51
|
Abstract
Parkinson's disease (PD) is a leading cause of neurodegeneration that is defined by the selective loss of dopaminergic neurons and the accumulation of protein aggregates called Lewy bodies (LBs). The unequivocal identification of Mendelian inherited mutations in 13 genes in PD has provided transforming insights into the pathogenesis of this disease. The mechanistic analysis of several PD genes, including α-synuclein (α-syn), leucine-rich repeat kinase 2 (LRRK2), PTEN-induced kinase 1 (PINK1), and Parkin, has revealed central roles for protein aggregation, mitochondrial damage, and defects in endolysosomal trafficking in PD neurodegeneration. In this review, we outline recent advances in our understanding of these gene pathways with a focus on the emergent role of Rab (Ras analog in brain) GTPases and vesicular trafficking as a common mechanism that underpins how mutations in PD genes lead to neuronal loss. These advances have led to previously distinct genes such as vacuolar protein-sorting-associated protein 35 (VPS35) and LRRK2 being implicated in a common signaling pathway. A greater understanding of these common nodes of vesicular trafficking will be crucial for linking other PD genes and improving patient stratification in clinical trials underway against α-syn and LRRK2 targets.
Collapse
Affiliation(s)
- Pawan Kishor Singh
- MRC Protein Phosphorylation and Ubiquitylation Unit, Sir James Black Centre, School of Life Sciences, University of Dundee, Dundee DD1 5EH, United Kingdom;
| | - Miratul M K Muqit
- MRC Protein Phosphorylation and Ubiquitylation Unit, Sir James Black Centre, School of Life Sciences, University of Dundee, Dundee DD1 5EH, United Kingdom;
| |
Collapse
|
52
|
Rivero-Ríos P, Romo-Lozano M, Fernández B, Fdez E, Hilfiker S. Distinct Roles for RAB10 and RAB29 in Pathogenic LRRK2-Mediated Endolysosomal Trafficking Alterations. Cells 2020; 9:cells9071719. [PMID: 32709066 PMCID: PMC7407826 DOI: 10.3390/cells9071719] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2020] [Revised: 07/12/2020] [Accepted: 07/13/2020] [Indexed: 12/14/2022] Open
Abstract
Summary Statement Pathogenic LRRK2 expression causes endolysosomal trafficking alterations by impairing RAB10 function, and these alterations are rescued by RAB29 independent of its Golgi localization. Abstract Mutations in the gene encoding leucine-rich repeat kinase 2 (LRRK2) cause familial Parkinson’s disease, and sequence variations are associated with the sporadic form of the disease. LRRK2 phosphorylates a subset of RAB proteins implicated in secretory and recycling trafficking pathways, including RAB8A and RAB10. Another RAB protein, RAB29, has been reported to recruit LRRK2 to the Golgi, where it stimulates its kinase activity. Our previous studies revealed that G2019S LRRK2 expression or knockdown of RAB8A deregulate epidermal growth factor receptor (EGFR) trafficking, with a concomitant accumulation of the receptor in a RAB4-positive recycling compartment. Here, we show that the G2019S LRRK2-mediated EGFR deficits are mimicked by knockdown of RAB10 and rescued by expression of active RAB10. By contrast, RAB29 knockdown is without effect, but expression of RAB29 also rescues the pathogenic LRRK2-mediated trafficking deficits independently of Golgi integrity. Our data suggest that G2019S LRRK2 deregulates endolysosomal trafficking by impairing the function of RAB8A and RAB10, while RAB29 positively modulates non-Golgi-related trafficking events impaired by pathogenic LRRK2.
Collapse
Affiliation(s)
- Pilar Rivero-Ríos
- Institute of Parasitology and Biomedicine “López-Neyra”, Consejo Superior de Investigaciones Científicas (CSIC), Avda del Conocimiento s/n, 18016 Granada, Spain; (P.R.-R.); (M.R.-L.); (B.F.); (E.F.)
- Life Sciences Institute, University of Michigan, Ann Arbor, MI 48109, USA
| | - Maria Romo-Lozano
- Institute of Parasitology and Biomedicine “López-Neyra”, Consejo Superior de Investigaciones Científicas (CSIC), Avda del Conocimiento s/n, 18016 Granada, Spain; (P.R.-R.); (M.R.-L.); (B.F.); (E.F.)
| | - Belén Fernández
- Institute of Parasitology and Biomedicine “López-Neyra”, Consejo Superior de Investigaciones Científicas (CSIC), Avda del Conocimiento s/n, 18016 Granada, Spain; (P.R.-R.); (M.R.-L.); (B.F.); (E.F.)
| | - Elena Fdez
- Institute of Parasitology and Biomedicine “López-Neyra”, Consejo Superior de Investigaciones Científicas (CSIC), Avda del Conocimiento s/n, 18016 Granada, Spain; (P.R.-R.); (M.R.-L.); (B.F.); (E.F.)
| | - Sabine Hilfiker
- Department of Anesthesiology, New Jersey Medical School, Rutgers, The State University of New Jersey, Newark, NJ 07103, USA
- Correspondence:
| |
Collapse
|
53
|
Seegobin SP, Heaton GR, Liang D, Choi I, Blanca Ramirez M, Tang B, Yue Z. Progress in LRRK2-Associated Parkinson's Disease Animal Models. Front Neurosci 2020; 14:674. [PMID: 32765209 PMCID: PMC7381130 DOI: 10.3389/fnins.2020.00674] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2020] [Accepted: 06/02/2020] [Indexed: 12/19/2022] Open
Abstract
Mutations in the leucine-rich repeat kinase 2 (LRRK2) gene are the most frequent cause of familial Parkinson's disease (PD). Several genetic manipulations of the LRRK2 gene have been developed in animal models such as rodents, Drosophila, Caenorhabditis elegans, and zebrafish. These models can help us further understand the biological function and derive potential pathological mechanisms for LRRK2. Here we discuss common phenotypic themes found in LRRK2-associated PD animal models, highlight several issues that should be addressed in future models, and discuss emerging areas to guide their future development.
