51
|
Szanda G, Wisniewski É, Rajki A, Spät A. Mitochondrial cAMP exerts positive feedback on mitochondrial Ca 2+ uptake via the recruitment of Epac1. J Cell Sci 2018; 131:jcs.215178. [PMID: 29661848 DOI: 10.1242/jcs.215178] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2018] [Accepted: 04/07/2018] [Indexed: 01/10/2023] Open
Abstract
We have previously demonstrated in H295R adrenocortical cells that the Ca2+-dependent production of mitochondrial cAMP (mt-cAMP) by the matrix soluble adenylyl cyclase (sAC; encoded by ADCY10) is associated with enhanced aldosterone production. Here, we examined whether mitochondrial sAC and mt-cAMP fine tune mitochondrial Ca2+ metabolism to support steroidogenesis. Reduction of mt-cAMP formation resulted in decelerated mitochondrial Ca2+ accumulation in intact cells during K+-induced Ca2+ signalling and also in permeabilized cells exposed to elevated perimitochondrial [Ca2+]. By contrast, treatment with the membrane-permeable cAMP analogue 8-Br-cAMP, inhibition of phosphodiesterase 2 and overexpression of sAC in the mitochondrial matrix all intensified Ca2+ uptake into the organelle. Identical mt-cAMP dependence of mitochondrial Ca2+ uptake was also observed in HeLa cells. Importantly, the enhancing effect of mt-cAMP on Ca2+ uptake was independent from both the mitochondrial membrane potential and Ca2+ efflux, but was reduced by Epac1 (also known as RAPGEF3) blockade both in intact and in permeabilized cells. Finally, overexpression of sAC in the mitochondrial matrix potentiated aldosterone production implying that the observed positive feedback mechanism of mt-cAMP on mitochondrial Ca2+ accumulation may have a role in the rapid initiation of steroidogenesis.This article has an associated First Person interview with the first author of the paper.
Collapse
Affiliation(s)
- Gergő Szanda
- Department of Physiology, Semmelweis University Medical School, 1482 POB 2 Budapest, Hungary .,MTA-SE Laboratory of Molecular Physiology, Semmelweis University and Hungarian Academy of Sciences, 1482 POB 2 Budapest, Hungary
| | - Éva Wisniewski
- Department of Physiology, Semmelweis University Medical School, 1482 POB 2 Budapest, Hungary
| | - Anikó Rajki
- MTA-SE Laboratory of Molecular Physiology, Semmelweis University and Hungarian Academy of Sciences, 1482 POB 2 Budapest, Hungary
| | - András Spät
- Department of Physiology, Semmelweis University Medical School, 1482 POB 2 Budapest, Hungary .,MTA-SE Laboratory of Molecular Physiology, Semmelweis University and Hungarian Academy of Sciences, 1482 POB 2 Budapest, Hungary
| |
Collapse
|
52
|
Gao ZG, Inoue A, Jacobson KA. On the G protein-coupling selectivity of the native A 2B adenosine receptor. Biochem Pharmacol 2018; 151:201-213. [PMID: 29225130 PMCID: PMC5899946 DOI: 10.1016/j.bcp.2017.12.003] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2017] [Accepted: 12/05/2017] [Indexed: 12/14/2022]
Abstract
A2B adenosine receptor (A2BAR) activation induces Gs-dependent cyclic AMP accumulation. However, A2BAR G protein-coupling to other signaling events, e.g. ERK1/2 and calcium, is not well documented. We explored Gi, Gq/11 and Gs coupling in 1321 N1 astrocytoma, HEK293, and T24 bladder cancer cells endogenously expressing human A2BAR, using NECA or nonnucleoside BAY60-6583 as agonist, selective Gi, Gs and Gq/11 blockers, and CRISPR/Cas9-based Gq- and Gs-null HEK293 cells. In HEK293 cells, A2BAR-mediated ERK1/2 activity occurred via both Gi and Gs, but not Gq/11. However, HEK293 cell calcium mobilization was completely blocked by Gq/11 inhibitor UBO-QIC and by Gq/11 knockout. In T24 cells, Gi was solely responsible for A2BAR-mediated ERK1/2 stimulation, and Gs suppressed ERK1/2 activity. A2BAR-mediated intracellular calcium mobilization in T24 cells was mainly via Gi, although Gs may also play a role, but Gq/11 is not involved. In 1321 N1 astrocytoma cells A2BAR activation suppressed rather than stimulated ERK1/2 activity. The ERK1/2 activity decrease was reversed by Gs downregulation using cholera toxin, but potentiated by Gi inhibitor pertussis toxin, and UBO-QIC had no effect. EPACs played an important role in A2BAR-mediated ERK1/2 signaling in all three cells. Thus, A2BAR may: couple to the same downstream pathway via different G proteins in different cell types; activate different downstream events via different G proteins in the same cell type; activate Gi and Gs, which have opposing or synergistic roles in different cell types/signaling pathways. The findings, relevant to drug discovery, address some reported controversial roles of A2BAR and could apply to signaling mechanisms in other GPCRs.
Collapse
Affiliation(s)
- Zhan-Guo Gao
- Molecular Recognition Section, Laboratory of Bioorganic Chemistry, NIDDK, National Institutes of Health, 9000 Rockville Pike, Bethesda, MD 20892, USA.
| | - Asuka Inoue
- Graduate School of Pharmaceutical Sciences, Tohoku University, Sendai, Miyagi 980-8578, Japan
| | - Kenneth A Jacobson
- Molecular Recognition Section, Laboratory of Bioorganic Chemistry, NIDDK, National Institutes of Health, 9000 Rockville Pike, Bethesda, MD 20892, USA.
| |
Collapse
|
53
|
Sequera C, Manzano S, Guerrero C, Porras A. How Rap and its GEFs control liver physiology and cancer development. C3G alterations in human hepatocarcinoma. Hepat Oncol 2018; 5:HEP05. [PMID: 30302196 PMCID: PMC6168044 DOI: 10.2217/hep-2017-0026] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2017] [Accepted: 03/20/2018] [Indexed: 02/08/2023] Open
Abstract
Rap proteins regulate liver physiopathology. For example, Rap2B promotes hepatocarcinoma (HCC) growth, while Rap1 might play a dual role. The RapGEF, Epac1, activates Rap upon cAMP binding, regulating metabolism, survival, and liver regeneration. A liver specific Epac2 isoform lacking cAMP-binding domain also activates Rap1, promoting fibrosis in alcoholic liver disease. C3G (RapGEF1) is also present in the liver, but mainly as shorter isoforms. Its function in the liver remains unknown. Information from different public genetic databases revealed that C3G mRNA levels increase in HCC, although they decrease in metastatic stages. In addition, several mutations in RapGEF1 gene are present, associated with a reduced patient survival. Based on this, C3G might represent a new HCC diagnostic and prognostic marker, and a therapeutic target.
Collapse
Affiliation(s)
- Celia Sequera
- Departamento de Bioquímica y Biología Molecular, Facultad de Farmacia, Universidad Complutense de Madrid, Madrid, Spain.,Instituto de Investigación Sanitaria del Hospital Clínico San Carlos (IdISSC), Madrid, Spain.,Departamento de Bioquímica y Biología Molecular, Facultad de Farmacia, Universidad Complutense de Madrid, Madrid, Spain.,Instituto de Investigación Sanitaria del Hospital Clínico San Carlos (IdISSC), Madrid, Spain
| | - Sara Manzano
- Departamento de Bioquímica y Biología Molecular, Facultad de Farmacia, Universidad Complutense de Madrid, Madrid, Spain.,Instituto de Investigación Sanitaria del Hospital Clínico San Carlos (IdISSC), Madrid, Spain.,Departamento de Bioquímica y Biología Molecular, Facultad de Farmacia, Universidad Complutense de Madrid, Madrid, Spain.,Instituto de Investigación Sanitaria del Hospital Clínico San Carlos (IdISSC), Madrid, Spain
| | - Carmen Guerrero
- Instituto de Biología Molecular y Celular del Cáncer, USAL-CSIC, Salamanca, Spain.,Instituto de Investigación Biomédica de Salamanca (IBSAL), Salamanca, Spain.,Departamento de Medicina, Universidad de Salamanca, Salamanca, Spain.,Instituto de Biología Molecular y Celular del Cáncer, USAL-CSIC, Salamanca, Spain.,Instituto de Investigación Biomédica de Salamanca (IBSAL), Salamanca, Spain.,Departamento de Medicina, Universidad de Salamanca, Salamanca, Spain
| | - Almudena Porras
- Departamento de Bioquímica y Biología Molecular, Facultad de Farmacia, Universidad Complutense de Madrid, Madrid, Spain.,Instituto de Investigación Sanitaria del Hospital Clínico San Carlos (IdISSC), Madrid, Spain.,Departamento de Bioquímica y Biología Molecular, Facultad de Farmacia, Universidad Complutense de Madrid, Madrid, Spain.,Instituto de Investigación Sanitaria del Hospital Clínico San Carlos (IdISSC), Madrid, Spain
| |
Collapse
|
54
|
Robichaux WG, Cheng X. Intracellular cAMP Sensor EPAC: Physiology, Pathophysiology, and Therapeutics Development. Physiol Rev 2018; 98:919-1053. [PMID: 29537337 PMCID: PMC6050347 DOI: 10.1152/physrev.00025.2017] [Citation(s) in RCA: 142] [Impact Index Per Article: 20.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2017] [Revised: 09/05/2017] [Accepted: 09/06/2017] [Indexed: 12/13/2022] Open
Abstract
This review focuses on one family of the known cAMP receptors, the exchange proteins directly activated by cAMP (EPACs), also known as the cAMP-regulated guanine nucleotide exchange factors (cAMP-GEFs). Although EPAC proteins are fairly new additions to the growing list of cAMP effectors, and relatively "young" in the cAMP discovery timeline, the significance of an EPAC presence in different cell systems is extraordinary. The study of EPACs has considerably expanded the diversity and adaptive nature of cAMP signaling associated with numerous physiological and pathophysiological responses. This review comprehensively covers EPAC protein functions at the molecular, cellular, physiological, and pathophysiological levels; and in turn, the applications of employing EPAC-based biosensors as detection tools for dissecting cAMP signaling and the implications for targeting EPAC proteins for therapeutic development are also discussed.
