive to type I (α/β) and III (interleukin-29 [IL-29]) IFN treatment. However, in cells capable of a strong IFN response to Sendai virus (SeV) and poly(I·C), NV RNA replicates efficiently and generates double-stranded RNA without inducing a detectable IFN response. Replication of HuNoV genogroup GII.3 strain U201 RNA, generated from a reverse genetics system, also does not induce an IFN response. Consistent with a lack of IFN induction, NV RNA replication is enhanced neither by neutralization of type I/III IFNs through neutralizing antibodies or the soluble IFN decoy receptor B18R nor by short hairpin RNA (shRNA) knockdown of mitochondrial antiviral signaling protein (MAVS) or interferon regulatory factor 3 (IRF3) in the IFN induction pathways. In contrast to other positive-strand RNA viruses that block IFN induction by targeting MAVS for degradation, MAVS is not degraded in NV RNA-replicating cells, and an SeV-induced IFN response is not blocked. Together, these results indicate that HuNoV RNA replication in mammalian cells does not induce an IFN response, suggesting that the epithelial IFN response may play a limited role in host restriction of HuNoV replication. IMPORTANCE Human noroviruses (HuNoVs) are a leading cause of epidemic gastroenteritis worldwide. Due to lack of an efficient cell culture system and robust small-animal model, little is known about the innate host defense to these viruses. Studies on murine norovirus (MNV) have shown the importance of an interferon (IFN) response in host control of MNV replication, but this remains unclear for HuNoVs. Here, we investigated the IFN response to HuNoV RNA replication in mammalian cells using Norwalk virus stool RNA transfection, a reverse genetics system, IFN neutralization reagents, and shRNA knockdown methods. Our results show that HuNoV RNA replication in mammalian epithelial cells does not induce an IFN response, nor can it be enhanced by blocking the IFN response. These results suggest a limited role of the epithelial IFN response in host control of HuNoV RNA replication, providing important insights into our understanding of the host defense to HuNoVs that differs from that to MNV.
Collapse
Affiliation(s)
- Lin Qu
- Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, Texas, USA
| | - Kosuke Murakami
- Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, Texas, USA
| | - James R Broughman
- Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, Texas, USA
| | - Margarita K Lay
- Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, Texas, USA
| | - Susana Guix
- Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, Texas, USA
| | - Victoria R Tenge
- Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, Texas, USA
| | - Robert L Atmar
- Department of Medicine, Baylor College of Medicine, Houston, Texas, USA
| | - Mary K Estes
- Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, Texas, USA
| |
Collapse
|
53
|
Liu ZY, Li XF, Jiang T, Deng YQ, Ye Q, Zhao H, Yu JY, Qin CF. Viral RNA switch mediates the dynamic control of flavivirus replicase recruitment by genome cyclization. eLife 2016; 5. [PMID: 27692070 PMCID: PMC5101012 DOI: 10.7554/elife.17636] [Citation(s) in RCA: 61] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2016] [Accepted: 09/30/2016] [Indexed: 12/23/2022] Open
Abstract
Viral replicase recruitment and long-range RNA interactions are essential for RNA virus replication, yet the mechanism of their interplay remains elusive. Flaviviruses include numerous important human pathogens, e.g., dengue virus (DENV) and Zika virus (ZIKV). Here, we revealed a highly conserved, conformation-tunable cis-acting element named 5′-UAR-flanking stem (UFS) in the flavivirus genomic 5′ terminus. We demonstrated that the UFS was critical for efficient NS5 recruitment and viral RNA synthesis in different flaviviruses. Interestingly, stabilization of the DENV UFS impaired both genome cyclization and vRNA replication. Moreover, the UFS unwound in response to genome cyclization, leading to the decreased affinity of NS5 for the viral 5′ end. Thus, we propose that the UFS is switched by genome cyclization to regulate dynamic RdRp binding for vRNA replication. This study demonstrates that the UFS enables communication between flavivirus genome cyclization and RdRp recruitment, highlighting the presence of switch-like mechanisms among RNA viruses. DOI:http://dx.doi.org/10.7554/eLife.17636.001 Flaviviruses include a large family of viruses that are harmful to human health, such as dengue virus, West Nile virus and Zika virus. Understanding the