Collapse
Affiliation(s)
- Steven P. Seegobin
- Department of Neurology, Icahn School of Medicine at Mount Sinai, New York, NY, United States
- Department of Neuroscience, Icahn School of Medicine at Mount Sinai, New York, NY, United States
- Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, United States
| | - George R. Heaton
- Department of Neurology, Icahn School of Medicine at Mount Sinai, New York, NY, United States
- Department of Neuroscience, Icahn School of Medicine at Mount Sinai, New York, NY, United States
- Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, United States
| | - Dongxiao Liang
- Department of Neurology, Icahn School of Medicine at Mount Sinai, New York, NY, United States
- Department of Neuroscience, Icahn School of Medicine at Mount Sinai, New York, NY, United States
- Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, United States
- Department of Neurology, Xiangya Hospital, Central South University, Hunan, China
| | - Insup Choi
- Department of Neurology, Icahn School of Medicine at Mount Sinai, New York, NY, United States
- Department of Neuroscience, Icahn School of Medicine at Mount Sinai, New York, NY, United States
- Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, United States
| | - Marian Blanca Ramirez
- Department of Neurology, Icahn School of Medicine at Mount Sinai, New York, NY, United States
- Department of Neuroscience, Icahn School of Medicine at Mount Sinai, New York, NY, United States
- Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, United States
| | - Beisha Tang
- Department of Neurology, Xiangya Hospital, Central South University, Hunan, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Hunan, China
| | - Zhenyu Yue
- Department of Neurology, Icahn School of Medicine at Mount Sinai, New York, NY, United States
- Department of Neuroscience, Icahn School of Medicine at Mount Sinai, New York, NY, United States
- Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, United States
| |
Collapse
|
54
|
Heaton GR, Landeck N, Mamais A, Nalls MA, Nixon-Abell J, Kumaran R, Beilina A, Pellegrini L, Li Y, Harvey K, Cookson MR. Sequential screening nominates the Parkinson's disease associated kinase LRRK2 as a regulator of Clathrin-mediated endocytosis. Neurobiol Dis 2020; 141:104948. [PMID: 32434048 PMCID: PMC7339134 DOI: 10.1016/j.nbd.2020.104948] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2020] [Revised: 04/21/2020] [Accepted: 05/13/2020] [Indexed: 02/08/2023] Open
Abstract
Mutations in leucine-rich repeat kinase 2 (LRRK2) are an established cause of inherited Parkinson's disease (PD). LRRK2 is expressed in both neurons and glia in the central nervous system, but its physiological function(s) in each of these cell types is uncertain. Through sequential screens, we report a functional interaction between LRRK2 and Clathrin adaptor protein complex 2 (AP2). Analysis of LRRK2 KO tissue revealed a significant dysregulation of AP2 complex components, suggesting LRRK2 may act upstream of AP2. In line with this hypothesis, expression of LRRK2 was found to modify recruitment and phosphorylation of AP2. Furthermore, expression of LRRK2 containing the R1441C pathogenic mutation resulted in impaired clathrin-mediated endocytosis (CME). A decrease in activity-dependent synaptic vesicle endocytosis was also observed in neurons harboring an endogenous R1441C LRRK2 mutation. Alongside LRRK2, several PD-associated genes intersect with membrane-trafficking pathways. To investigate the genetic association between Clathrin-trafficking and PD, we used polygenetic risk profiling from IPDGC genome wide association studies (GWAS) datasets. Clathrin-dependent endocytosis genes were found to be associated with PD across multiple cohorts, suggesting common variants at these loci represent a cumulative risk factor for disease. Taken together, these findings suggest CME is a LRRK2-mediated, PD relevant pathway.
Collapse
Affiliation(s)
- George R Heaton
- Laboratory of Neurogenetics, National Institute on Aging, National Institutes of Health, Bethesda, MD 20814, USA; Department of Pharmacology, UCL School of Pharmacy, University College London, 29-39 Brunswick Square, London WC1N 1AX, UK
| | - Natalie Landeck
- Laboratory of Neurogenetics, National Institute on Aging, National Institutes of Health, Bethesda, MD 20814, USA
| | - Adamantios Mamais
- Laboratory of Neurogenetics, National Institute on Aging, National Institutes of Health, Bethesda, MD 20814, USA
| | - Mike A Nalls
- Laboratory of Neurogenetics, National Institute on Aging, National Institutes of Health, Bethesda, MD 20814, USA; Data Tecnica International, Glen Echo, MD, USA
| | - Jonathon Nixon-Abell
- Cambridge Institute for Medical Research, Department of Clinical Neurosciences, University of Cambridge, Cambridge CB2 0XY, UK
| | - Ravindran Kumaran
- Laboratory of Neurogenetics, National Institute on Aging, National Institutes of Health, Bethesda, MD 20814, USA
| | - Alexandra Beilina
- Laboratory of Neurogenetics, National Institute on Aging, National Institutes of Health, Bethesda, MD 20814, USA
| | - Laura Pellegrini
- Laboratory of Neurogenetics, National Institute on Aging, National Institutes of Health, Bethesda, MD 20814, USA
| | - Yan Li
- Mass spectrometry Facility, National Institute of Neurological Disorders and Stroke, National Institutes of Health, 20814, USA
| | - Kirsten Harvey
- Department of Pharmacology, UCL School of Pharmacy, University College London, 29-39 Brunswick Square, London WC1N 1AX, UK.
| | - Mark R Cookson
- Laboratory of Neurogenetics, National Institute on Aging, National Institutes of Health, Bethesda, MD 20814, USA.
| |
Collapse
|
55
|
O'Hara DM, Pawar G, Kalia SK, Kalia LV. LRRK2 and α-Synuclein: Distinct or Synergistic Players in Parkinson's Disease? Front Neurosci 2020; 14:577. [PMID: 32625052 PMCID: PMC7311858 DOI: 10.3389/fnins.2020.00577] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2020] [Accepted: 05/12/2020] [Indexed: 12/19/2022] Open
Abstract
Parkinson's disease (PD) is the most common neurodegenerative movement disorder, characterized by prominent degeneration of dopaminergic neurons in the substantia nigra and aggregation of the protein α-synuclein within intraneuronal inclusions known as Lewy bodies. Ninety percent of PD cases are idiopathic while the remaining 10% are associated with gene mutations that affect cellular functions ranging from kinase activity to mitochondrial quality control, hinting at a multifactorial disease process. Mutations in LRRK2 and SNCA (the gene coding for α-synuclein) cause monogenic forms of autosomal dominant PD, and polymorphisms in either gene are also associated with increased risk of idiopathic PD. Although Lewy bodies are a defining neuropathological feature of PD, an appreciable subset of patients with LRRK2 mutations present with a clinical phenotype indistinguishable from idiopathic PD but lack Lewy pathology at autopsy, suggesting that LRRK2-mediated PD may occur independently of α-synuclein aggregation. Here, we examine whether LRRK2 and α-synuclein, as mediators of neurodegeneration in PD, exist in common or distinct pathways. Specifically, we review evidence from preclinical models and human neuropathological studies examining interactions between the two proteins. Elucidating the degree of interplay between LRRK2 and α-synuclein will be necessary for treatment stratification once effective targeted disease-modifying therapies are developed.