Collapse
Affiliation(s)
- William G Robichaux
- Department of Integrative Biology and Pharmacology, Texas Therapeutics Institute, The Brown Foundation Institute of Molecular Medicine, The University of Texas Health Science Center , Houston, Texas
| | - Xiaodong Cheng
- Department of Integrative Biology and Pharmacology, Texas Therapeutics Institute, The Brown Foundation Institute of Molecular Medicine, The University of Texas Health Science Center , Houston, Texas
| |
Collapse
|
55
|
Garg J, Feng YX, Jansen SR, Friedrich J, Lezoualc'h F, Schmidt M, Wieland T. Catecholamines facilitate VEGF-dependent angiogenesis via β2-adrenoceptor-induced Epac1 and PKA activation. Oncotarget 2018; 8:44732-44748. [PMID: 28512254 PMCID: PMC5546514 DOI: 10.18632/oncotarget.17267] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2017] [Accepted: 03/30/2017] [Indexed: 01/16/2023] Open
Abstract
Chronic stress has been associated with the progression of cancer and antagonists for β-adrenoceptors (βAR) are regarded as therapeutic option. As they are also used to treat hemangiomas as well as retinopathy of prematurity, a role of endothelial β2AR in angiogenesis can be envisioned. We therefore investigated the role of β2AR-induced cAMP formation by analyzing the role of the cAMP effector molecules exchange factor directly activated by cAMP 1 (Epac1) and protein kinase A (PKA) in endothelial cells (EC). Epac1-deficient mice showed a reduced amount of pre-retinal neovascularizations in the model of oxygen-induced retinopathy, which is predominantly driven by vascular endothelial growth factor (VEGF). siRNA-mediated knockdown of Epac1 in human umbilical vein EC (HUVEC) decreased angiogenic sprouting by lowering the expression of the endothelial VEGF-receptor-2 (VEGFR-2). Conversely, Epac1 activation by β2AR stimulation or the Epac-selective activator cAMP analog 8-p-CPT-2’-O-Me-cAMP (8-pCPT) increased VEGFR-2 levels and VEGF-dependent sprouting. Similar to Epac1 knockdown, depletion of the monomeric GTPase Rac1 decreased VEGFR-2 expression. As Epac1 stimulation induces Rac1 activation, Epac1 might regulate VEGFR-2 expression through Rac1. In addition, we found that PKA was also involved in the regulation of angiogenesis in EC since the adenylyl cyclase (AC) activator forskolin (Fsk), but not 8-pCPT, increased sprouting in Epac1-depleted HUVEC and this increase was sensitive to a selective synthetic peptide PKA inhibitor. In accordance, β2AR- and AC-activation, but not Epac1 stimulation increased VEGF secretion in HUVEC. Our data indicate that high levels of catecholamines, which occur during chronic stress, prime the endothelium for angiogenesis through a β2AR-mediated increase in endothelial VEGFR-2 expression and VEGF secretion.
Collapse
Affiliation(s)
- Jaspal Garg
- Institute of Experimental and Clinical Pharmacology and Toxicology, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| | - Yu-Xi Feng
- Institute of Experimental and Clinical Pharmacology and Toxicology, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| | - Sepp R Jansen
- Institute of Experimental and Clinical Pharmacology and Toxicology, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| | - Julian Friedrich
- 5th Medical Clinic, University Hospital Mannheim, Heidelberg University, Mannheim, Germany
| | - Frank Lezoualc'h
- Institute of Cardiovascular and Metabolic Diseases, Inserm UMR-1048, Université Toulouse -Paul Sabatier, Toulouse, France
| | - Martina Schmidt
- Department of Molecular Pharmacology, Center of Pharmacy, University of Groningen, Groningen, The Netherlands
| | - Thomas Wieland
- Institute of Experimental and Clinical Pharmacology and Toxicology, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| |
Collapse
|
56
|
Rodríguez CI, Castro-Pérez E, Prabhakar K, Block L, Longley BJ, Wisinski JA, Kimple ME, Setaluri V. EPAC-RAP1 Axis-Mediated Switch in the Response of Primary and Metastatic Melanoma to Cyclic AMP. Mol Cancer Res 2017; 15:1792-1802. [PMID: 28851815 PMCID: PMC6309370 DOI: 10.1158/1541-7786.mcr-17-0067] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2017] [Revised: 06/30/2017] [Accepted: 08/23/2017] [Indexed: 11/16/2022]
Abstract
Cyclic AMP (cAMP) is an important second messenger that regulates a wide range of physiologic processes. In mammalian cutaneous melanocytes, cAMP-mediated signaling pathways activated by G-protein-coupled receptors (GPCR), like melanocortin 1 receptor (MC1R), play critical roles in melanocyte homeostasis including cell survival, proliferation, and pigment synthesis. Impaired cAMP signaling is associated with increased risk of cutaneous melanoma. Although mutations in MAPK pathway components are the most frequent oncogenic drivers of melanoma, the role of cAMP in melanoma is not well understood. Here, using the Braf(V600E)/Pten-null mouse model of melanoma, topical application of an adenylate cyclase agonist, forskolin (a cAMP inducer), accelerated melanoma tumor development in vivo and stimulated the proliferation of mouse and human primary melanoma cells, but not human metastatic melanoma cells in vitro The differential response of primary and metastatic melanoma cells was also evident upon pharmacologic inhibition of the cAMP effector protein kinase A. Pharmacologic inhibition and siRNA-mediated knockdown of other cAMP signaling pathway components showed that EPAC-RAP1 axis, an alternative cAMP signaling pathway, mediates the switch in response of primary and metastatic melanoma cells to cAMP. Evaluation of pERK levels revealed that this phenotypic switch was not correlated with changes in MAPK pathway activity. Although cAMP elevation did not alter the sensitivity of metastatic melanoma cells to BRAF(V600E) and MEK inhibitors, the EPAC-RAP1 axis appears to contribute to resistance to MAPK pathway inhibition. These data reveal a MAPK pathway-independent switch in response to cAMP signaling during melanoma progression.Implications: The prosurvival mechanism involving the cAMP-EPAC-RAP1 signaling pathway suggest the potential for new targeted therapies in melanoma. Mol Cancer Res; 15(12); 1792-802. ©2017 AACR.
Collapse
Affiliation(s)
- Carlos I Rodríguez
- Molecular and Environmental Toxicology Center, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, Wisconsin
- Department of Dermatology, University of Wisconsin School of Medicine and Public Health, Madison, Wisconsin
| | - Edgardo Castro-Pérez
- Department of Dermatology, University of Wisconsin School of Medicine and Public Health, Madison, Wisconsin
- William S. Middleton Memorial Veterans Hospital, Madison, Wisconsin
| | - Kirthana Prabhakar
- Department of Dermatology, University of Wisconsin School of Medicine and Public Health, Madison, Wisconsin
| | - Laura Block
- Department of Dermatology, University of Wisconsin School of Medicine and Public Health, Madison, Wisconsin
| | - B Jack Longley
- Department of Dermatology, University of Wisconsin School of Medicine and Public Health, Madison, Wisconsin
- William S. Middleton Memorial Veterans Hospital, Madison, Wisconsin
| | - Jaclyn A Wisinski
- Interdisciplinary Graduate Program in Nutritional Sciences, College of Agriculture and Life Sciences, University of Wisconsin-Madison, Madison, Wisconsin
| | - Michelle E Kimple
- William S. Middleton Memorial Veterans Hospital, Madison, Wisconsin
- Interdisciplinary Graduate Program in Nutritional Sciences, College of Agriculture and Life Sciences, University of Wisconsin-Madison, Madison, Wisconsin
- Department of Medicine, Division of Endocrinology, School of Medicine and Public Health, University of Wisconsin-Madison School of Medicine and Public Health, Madison, Wisconsin
- Department of Cell and Regenerative Biology, University of Wisconsin-Madison School of Medicine and Public Health, Madison, Wisconsin
| | - Vijayasaradhi Setaluri
- Molecular and Environmental Toxicology Center, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, Wisconsin.
- Department of Dermatology, University of Wisconsin School of Medicine and Public Health, Madison, Wisconsin
- William S. Middleton Memorial Veterans Hospital, Madison, Wisconsin
| |
Collapse
|
57
|
Sonawane YA, Zhu Y, Garrison JC, Ezell EL, Zahid M, Cheng X, Natarajan A. Structure-Activity Relationship Studies with Tetrahydroquinoline Analogs as EPAC Inhibitors. ACS Med Chem Lett 2017; 8:1183-1187. [PMID: 29375750 PMCID: PMC5774307 DOI: 10.1021/acsmedchemlett.7b00358] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2017] [Accepted: 10/02/2017] [Indexed: 12/18/2022] Open
Abstract
![]()
EPAC proteins are
therapeutic targets for the potential treatment
of cardiac hypertrophy and cancer metastasis. Several laboratories
use a tetrahydroquinoline analog, CE3F4, to dissect the role of EPAC1
in various disease states. Here, we report SAR studies with tetrahydroquinoline
analogs that explore various functional groups. The most potent EPAC
inhibitor 12a exists as a mixture of inseparable E (major) and Z (minor) rotamers. The rotation
about the N-formyl group indeed impacts the activity
against EPAC.
Collapse
Affiliation(s)
| | - Yingmin Zhu
- Department of Integrative Biology and Pharmacology and Texas Therapeutics Institute, University of Texas Health Science Center, Houston, Texas 77030, United States
| | | | | | | | - Xiaodong Cheng
- Department of Integrative Biology and Pharmacology and Texas Therapeutics Institute, University of Texas Health Science Center, Houston, Texas 77030, United States
| | | |
Collapse
|
58
|
Liu Z, Zhu Y, Chen H, Wang P, Mei FC, Ye N, Cheng X, Zhou J. Structure-activity relationships of 2-substituted phenyl-N-phenyl-2-oxoacetohydrazonoyl cyanides as novel antagonists of exchange proteins directly activated by cAMP (EPACs). Bioorg Med Chem Lett 2017; 27:5163-5166. [PMID: 29100797 DOI: 10.1016/j.bmcl.2017.10.056] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2017] [Revised: 10/19/2017] [Accepted: 10/22/2017] [Indexed: 11/24/2022]
Abstract
Exchange proteins directly activated by cAMP (EPACs) are critical cAMP-dependent signaling pathway mediators that play important roles in cancer, diabetes, heart failure, inflammations, infections, neurological disorders and other human diseases. EPAC specific modulators are urgently needed to explore EPAC's physiological function, mechanism of action and therapeutic applications. On the basis of a previously identified EPAC specific inhibitor hit ESI-09, herein we have designed and synthesized a novel series of 2-substituted phenyl-N-phenyl-2-oxoacetohydrazonoyl cyanides as potent EPAC inhibitors. Compound 31 (ZL0524) has been discovered as the most potent EPAC inhibitor with IC50 values of 3.6 µM and 1.2 µM against EPAC1 and EPAC2, respectively. Molecular docking of 31 onto an active EPAC2 structure predicts that 31 occupies the hydrophobic pocket in cAMP binding domain (CBD) and also opens up new space leading to the solvent region. These findings provide inspirations for discovering next generation of EPAC inhibitors.