details of the life cycle of these viruses is important for better controlling and treating the diseases that they cause. The genetic information of flaviviruses is stored in single-stranded molecules of RNA. To form new copies of a virus, the RNA must be replicated in a process that involves two critical steps. First, an enzyme called viral RNA polymerase NS5 must be recruited to a specific end of the RNA strand (known as the 5′ end). Then, the ends of the RNA strand bind together to form a circular loop. However, little is known about whether these two processes are linked, or how they are regulated. Using bioinformatics, biochemical and reverse genetics approaches, Liu et al. have now identified a new section of RNA in the 5′ end of the flavivirus RNA, named the 5′-UAR-flanking stem (or UFS for short), which is critical for viral replication. The UFS plays an important role in efficiently recruiting the NS5 viral RNA polymerase to the 5′ end of the flavivirus RNA. After the RNA forms a circle, the UFS unwinds. This makes the NS5 polymerase less likely to bind to the 5′ end of the RNA. Stabilizing the structure of the UFS impairs the ability of the RNA strand to form a circle, and hence reduces the ability of the RNA to replicate. Thus, the UFS links and enables communication between the processes that form the flavivirus RNA into a circle and that recruit the viral RNA polymerase to the RNA. The structural basis of the interaction between the flavivirus RNA 5′ end, including the UFS element, and the viral RNA polymerase now deserves further investigation. It will be also important to explore whether other types of viruses regulate their replication via a similar mechanism. DOI:http://dx.doi.org/10.7554/eLife.17636.002
Collapse
Affiliation(s)
- Zhong-Yu Liu
- Department of Virology, Beijing Institute of Microbiology and Epidemiology, Beijing, China.,State Key Laboratory of Pathogen and Biosecurity, Beijing, China
| | - Xiao-Feng Li
- Department of Virology, Beijing Institute of Microbiology and Epidemiology, Beijing, China.,State Key Laboratory of Pathogen and Biosecurity, Beijing, China
| | - Tao Jiang
- Department of Virology, Beijing Institute of Microbiology and Epidemiology, Beijing, China.,State Key Laboratory of Pathogen and Biosecurity, Beijing, China
| | - Yong-Qiang Deng
- Department of Virology, Beijing Institute of Microbiology and Epidemiology, Beijing, China.,State Key Laboratory of Pathogen and Biosecurity, Beijing, China
| | - Qing Ye
- Department of Virology, Beijing Institute of Microbiology and Epidemiology, Beijing, China
| | - Hui Zhao
- Department of Virology, Beijing Institute of Microbiology and Epidemiology, Beijing, China
| | - Jiu-Yang Yu
- Department of Virology, Beijing Institute of Microbiology and Epidemiology, Beijing, China
| | - Cheng-Feng Qin
- Department of Virology, Beijing Institute of Microbiology and Epidemiology, Beijing, China.,State Key Laboratory of Pathogen and Biosecurity, Beijing, China
| |
Collapse
|
54
|
The Golgi associated ERI3 is a Flavivirus host factor. Sci Rep 2016; 6:34379. [PMID: 27682269 PMCID: PMC5041148 DOI: 10.1038/srep34379] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2016] [Accepted: 09/12/2016] [Indexed: 12/20/2022] Open
Abstract
Dengue virus (DENV) is a mosquito-borne Flavivirus classified into four serotypes (DENV-1-4) that causes Dengue fever (DF), Dengue hemorrhagic Fever (DHF) or Dengue shock syndrome (DSS). An estimated 390 million people are at risk for infection with DENV and there are no effective vaccines or therapeutics. We utilized RNA chromatography coupled with quantitative mass spectrometry (qMS) to identify host RNA binding proteins (RBPs) that interact with DENV-2 RNA. We identified ERI3 (also PRNPIP and PINT1), a putative 3′–5′ RNA exonuclease, which preferentially associates with DENV-2 genomic RNA via interactions with dumbbell structures in the 3′ UTR. ERI3 is required for accumulation of DENV-2 genomic RNA and production of infectious particles. Furthermore, the mosquito homologue of ERI3 is required for DENV-2 replication in adult Aedes aegypti mosquitos implying that the requirement for ERI3 is conserved in both DENV hosts. In human cells ERI3 localizes to the Golgi in uninfected cells, but relocalizes near sites of DENV-2 replication in infected cells. ERI3 is not required for maintaining DENV-2 RNA stability or translation of the viral polyprotein, but is required for viral RNA synthesis. Our results define a specific role for ERI3 and highlight the importance of Golgi proteins in DENV-2 replication.