Collapse
Affiliation(s)
- Darren M O'Hara
- Krembil Research Institute, Toronto Western Hospital, University Health Network, Toronto, ON, Canada.,Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, ON, Canada
| | - Grishma Pawar
- Krembil Research Institute, Toronto Western Hospital, University Health Network, Toronto, ON, Canada.,Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, ON, Canada
| | - Suneil K Kalia
- Krembil Research Institute, Toronto Western Hospital, University Health Network, Toronto, ON, Canada.,Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, ON, Canada.,Division of Neurosurgery, Department of Surgery, University of Toronto, Toronto, ON, Canada
| | - Lorraine V Kalia
- Krembil Research Institute, Toronto Western Hospital, University Health Network, Toronto, ON, Canada.,Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, ON, Canada.,Division of Neurology, Department of Medicine, University of Toronto, Toronto, ON, Canada.,Edmond J. Safra Program in Parkinson's Disease and the Morton and Gloria Shulman Movement Disorders Clinic, Division of Neurology, Department of Medicine, Toronto Western Hospital, University Health Network, Toronto, ON, Canada.,Tanz Centre for Research in Neurodegenerative Diseases, University of Toronto, Toronto, ON, Canada
| |
Collapse
|
56
|
Sanyal A, Novis HS, Gasser E, Lin S, LaVoie MJ. LRRK2 Kinase Inhibition Rescues Deficits in Lysosome Function Due to Heterozygous GBA1 Expression in Human iPSC-Derived Neurons. Front Neurosci 2020; 14:442. [PMID: 32499675 PMCID: PMC7243441 DOI: 10.3389/fnins.2020.00442] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2020] [Accepted: 04/09/2020] [Indexed: 12/22/2022] Open
Abstract
A growing number of genes associated with Parkinson's disease are implicated in the regulation of lysosome function, including LRRK2, whose missense mutations are perhaps the most common monogenic cause of this neurodegenerative disease. These mutations are collectively thought to introduce a pathologic increase in LRRK2 kinase activity, which is currently a major target for therapeutic intervention. Heterozygous carriers of many missense mutations in the GBA1 gene have dramatically increased risk of Parkinson's disease. A critical question has recently emerged regarding the potential interplay between the proteins encoded by these two disease-linked genes. Our group has recently demonstrated that knockin mutation of a Parkinson's-linked GBA1 variant induces severe lysosomal and cytokine abnormalities in murine astrocytes and that these deficits were normalized via inhibition of wild-type LRRK2 kinase activity in these cells. Another group independently found that LRRK2 inhibition increases glucocerebrosidase activity in wild-type human iPSC-derived neurons, as well as those whose activity is disrupted by GBA1 or LRRK2 mutation. Fundamental questions remain in terms of the lysosomal abnormalities and the effects of LRRK2 kinase inhibition in human neurons deficient in glucocerebrosidase activity. Here, we further elucidate the physiological crosstalk between LRRK2 signaling and glucocerebrosidase activity in human iPSC-derived neurons. Our studies show that the allelic loss of GBA1 manifests broad defects in lysosomal morphology and function. Furthermore, our data show an increase in both the accumulation and secretion of oligomeric α-synuclein protein in these GBA1-heterozygous-null neurons, compared to isogenic controls. Consistent with recent findings in murine astrocytes, we observed that multiple indices of lysosomal dysfunction in GBA1-deficient human neurons were normalized by LRRK2 kinase inhibition, while some defects were preserved. Our findings demonstrate a selective but functional intersection between glucocerebrosidase dysfunction and LRRK2 signaling in the cell and may have implications in the pathogenesis and treatment of Parkinson's disease.
Collapse
Affiliation(s)
| | | | | | | | - Matthew J. LaVoie
- Ann Romney Center for Neurological Diseases, Department of Neurology, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA, United States
| |
Collapse
|
57
|
Identification of Host Trafficking Genes Required for HIV-1 Virological Synapse Formation in Dendritic Cells. J Virol 2020; 94:JVI.01597-19. [PMID: 32075937 PMCID: PMC7163131 DOI: 10.1128/jvi.01597-19] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2019] [Accepted: 02/04/2020] [Indexed: 01/15/2023] Open
Abstract
The lentivirus human immunodeficiency virus (HIV) targets and destroys CD4+ T cells, leaving the host vulnerable to life-threatening opportunistic infections associated with AIDS. Dendritic cells (DCs) form a virological synapse (VS) with CD4+ T cells, enabling the efficient transfer of virus between the two cells. We have identified cellular factors that are critical in the induction of the VS. We show that ADP-ribosylation factor 1 (ARF1), bridging integrator 1 (BIN1), and Rab GTPases RAB7L1 and RAB8A are important regulators of HIV-1 trafficking to the VS and therefore the infection of CD4+ T cells. We found these cellular factors were essential for endosomal protein trafficking and formation of the VS and that depletion of target proteins prevented virus trafficking to the plasma membrane by retaining virus in intracellular vesicles. Identification of key regulators in HIV-1 trans-infection between DC and CD4+ T cells has the potential for the development of targeted therapy to reduce trans-infection of HIV-1 in vivo. Dendritic cells (DCs) are one of the earliest targets of HIV-1 infection acting as a “Trojan horse,” concealing the virus from the innate immune system and delivering it to T cells via virological synapses (VS). To explicate how the virus is trafficked through the cell to the VS and evades degradation, a high-throughput small interfering RNA screen targeting membrane trafficking proteins was performed in monocyte-derived DCs. We identified several proteins including BIN-1 and RAB7L1 that share common roles in transport from endosomal compartments. Depletion of target proteins resulted in an accumulation of virus in intracellular compartments and significantly reduced viral trans-infection via the VS. By targeting endocytic trafficking and retromer recycling to the plasma membrane, we were able to reduce the virus’s ability to accumulate at budding microdomains and the VS. Thus, we identify key genes involved in a pathway within DCs that is exploited by HIV-1 to traffic to the VS. IMPORTANCE The lentivirus human immunodeficiency virus (HIV) targets and destroys CD4+ T cells, leaving the host vulnerable to life-threatening opportunistic infections associated with AIDS. Dendritic cells (DCs) form a virological synapse (VS) with CD4+ T cells, enabling the efficient transfer of virus between the two cells. We have identified cellular factors that are critical in the induction of the VS. We show that ADP-ribosylation factor 1 (ARF1), bridging integrator 1 (BIN1), and Rab GTPases RAB7L1 and RAB8A are important regulators of HIV-1 trafficking to the VS and therefore the infection of CD4+ T cells. We found these cellular factors were essential for endosomal protein trafficking and formation of the VS and that depletion of target proteins prevented virus trafficking to the plasma membrane by retaining virus in intracellular vesicles. Identification of key regulators in HIV-1 trans-infection between DC and CD4+ T cells has the potential for the development of targeted therapy to reduce trans-infection of HIV-1 in vivo.
Collapse
|
58
|
Bandres-Ciga S, Diez-Fairen M, Kim JJ, Singleton AB. Genetics of Parkinson's disease: An introspection of its journey towards precision medicine. Neurobiol Dis 2020; 137:104782. [PMID: 31991247 PMCID: PMC7064061 DOI: 10.1016/j.nbd.2020.104782] [Citation(s) in RCA: 242] [Impact Index Per Article: 48.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2019] [Revised: 01/15/2020] [Accepted: 01/24/2020] [Indexed: 12/15/2022] Open
Abstract
A substantial proportion of risk for Parkinson's disease (PD) is driven by genetics. Progress in understanding the genetic basis of PD has been significant. So far, highly-penetrant rare genetic alterations in SNCA, LRRK2, VPS35, PRKN, PINK1, DJ-1 and GBA have been linked with typical familial PD and common genetic variability at 90 loci have been linked to risk for PD. In this review, we outline the journey thus far of PD genetics, highlighting how significant advances have improved our knowledge of the genetic basis of PD risk, onset and progression. Despite remarkable progress, our field has yet to unravel how genetic risk variants disrupt biological pathways and molecular networks underlying the pathobiology of the disease. We highlight that currently identified genetic risk factors only represent a fraction of the likely genetic risk for PD. Identifying the remaining genetic risk will require us to diversify our efforts, performing genetic studies across different ancestral groups. This work will inform us on the varied genetic basis of disease across populations and also aid in fine mapping discovered loci. If we are able to take this course, we foresee that genetic discoveries in PD will directly influence our ability to predict disease and aid in defining etiological subtypes, critical steps for the implementation of precision medicine for PD.