Collapse
Affiliation(s)
- Zhiqing Liu
- Chemical Biology Program, Department of Pharmacology and Toxicology, University of Texas Medical Branch, 301 University Blvd, Galveston, TX 77555, United States
| | - Yingmin Zhu
- Department of Integrative Biology and Pharmacology, Texas Therapeutics Institute, The University of Texas Health Science Center, 7000 Fannin St #1200, Houston, TX 77030, United States
| | - Haiying Chen
- Chemical Biology Program, Department of Pharmacology and Toxicology, University of Texas Medical Branch, 301 University Blvd, Galveston, TX 77555, United States
| | - Pingyuan Wang
- Chemical Biology Program, Department of Pharmacology and Toxicology, University of Texas Medical Branch, 301 University Blvd, Galveston, TX 77555, United States
| | - Fang C Mei
- Department of Integrative Biology and Pharmacology, Texas Therapeutics Institute, The University of Texas Health Science Center, 7000 Fannin St #1200, Houston, TX 77030, United States
| | - Na Ye
- Chemical Biology Program, Department of Pharmacology and Toxicology, University of Texas Medical Branch, 301 University Blvd, Galveston, TX 77555, United States
| | - Xiaodong Cheng
- Department of Integrative Biology and Pharmacology, Texas Therapeutics Institute, The University of Texas Health Science Center, 7000 Fannin St #1200, Houston, TX 77030, United States.
| | - Jia Zhou
- Chemical Biology Program, Department of Pharmacology and Toxicology, University of Texas Medical Branch, 301 University Blvd, Galveston, TX 77555, United States.
| |
Collapse
|
59
|
Guichard A, Jain P, Moayeri M, Schwartz R, Chin S, Zhu L, Cruz-Moreno B, Liu JZ, Aguilar B, Hollands A, Leppla SH, Nizet V, Bier E. Anthrax edema toxin disrupts distinct steps in Rab11-dependent junctional transport. PLoS Pathog 2017; 13:e1006603. [PMID: 28945820 PMCID: PMC5612732 DOI: 10.1371/journal.ppat.1006603] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2016] [Accepted: 08/24/2017] [Indexed: 02/06/2023] Open
Abstract
Various bacterial toxins circumvent host defenses through overproduction of cAMP. In a previous study, we showed that edema factor (EF), an adenylate cyclase from Bacillus anthracis, disrupts endocytic recycling mediated by the small GTPase Rab11. As a result, cargo proteins such as cadherins fail to reach inter-cellular junctions. In the present study, we provide further mechanistic dissection of Rab11 inhibition by EF using a combination of Drosophila and mammalian systems. EF blocks Rab11 trafficking after the GTP-loading step, preventing a constitutively active form of Rab11 from delivering cargo vesicles to the plasma membrane. Both of the primary cAMP effector pathways -PKA and Epac/Rap1- contribute to inhibition of Rab11-mediated trafficking, but act at distinct steps of the delivery process. PKA acts early, preventing Rab11 from associating with its effectors Rip11 and Sec15. In contrast, Epac functions subsequently via the small GTPase Rap1 to block fusion of recycling endosomes with the plasma membrane, and appears to be the primary effector of EF toxicity in this process. Similarly, experiments conducted in mammalian systems reveal that Epac, but not PKA, mediates the activity of EF both in cell culture and in vivo. The small GTPase Arf6, which initiates endocytic retrieval of cell adhesion components, also contributes to junctional homeostasis by counteracting Rab11-dependent delivery of cargo proteins at sites of cell-cell contact. These studies have potentially significant practical implications, since chemical inhibition of either Arf6 or Epac blocks the effect of EF in cell culture and in vivo, opening new potential therapeutic avenues for treating symptoms caused by cAMP-inducing toxins or related barrier-disrupting pathologies. Recent anthrax outbreaks in Zambia and northern Russia and biodefense preparedness highlight the need for new therapies to counteract fatal late-stage pathologies in patients infected with Bacillus anthracis. Indeed, two toxins secreted by this pathogen—edema toxin (ET) and lethal toxin (LT)—can cause death in face of effective antibiotic treatment. ET, a potent adenylate cyclase, severely impacts host cells and tissues through an overproduction of the ubiquitous second messenger cAMP. Previously, we identified Rab11 as a key host factor inhibited by ET. Blockade of Rab11-dependent endocytic recycling resulted in the disruption of intercellular junctions, likely contributing to life threatening vascular effusion observed in anthrax patients. Here we present a multi-system analysis of the mechanism by which EF inhibits Rab11 and exocyst-dependent trafficking. Epistasis experiments in Drosophila reveal that over-activation of the cAMP effectors PKA and Epac/Rap1 interferes with Rab11-mediated trafficking at two distinct steps. We further describe conserved roles of Epac and the small GTPase Arf6 in ET-mediated disruption of vesicular trafficking and show how chemical inhibition of either pathway greatly alleviates ET-induced edema. Thus, our study defines Epac and Arf6 as promising drug targets for the treatment of infectious diseases and other pathologies involving cAMP overload or related barrier disruption.
Collapse
Affiliation(s)
- Annabel Guichard
- Section of Cell and Developmental Biology, University of California, San Diego, La Jolla, CA, United States of America
| | - Prashant Jain
- Section of Cell and Developmental Biology, University of California, San Diego, La Jolla, CA, United States of America
| | - Mahtab Moayeri
- Laboratory of Parasitic Diseases, National Institute of Allergy and Infectious Diseases, NIH, Bethesda, MD, United States of America
| | - Ruth Schwartz
- Section of Cell and Developmental Biology, University of California, San Diego, La Jolla, CA, United States of America
| | - Stephen Chin
- Section of Cell and Developmental Biology, University of California, San Diego, La Jolla, CA, United States of America
| | - Lin Zhu
- Section of Cell and Developmental Biology, University of California, San Diego, La Jolla, CA, United States of America
| | - Beatriz Cruz-Moreno
- Section of Cell and Developmental Biology, University of California, San Diego, La Jolla, CA, United States of America
| | - Janet Z. Liu
- Department of Pediatrics, University of California, San Diego, La Jolla, CA, United States of America
| | - Bernice Aguilar
- Department of Pediatrics, University of California, San Diego, La Jolla, CA, United States of America
- Division of Pediatric Infectious Diseases and the Immunobiology Research Institute, Cedars-Sinai Medical Center, Los Angeles, CA 90048, United States of America
| | - Andrew Hollands
- Department of Pediatrics, University of California, San Diego, La Jolla, CA, United States of America
| | - Stephen H. Leppla
- Laboratory of Parasitic Diseases, National Institute of Allergy and Infectious Diseases, NIH, Bethesda, MD, United States of America
| | - Victor Nizet
- Department of Pediatrics, University of California, San Diego, La Jolla, CA, United States of America
- Skaggs School of Pharmacy & Pharmaceutical Sciences, University of California, San Diego, La Jolla, CA, United States of America
| | - Ethan Bier
- Section of Cell and Developmental Biology, University of California, San Diego, La Jolla, CA, United States of America
- * E-mail:
| |
Collapse
|
60
|
VanSchouwen B, Ahmed R, Milojevic J, Melacini G. Functional dynamics in cyclic nucleotide signaling and amyloid inhibition. BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 2017; 1865:1529-1543. [PMID: 28911813 DOI: 10.1016/j.bbapap.2017.09.005] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 07/06/2017] [Revised: 08/29/2017] [Accepted: 09/07/2017] [Indexed: 12/28/2022]
Abstract
It is now established that understanding the molecular basis of biological function requires atomic resolution maps of both structure and dynamics. Here, we review several illustrative examples of functional dynamics selected from our work on cyclic nucleotide signaling and amyloid inhibition. Although fundamentally diverse, a central aspect common to both fields is that function can only be rationalized by considering dynamic equilibria between distinct states of the accessible free energy landscape. The dynamic exchange between ground and excited states of signaling proteins is essential to explain auto-inhibition and allosteric activation. The dynamic exchange between non-toxic monomeric species and toxic oligomers of amyloidogenic proteins provides a foundation to understand amyloid inhibition. NMR ideally probes both types of dynamic exchange at atomic resolution. Specifically, we will show how NMR was utilized to reveal the dynamical basis of cyclic nucleotide affinity, selectivity, agonism and antagonism in multiple eukaryotic cAMP and cGMP receptors. We will also illustrate how NMR revealed the mechanism of action of plasma proteins that act as extracellular chaperones and inhibit the self-association of the prototypical amyloidogenic Aβ peptide. The examples outlined in this review illustrate the widespread implications of functional dynamics and the power of NMR as an indispensable tool in molecular pharmacology and pathology.
Collapse
Affiliation(s)
- Bryan VanSchouwen
- Department of Chemistry and Chemical Biology, McMaster University, Hamilton, Ontario, Canada
| | - Rashik Ahmed
- Department of Biochemistry and Biomedical Sciences, McMaster University, Hamilton, Ontario, Canada
| | - Julijana Milojevic
- Department of Chemistry and Chemical Biology, McMaster University, Hamilton, Ontario, Canada
| | - Giuseppe Melacini
- Department of Chemistry and Chemical Biology, McMaster University, Hamilton, Ontario, Canada; Department of Biochemistry and Biomedical Sciences, McMaster University, Hamilton, Ontario, Canada.
| |
Collapse
|
61
|
Abstract
Malignant carcinomas are often characterized by metastasis, the movement of carcinoma cells from a primary site to colonize distant organs. For metastasis to occur, carcinoma cells first must adopt a pro-migratory phenotype and move through the surrounding stroma towards a blood or lymphatic vessel. Currently, there are very limited possibilities to target these processes therapeutically. The family of Rho GTPases is an ubiquitously expressed division of GTP-binding proteins involved in the regulation of cytoskeletal dynamics and intracellular signaling. The best characterized members of the Rho family GTPases are RhoA, Rac1 and Cdc42. Abnormalities in Rho GTPase function have major consequences for cancer progression. Rho GTPase activation is driven by cell surface receptors that activate GTP exchange factors (GEFs) and GTPase-activating proteins (GAPs). In this review, we summarize our current knowledge on Rho GTPase function in the regulation of metastasis. We will focus on key discoveries in the regulation of epithelial-mesenchymal-transition (EMT), cell-cell junctions, formation of membrane protrusions, plasticity of cell migration and adaptation to a hypoxic environment. In addition, we will emphasize on crosstalk between Rho GTPase family members and other important oncogenic pathways, such as cyclic AMP-mediated signaling, canonical Wnt/β-catenin, Yes-associated protein (YAP) and hypoxia inducible factor 1α (Hif1α) and provide an overview of the advancements and challenges in developing pharmacological tools to target Rho GTPase and the aforementioned crosstalk in the context of cancer therapeutics.
Collapse
|
62
|
Zhu Y, Mei F, Luo P, Cheng X. A cell-based, quantitative and isoform-specific assay for exchange proteins directly activated by cAMP. Sci Rep 2017; 7:6200. [PMID: 28740152 PMCID: PMC5524698 DOI: 10.1038/s41598-017-06432-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2017] [Accepted: 06/13/2017] [Indexed: 12/17/2022] Open
Abstract
Extensive functional studies of the exchange protein directly activated by cAMP (EPAC) family of signaling molecules have demonstrated that EPAC proteins play a fundamental role in several physiological and pathophysiological responses, therefore are attractive drug targets. In this report, the development of a cell-based, medium to high throughput screening assay that is capable of monitoring EPAC-mediated activation of cellular Rap1 in an isoform-specific manner is described. This assay adapts a conventional ELISA format with immobilized RalGDS-RBD as a bait to selectively capture GTP-bound active Rap1. As a result, it fills an urgent need for a cell-based EPAC assay that can be conveniently performed using microtiter plates for the discovery and/or validation of isoform-specific EPAC agonists and antagonists.