Collapse
|
55
|
Du X, Pan T, Xu J, Zhang Y, Song W, Yi Z, Yuan Z. Hepatitis C virus replicative double-stranded RNA is a potent interferon inducer that triggers interferon production through MDA5. J Gen Virol 2016; 97:2868-2882. [PMID: 27655134 DOI: 10.1099/jgv.0.000607] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
The cytoplasmic RNA sensors, retinoic acid-inducible gene I and melanoma differentiation-associated gene 5, play crucial roles in innate sensing of hepatitis C virus (HCV). However, the exact identity of the IFN inducer generated during HCV infection is poorly understood. To identify the IFN inducer, we extracted the RNAs from HCV-replicating cells and introduced these into IFN signalling-competent cells to examine IFN production. RNAs isolated from HCV-replicating cells triggered robust IFN-β and IFN-λ production in Huh7 cells in a viral replication-dependent manner, preferentially through the melanoma differentiation-associated gene 5 but not through the retinoic acid-inducible gene I-mediated pathway. The IFN-inducing capacity of HCV RNA survived after calf intestinal alkaline phosphatase and ssRNA-specific S1 nuclease treatment, but was completely eliminated by dsRNA-specific RNase III digestion, suggesting that viral replicative dsRNA is an IFN inducer. Furthermore, HCV viral RNA extracted from replicating cells was sensitive to 5'-monophosphate-dependent 5'→3' exonuclease (TER) digestion, suggesting that the HCV genome lacks a 5'-triphosphate or -diphosphate. In semi-permeabilized cells, the HCV IFN inducer primarily resided in an enclosed membranous structure that protects the IFN inducer from RNase digestion. Taken together, we identified HCV replicative dsRNA as a viral IFN inducer enclosed within the viral replication factory.
Collapse
Affiliation(s)
- Xiaoting Du
- Key Laboratory of Medical Molecular Virology, Department of Medical Microbiology, School of Basic Medical Sciences, Shanghai Medical College, Fudan University, Shanghai, PR China
| | - Tingting Pan
- Key Laboratory of Medical Molecular Virology, Department of Medical Microbiology, School of Basic Medical Sciences, Shanghai Medical College, Fudan University, Shanghai, PR China
| | - Jun Xu
- Key Laboratory of Medical Molecular Virology, Department of Medical Microbiology, School of Basic Medical Sciences, Shanghai Medical College, Fudan University, Shanghai, PR China
| | - Yang Zhang
- Key Laboratory of Medical Molecular Virology, Department of Medical Microbiology, School of Basic Medical Sciences, Shanghai Medical College, Fudan University, Shanghai, PR China
| | - Wuhui Song
- Key Laboratory of Medical Molecular Virology, Department of Medical Microbiology, School of Basic Medical Sciences, Shanghai Medical College, Fudan University, Shanghai, PR China
| | - Zhigang Yi
- Key Laboratory of Medical Molecular Virology, Department of Medical Microbiology, School of Basic Medical Sciences, Shanghai Medical College, Fudan University, Shanghai, PR China
| | - Zhenghong Yuan
- Institute of Biomedical Sciences, Fudan University, Shanghai, PR China.,Key Laboratory of Medical Molecular Virology, Department of Medical Microbiology, School of Basic Medical Sciences, Shanghai Medical College, Fudan University, Shanghai, PR China.,Institute of Medical Microbiology, Fudan University, Shanghai, PR China
| |
Collapse
|
56
|
Beachboard DC, Horner SM. Innate immune evasion strategies of DNA and RNA viruses. Curr Opin Microbiol 2016; 32:113-119. [PMID: 27288760 PMCID: PMC4983539 DOI: 10.1016/j.mib.2016.05.015] [Citation(s) in RCA: 179] [Impact Index Per Article: 19.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2016] [Accepted: 05/20/2016] [Indexed: 12/26/2022]
Abstract
Upon infection, both DNA and RNA viruses can be sensed by pattern recognition receptors (PRRs) in the cytoplasm or the nucleus to activate antiviral innate immunity. Sensing of viral products leads to the activation of a signaling cascade that ultimately results in transcriptional activation of type I and III interferons, as well as other antiviral genes that together mediate viral clearance and inhibit viral spread. Therefore, in order for viruses to replicate and spread efficiently, they must inhibit the host signaling pathways that induce the innate antiviral immune response. In this review, we will highlight recent advances in the understanding of the mechanisms by which viruses evade PRR detection, intermediate signaling molecule activation, transcription factor activation, and the actions of antiviral proteins.