Collapse
Affiliation(s)
- Sara Bandres-Ciga
- Molecular Genetics Section, Laboratory of Neurogenetics, National Institute on Aging, National Institutes of Health, Bethesda, MD 20892, USA; Instituto de Investigación Biosanitaria de Granada (ibs.GRANADA), Granada 18016, Spain.
| | - Monica Diez-Fairen
- Molecular Genetics Section, Laboratory of Neurogenetics, National Institute on Aging, National Institutes of Health, Bethesda, MD 20892, USA; Fundació Docència i Recerca Mútua Terrassa and Movement Disorders Unit, Department of Neurology, University Hospital Mútua Terrassa, Terrassa 08221, Barcelona, Spain
| | - Jonggeol Jeff Kim
- Molecular Genetics Section, Laboratory of Neurogenetics, National Institute on Aging, National Institutes of Health, Bethesda, MD 20892, USA
| | - Andrew B Singleton
- Molecular Genetics Section, Laboratory of Neurogenetics, National Institute on Aging, National Institutes of Health, Bethesda, MD 20892, USA.
| |
Collapse
|
59
|
Taylor M, Alessi DR. Advances in elucidating the function of leucine-rich repeat protein kinase-2 in normal cells and Parkinson's disease. Curr Opin Cell Biol 2020; 63:102-113. [PMID: 32036294 PMCID: PMC7262585 DOI: 10.1016/j.ceb.2020.01.001] [Citation(s) in RCA: 84] [Impact Index Per Article: 16.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2019] [Revised: 12/31/2019] [Accepted: 01/02/2020] [Indexed: 12/22/2022]
Abstract
Autosomal dominant missense mutations that hyperactivate the leucine-rich repeat protein kinase-2 (LRRK2) are a common cause of inherited Parkinson's disease and therapeutic efficacy of LRRK2 inhibitors is being tested in clinical trials. In this review, we discuss the nuts and bolts of our current understanding of how the LRRK2 is misregulated by mutations and how pathway activity is affected by LRRK2 binding to membrane, microtubule filaments, and 14-3-3, as well as by upstream components such as Rab29 and VPS35. We discuss recent work that points toward a subset of Rab proteins comprising key physiological substrates that bind new sets of effectors, such as RILPL1/2, JIP3 and JIP4 after phosphorylation by LRRK2. We explore what is known about how LRRK2 regulates ciliogenesis, the endosomal-lysosomal system, immune responses and interplay with alpha-synuclein and tau and how this might be linked to Parkinson's' disease.
Collapse
Affiliation(s)
- Matthew Taylor
- Medical Research Council Protein Phosphorylation and Ubiquitylation Unit, School of Life Sciences, University of Dundee, Dow Street, Dundee, DD1 5EH, UK
| | - Dario R Alessi
- Medical Research Council Protein Phosphorylation and Ubiquitylation Unit, School of Life Sciences, University of Dundee, Dow Street, Dundee, DD1 5EH, UK.
| |
Collapse
|
60
|
Huntley GW, Benson DL. Origins of Parkinson's Disease in Brain Development: Insights From Early and Persistent Effects of LRRK2-G2019S on Striatal Circuits. Front Neurosci 2020; 14:265. [PMID: 32273839 PMCID: PMC7113397 DOI: 10.3389/fnins.2020.00265] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2020] [Accepted: 03/09/2020] [Indexed: 12/20/2022] Open
Abstract
Late-onset Parkinson's disease (PD) is dominated clinically and experimentally by a focus on dopamine neuron degeneration and ensuing motor system abnormalities. There are, additionally, a number of non-motor symptoms - including cognitive and psychiatric - that can appear much earlier in the course of the disease and also significantly impair quality of life. The neurobiology of such cognitive and psychiatric non-motor symptoms is poorly understood. The recognition of genetic forms of late-onset PD, which are clinically similar to idiopathic forms in both motor and non-motor symptoms, raises the perspective that brain cells and circuits - and the behaviors they support - differ in significant ways from normal by virtue of the fact that these mutations are carried throughout life, including especially early developmental critical periods where circuit structure and function is particularly susceptible to the influence of experience-dependent activity. In this focused review, we support this central thesis by highlighting studies of LRRK2-G2019S mouse models. We describe work that shows that in G2019S mutants, corticostriatal activity and plasticity are abnormal by P21, the end of a period of excitatory synaptogenesis in striatum. Moreover, by young adulthood, impaired striatal synaptic and non-synaptic forms of plasticity likely underlie altered and variable performance by mutant mice in validated tasks that test for depression-like and anhedonia-like behaviors. Mechanistically, deficits in cellular, synaptic and behavioral plasticity may be unified by mutation-linked defects in trafficking of AMPAR subunits and other membrane channels, which in turn may reflect impairment in the function of the Rab family of GTPases, a major target of LRRK2 phosphorylation. These findings underscore the need to better understand how PD-related mutant proteins influence brain structure and function during an extended period of brain development, and offer new clues for future therapeutic strategies to target non-motor cognitive or psychiatric symptoms of PD.
Collapse
Affiliation(s)
- George W. Huntley
- Nash Family Department of Neuroscience, Friedman Brain Institute, Graduate School of Biomedical Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, United States
| | - Deanna L. Benson
- Nash Family Department of Neuroscience, Friedman Brain Institute, Graduate School of Biomedical Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, United States
| |
Collapse
|
61
|
Kuwahara T, Iwatsubo T. The Emerging Functions of LRRK2 and Rab GTPases in the Endolysosomal System. Front Neurosci 2020; 14:227. [PMID: 32256311 PMCID: PMC7095371 DOI: 10.3389/fnins.2020.00227] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2020] [Accepted: 03/02/2020] [Indexed: 12/25/2022] Open
Abstract
The leucine-rich repeat kinase 2 (LRRK2), the most common causative gene for autosomal-dominant familial Parkinson’s disease, encodes a large protein kinase harboring multiple characteristic domains. LRRK2 phosphorylates a set of Rab GTPases in cells, which is enhanced by the Parkinson-associated LRRK2 mutations. Accumulating evidence suggests that LRRK2 regulates intracellular vesicle trafficking and organelle maintenance including Golgi, endosomes and lysosomes. Furthermore, genetic knockout or inhibition of LRRK2 cause lysosomal abnormalities in rodents and primates, and cells from Parkinson’s patients with LRRK2 mutations also exhibit altered lysosome morphology. Cell biological studies on LRRK2 in a diverse cellular context further strengthen the potential connection between LRRK2 and regulation of the endolysosomal system, part of which is mediated by Rab phosphorylation by LRRK2. We will focus on the latest advances on the role of LRRK2 and Rab in relation to the endolysosomal system, and discuss the possible link to the pathomechanism of Parkinson’s disease.