Collapse
Affiliation(s)
- Yingmin Zhu
- Department of Integrative Biology and Pharmacology, Texas Therapeutics Institute, University of Health Science Center, Houston, Texas, USA
| | - Fang Mei
- Department of Integrative Biology and Pharmacology, Texas Therapeutics Institute, University of Health Science Center, Houston, Texas, USA
| | - Pei Luo
- Department of Integrative Biology and Pharmacology, Texas Therapeutics Institute, University of Health Science Center, Houston, Texas, USA
| | - Xiaodong Cheng
- Department of Integrative Biology and Pharmacology, Texas Therapeutics Institute, University of Health Science Center, Houston, Texas, USA.
| |
Collapse
|
63
|
Acquired Exchange Protein Directly Activated by Cyclic Adenosine Monophosphate Activity Induced by p38 Mitogen-activated Protein Kinase in Primary Afferent Neurons Contributes to Sustaining Postincisional Nociception. Anesthesiology 2017; 126:150-162. [PMID: 27984207 DOI: 10.1097/aln.0000000000001401] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
BACKGROUND The molecular mechanisms responsible for sustained pain after tissue injury are largely unknown. The aim of this study was to clarify the role of exchange protein directly activated by cyclic adenosine monophosphate (EPAC) in sustained postincisional nociception, using tissue injury-induced nociceptor priming, and involvement of p38 mitogen-activated protein kinase (p38MAPK) in EPAC-mediated nociceptor priming. METHODS Plantar incisions were made in the hind paws of Sprague-Dawley rats (n = 144). Nociceptor priming was confirmed by behavior testing followed by prostaglandin E2 injection 14 to 21 days after the incision. ESI-09, a selective EPAC inhibitor, was administered to assess its effects on nociceptor priming. Expression of two isoforms of EPAC (EPAC1/EPAC2) in dorsal root ganglions from naive rats and those 14 days after the incision was detected by immunohistochemistry and Western blotting. Separately, FR167653, a selective p38MAPK inhibitor, was administered to assess its effect on EPAC1/EPAC2 expression and the development of nociceptor priming. RESULTS Prostaglandin E2 injection 14 to 21 days after the plantar incision induced persistent mechanical hyperalgesia for 7 days. EPAC1/EPAC2 expression in dorsal root ganglion neurons was trivial in naive rats (7.7 ± 4.8% for EPAC1; 6.3 ± 4.1% for EPAC2) but markedly increased 14 days after the incision (21.0 ± 9.4% and 20.1 ± 3.8%, respectively). ESI-09 treatment inhibited prostaglandin E2-induced persistent mechanical hypersensitivity but had no effect on incision-induced acute nociceptive hypersensitivity. Treatment with FR167653 before the incision inhibited the development of nociceptor priming and incision-induced EPAC1/EPAC2 expression (8.5 ± 5.4% and 7.6 ± 3.3%, respectively). CONCLUSIONS Transient inflammatory stimulation causes long-lasting nociceptive hypersensitivity via nociceptor priming during the subacute period after incision. Acquired EPAC activity by p38MAPK in the dorsal root ganglion neurons is a key for this event.
Collapse
|
64
|
Prostaglandin E 2 inhibits matrix mineralization by human bone marrow stromal cell-derived osteoblasts via Epac-dependent cAMP signaling. Sci Rep 2017; 7:2243. [PMID: 28533546 PMCID: PMC5440379 DOI: 10.1038/s41598-017-02650-y] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2017] [Accepted: 04/20/2017] [Indexed: 02/06/2023] Open
Abstract
The osteoinductive properties of prostaglandin E2 (PGE2) and its signaling pathways have led to suggestions that it may serve as a potential therapeutic strategy for bone loss. However, the prominence of PGE2 as an inducer of bone formation is attributed primarily to findings from studies using rodent models. In the current study, we investigated the effects of PGE2 on human bone marrow stromal cell (hBMSC) lineage commitment and determined its mode of action. We demonstrated that PGE2 treatment of hBMSCs significantly altered the expression profile of several genes associated with osteoblast differentiation (RUNX2 and ALP) and maturation (BGLAP and MGP). This was attributed to the activation of specific PGE2 receptors, and was associated with increases in cAMP production and sustained AKT phosphorylation. Pharmacological inhibition of exchange protein directly activated by cAMP (Epac), but not protein kinase A (PKA), recovered the mineralization functions of hBMSC-derived osteoblasts treated with PGE2 and restored AKT phosphorylation, along with the expression levels of RUNX2, ALP, BGLAP and MGP. Our findings therefore provide insights into how PGE2 influences hBMSC-mediated matrix mineralization, and should be taken into account when evaluating the role of PGE2 in human bone metabolism.
Collapse
|
65
|
Wang P, Liu Z, Chen H, Ye N, Cheng X, Zhou J. Exchange proteins directly activated by cAMP (EPACs): Emerging therapeutic targets. Bioorg Med Chem Lett 2017; 27:1633-1639. [PMID: 28283242 PMCID: PMC5397994 DOI: 10.1016/j.bmcl.2017.02.065] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2016] [Revised: 02/07/2017] [Accepted: 02/26/2017] [Indexed: 11/22/2022]
Abstract
Exchange proteins directly activated by cAMP (EPACs) are critical cAMP-dependent signaling pathway mediators. The discovery of EPAC proteins has significantly facilitated understanding on cAMP-dependent signaling pathway and efforts along this line open new avenues for developing novel therapeutics for cancer, diabetes, heart failure, inflammation, infections, neurological disorders and other human diseases. Over the past decade, important progress has been made in the identification of EPAC agonists, antagonists and their biological and pharmacological applications. In this review, we briefly summarize recently reported novel functions of EPACs and the discovery of their small molecule modulators. The challenges and future perspectives are also discussed.
Collapse
Affiliation(s)
- Pingyuan Wang
- Chemical Biology Program, Department of Pharmacology and Toxicology, University of Texas Medical Branch, Galveston, TX 77555, United States
| | - Zhiqing Liu
- Chemical Biology Program, Department of Pharmacology and Toxicology, University of Texas Medical Branch, Galveston, TX 77555, United States
| | - Haiying Chen
- Chemical Biology Program, Department of Pharmacology and Toxicology, University of Texas Medical Branch, Galveston, TX 77555, United States
| | - Na Ye
- Chemical Biology Program, Department of Pharmacology and Toxicology, University of Texas Medical Branch, Galveston, TX 77555, United States
| | - Xiaodong Cheng
- Department of Integrative Biology and Pharmacology, Texas Therapeutics Institute, University of Texas Health Science Center, Houston, TX 77030, United States
| | - Jia Zhou
- Chemical Biology Program, Department of Pharmacology and Toxicology, University of Texas Medical Branch, Galveston, TX 77555, United States.
| |
Collapse
|
66
|
Ye N, Zhu Y, Liu Z, Mei FC, Chen H, Wang P, Cheng X, Zhou J. Identification of novel 2-(benzo[d]isoxazol-3-yl)-2-oxo-N-phenylacetohydrazonoyl cyanide analoguesas potent EPAC antagonists. Eur J Med Chem 2017; 134:62-71. [PMID: 28399451 DOI: 10.1016/j.ejmech.2017.04.001] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2017] [Revised: 03/30/2017] [Accepted: 04/01/2017] [Indexed: 12/28/2022]
Abstract
Two series of novel EPAC antagonists are designed, synthesized and evaluated in an effort to develop diversified analogues based on the scaffold of the previously identified high-throughput (HTS) hit 1 (ESI-09). Further SAR studies reveal that the isoxazole ring A of 1 can tolerate chemical modifications with either introduction of flexible electron-donating substitutions or structurally restrictedly fusing with a phenyl ring, leading to identification of several more potent and diversified EPAC antagonists (e.g., 10 (NY0617), 14 (NY0460), 26 (NY0725), 32 (NY0561), and 33 (NY0562)) with low micromolar inhibitory activities. Molecular docking studies on compounds 10 and 33 indicate that these two series of compounds bind at a similar site with substantially different interactions with the EPAC proteins. The findings may serve as good starting points for the development of more potent EPAC antagonists as valuable pharmacological probes or potential drug candidates.
Collapse
Affiliation(s)
- Na Ye
- Chemical Biology Program, Department of Pharmacology and Toxicology, University of Texas Medical Branch, Galveston, TX 77555, United States; Department of Medicinal Chemistry, College of Pharmaceutical Sciences, Soochow University, Suzhou, Jiangsu 215123, China
| | - Yingmin Zhu
- Department of Integrative Biology and Pharmacology, Texas Therapeutics Institute, The University of Texas Health Science Center, Houston, TX 77030, United States
| | - Zhiqing Liu
- Chemical Biology Program, Department of Pharmacology and Toxicology, University of Texas Medical Branch, Galveston, TX 77555, United States
| | - Fang C Mei
- Department of Integrative Biology and Pharmacology, Texas Therapeutics Institute, The University of Texas Health Science Center, Houston, TX 77030, United States
| | - Haiying Chen
- Chemical Biology Program, Department of Pharmacology and Toxicology, University of Texas Medical Branch, Galveston, TX 77555, United States
| | - Pingyuan Wang
- Chemical Biology Program, Department of Pharmacology and Toxicology, University of Texas Medical Branch, Galveston, TX 77555, United States
| | - Xiaodong Cheng
- Department of Integrative Biology and Pharmacology, Texas Therapeutics Institute, The University of Texas Health Science Center, Houston, TX 77030, United States.
| | - Jia Zhou
- Chemical Biology Program, Department of Pharmacology and Toxicology, University of Texas Medical Branch, Galveston, TX 77555, United States.
| |
Collapse
|
67
|
Parnell E, McElroy SP, Wiejak J, Baillie GL, Porter A, Adams DR, Rehmann H, Smith BO, Yarwood SJ. Identification of a Novel, Small Molecule Partial Agonist for the Cyclic AMP Sensor, EPAC1. Sci Rep 2017; 7:294. [PMID: 28331191 PMCID: PMC5428521 DOI: 10.1038/s41598-017-00455-7] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2016] [Accepted: 02/27/2017] [Indexed: 11/26/2022] Open
Abstract
Screening of a carefully selected library of 5,195 small molecules identified 34 hit compounds that interact with the regulatory cyclic nucleotide-binding domain (CNB) of the cAMP sensor, EPAC1. Two of these hits (I942 and I178) were selected for their robust and reproducible inhibitory effects within the primary screening assay. Follow-up characterisation by ligand observed nuclear magnetic resonance (NMR) revealed direct interaction of I942 and I178 with EPAC1 and EPAC2-CNBs in vitro. Moreover, in vitro guanine nucleotide exchange factor (GEF) assays revealed that I942 and, to a lesser extent, I178 had partial agonist properties towards EPAC1, leading to activation of EPAC1, in the absence of cAMP, and inhibition of GEF activity in the presence of cAMP. In contrast, there was very little agonist action of I942 towards EPAC2 or protein kinase A (PKA). To our knowledge, this is the first observation of non-cyclic-nucleotide small molecules with agonist properties towards EPAC1. Furthermore, the isoform selective agonist nature of these compounds highlights the potential for the development of small molecule tools that selectively up-regulate EPAC1 activity.