Collapse
Affiliation(s)
- Dia C Beachboard
- Department of Molecular Genetics & Microbiology, Duke University Medical Center, Durham, NC 27710, USA
| | - Stacy M Horner
- Department of Molecular Genetics & Microbiology, Duke University Medical Center, Durham, NC 27710, USA; Department of Medicine, Duke University Medical Center, Durham, NC 27710, USA.
| |
Collapse
|
57
|
Abstract
The co-evolution of viruses with their hosts has led to the emergence of viral pathogens that are adept at evading or actively suppressing host immunity. Pattern recognition receptors (PRRs) are key components of antiviral immunity that detect conserved molecular features of viral pathogens and initiate signalling that results in the expression of antiviral genes. In this Review, we discuss the strategies that viruses use to escape immune surveillance by key intracellular sensors of viral RNA or DNA, with a focus on RIG-I-like receptors (RLRs), cyclic GMP-AMP synthase (cGAS) and interferon-γ (IFNγ)-inducible protein 16 (IFI16). Such viral strategies include the sequestration or modification of viral nucleic acids, interference with specific post-translational modifications of PRRs or their adaptor proteins, the degradation or cleavage of PRRs or their adaptors, and the sequestration or relocalization of PRRs. An understanding of viral immune-evasion mechanisms at the molecular level may guide the development of vaccines and antivirals.
Collapse
Affiliation(s)
- Ying Kai Chan
- grid.38142.3c000000041936754XDepartment of Microbiology and Immunobiology, Harvard Medical School, Boston, 02115 Massachusetts USA
| | - Michaela U. Gack
- grid.170205.10000 0004 1936 7822Department of Microbiology, The University of Chicago, Chicago, 60637 Illinois USA
| |
Collapse
|
58
|
Shulla A, Randall G. (+) RNA virus replication compartments: a safe home for (most) viral replication. Curr Opin Microbiol 2016; 32:82-88. [PMID: 27253151 PMCID: PMC4983521 DOI: 10.1016/j.mib.2016.05.003] [Citation(s) in RCA: 61] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2016] [Accepted: 05/03/2016] [Indexed: 12/19/2022]
Abstract
(+) RNA virus replication compartments form two structural classes. Both classes of replication compartments use cellular membrane curvature proteins. Both classes of replication compartments manipulate de novo lipid synthesis. Some double membrane vesicles use cellular lipid kinases and transfer proteins. Limited transient replication may occur before replication compartment formation.
This review describes recent advances in our understanding of the mechanisms by which (+) RNA viruses establish their replication niche.
Collapse
Affiliation(s)
- Ana Shulla
- Department of Microbiology, The University of Chicago, Chicago, IL 60637, United States
| | - Glenn Randall
- Department of Microbiology, The University of Chicago, Chicago, IL 60637, United States.
| |
Collapse
|
59
|
Miorin L, Maiuri P, Marcello A. Visual detection of Flavivirus RNA in living cells. Methods 2016; 98:82-90. [PMID: 26542763 PMCID: PMC7129942 DOI: 10.1016/j.ymeth.2015.11.002] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2015] [Revised: 10/29/2015] [Accepted: 11/01/2015] [Indexed: 12/24/2022] Open
Abstract
Flaviviruses include a wide range of important human pathogens delivered by insects or ticks. These viruses have a positive-stranded RNA genome that is replicated in the cytoplasm of the infected cell. The viral RNA genome is the template for transcription by the virally encoded RNA polymerase and for translation of the viral proteins. Furthermore, the double-stranded RNA intermediates of viral replication are believed to trigger the innate immune response through interaction with cytoplasmic cellular sensors. Therefore, understanding the subcellular distribution and dynamics of Flavivirus RNAs is of paramount importance to understand the interaction of the virus with its cellular host, which could be of insect, tick or mammalian, including human, origin. Recent advances on the visualization of Flavivirus RNA in living cells together with the development of methods to measure the dynamic properties of viral RNA are reviewed and discussed in this essay. In particular the application of bleaching techniques such as fluorescence recovery after photobleaching (FRAP) and fluorescence loss in photobleaching (FLIP) are analysed in the context of tick-borne encephalitis virus replication. Conclusions driven by this approached are discussed in the wider context Flavivirus infection.