Collapse
Affiliation(s)
- Tomoki Kuwahara
- Department of Neuropathology, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Takeshi Iwatsubo
- Department of Neuropathology, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| |
Collapse
|
62
|
Cunningham LA, Moore DJ. Endosomal sorting pathways in the pathogenesis of Parkinson's disease. PROGRESS IN BRAIN RESEARCH 2020; 252:271-306. [PMID: 32247367 PMCID: PMC7206894 DOI: 10.1016/bs.pbr.2020.02.001] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
The identification of Parkinson's disease (PD)-associated genes has created a powerful platform to begin to understand and nominate pathophysiological disease mechanisms. Herein, we discuss the genetic and experimental evidence supporting endolysosomal dysfunction as a major pathway implicated in PD. Well-studied familial PD-linked gene products, including LRRK2, VPS35, and α-synuclein, demonstrate how disruption of different aspects of endolysosomal sorting pathways by disease-causing mutations may manifest into PD-like phenotypes in many disease models. Newly-identified PD-linked genes, including auxilin, synaptojanin-1 and Rab39b, as well as putative risk genes for idiopathic PD (endophilinA1, Rab29, GAK), further support endosomal sorting deficits as being central to PD. LRRK2 may represent a nexus by regulating many distinct features of endosomal sorting, potentially via phosphorylation of key endocytosis machinery (i.e., auxilin, synaptojanin-1, endoA1) and Rab GTPases (i.e., Rab29, Rab8A, Rab10) that function within these pathways. In turn, LRRK2 kinase activity is critically regulated by Rab29 at the Golgi complex and retromer-associated VPS35 at endosomes. Taken together, the known functions of PD-associated gene products, the impact of disease-linked mutations, and the emerging functional interactions between these proteins points to endosomal sorting pathways as a key point of convergence in the pathogenesis of PD.
Collapse
Affiliation(s)
- Lindsey A Cunningham
- Van Andel Institute Graduate School, Grand Rapids, MI, United States; Center for Neurodegenerative Science, Van Andel Institute, Grand Rapids, MI, United States
| | - Darren J Moore
- Center for Neurodegenerative Science, Van Andel Institute, Grand Rapids, MI, United States.
| |
Collapse
|
63
|
Cogo S, Manzoni C, Lewis PA, Greggio E. Leucine-rich repeat kinase 2 and lysosomal dyshomeostasis in Parkinson disease. J Neurochem 2020; 152:273-283. [PMID: 31693760 DOI: 10.1111/jnc.14908] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2019] [Revised: 10/26/2019] [Accepted: 10/31/2019] [Indexed: 12/24/2022]
Abstract
Over the last two decades, a number of studies have underlined the importance of lysosomal-based degradative pathways in maintaining the homeostasis of post-mitotic cells, and revealed the remarkable contribution of a functional autophagic machinery in the promotion of longevity. In contrast, defects in the clearance of organelles and aberrant protein aggregates have been linked to accelerated neuronal loss and neurological dysfunction. Several neurodegenerative disorders, among which Alzheimer disease (AD), Frontotemporal dementia, and Amyotrophic Lateral Sclerosis to name a few, are associated with alterations of the autophagy and endo-lysosomal pathways. In Parkinson disease (PD), the most prevalent genetic determinant, Leucine-rich repeat kinase 2 (LRRK2), is believed to be involved in the regulation of intracellular vesicle traffic, autophagy and lysosomal function. Here, we review the current understanding of the mechanisms by which LRRK2 regulates lysosomal-based degradative pathways in neuronal and non-neuronal cells and discuss the impact of pathogenic PD mutations in contributing to lysosomal dyshomeostasis.
Collapse
Affiliation(s)
- Susanna Cogo
- Department of Biology, University of Padova, Padova, Italy
| | - Claudia Manzoni
- School of Pharmacy, University of Reading, Reading, UK
- Department of Neurodegenerative Diseases, University College London, London, UK
| | - Patrick A Lewis
- School of Pharmacy, University of Reading, Reading, UK
- Department of Neurodegenerative Diseases, University College London, London, UK
| | - Elisa Greggio
- Department of Biology, University of Padova, Padova, Italy
| |
Collapse
|
64
|
Berwick DC, Heaton GR, Azeggagh S, Harvey K. LRRK2 Biology from structure to dysfunction: research progresses, but the themes remain the same. Mol Neurodegener 2019; 14:49. [PMID: 31864390 PMCID: PMC6925518 DOI: 10.1186/s13024-019-0344-2] [Citation(s) in RCA: 110] [Impact Index Per Article: 18.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2019] [Accepted: 11/07/2019] [Indexed: 12/12/2022] Open
Abstract
Since the discovery of leucine-rich repeat kinase 2 (LRRK2) as a protein that is likely central to the aetiology of Parkinson’s disease, a considerable amount of work has gone into uncovering its basic cellular function. This effort has led to the implication of LRRK2 in a bewildering range of cell biological processes and pathways, and probable roles in a number of seemingly unrelated medical conditions. In this review we summarise current knowledge of the basic biochemistry and cellular function of LRRK2. Topics covered include the identification of phosphorylation substrates of LRRK2 kinase activity, in particular Rab proteins, and advances in understanding the activation of LRRK2 kinase activity via dimerisation and association with membranes, especially via interaction with Rab29. We also discuss biochemical studies that shed light on the complex LRRK2 GTPase activity, evidence of roles for LRRK2 in a range of cell signalling pathways that are likely cell type specific, and studies linking LRRK2 to the cell biology of organelles. The latter includes the involvement of LRRK2 in autophagy, endocytosis, and processes at the trans-Golgi network, the endoplasmic reticulum and also key microtubule-based cellular structures. We further propose a mechanism linking LRRK2 dimerisation, GTPase function and membrane recruitment with LRRK2 kinase activation by Rab29. Together these data paint a picture of a research field that in many ways is moving forward with great momentum, but in other ways has not changed fundamentally. Many key advances have been made, but very often they seem to lead back to the same places.
Collapse
Affiliation(s)
- Daniel C Berwick
- School of Health, Life and Chemical Sciences, The Open University, Walton Hall, Milton Keynes, MK7 6AA, UK.
| | - George R Heaton
- Department of Pharmacology, UCL School of Pharmacy, University College London, 29-39 Brunswick Square, London, WC1N 1AX, UK
| | - Sonia Azeggagh
- School of Health, Life and Chemical Sciences, The Open University, Walton Hall, Milton Keynes, MK7 6AA, UK
| | - Kirsten Harvey
- Department of Pharmacology, UCL School of Pharmacy, University College London, 29-39 Brunswick Square, London, WC1N 1AX, UK.
| |
Collapse
|
65
|
Wallings RL, Humble SW, Ward ME, Wade-Martins R. Lysosomal Dysfunction at the Centre of Parkinson's Disease and Frontotemporal Dementia/Amyotrophic Lateral Sclerosis. Trends Neurosci 2019; 42:899-912. [PMID: 31704179 DOI: 10.1016/j.tins.2019.10.002] [Citation(s) in RCA: 93] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2019] [Revised: 09/25/2019] [Accepted: 10/04/2019] [Indexed: 12/14/2022]
Abstract
Parkinson's disease (PD) and frontotemporal dementia/amyotrophic lateral sclerosis (FTD/ALS) are insidious and incurable neurodegenerative diseases that represent a significant burden to affected individuals, caregivers, and an ageing population. Both PD and FTD/ALS are defined at post mortem by the presence of protein aggregates and the loss of specific subsets of neurons. We examine here the crucial role of lysosome dysfunction in these diseases and discuss recent evidence for converging mechanisms. This review draws upon multiple lines of evidence from genetic studies, human tissue, induced pluripotent stem cells (iPSCs), and animal models to argue that lysosomal failure is a primary mechanism of disease, rather than merely reflecting association with protein aggregate end-points. This review provides compelling rationale for targeting lysosomes in future therapeutics for both PD and FTD/ALS.