Collapse
Affiliation(s)
- Euan Parnell
- Institute of Molecular, Cellular and Systems Biology, College of Medical Veterinary and Life Sciences, University of Glasgow, Glasgow, G12 8QQ, UK
| | - Stuart P McElroy
- European Screening Centre, University of Dundee, Biocity Scotland, Newhouse, ML1 5UH, UK
| | - Jolanta Wiejak
- Institute of Biological Chemistry, Biophysics and Bioengineering, Heriot-Watt University, Edinburgh Campus, Edinburgh, EH14 4AS, UK
| | - Gemma L Baillie
- European Screening Centre, University of Dundee, Biocity Scotland, Newhouse, ML1 5UH, UK
| | - Alison Porter
- European Screening Centre, University of Dundee, Biocity Scotland, Newhouse, ML1 5UH, UK
| | - David R Adams
- Institute of Chemical Sciences, Heriot-Watt University, Edinburgh Campus, Edinburgh, EH14 4AS, UK
| | - Holger Rehmann
- Department of Molecular Cancer Research, Centre of Biomedical Genetics and Cancer Genomics Centre, University Medical Centre Utrecht, Utrecht, The Netherlands
| | - Brian O Smith
- Institute of Molecular, Cellular and Systems Biology, College of Medical Veterinary and Life Sciences, University of Glasgow, Glasgow, G12 8QQ, UK
| | - Stephen J Yarwood
- Institute of Biological Chemistry, Biophysics and Bioengineering, Heriot-Watt University, Edinburgh Campus, Edinburgh, EH14 4AS, UK.
| |
Collapse
|
68
|
Yu X, Zhang Q, Zhao Y, Schwarz BJ, Stallone JN, Heaps CL, Han G. Activation of G protein-coupled estrogen receptor 1 induces coronary artery relaxation via Epac/Rap1-mediated inhibition of RhoA/Rho kinase pathway in parallel with PKA. PLoS One 2017; 12:e0173085. [PMID: 28278256 PMCID: PMC5344336 DOI: 10.1371/journal.pone.0173085] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2016] [Accepted: 02/15/2017] [Indexed: 12/24/2022] Open
Abstract
Previously, we reported that cAMP/PKA signaling is involved in GPER-mediated coronary relaxation by activating MLCP via inhibition of RhoA pathway. In the current study, we tested the hypothesis that activation of GPER induces coronary artery relaxation via inhibition of RhoA/Rho kinase pathway by cAMP downstream targets, exchange proteins directly activated by cAMP (Epac) as well as PKA. Our results show that Epac inhibitors, brefeldin A (BFA, 50 μM), or ESI-09 (20 μM), or CE3F4 (100 μM), all partially inhibited porcine coronary artery relaxation response to the selective GPER agonist, G-1 (0.3–3 μM); while concurrent administration of BFA and PKI (5 μM), a PKA inhibitor, almost completely blocked the relaxation effect of G-1. The Epac specific agonist, 8-CPT-2Me-cAMP (007, 1–100 μM), induced a concentration-dependent relaxation response. Furthermore, the activity of Ras-related protein 1 (Rap1) was up regulated by G-1 (1 μM) treatment of porcine coronary artery smooth muscle cells (CASMCs). Phosphorylation of vasodilator-stimulated phosphoprotein (p-VASP) was elevated by G-1 (1 μM) treatment, but not by 007 (50 μM); and the effect of G-1 on p-VASP was blocked by PKI, but not by ESI-09, an Epac antagonist. RhoA activity was similarly down regulated by G-1 and 007, whereas ESI-09 restored most of the reduced RhoA activity by G-1 treatment. Furthermore, G-1 decreased PGF2α-induced p-MYPT1, which was partially reversed with either ESI-09 or PKI; whereas, concurrent administration of ESI-09 and PKI totally prevented the inhibitory effect of G-1. The inhibitory effects of G-1 on p- MLC levels in CASMCs were mostly restored by either ESI-09 or PKI. These results demonstrate that activation of GPER induces coronary artery relaxation via concurrent inhibition of RhoA/Rho kinase by Epac/Rap1 and PKA. GPER could be a potential drug target for preventing and treating cardiovascular diseases.
Collapse
Affiliation(s)
- Xuan Yu
- Department of Physiology and Pharmacology, Texas A&M University, College Station, TX, United States of America
| | - Qiao Zhang
- Department of Physiology and Pharmacology, Texas A&M University, College Station, TX, United States of America
- Department of Cardiovascular Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yan Zhao
- Department of Physiology and Pharmacology, Texas A&M University, College Station, TX, United States of America
- Department of Cardiovascular Medicine, First Affiliated Hospital of Xi’an Jiaotong University, Xi’an, China
| | - Benjamin J. Schwarz
- Department of Physiology and Pharmacology, Texas A&M University, College Station, TX, United States of America
| | - John N. Stallone
- Department of Physiology and Pharmacology, Texas A&M University, College Station, TX, United States of America
- Women's Health Division, Michael E. DeBakey Institute, Texas A&M University, College Station, TX, United States of America
| | - Cristine L. Heaps
- Department of Physiology and Pharmacology, Texas A&M University, College Station, TX, United States of America
| | - Guichun Han
- Department of Physiology and Pharmacology, Texas A&M University, College Station, TX, United States of America
- Women's Health Division, Michael E. DeBakey Institute, Texas A&M University, College Station, TX, United States of America
- * E-mail:
| |
Collapse
|
69
|
Sukhanova IF, Kozhevnikova LM, Mironova GY, Avdonin PV. The Epac protein inhibitor ESI-09 eliminates the tonic phase of aorta contraction induced by endogenic vasoconstrictors in rats. BIOL BULL+ 2017. [DOI: 10.1134/s1062359017020200] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
70
|
Kumar N, Gupta S, Dabral S, Singh S, Sehrawat S. Role of exchange protein directly activated by cAMP (EPAC1) in breast cancer cell migration and apoptosis. Mol Cell Biochem 2017; 430:115-125. [PMID: 28210903 DOI: 10.1007/s11010-017-2959-3] [Citation(s) in RCA: 49] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2016] [Accepted: 01/28/2017] [Indexed: 11/27/2022]
Abstract
Despite the current progress in cancer research and therapy, breast cancer remains the leading cause of mortality among half a million women worldwide. Migration and invasion of cancer cells are associated with prevalent tumor metastasis as well as high mortality. Extensive studies have powerfully established the role of prototypic second messenger cAMP and its two ubiquitously expressed intracellular cAMP receptors namely the classic protein kinaseA/cAMP-dependent protein kinase (PKA) and the more recently discovered exchange protein directly activated by cAMP/cAMP-regulated guanine nucleotide exchange factor (EPAC/cAMP-GEF) in cell migration, cell cycle regulation, and cell death. Herein, we performed the analysis of the Cancer Genome Atlas (TCGA) dataset to evaluate the essential role of cAMP molecular network in breast cancer. We report that EPAC1, PKA, and AKAP9 along with other molecular partners are amplified in breast cancer patients, indicating the importance of this signaling network. To evaluate the functional role of few of these proteins, we used pharmacological modulators and analyzed their effect on cell migration and cell death in breast cancer cells. Hence, we report that inhibition of EPAC1 activity using pharmacological modulators leads to inhibition of cell migration and induces cell death. Additionally, we also observed that the inhibition of EPAC1 resulted in disruption of its association with the microtubule cytoskeleton and delocalization of AKAP9 from the centrosome as analyzed by in vitro imaging. Finally, this study suggests for the first time the mechanistic insights of mode of action of a primary cAMP-dependent sensor, Exchange protein activated by cAMP 1 (EPAC1), via its interaction with A-kinase anchoring protein 9 (AKAP9). This study provides a new cell signaling cAMP-EPAC1-AKAP9 direction to the development of additional biotherapeutics for breast cancer.
Collapse
Affiliation(s)
- Naveen Kumar
- Brain Metastasis and NeuroVascular Disease Modeling Lab, Department of Life Sciences, School of Natural Sciences, Shiv Nadar University, NCR, India
| | - Sonal Gupta
- Host Pathogen Interactions and Disease Modeling Group, Department of Life Sciences, School of Natural Sciences, Shiv Nadar University, NCR, India.,Special Centre for Molecular Medicine, Jawaharlal Nehru University, New Delhi, India
| | - Surbhi Dabral
- International Center for Genetic Engineering and Biotechnology, New Delhi, 110067, India
| | - Shailja Singh
- Host Pathogen Interactions and Disease Modeling Group, Department of Life Sciences, School of Natural Sciences, Shiv Nadar University, NCR, India. .,Special Centre for Molecular Medicine, Jawaharlal Nehru University, New Delhi, India.
| | - Seema Sehrawat
- Brain Metastasis and NeuroVascular Disease Modeling Lab, Department of Life Sciences, School of Natural Sciences, Shiv Nadar University, NCR, India. .,Department of Medicine, Brigham and Women's Hospital, Boston, MA, 02115, USA.
| |
Collapse
|
71
|
Khaliulin I, Bond M, James AF, Dyar Z, Amini R, Johnson JL, Suleiman MS. Functional and cardioprotective effects of simultaneous and individual activation of protein kinase A and Epac. Br J Pharmacol 2017; 174:438-453. [PMID: 28071786 PMCID: PMC5323515 DOI: 10.1111/bph.13709] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2016] [Revised: 12/23/2016] [Accepted: 01/05/2017] [Indexed: 01/16/2023] Open
Abstract
Background and Purpose Myocardial cAMP elevation confers cardioprotection against ischaemia/reperfusion (I/R) injury. cAMP activates two independent signalling pathways, PKA and Epac. This study investigated the cardiac effects of activating PKA and/or Epac and their involvement in cardioprotection against I/R. Experimental Approach Hearts from male rats were used either for determination of PKA and PKC activation or perfused in the Langendorff mode for either cardiomyocyte isolation or used to monitor functional activity at basal levels and after 30 min global ischaemia and 2 h reperfusion. Functional recovery and myocardial injury during reperfusion (LDH release and infarct size) were evaluated. Activation of PKA and/or Epac in perfused hearts was induced using cell permeable cAMP analogues in the presence or absence of inhibitors of PKA, Epac and PKC. H9C2 cells and cardiomyocytes were used to assess activation of Epac and effect on Ca2+ transients. Key Results Selective activation of either PKA or Epac was found to trigger a positive inotropic effect, which was considerably enhanced when both pathways were simultaneously activated. Only combined activation of PKA and Epac induced marked cardioprotection against I/R injury. This was accompanied by PKCε activation and repressed by inhibitors of PKA, Epac or PKC. Conclusion and Implications Simultaneous activation of both PKA and Epac induces an additive inotropic effect and confers optimal and marked cardioprotection against I/R injury. The latter effect is mediated by PKCε activation. This work has introduced a new therapeutic approach and targets to protect the heart against cardiac insults.
Collapse
Affiliation(s)
- Igor Khaliulin
- School of Clinical Sciences and Bristol Cardiovascular, University of Bristol, Bristol, UK
| | - Mark Bond
- School of Clinical Sciences and Bristol Cardiovascular, University of Bristol, Bristol, UK
| | - Andrew F James
- School of Clinical Sciences and Bristol Cardiovascular, University of Bristol, Bristol, UK
| | - Zara Dyar
- School of Clinical Sciences and Bristol Cardiovascular, University of Bristol, Bristol, UK
| | - Raheleh Amini
- School of Clinical Sciences and Bristol Cardiovascular, University of Bristol, Bristol, UK
| | - Jason L Johnson
- School of Clinical Sciences and Bristol Cardiovascular, University of Bristol, Bristol, UK
| | - M-Saadeh Suleiman
- School of Clinical Sciences and Bristol Cardiovascular, University of Bristol, Bristol, UK
| |
Collapse
|
72
|
Fujita T, Umemura M, Yokoyama U, Okumura S, Ishikawa Y. The role of Epac in the heart. Cell Mol Life Sci 2017; 74:591-606. [PMID: 27549789 PMCID: PMC11107744 DOI: 10.1007/s00018-016-2336-5] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2016] [Revised: 07/21/2016] [Accepted: 08/09/2016] [Indexed: 02/08/2023]
Abstract
As one of the most important second messengers, 3',5'-cyclic adenosine monophosphate (cAMP) mediates various extracellular signals including hormones and neurotransmitters, and induces appropriate responses in diverse types of cells. Since cAMP was formerly believed to transmit signals through only two direct target molecules, protein kinase A and the cyclic nucleotide-gated channel, the sensational discovery in 1998 of another novel direct effecter of cAMP [exchange proteins directly activated by cAMP (Epac)] attracted a great deal of scientific interest in cAMP signaling. Numerous studies on Epac have since disclosed its important functions in various tissues in the body. Recently, observations of genetically manipulated mice in various pathogenic models have begun to reveal the in vivo significance of previous in vitro or cellular-level findings. Here, we focused on the function of Epac in the heart. Accumulating evidence has revealed that both Epac1 and Epac2 play important roles in the structure and function of the heart under physiological and pathological conditions. Accordingly, developing the ability to regulate cAMP-mediated signaling through Epac may lead to remarkable new therapies for the treatment of cardiac diseases.