Collapse
MESH Headings
- Animals
- Cell Line
- Cricetinae
- Encephalitis Viruses, Tick-Borne/genetics
- Encephalitis Viruses, Tick-Borne/metabolism
- Encephalitis Viruses, Tick-Borne/ultrastructure
- Fluorescence Recovery After Photobleaching
- Fluorescent Dyes/chemistry
- Gene Expression Regulation, Viral
- Host-Pathogen Interactions
- Humans
- Molecular Imaging/methods
- RNA, Messenger/chemistry
- RNA, Messenger/genetics
- RNA, Messenger/metabolism
- RNA, Viral/chemistry
- RNA, Viral/genetics
- RNA, Viral/metabolism
- Recombinant Fusion Proteins/genetics
- Recombinant Fusion Proteins/metabolism
- Staining and Labeling/methods
- Ticks/virology
- Transcription, Genetic
Collapse
Affiliation(s)
- Lisa Miorin
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY, USA; Global Health and Emerging Pathogens Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Paolo Maiuri
- IFOM - Istituto FIRC di Oncologia Molecolare, via Adamello 16, 20139 Milan, Italy
| | - Alessandro Marcello
- Laboratory of Molecular Virology, International Centre for Genetic Engineering and Biotechnology (ICGEB), Padriciano 99, 34149 Trieste, Italy.
| |
Collapse
|
60
|
Suppressive Effects of the Site 1 Protease (S1P) Inhibitor, PF-429242, on Dengue Virus Propagation. Viruses 2016; 8:v8020046. [PMID: 26875984 PMCID: PMC4776201 DOI: 10.3390/v8020046] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2015] [Revised: 01/24/2016] [Accepted: 02/04/2016] [Indexed: 01/08/2023] Open
Abstract
Dengue virus (DENV) infection causes one of the most widespread mosquito-borne diseases in the world. Despite the great need, effective vaccines and practical antiviral therapies are still under development. Intracellular lipid levels are regulated by sterol regulatory elements-binding proteins (SREBPs), which are activated by serine protease, site 1 protease (S1P). Small compound PF-429242 is known as a S1P inhibitor and the antivirus effects have been reported in some viruses. In this study, we examined the anti-DENV effects of PF-429242 using all four serotypes of DENV by several primate-derived cell lines. Moreover, emergence of drug-resistant DENV mutants was assessed by sequential passages with the drug. DENV dependency on intracellular lipids during their infection was also evaluated by adding extracellular lipids. The addition of PF-429242 showed suppression of viral propagation in all DENV serotypes. We showed that drug-resistant DENV mutants are unlikely to emerge after five times sequential passages through treatment with PF-429242. Although the levels of intracellular cholesterol and lipid droplets were reduced by PF-429242, viral propagations were not recovered by addition of exogenous cholesterol or fatty acids, indicating that the reduction of LD and cholesterol caused by PF-429242 treatment is not related to its mechanism of action against DENV propagation. Our results suggest that PF-429242 is a promising candidate for an anti-DENV agent.
Collapse
|
61
|
Xia J, Chen X, Xu F, Wang Y, Shi Y, Li Y, He J, Zhang P. Dengue virus infection induces formation of G3BP1 granules in human lung epithelial cells. Arch Virol 2015; 160:2991-9. [PMID: 26350772 DOI: 10.1007/s00705-015-2578-9] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2015] [Accepted: 08/21/2015] [Indexed: 01/05/2023]
Abstract
Cells reprogram ongoing translation in response to viral infection, resulting in formation of stress granules (SGs), while viruses have evolved a variety of strategies to antagonize the host SG response. Previous literature reported that in BHK-1 cells, infection with dengue virus (DENV) interfered with the SG formation. In the current study, we further investigated SG formation in human epithelial A549 cells by detecting subcellular localization of two SG hallmarks, TIA-1 and G3BP1. In response to DENV type 2 (DENV2) and type 3 (DENV3) infection, G3BP1, but not TIA-1, was recruited into cytoplasmic granules in some cells, and viral protein synthesis was significantly impaired in the G3BP1-granule-containing cells. Knockdown of G3BP1 significantly rescued the dsRNA-mediated suppression of DENV2 replication. Furthermore, our data showed that the phosphorylation of protein kinase regulated by dsRNA (PKR) and eIF2α, as well as accumulation of dsRNA, mainly occurred at the late stage of viral infection. This work revealed that in DENV-infected A549 cells, G3BP1 granules were assembled independently of TIA-1 and had a negative impact on viral replication. This extends our understanding of the antagonistic relationship between the SG response and dengue virus infection.