Collapse
Affiliation(s)
- Rebecca L Wallings
- Department of Physiology, Emory University, Decatur, GA, USA; Current address: Department of Neuroscience, Center for Translational Research and Neurodegenerative Disease, McKnight Brain Institute, University of Florida, Gainesville, FL, USA
| | - Stewart W Humble
- Oxford Parkinson's Disease Centre, Department of Physiology Anatomy and Genetics, University of Oxford, South Parks Road, Oxford, OX1 3QX, UK; National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD, USA
| | - Michael E Ward
- National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD, USA
| | - Richard Wade-Martins
- Oxford Parkinson's Disease Centre, Department of Physiology Anatomy and Genetics, University of Oxford, South Parks Road, Oxford, OX1 3QX, UK.
| |
Collapse
|
66
|
Feng H, Guo X, Sun H, Zhang S, Xi J, Yin J, Cao Y, Li K. Flight muscles degenerate by programmed cell death after migration in the wheat aphid, Sitobion avenae. BMC Res Notes 2019; 12:672. [PMID: 31639041 PMCID: PMC6805507 DOI: 10.1186/s13104-019-4708-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2019] [Accepted: 10/04/2019] [Indexed: 12/11/2022] Open
Abstract
OBJECTIVE Previous studies showed that flight muscles degenerate after migration in some aphid species; however, the underlying molecular mechanism remains virtually unknown. In this study, using the wheat aphid, Sitobion avenae, we aim to investigate aphid flight muscle degeneration and the underlying molecular mechanism. RESULTS Sitobion avenae started to differentiate winged or wingless morphs at the second instar, the winged aphids were fully determined at the third instar, and their wings were fully developed at the fourth instar. After migration, the aphid flight muscles degenerated via programmed cell death, which is evidenced by a Terminal deoxynucleotidyl transferase dUTP-biotin nick-end labeling assay. Then, we identified a list of differentially expressed genes before and after tethered flights using differential-display reverse transcription-PCR. One of the differentially expressed genes, ubiquitin-ribosomal S27a, was confirmed using qPCR. Ubiquitin-ribosomal S27a is drastically up regulated following the aphids' migration and before the flight muscle degeneration. Our data suggested that aphid flight muscles degenerate after migration. During flight muscle degeneration, endogenous proteins may be degraded to reallocate energy for reproduction.
Collapse
Affiliation(s)
- Honglin Feng
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Science, NO. 2 Yuanmingyuan Xilu, Haidian District, Beijing, 100193, China. .,College of Plant Science, Jilin University, No. 5333 Xi'an Road, Changchun, 130062, Jilin, China. .,Boyce Thompson Institute, 533 Tower Road, Ithaca, NY, 14853, USA.
| | - Xiao Guo
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Science, NO. 2 Yuanmingyuan Xilu, Haidian District, Beijing, 100193, China.,Chongqing Academy of Agricultural Sciences, Baishiyi, Jiulongpo District, Chongqing, 401329, China
| | - Hongyan Sun
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Science, NO. 2 Yuanmingyuan Xilu, Haidian District, Beijing, 100193, China.,College of Plant Science, Jilin University, No. 5333 Xi'an Road, Changchun, 130062, Jilin, China
| | - Shuai Zhang
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Science, NO. 2 Yuanmingyuan Xilu, Haidian District, Beijing, 100193, China
| | - Jinghui Xi
- College of Plant Science, Jilin University, No. 5333 Xi'an Road, Changchun, 130062, Jilin, China
| | - Jiao Yin
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Science, NO. 2 Yuanmingyuan Xilu, Haidian District, Beijing, 100193, China
| | - Yazhong Cao
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Science, NO. 2 Yuanmingyuan Xilu, Haidian District, Beijing, 100193, China
| | - Kebin Li
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Science, NO. 2 Yuanmingyuan Xilu, Haidian District, Beijing, 100193, China.
| |
Collapse
|
67
|
Gomez RC, Wawro P, Lis P, Alessi DR, Pfeffer SR. Membrane association but not identity is required for LRRK2 activation and phosphorylation of Rab GTPases. J Cell Biol 2019; 218:4157-4170. [PMID: 31624137 PMCID: PMC6891090 DOI: 10.1083/jcb.201902184] [Citation(s) in RCA: 66] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2019] [Revised: 06/29/2019] [Accepted: 09/06/2019] [Indexed: 01/03/2023] Open
Abstract
Parkinson’s disease–associated LRRK2 kinase is activated on the Golgi by Rab29 but phosphorylates Rab10 there and on other compartments. This study shows that phosphorylation is restricted to membrane surfaces but need not take place on the Golgi. LRRK2 kinase mutations cause familial Parkinson’s disease and increased phosphorylation of a subset of Rab GTPases. Rab29 recruits LRRK2 to the trans-Golgi and activates it there, yet some of LRRK2’s major Rab substrates are not on the Golgi. We sought to characterize the cell biology of LRRK2 activation. Unlike other Rab family members, we show that Rab29 binds nucleotide weakly, is poorly prenylated, and is not bound to GDI in the cytosol; nevertheless, Rab29 only activates LRRK2 when it is membrane bound and GTP bound. Mitochondrially anchored, GTP-bound Rab29 is both a LRRK2 substrate and activator, and it drives accumulation of active LRRK2 and phosphorylated Rab10 on mitochondria. Importantly, mitochondrially anchored LRRK2 is much less capable of phosphorylating plasma membrane–anchored Rab10 than soluble LRRK2. These data support a model in which LRRK2 associates with and dissociates from distinct membrane compartments to phosphorylate Rab substrates; if anchored, LRRK2 can modify misdelivered Rab substrates that then become trapped there because GDI cannot retrieve them.
Collapse
Affiliation(s)
- Rachel C Gomez
- Department of Biochemistry, Stanford University School of Medicine, Stanford, CA
| | - Paulina Wawro
- Department of Biochemistry, Stanford University School of Medicine, Stanford, CA
| | - Pawel Lis
- Medical Research Council Protein Phosphorylation and Ubiquitylation Unit, School of Life Sciences, University of Dundee, Dundee, UK
| | - Dario R Alessi
- Medical Research Council Protein Phosphorylation and Ubiquitylation Unit, School of Life Sciences, University of Dundee, Dundee, UK
| | - Suzanne R Pfeffer
- Department of Biochemistry, Stanford University School of Medicine, Stanford, CA
| |
Collapse
|
68
|
Vidyadhara DJ, Lee JE, Chandra SS. Role of the endolysosomal system in Parkinson's disease. J Neurochem 2019; 150:487-506. [PMID: 31287913 PMCID: PMC6707858 DOI: 10.1111/jnc.14820] [Citation(s) in RCA: 95] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2019] [Revised: 07/01/2019] [Accepted: 07/03/2019] [Indexed: 12/13/2022]
Abstract
Parkinson's disease (PD) is one of the most common neurodegenerative disorders, affecting 1-1.5% of the total population. While progress has been made in understanding the neurodegenerative mechanisms that lead to cell death in late stages of PD, mechanisms for early, causal pathogenic events are still elusive. Recent developments in PD genetics increasingly point at endolysosomal (E-L) system dysfunction as the early pathomechanism and key pathway affected in PD. Clathrin-mediated synaptic endocytosis, an integral part of the neuronal E-L system, is probably the main early target as evident in auxilin, RME-8, and synaptojanin-1 mutations that cause PD. Autophagy, another important pathway in the E-L system, is crucial in maintaining proteostasis and a healthy mitochondrial pool, especially in neurons considering their inability to divide and requirement to function an entire life-time. PINK1 and Parkin mutations severely perturb autophagy of dysfunctional mitochondria (mitophagy), both in the cell body and synaptic terminals of dopaminergic neurons, leading to PD. Endolysosomal sorting and trafficking is also crucial, which is complex in multi-compartmentalized neurons. VPS35 and VPS13C mutations noted in PD target these mechanisms. Mutations in GBA comprise the most common risk factor for PD and initiate pathology by compromising lysosomal function. This is also the case for ATP13A2 mutations. Interestingly, α-synuclein and LRRK2, key proteins involved in PD, function in different steps of the E-L pathway and target their components to induce disease pathogenesis. In this review, we discuss these E-L system genes that are linked to PD and how their dysfunction results in PD pathogenesis. This article is part of the Special Issue "Synuclein".