Collapse
Affiliation(s)
- Takayuki Fujita
- Cardiovascular Research Institute, Yokohama City University Graduate School of Medicine, Yokohama, Japan.
| | - Masanari Umemura
- Cardiovascular Research Institute, Yokohama City University Graduate School of Medicine, Yokohama, Japan
| | - Utako Yokoyama
- Cardiovascular Research Institute, Yokohama City University Graduate School of Medicine, Yokohama, Japan
| | - Satoshi Okumura
- Cardiovascular Research Institute, Yokohama City University Graduate School of Medicine, Yokohama, Japan
- Tsurumi University School of Dental Medicine, Yokohama, Japan
| | - Yoshihiro Ishikawa
- Cardiovascular Research Institute, Yokohama City University Graduate School of Medicine, Yokohama, Japan.
| |
Collapse
|
73
|
Inhibition of Epac1 suppresses mitochondrial fission and reduces neointima formation induced by vascular injury. Sci Rep 2016; 6:36552. [PMID: 27830723 PMCID: PMC5103196 DOI: 10.1038/srep36552] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2016] [Accepted: 10/12/2016] [Indexed: 12/20/2022] Open
Abstract
Vascular smooth muscle cell (VSMC) activation in response to injury plays an important role in the development of vascular proliferative diseases, including restenosis and atherosclerosis. The aims of this study were to ascertain the physiological functions of exchange proteins directly activated by cAMP isoform 1 (Epac1) in VSMC and to evaluate the potential of Epac1 as therapeutic targets for neointima formation during vascular remodeling. In a mouse carotid artery ligation model, genetic knockdown of the Epac1 gene led to a significant reduction in neointima obstruction in response to vascular injury. Pharmacologic inhibition of Epac1 with an Epac specific inhibitor, ESI-09, phenocopied the effects of Epac1 null by suppressing neointima formation and proliferative VSMC accumulation in neointima area. Mechanistically, Epac1 deficient VSMCs exhibited lower level of PI3K/AKT signaling and dampened response to PDGF-induced mitochondrial fission and reactive oxygen species levels. Our studies indicate that Epac1 plays important roles in promoting VSMC proliferation and phenotypic switch in response to vascular injury, therefore, representing a therapeutic target for vascular proliferative diseases.
Collapse
|
74
|
Baameur F, Singhmar P, Zhou Y, Hancock JF, Cheng X, Heijnen CJ, Kavelaars A. Epac1 interacts with importin β1 and controls neurite outgrowth independently of cAMP and Rap1. Sci Rep 2016; 6:36370. [PMID: 27808165 PMCID: PMC5093460 DOI: 10.1038/srep36370] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2016] [Accepted: 10/14/2016] [Indexed: 01/23/2023] Open
Abstract
Exchange protein directly activated by cAMP-1 (Epac1) is a cAMP sensor that regulates multiple cellular functions including cellular migration, proliferation and differentiation. Classically, Epac1 is thought to exert its effects through binding of cAMP leading to a conformational change in Epac1 and its accumulation at the plasma membrane (PM) where it activates Rap1. In search for regulators of Epac1 activity, we show here that importin β1 (impβ1) is an Epac1 binding partner that prevents PM accumulation of Epac1. We demonstrate that in the absence of impβ1, endogenous as well as overexpressed Epac1 accumulate at the PM. Moreover, agonist-induced PM translocation of Epac1 leads to dissociation of Epac1 from impβ1. Localization of Epac1 at the PM in the absence of impβ1, requires residue R82 in its DEP domain. Notably, the PM accumulation of Epac1 in the absence of impβ1 does not require binding of cAMP to Epac1 and does not result in Rap1 activation. Functionally, PM accumulation of Epac1, an Epac1 mutant deficient in cAMP binding, or an Epac1 mutant tethered to the PM, is sufficient to inhibit neurite outgrowth. In conclusion, we uncover a cAMP-independent function of Epac1 at the PM and demonstrate that impβ1 controls subcellular localization of Epac1.
Collapse
Affiliation(s)
- Faiza Baameur
- Laboratory of Neuroimmunology, Department of Symptom Research, Division of Internal Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Pooja Singhmar
- Laboratory of Neuroimmunology, Department of Symptom Research, Division of Internal Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Yong Zhou
- Department of Integrative Biology and Pharmacology and Texas Therapeutics Institute, The University of Texas Health Science Center, Houston, TX 77030, USA
| | - John F Hancock
- Department of Integrative Biology and Pharmacology and Texas Therapeutics Institute, The University of Texas Health Science Center, Houston, TX 77030, USA
| | - Xiaodong Cheng
- Department of Integrative Biology and Pharmacology and Texas Therapeutics Institute, The University of Texas Health Science Center, Houston, TX 77030, USA
| | - Cobi J Heijnen
- Laboratory of Neuroimmunology, Department of Symptom Research, Division of Internal Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Annemieke Kavelaars
- Laboratory of Neuroimmunology, Department of Symptom Research, Division of Internal Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| |
Collapse
|
75
|
Role of Exchange Protein Directly Activated by Cyclic AMP Isoform 1 in Energy Homeostasis: Regulation of Leptin Expression and Secretion in White Adipose Tissue. Mol Cell Biol 2016; 36:2440-50. [PMID: 27381457 DOI: 10.1128/mcb.01034-15] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2015] [Accepted: 06/17/2016] [Indexed: 12/18/2022] Open
Abstract
Epacs (exchange proteins directly activated by cyclic AMP [cAMP]) act as downstream effectors of cAMP and play important roles in energy balance and glucose homeostasis. While global deletion of Epac1 in mice leads to heightened leptin sensitivity in the hypothalamus and partial protection against high-fat diet (HFD)-induced obesity, the physiological functions of Epac1 in white adipose tissue (WAT) has not been explored. Here, we report that adipose tissue-specific Epac1 knockout (AEKO) mice are more prone to HFD-induced obesity, with increased food intake, reduced energy expenditure, and impaired glucose tolerance. Despite the fact that AEKO mice on HFD display increased body weight, these mice have decreased circulating leptin levels compared to their wild-type littermates. In vivo and in vitro analyses further reveal that suppression of Epac1 in WAT decreases leptin mRNA expression and secretion by inhibiting cAMP response element binding (CREB) protein and AKT phosphorylation, respectively. Taken together, our results demonstrate that Epac1 plays an important role in regulating energy balance and glucose homeostasis by promoting leptin expression and secretion in WAT.
Collapse
|
76
|
Exchange factors directly activated by cAMP mediate melanocortin 4 receptor-induced gene expression. Sci Rep 2016; 6:32776. [PMID: 27612207 PMCID: PMC5017209 DOI: 10.1038/srep32776] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2016] [Accepted: 08/15/2016] [Indexed: 01/16/2023] Open
Abstract
Gs protein-coupled receptors regulate many vital body functions by activation of cAMP response elements (CRE) via cAMP-dependent kinase A (PKA)-mediated phosphorylation of the CRE binding protein (CREB). Melanocortin 4 receptors (MC4R) are prototypical Gs-coupled receptors that orchestrate the hypothalamic control of food-intake and metabolism. Remarkably, the significance of PKA for MC4R-induced CRE-dependent transcription in hypothalamic cells has not been rigorously interrogated yet. In two hypothalamic cell lines, we observed that blocking PKA activity had only weak or no effects on reporter gene expression. In contrast, inhibitors of exchange factors directly activated by cAMP-1/2 (EPAC-1/2) mitigated MC4R-induced CRE reporter activation and mRNA induction of the CREB-dependent genes c-fos and thyrotropin-releasing hormone. Furthermore, we provide first evidence that extracellular-regulated kinases-1/2 (ERK-1/2) activated by EPACs and not PKA are the elusive CREB kinases responsible for MC4R-induced CREB/CRE activation in hypothalamic cells. Overall, these data emphasize the pivotal role of EPACs rather than PKA in hypothalamic gene expression elicited by a prototypical Gs-coupled receptor.
Collapse
|
77
|
Lezoualc'h F, Fazal L, Laudette M, Conte C. Cyclic AMP Sensor EPAC Proteins and Their Role in Cardiovascular Function and Disease. Circ Res 2016; 118:881-97. [PMID: 26941424 DOI: 10.1161/circresaha.115.306529] [Citation(s) in RCA: 128] [Impact Index Per Article: 14.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
cAMP is a universal second messenger that plays central roles in cardiovascular regulation influencing gene expression, cell morphology, and function. A crucial step toward a better understanding of cAMP signaling came 18 years ago with the discovery of the exchange protein directly activated by cAMP (EPAC). The 2 EPAC isoforms, EPAC1 and EPAC2, are guanine-nucleotide exchange factors for the Ras-like GTPases, Rap1 and Rap2, which they activate independently of the classical effector of cAMP, protein kinase A. With the development of EPAC pharmacological modulators, many reports in the literature have demonstrated the critical role of EPAC in the regulation of various cAMP-dependent cardiovascular functions, such as calcium handling and vascular tone. EPAC proteins are coupled to a multitude of effectors into distinct subcellular compartments because of their multidomain architecture. These novel cAMP sensors are not only at the crossroads of different physiological processes but also may represent attractive therapeutic targets for the treatment of several cardiovascular disorders, including cardiac arrhythmia and heart failure.
Collapse
Affiliation(s)
- Frank Lezoualc'h
- From the Department of Cardiac and Renal Remodeling of the Institute of Metabolic and Cardiovascular Diseases (I2MC), Institut National de la Santé et de la Recherche Médicale (INSERM), UMR-1048, Toulouse, France (F.L., L.F., M.L., C.C.); and Université Toulouse III-Paul Sabatier, Toulouse, France (F.L., L.F., M.L., C.C.).
| | - Loubina Fazal
- From the Department of Cardiac and Renal Remodeling of the Institute of Metabolic and Cardiovascular Diseases (I2MC), Institut National de la Santé et de la Recherche Médicale (INSERM), UMR-1048, Toulouse, France (F.L., L.F., M.L., C.C.); and Université Toulouse III-Paul Sabatier, Toulouse, France (F.L., L.F., M.L., C.C.)
| | - Marion Laudette
- From the Department of Cardiac and Renal Remodeling of the Institute of Metabolic and Cardiovascular Diseases (I2MC), Institut National de la Santé et de la Recherche Médicale (INSERM), UMR-1048, Toulouse, France (F.L., L.F., M.L., C.C.); and Université Toulouse III-Paul Sabatier, Toulouse, France (F.L., L.F., M.L., C.C.)
| | - Caroline Conte
- From the Department of Cardiac and Renal Remodeling of the Institute of Metabolic and Cardiovascular Diseases (I2MC), Institut National de la Santé et de la Recherche Médicale (INSERM), UMR-1048, Toulouse, France (F.L., L.F., M.L., C.C.); and Université Toulouse III-Paul Sabatier, Toulouse, France (F.L., L.F., M.L., C.C.)
| |
Collapse
|
78
|
Inda C, Dos Santos Claro PA, Bonfiglio JJ, Senin SA, Maccarrone G, Turck CW, Silberstein S. Different cAMP sources are critically involved in G protein-coupled receptor CRHR1 signaling. J Cell Biol 2016; 214:181-95. [PMID: 27402953 PMCID: PMC4949449 DOI: 10.1083/jcb.201512075] [Citation(s) in RCA: 53] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2015] [Accepted: 06/10/2016] [Indexed: 02/07/2023] Open
Abstract
Corticotropin-releasing hormone receptor 1 (CRHR1) activates G protein-dependent and internalization-dependent signaling mechanisms. Here, we report that the cyclic AMP (cAMP) response of CRHR1 in physiologically relevant scenarios engages separate cAMP sources, involving the atypical soluble adenylyl cyclase (sAC) in addition to transmembrane adenylyl cyclases (tmACs). cAMP produced by tmACs and sAC is required for the acute phase of extracellular signal regulated kinase 1/2 activation triggered by CRH-stimulated CRHR1, but only sAC activity is essential for the sustained internalization-dependent phase. Thus, different cAMP sources are involved in different signaling mechanisms. Examination of the cAMP response revealed that CRH-activated CRHR1 generates cAMP after endocytosis. Characterizing CRHR1 signaling uncovered a specific link between CRH-activated CRHR1, sAC, and endosome-based signaling. We provide evidence of sAC being involved in an endocytosis-dependent cAMP response, strengthening the emerging model of GPCR signaling in which the cAMP response does not occur exclusively at the plasma membrane and introducing the notion of sAC as an alternative source of cAMP.