Collapse
Affiliation(s)
- Jun Xia
- Department of Immunology, Institute of Human Virology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, 510080, China.,Key Laboratory of Tropical Diseases Control, Ministry of Education, Guangzhou, 510080, China
| | - Xiaoyan Chen
- Department of Immunology, Institute of Human Virology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, 510080, China.,Key Laboratory of Tropical Diseases Control, Ministry of Education, Guangzhou, 510080, China
| | - Feng Xu
- Department of Immunology, Institute of Human Virology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, 510080, China.,Key Laboratory of Tropical Diseases Control, Ministry of Education, Guangzhou, 510080, China
| | - Yi Wang
- Department of Immunology, Institute of Human Virology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, 510080, China.,Key Laboratory of Tropical Diseases Control, Ministry of Education, Guangzhou, 510080, China
| | - Yongxia Shi
- Guangdong Inspection and Quarantine Technology Center, Guangzhou, 510080, China
| | - Yuye Li
- Department of Immunology, Institute of Human Virology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, 510080, China.,Key Laboratory of Tropical Diseases Control, Ministry of Education, Guangzhou, 510080, China
| | - Junfang He
- Department of Immunology, Institute of Human Virology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, 510080, China. .,Key Laboratory of Tropical Diseases Control, Ministry of Education, Guangzhou, 510080, China.
| | - Ping Zhang
- Department of Immunology, Institute of Human Virology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, 510080, China. .,Key Laboratory of Tropical Diseases Control, Ministry of Education, Guangzhou, 510080, China.
| |
Collapse
|
62
|
Double-Stranded RNA Is Detected by Immunofluorescence Analysis in RNA and DNA Virus Infections, Including Those by Negative-Stranded RNA Viruses. J Virol 2015; 89:9383-92. [PMID: 26136565 DOI: 10.1128/jvi.01299-15] [Citation(s) in RCA: 130] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2015] [Accepted: 06/23/2015] [Indexed: 12/14/2022] Open
Abstract
UNLABELLED Early biochemical studies of viral replication suggested that most viruses produce double-stranded RNA (dsRNA), which is essential for the induction of the host immune response. However, it was reported in 2006 that dsRNA could be detected by immunofluorescence antibody staining in double-stranded DNA and positive-strand RNA virus infections but not in negative-strand RNA virus infections. Other reports in the literature seemed to support these observations. This suggested that negative-strand RNA viruses produce little, if any, dsRNA or that more efficient viral countermeasures to mask dsRNA are mounted. Because of our interest in the use of dsRNA antibodies for virus discovery, particularly in pathological specimens, we wanted to determine how universal immunostaining for dsRNA might be in animal virus infections. We have detected the in situ formation of dsRNA in cells infected with vesicular stomatitis virus, measles virus, influenza A virus, and Nyamanini virus, which represent viruses from different negative-strand RNA virus families. dsRNA was also detected in cells infected with lymphocytic choriomeningitis virus, an ambisense RNA virus, and minute virus of mice (MVM), a single-stranded DNA (ssDNA) parvovirus, but not hepatitis B virus. Although dsRNA staining was primarily observed in the cytoplasm, it was also seen in the nucleus of cells infected with influenza A virus, Nyamanini virus, and MVM. Thus, it is likely that most animal virus infections produce dsRNA species that can be detected by immunofluorescence staining. The apoptosis induced in several uninfected cell lines failed to upregulate dsRNA formation. IMPORTANCE An effective antiviral host immune response depends on recognition of viral invasion and an intact innate immune system as a first line of defense. Double-stranded RNA (dsRNA) is a viral product essential for the induction of innate immunity, leading to the production of type I interferons (IFNs) and the activation of hundreds of IFN-stimulated genes. The present study demonstrates that infections, including those by ssDNA viruses and positive- and negative-strand RNA viruses, produce dsRNAs detectable by standard immunofluorescence staining. While dsRNA staining was primarily observed in the cytoplasm, nuclear staining was also present in some RNA and DNA virus infections. The nucleus is unlikely to have pathogen-associated molecular pattern (PAMP) receptors for dsRNA because of the presence of host dsRNA molecules. Thus, it is likely that most animal virus infections produce dsRNA species detectable by immunofluorescence staining, which may prove useful in viral discovery as well.