Collapse
Affiliation(s)
- D J Vidyadhara
- Department of Neurology, Yale University School of Medicine, New Haven, Connecticut, USA
- Department of Neuroscience, Yale University School of Medicine, New Haven, Connecticut, USA
| | - John E Lee
- Department of Neurology, Yale University School of Medicine, New Haven, Connecticut, USA
- Department of Neuroscience, Yale University School of Medicine, New Haven, Connecticut, USA
| | - Sreeganga S Chandra
- Department of Neurology, Yale University School of Medicine, New Haven, Connecticut, USA
- Department of Neuroscience, Yale University School of Medicine, New Haven, Connecticut, USA
| |
Collapse
|
69
|
Pellegrini L, Hauser DN, Li Y, Mamais A, Beilina A, Kumaran R, Wetzel A, Nixon-Abell J, Heaton G, Rudenko I, Alkaslasi M, Ivanina N, Melrose HL, Cookson MR, Harvey K. Proteomic analysis reveals co-ordinated alterations in protein synthesis and degradation pathways in LRRK2 knockout mice. Hum Mol Genet 2019; 27:3257-3271. [PMID: 29917075 PMCID: PMC6121185 DOI: 10.1093/hmg/ddy232] [Citation(s) in RCA: 43] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2018] [Accepted: 06/12/2018] [Indexed: 01/13/2023] Open
Abstract
Mutations in leucine-rich repeat kinase 2 (LRRK2) segregate with familial Parkinson’s disease (PD) and genetic variation around LRRK2 contributes to risk of sporadic disease. Although knockout (KO) of Lrrk2 or knock-in of pathogenic mutations into the mouse germline does not result in a PD phenotype, several defects have been reported in the kidneys of Lrrk2 KO mice. To understand LRRK2 function in vivo, we used an unbiased approach to determine which protein pathways are affected in LRRK2 KO kidneys. We nominated changes in cytoskeletal-associated proteins, lysosomal proteases, proteins involved in vesicular trafficking and in control of protein translation. Changes were not seen in mice expressing the pathogenic G2019S LRRK2 mutation. Using cultured epithelial kidney cells, we replicated the accumulation of lysosomal proteases and demonstrated changes in subcellular distribution of the cation-independent mannose-6-phosphate receptor. These results show that loss of LRRK2 leads to co-ordinated responses in protein translation and trafficking and argue against a dominant negative role for the G2019S mutation.
Collapse
Affiliation(s)
- Laura Pellegrini
- Cell Biology and Gene Expression Section, Laboratory of Neurogenetics, National Institute of Aging, National Institutes of Health, Bethesda, MD, USA.,Department of Pharmacology, UCL School of Pharmacy, University College London, London, UK
| | - David N Hauser
- Cell Biology and Gene Expression Section, Laboratory of Neurogenetics, National Institute of Aging, National Institutes of Health, Bethesda, MD, USA
| | - Yan Li
- Mass-spetrometry Facility, National Institute of Neurological Diseases and Stroke, National Institutes of Health, Bethesda, MD, USA
| | - Adamantios Mamais
- Cell Biology and Gene Expression Section, Laboratory of Neurogenetics, National Institute of Aging, National Institutes of Health, Bethesda, MD, USA
| | - Alexandra Beilina
- Cell Biology and Gene Expression Section, Laboratory of Neurogenetics, National Institute of Aging, National Institutes of Health, Bethesda, MD, USA
| | - Ravindran Kumaran
- Cell Biology and Gene Expression Section, Laboratory of Neurogenetics, National Institute of Aging, National Institutes of Health, Bethesda, MD, USA
| | - Andrea Wetzel
- Department of Pharmacology, UCL School of Pharmacy, University College London, London, UK
| | - Jonathon Nixon-Abell
- Department of Pharmacology, UCL School of Pharmacy, University College London, London, UK.,Neurogenetics Branch, National Institute of Neurological Disorders and Stroke - National Institutes of Health, Bethesda, MD, USA
| | - George Heaton
- Cell Biology and Gene Expression Section, Laboratory of Neurogenetics, National Institute of Aging, National Institutes of Health, Bethesda, MD, USA.,Department of Pharmacology, UCL School of Pharmacy, University College London, London, UK
| | - Iakov Rudenko
- Department of Neurology, SUNY at Stony Brook, Health Science Center, Stony Brook, NY, USA
| | - Mor Alkaslasi
- Cell Biology and Gene Expression Section, Laboratory of Neurogenetics, National Institute of Aging, National Institutes of Health, Bethesda, MD, USA
| | - Natalie Ivanina
- Cell Biology and Gene Expression Section, Laboratory of Neurogenetics, National Institute of Aging, National Institutes of Health, Bethesda, MD, USA
| | - Heather L Melrose
- Department of Neuroscience, Mayo Clinic Jacksonville, Jacksonville, FL, USA
| | - Mark R Cookson
- Cell Biology and Gene Expression Section, Laboratory of Neurogenetics, National Institute of Aging, National Institutes of Health, Bethesda, MD, USA
| | - Kirsten Harvey
- Department of Pharmacology, UCL School of Pharmacy, University College London, London, UK
| |
Collapse
|
70
|
Liu Z, Bryant N, Kumaran R, Beilina A, Abeliovich A, Cookson MR, West AB. LRRK2 phosphorylates membrane-bound Rabs and is activated by GTP-bound Rab7L1 to promote recruitment to the trans-Golgi network. Hum Mol Genet 2019; 27:385-395. [PMID: 29177506 DOI: 10.1093/hmg/ddx410] [Citation(s) in RCA: 182] [Impact Index Per Article: 30.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2017] [Accepted: 11/17/2017] [Indexed: 01/14/2023] Open
Abstract
Human genetic studies implicate LRRK2 and RAB7L1 in susceptibility to Parkinson disease (PD). These two genes function in the same pathway, as knockout of Rab7L1 results in phenotypes similar to LRRK2 knockout, and studies in cells and model organisms demonstrate LRRK2 and Rab7L1 interact in the endolysosomal system. Recently, a subset of Rab proteins have been identified as LRRK2 kinase substrates. Herein, we find that Rab8, Rab10, and Rab7L1 must be membrane and GTP-bound for LRRK2 phosphorylation. LRRK2 mutations that cause PD including R1441C, Y1699C, and G2019S all increase LRRK2 phosphorylation of Rab7L1 four-fold over wild-type LRRK2 in cells, resulting in the phosphorylation of nearly one-third the available Rab7L1 protein in cells. In contrast, the most common pathogenic LRRK2 mutation, G2019S, does not upregulate LRRK2-mediated phosphorylation of Rab8 or Rab10. LRRK2 interaction with membrane and GTP-bound Rab7L1, but not Rab8 or Rab10, results in the activation of LRRK2 autophosphorylation at the serine 1292 position, required for LRRK2 toxicity. Further, Rab7L1 controls the proportion of LRRK2 that is membrane-associated, and LRRK2 mutations enhance Rab7L1-mediated recruitment of LRRK2 to the trans-Golgi network. Interaction studies with the Rab8 and Rab10 GTPase-activating protein TBC1D4/AS160 demonstrate that LRRK2 phosphorylation may block membrane and GTP-bound Rab protein interaction with effectors. These results suggest reciprocal regulation between LRRK2 and Rab protein substrates, where Rab7L1-mediated upregulation of LRRK2 kinase activity results in the stabilization of membrane and GTP-bound Rab proteins that may be unable to interact with Rab effector proteins.