Collapse
Affiliation(s)
- Carolina Inda
- Instituto de Investigación en Biomedicina de Buenos Aires-CONICET-Partner Institute of the Max Planck Society, C1425FQD Buenos Aires, Argentina Departamento de Fisiología, Biología Molecular y Celular, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, C1428EHA Buenos Aires, Argentina
| | - Paula A Dos Santos Claro
- Instituto de Investigación en Biomedicina de Buenos Aires-CONICET-Partner Institute of the Max Planck Society, C1425FQD Buenos Aires, Argentina Departamento de Fisiología, Biología Molecular y Celular, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, C1428EHA Buenos Aires, Argentina
| | - Juan J Bonfiglio
- Instituto de Investigación en Biomedicina de Buenos Aires-CONICET-Partner Institute of the Max Planck Society, C1425FQD Buenos Aires, Argentina Departamento de Fisiología, Biología Molecular y Celular, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, C1428EHA Buenos Aires, Argentina
| | - Sergio A Senin
- Instituto de Investigación en Biomedicina de Buenos Aires-CONICET-Partner Institute of the Max Planck Society, C1425FQD Buenos Aires, Argentina
| | - Giuseppina Maccarrone
- Department of Translational Research in Psychiatry, Max Planck Institute of Psychiatry, 80804 Munich, Germany
| | - Christoph W Turck
- Department of Translational Research in Psychiatry, Max Planck Institute of Psychiatry, 80804 Munich, Germany
| | - Susana Silberstein
- Instituto de Investigación en Biomedicina de Buenos Aires-CONICET-Partner Institute of the Max Planck Society, C1425FQD Buenos Aires, Argentina Departamento de Fisiología, Biología Molecular y Celular, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, C1428EHA Buenos Aires, Argentina
| |
Collapse
|
79
|
Wild CT, Zhu Y, Na Y, Mei F, Ynalvez MA, Chen H, Cheng X, Zhou J. Functionalized N,N-Diphenylamines as Potent and Selective EPAC2 Inhibitors. ACS Med Chem Lett 2016; 7:460-4. [PMID: 27190593 DOI: 10.1021/acsmedchemlett.5b00477] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2015] [Accepted: 03/28/2016] [Indexed: 02/08/2023] Open
Abstract
N,N-Diphenylamines were discovered as potent and selective EPAC2 inhibitors. A study was conducted to determine the structure-activity relationships in a series of inhibitors of which several compounds displayed submicromolar potencies. Selectivity over the related EPAC1 protein was also demonstrated. Computational modeling reveals an allosteric site that is distinct from the cAMP binding domain shared by both EPAC isoforms, providing a theory with regards to subtype selectivity.
Collapse
Affiliation(s)
- Christopher T. Wild
- Chemical
Biology Program, Department of Pharmacology and Toxicology, University of Texas Medical Branch, Galveston, Texas 77555, United States
| | - Yingmin Zhu
- Department
of Integrative Biology and Pharmacology and Texas Therapeutics Institute, University of Texas Health Science Center, Houston, Texas 77030, United States
| | - Ye Na
- Chemical
Biology Program, Department of Pharmacology and Toxicology, University of Texas Medical Branch, Galveston, Texas 77555, United States
| | - Fang Mei
- Department
of Integrative Biology and Pharmacology and Texas Therapeutics Institute, University of Texas Health Science Center, Houston, Texas 77030, United States
| | - Marcus A. Ynalvez
- Chemical
Biology Program, Department of Pharmacology and Toxicology, University of Texas Medical Branch, Galveston, Texas 77555, United States
| | - Haiying Chen
- Chemical
Biology Program, Department of Pharmacology and Toxicology, University of Texas Medical Branch, Galveston, Texas 77555, United States
| | - Xiaodong Cheng
- Department
of Integrative Biology and Pharmacology and Texas Therapeutics Institute, University of Texas Health Science Center, Houston, Texas 77030, United States
| | - Jia Zhou
- Chemical
Biology Program, Department of Pharmacology and Toxicology, University of Texas Medical Branch, Galveston, Texas 77555, United States
| |
Collapse
|
80
|
Boulton S, Melacini G. Advances in NMR Methods To Map Allosteric Sites: From Models to Translation. Chem Rev 2016; 116:6267-304. [PMID: 27111288 DOI: 10.1021/acs.chemrev.5b00718] [Citation(s) in RCA: 69] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
The last five years have witnessed major developments in the understanding of the allosteric phenomenon, broadly defined as coupling between remote molecular sites. Such advances have been driven not only by new theoretical models and pharmacological applications of allostery, but also by progress in the experimental approaches designed to map allosteric sites and transitions. Among these techniques, NMR spectroscopy has played a major role given its unique near-atomic resolution and sensitivity to the dynamics that underlie allosteric couplings. Here, we highlight recent progress in the NMR methods tailored to investigate allostery with the goal of offering an overview of which NMR approaches are best suited for which allosterically relevant questions. The picture of the allosteric "NMR toolbox" is provided starting from one of the simplest models of allostery (i.e., the four-state thermodynamic cycle) and continuing to more complex multistate mechanisms. We also review how such an "NMR toolbox" has assisted the elucidation of the allosteric molecular basis for disease-related mutations and the discovery of novel leads for allosteric drugs. From this overview, it is clear that NMR plays a central role not only in experimentally validating transformative theories of allostery, but also in tapping the full translational potential of allosteric systems.
Collapse
Affiliation(s)
- Stephen Boulton
- Department of Chemistry and Chemical Biology Department of Biochemistry and Biomedical Sciences, McMaster University , 1280 Main St. W., Hamilton L8S 4M1, Canada
| | - Giuseppe Melacini
- Department of Chemistry and Chemical Biology Department of Biochemistry and Biomedical Sciences, McMaster University , 1280 Main St. W., Hamilton L8S 4M1, Canada
| |
Collapse
|
81
|
Cyclic AMP Signaling through Epac Axis Modulates Human Hemogenic Endothelium and Enhances Hematopoietic Cell Generation. Stem Cell Reports 2016; 6:692-703. [PMID: 27117782 PMCID: PMC4939749 DOI: 10.1016/j.stemcr.2016.03.006] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2015] [Revised: 03/22/2016] [Accepted: 03/23/2016] [Indexed: 01/24/2023] Open
Abstract
Hematopoietic cells emerge from hemogenic endothelium in the developing embryo. Mechanisms behind human hematopoietic stem and progenitor cell development remain unclear. Using a human pluripotent stem cell differentiation model, we report that cyclic AMP (cAMP) induction dramatically increases HSC-like cell frequencies. We show that hematopoietic cell generation requires cAMP signaling through the Exchange proteins activated by cAMP (cAMP-Epac) axis; Epac signaling inhibition decreased both hemogenic and non-hemogenic endothelium, and abrogated hematopoietic cell generation. Furthermore, in hematopoietic progenitor and stem-like cells, cAMP induction mitigated oxidative stress, created a redox-state balance, and enhanced C-X-C chemokine receptor type 4 (CXCR4) expression, benefiting the maintenance of these primitive cells. Collectively, our study provides insights and mechanistic details on the previously unrecognized role of cAMP signaling in regulating human hematopoietic development. These findings advance the mechanistic understanding of hematopoietic development toward the development of transplantable human hematopoietic cells for therapeutic needs. cAMP induction increases HSC-like cell generation from human pluripotent stem cells cAMP signaling through Epac axis modulates hemogenic endothelium cAMP upregulates anti-oxidative mechanisms and creates redox-state balance cAMP induction enhances CXCR4 expression in hematopoietic progenitors
Collapse
|
82
|
Protein Kinase A Activation Promotes Cancer Cell Resistance to Glucose Starvation and Anoikis. PLoS Genet 2016; 12:e1005931. [PMID: 26978032 PMCID: PMC4792400 DOI: 10.1371/journal.pgen.1005931] [Citation(s) in RCA: 58] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2015] [Accepted: 02/22/2016] [Indexed: 12/13/2022] Open
Abstract
Cancer cells often rely on glycolysis to obtain energy and support anabolic growth. Several studies showed that glycolytic cells are susceptible to cell death when subjected to low glucose availability or to lack of glucose. However, some cancer cells, including glycolytic ones, can efficiently acquire higher tolerance to glucose depletion, leading to their survival and aggressiveness. Although increased resistance to glucose starvation has been shown to be a consequence of signaling pathways and compensatory metabolic routes activation, the full repertoire of the underlying molecular alterations remain elusive. Using omics and computational analyses, we found that cyclic adenosine monophosphate-Protein Kinase A (cAMP-PKA) axis activation is fundamental for cancer cell resistance to glucose starvation and anoikis. Notably, here we show that such a PKA-dependent survival is mediated by parallel activation of autophagy and glutamine utilization that in concert concur to attenuate the endoplasmic reticulum (ER) stress and to sustain cell anabolism. Indeed, the inhibition of PKA-mediated autophagy or glutamine metabolism increased the level of cell death, suggesting that the induction of autophagy and metabolic rewiring by PKA is important for cancer cellular survival under glucose starvation. Importantly, both processes actively participate to cancer cell survival mediated by suspension-activated PKA as well. In addition we identify also a PKA/Src mechanism capable to protect cancer cells from anoikis. Our results reveal for the first time the role of the versatile PKA in cancer cells survival under chronic glucose starvation and anoikis and may be a novel potential target for cancer treatment. Tumor heterogeneity exists in many human cancers, and it has been shown that it can play a role in tumor progression. Indeed, cell diversity may be critically important when tumors experience selective pressures, like nutrient deprivation, hypoxia, chemotherapy. PKA, through incompletely understood mechanisms, controls several cellular processes like cell growth, cell differentiation, cell metabolism, cell migration and, as more recently observed, also cancer progression. In this work, we show that activation of PKA induces the ability of a cancer cell sub-population to survive under strong stress conditions namely nutrient deprivation and cell detachment. Indeed, PKA activation in these cells results in autophagy induction, and at the same time, in activation of glutamine metabolism and Src kinase. Importantly, blocking directly the PKA pathway, as well as the autophagy, the glutamine metabolism or the Src pathway by inhibitory drugs, almost completely prevents cell growth of this sub-population of resistant cancer cells. These results suggest that drugs, targeting especially PKA pathway as well as downstream processes like autophagy, glutamine metabolism and Src signaling, may specifically inhibit cancer cells ability to survive under selective pressure favoring cancer resistance.