Collapse
|
63
|
Takamatsu Y, Uchida L, Morita K. Delayed IFN response differentiates replication of West Nile virus and Japanese encephalitis virus in human neuroblastoma and glioblastoma cells. J Gen Virol 2015; 96:2194-2199. [PMID: 25920530 DOI: 10.1099/vir.0.000168] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
West Nile virus (WNV) and Japanese encephalitis virus (JEV) are important causes of human encephalitis cases, which result in a high mortality ratio and neurological sequelae after recovery. Understanding the mechanism of neuropathogenicity in these viral infections is important for the development of specific antiviral therapy. Here, we focused on human-derived neuronal and glial cells to understand the cellular responses against WNV and JEV infection. It was demonstrated that early IFN-β induction regulated virus replication in glioblastoma tbl98G cells, whereas delayed IFN-β induction resulted in efficient virus replication in neuroblastoma SK-N-SH cells. Moreover, the concealing of viral dsRNA in the intracellular membrane resulted in the delayed IFN response in SK-N-SH cells. These results, which showed different IFN responses between human neuronal and glial cells after WNV or JEV infection, are expected to contribute to our understanding of the molecular mechanisms for neuropathology in these viral infections.
Collapse
Affiliation(s)
- Yuki Takamatsu
- Department of Virology, Institute of Tropical Medicine, Nagasaki University, Nagasaki, Japan
| | - Leo Uchida
- Department of Virology, Institute of Tropical Medicine, Nagasaki University, Nagasaki, Japan
| | - Kouichi Morita
- Department of Virology, Institute of Tropical Medicine, Nagasaki University, Nagasaki, Japan
| |
Collapse
|
64
|
Ma DY, Suthar MS. Mechanisms of innate immune evasion in re-emerging RNA viruses. Curr Opin Virol 2015; 12:26-37. [PMID: 25765605 PMCID: PMC4470747 DOI: 10.1016/j.coviro.2015.02.005] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2014] [Revised: 02/18/2015] [Accepted: 02/19/2015] [Indexed: 01/10/2023]
Abstract
RNA viruses passively evade host detection by masking viral PAMPs and replicating within vesicles. Many emerging viruses harbor multiple strategies for innate immune evasion. Viral antagonists have been found to target the pattern recognition receptor and interferon signaling pathways. Knowledge of host–pathogen interactions is essential for vaccine/therapeutic development and understanding innate immunity.
Recent outbreaks of Ebola, West Nile, Chikungunya, Middle Eastern Respiratory and other emerging/re-emerging RNA viruses continue to highlight the need to further understand the virus–host interactions that govern disease severity and infection outcome. As part of the early host antiviral defense, the innate immune system mediates pathogen recognition and initiation of potent antiviral programs that serve to limit virus replication, limit virus spread and activate adaptive immune responses. Concordantly, viral pathogens have evolved several strategies to counteract pathogen recognition and cell-intrinsic antiviral responses. In this review, we highlight the major mechanisms of innate immune evasion by emerging and re-emerging RNA viruses, focusing on pathogens that pose significant risk to public health.
Collapse
Affiliation(s)
- Daphne Y Ma
- Department of Pediatrics and Children's Healthcare of Atlanta, Emory University School of Medicine, Atlanta, GA 30329, USA; Emory Vaccine Center, Yerkes National Primate Research Center, Atlanta, GA 30329, USA
| | - Mehul S Suthar
- Department of Pediatrics and Children's Healthcare of Atlanta, Emory University School of Medicine, Atlanta, GA 30329, USA; Emory Vaccine Center, Yerkes National Primate Research Center, Atlanta, GA 30329, USA.
| |
Collapse
|