Collapse
|
83
|
Critical role for Epac1 in inflammatory pain controlled by GRK2-mediated phosphorylation of Epac1. Proc Natl Acad Sci U S A 2016; 113:3036-41. [PMID: 26929333 DOI: 10.1073/pnas.1516036113] [Citation(s) in RCA: 95] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
cAMP signaling plays a key role in regulating pain sensitivity. Here, we uncover a previously unidentified molecular mechanism in which direct phosphorylation of the exchange protein directly activated by cAMP 1 (EPAC1) by G protein kinase 2 (GRK2) suppresses Epac1-to-Rap1 signaling, thereby inhibiting persistent inflammatory pain. Epac1(-/-) mice are protected against inflammatory hyperalgesia in the complete Freund's adjuvant (CFA) model. Moreover, the Epac-specific inhibitor ESI-09 inhibits established CFA-induced mechanical hyperalgesia without affecting normal mechanical sensitivity. At the mechanistic level, CFA increased activity of the Epac target Rap1 in dorsal root ganglia of WT, but not of Epac1(-/-), mice. Using sensory neuron-specific overexpression of GRK2 or its kinase-dead mutant in vivo, we demonstrate that GRK2 inhibits CFA-induced hyperalgesia in a kinase activity-dependent manner. In vitro, GRK2 inhibits Epac1-to-Rap1 signaling by phosphorylation of Epac1 at Ser-108 in the Disheveled/Egl-10/pleckstrin domain. This phosphorylation event inhibits agonist-induced translocation of Epac1 to the plasma membrane, thereby reducing Rap1 activation. Finally, we show that GRK2 inhibits Epac1-mediated sensitization of the mechanosensor Piezo2 and that Piezo2 contributes to inflammatory mechanical hyperalgesia. Collectively, these findings identify a key role of Epac1 in chronic inflammatory pain and a molecular mechanism for controlling Epac1 activity and chronic pain through phosphorylation of Epac1 at Ser-108. Importantly, using the Epac inhibitor ESI-09, we validate Epac1 as a potential therapeutic target for chronic pain.
Collapse
|
84
|
Pratt EPS, Salyer AE, Guerra ML, Hockerman GH. Ca2+ influx through L-type Ca2+ channels and Ca2+-induced Ca2+ release regulate cAMP accumulation and Epac1-dependent ERK 1/2 activation in INS-1 cells. Mol Cell Endocrinol 2016; 419:60-71. [PMID: 26435461 PMCID: PMC4684454 DOI: 10.1016/j.mce.2015.09.034] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/19/2015] [Revised: 08/28/2015] [Accepted: 09/29/2015] [Indexed: 02/09/2023]
Abstract
We previously reported that INS-1 cells expressing the intracellular II-III loop of the L-type Ca(2+) channel Cav1.2 (Cav1.2/II-III cells) are deficient in Ca(2+)-induced Ca(2+) release (CICR). Here we show that glucose-stimulated ERK 1/2 phosphorylation (GSEP) is slowed and reduced in Cav1.2/II-III cells compared to INS-1 cells. This parallels a decrease in glucose-stimulated cAMP accumulation (GS-cAMP) in Cav1.2/II-III cells. Influx of Ca(2+) via L-type Ca(2+) channels and CICR play roles in both GSEP and GS-cAMP in INS-1 cells since both are inhibited by nicardipine or ryanodine. Further, the Epac1-selective inhibitor CE3F4 abolishes glucose-stimulated ERK activation in INS-1 cells, as measured using the FRET-based sensor EKAR. The non-selective Epac antagonist ESI-09 but not the Epac2-selective antagonist ESI-05 nor the PKA antagonist Rp-cAMPs inhibits GSEP in both INS-1 and Cav1.2/II-III cells. We conclude that L-type Ca(2+) channel-dependent cAMP accumulation, that's amplified by CICR, activates Epac1 and drives GSEP in INS-1 cells.
Collapse
Affiliation(s)
- Evan P S Pratt
- Department of Medicinal Chemistry and Molecular Pharmacology, Purdue University, West Lafayette, IN, USA; Purdue University Life Sciences Graduate Program, Purdue University, West Lafayette, IN, USA
| | - Amy E Salyer
- Department of Medicinal Chemistry and Molecular Pharmacology, Purdue University, West Lafayette, IN, USA
| | - Marcy L Guerra
- Department of Medicinal Chemistry and Molecular Pharmacology, Purdue University, West Lafayette, IN, USA
| | - Gregory H Hockerman
- Department of Medicinal Chemistry and Molecular Pharmacology, Purdue University, West Lafayette, IN, USA.
| |
Collapse
|
85
|
Almahariq M, Mei FC, Cheng X. The pleiotropic role of exchange protein directly activated by cAMP 1 (EPAC1) in cancer: implications for therapeutic intervention. Acta Biochim Biophys Sin (Shanghai) 2016; 48:75-81. [PMID: 26525949 DOI: 10.1093/abbs/gmv115] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2015] [Accepted: 08/30/2015] [Indexed: 01/03/2023] Open
Abstract
The pleiotropic second messenger adenosine 3',5'-cyclic monophosphate (cAMP) regulates a myriad of biological processes under both physiological and pathophysiological conditions. Exchange protein directly activated by cAMP 1 (EPAC1) mediates the intracellular functions of cAMP by acting as a guanine nucleotide exchange factor for the Ras-like Rap small GTPases. Recent studies suggest that EPAC1 plays important roles in immunomodulation, cancer cell migration/metastasis, and metabolism. These results, coupled with the successful development of EPAC-specific small molecule inhibitors, identify EPAC1 as a promising therapeutic target for cancer treatments.
Collapse
Affiliation(s)
- Muayad Almahariq
- Department of Pharmacology and Toxicology, The University of Texas Medical Branch, Galveston, TX 77555, USA
| | - Fang C Mei
- Department of Integrative Biology and Pharmacology, Texas Therapeutics Institute, Brown Foundation Institute of Molecular Medicine, The University of Texas Health Science Center at Houston, Houston, TX 77030, USA
| | - Xiaodong Cheng
- Department of Integrative Biology and Pharmacology, Texas Therapeutics Institute, Brown Foundation Institute of Molecular Medicine, The University of Texas Health Science Center at Houston, Houston, TX 77030, USA
| |
Collapse
|
86
|
Ye N, Zhu Y, Chen H, Liu Z, Mei FC, Wild C, Chen H, Cheng X, Zhou J. Structure-Activity Relationship Studies of Substituted 2-(Isoxazol-3-yl)-2-oxo-N'-phenyl-acetohydrazonoyl Cyanide Analogues: Identification of Potent Exchange Proteins Directly Activated by cAMP (EPAC) Antagonists. J Med Chem 2015; 58:6033-47. [PMID: 26151319 DOI: 10.1021/acs.jmedchem.5b00635] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Exchange proteins directly activated by cAMP (EPAC) as guanine nucleotide exchange factors mediate the effects of the pivotal second messenger cAMP, thereby regulating a wide variety of intracellular physiological and pathophysiological processes. A series of novel 2-(isoxazol-3-yl)-2-oxo-N'-phenyl-acetohydrazonoyl cyanide EPAC antagonists was synthesized and evaluated in an effort to optimize properties of the previously identified high-throughput (HTS) hit 1 (ESI-09). Structure-activity relationship (SAR) analysis led to the discovery of several more active EPAC antagonists (e.g., 22 (HJC0726), 35 (NY0123), and 47 (NY0173)) with low micromolar inhibitory activity. These inhibitors may serve as valuable pharmacological probes to facilitate our efforts in elucidating the biological functions of EPAC and developing potential novel therapeutics against human diseases. Our SAR results have also revealed that further modification at the 3-, 4-, and 5-positions of the phenyl ring as well as the 5-position of the isoxazole moiety may allow for the development of more potent EPAC antagonists.
Collapse
Affiliation(s)
- Na Ye
- †Chemical Biology Program, Department of Pharmacology and Toxicology, University of Texas Medical Branch, Galveston, Texas 77555, United States
| | - Yingmin Zhu
- ‡Department of Integrative Biology and Pharmacology, Texas Therapeutics Institute, The Brown Foundation Institute of Molecular Medicine, The University of Texas Health Science Center, Houston, Texas 77030, United States
| | - Haijun Chen
- †Chemical Biology Program, Department of Pharmacology and Toxicology, University of Texas Medical Branch, Galveston, Texas 77555, United States
| | - Zhiqing Liu
- †Chemical Biology Program, Department of Pharmacology and Toxicology, University of Texas Medical Branch, Galveston, Texas 77555, United States
| | - Fang C Mei
- ‡Department of Integrative Biology and Pharmacology, Texas Therapeutics Institute, The Brown Foundation Institute of Molecular Medicine, The University of Texas Health Science Center, Houston, Texas 77030, United States
| | - Christopher Wild
- †Chemical Biology Program, Department of Pharmacology and Toxicology, University of Texas Medical Branch, Galveston, Texas 77555, United States
| | - Haiying Chen
- †Chemical Biology Program, Department of Pharmacology and Toxicology, University of Texas Medical Branch, Galveston, Texas 77555, United States
| | - Xiaodong Cheng
- ‡Department of Integrative Biology and Pharmacology, Texas Therapeutics Institute, The Brown Foundation Institute of Molecular Medicine, The University of Texas Health Science Center, Houston, Texas 77030, United States
| | - Jia Zhou
- †Chemical Biology Program, Department of Pharmacology and Toxicology, University of Texas Medical Branch, Galveston, Texas 77555, United States
| |
Collapse
|
87
|
Banerjee U, Cheng X. Exchange protein directly activated by cAMP encoded by the mammalian rapgef3 gene: Structure, function and therapeutics. Gene 2015; 570:157-67. [PMID: 26119090 PMCID: PMC4556420 DOI: 10.1016/j.gene.2015.06.063] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2015] [Accepted: 06/23/2015] [Indexed: 01/08/2023]
Abstract
Mammalian exchange protein directly activated by cAMP isoform 1 (EPAC1), encoded by the RAPGEF3 gene, is one of the two-membered family of cAMP sensors that mediate the intracellular functions of cAMP by acting as guanine nucleotide exchange factors for the Ras-like Rap small GTPases. Extensive studies have revealed that EPAC1-mediated cAMP signaling is highly coordinated spatiotemporally through the formation of dynamic signalosomes by interacting with a diverse array of cellular partners. Recent functional analyses of genetically engineered mouse models further suggest that EPAC1 functions as an important stress response switch and is involved in pathophysiological conditions of cardiac stresses, chronic pain, cancer and infectious diseases. These findings, coupled with the development of EPAC specific small molecule modulators, validate EPAC1 as a promising target for therapeutic interventions. Human gene RAPGEF3 encodes for EPAC1 protein. Along with PKA, CNG & HCN, EPAC is an important cAMP sensor. Selective modulators of EPAC1 have been developed for use as pharmacological probes. Formation of EPAC1 signalosomes allows spatiotemporal control of cAMP signaling. EPAC1 is implicated in major pathophysiological conditions and is an attractive therapeutic target.
Collapse
Affiliation(s)
- Upasana Banerjee
- Department of Integrative Biology and Pharmacology, Texas Therapeutics Institute, The Brown Foundation Institute of Molecular Medicine for the Prevention of Human Diseases, University of Health Science Center, Houston, TX 77030, United States
| | - Xiaodong Cheng
- Department of Integrative Biology and Pharmacology, Texas Therapeutics Institute, The Brown Foundation Institute of Molecular Medicine for the Prevention of Human Diseases, University of Health Science Center, Houston, TX 77030, United States.
| |
Collapse
|