Collapse
Affiliation(s)
- Zhiyong Liu
- Department of Neurology, Center for Neurodegeneration and Experimental Therapeutics, University of Alabama at Birmingham, Birmingham, AL 35233 USA
| | - Nicole Bryant
- Department of Neurology, Center for Neurodegeneration and Experimental Therapeutics, University of Alabama at Birmingham, Birmingham, AL 35233 USA
| | - Ravindran Kumaran
- Laboratory of Neurogenetics, National Institute on Aging, National Institutes of Health, Bethesda, MD 20892, USA
| | - Alexandra Beilina
- Laboratory of Neurogenetics, National Institute on Aging, National Institutes of Health, Bethesda, MD 20892, USA
| | - Asa Abeliovich
- Departments of Pathology, Cell Biology and Neurology, and Taub Institute, Columbia University, New York, NY 10032, USA
| | - Mark R Cookson
- Laboratory of Neurogenetics, National Institute on Aging, National Institutes of Health, Bethesda, MD 20892, USA
| | - Andrew B West
- Department of Neurology, Center for Neurodegeneration and Experimental Therapeutics, University of Alabama at Birmingham, Birmingham, AL 35233 USA
| |
Collapse
|
71
|
Araki M, Ito G, Tomita T. Physiological and pathological functions of LRRK2: implications from substrate proteins. Neuronal Signal 2018; 2:NS20180005. [PMID: 32714591 PMCID: PMC7373236 DOI: 10.1042/ns20180005] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2018] [Revised: 09/18/2018] [Accepted: 09/19/2018] [Indexed: 02/06/2023] Open
Abstract
Leucine-rich repeat kinase 2 (LRRK2) encodes a 2527-amino acid (aa) protein composed of multiple functional domains, including a Ras of complex proteins (ROC)-type GTP-binding domain, a carboxyl terminal of ROC (COR) domain, a serine/threonine protein kinase domain, and several repeat domains. LRRK2 is genetically involved in the pathogenesis of both sporadic and familial Parkinson's disease (FPD). Parkinson's disease (PD) is the second most common neurodegenerative disorder, manifesting progressive motor dysfunction. PD is pathologically characterized by the loss of dopaminergic neurons in the substantia nigra pars compacta, and the presence of intracellular inclusion bodies called Lewy bodies (LB) in the remaining neurons. As the most frequent PD-causing mutation in LRRK2, G2019S, increases the kinase activity of LRRK2, an abnormal increase in LRRK2 kinase activity is believed to contribute to PD pathology; however, the precise biological functions of LRRK2 involved in PD pathogenesis remain unknown. Although biochemical studies have discovered several substrate proteins of LRRK2 including Rab GTPases and tau, little is known about whether excess phosphorylation of these substrates is the cause of the neurodegeneration in PD. In this review, we summarize latest findings regarding the physiological and pathological functions of LRRK2, and discuss the possible molecular mechanisms of neurodegeneration caused by LRRK2 and its substrates.
Collapse
Affiliation(s)
- Miho Araki
- Laboratory of Neuropathology and Neuroscience, Graduate School of Pharmaceutical Sciences, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| | - Genta Ito
- Laboratory of Brain and Neurological Disorders, Graduate School of Pharmaceutical Sciences, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| | - Taisuke Tomita
- Laboratory of Neuropathology and Neuroscience, Graduate School of Pharmaceutical Sciences, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
- Laboratory of Brain and Neurological Disorders, Graduate School of Pharmaceutical Sciences, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| |
Collapse
|
72
|
LRRK2 and Rab GTPases. Biochem Soc Trans 2018; 46:1707-1712. [PMID: 30467121 DOI: 10.1042/bst20180470] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2018] [Revised: 10/23/2018] [Accepted: 10/25/2018] [Indexed: 12/31/2022]
Abstract
Leucine-rich repeat kinase 2 (LRRK2) is mutated in familial Parkinson's disease, and pathogenic mutations activate the kinase activity. A tour de force screen by Mann and Alessi and co-workers identified a subset of Rab GTPases as bona fide LRRK2 substrates. Rab GTPases are master regulators of membrane trafficking and this short review will summarize what we know about the connection between LRRK2 and this family of regulatory proteins. While, in most cases, Rab GTPase phosphorylation is predicted to interfere with Rab protein function, the discovery of proteins that show preferential binding to phosphorylated Rabs suggests that more complex interactions may also contribute to mutant LRRK2-mediated pathology.
Collapse
|
73
|
Madero-Pérez J, Fernández B, Lara Ordóñez AJ, Fdez E, Lobbestael E, Baekelandt V, Hilfiker S. RAB7L1-Mediated Relocalization of LRRK2 to the Golgi Complex Causes Centrosomal Deficits via RAB8A. Front Mol Neurosci 2018; 11:417. [PMID: 30483055 PMCID: PMC6243087 DOI: 10.3389/fnmol.2018.00417] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2018] [Accepted: 10/25/2018] [Indexed: 11/30/2022] Open
Abstract
Mutations in the LRRK2 gene cause autosomal-dominant Parkinson’s disease (PD), and both LRRK2 as well as RAB7L1 have been implicated in increased susceptibility to idiopathic PD. RAB7L1 has been shown to increase membrane-association and kinase activity of LRRK2, and both seem to be mechanistically implicated in the same pathway. Another RAB protein, RAB8A, has been identified as a prominent LRRK2 kinase substrate, and our recent work demonstrates that aberrant LRRK2-mediated phosphorylation of RAB8A leads to centrosomal alterations. Here, we show that RAB7L1 recruits LRRK2 to the Golgi complex, which causes accumulation of phosphorylated RAB8A in a pericentrosomal/centrosomal location as well as centrosomal deficits identical to those observed with pathogenic LRRK2. The centrosomal alterations induced by wildtype LRRK2 in the presence of RAB7L1 depend on Golgi integrity. This is in contrast to pathogenic LRRK2 mutants, which cause centrosomal deficits independent of Golgi integrity or largely independent on RAB7L1 expression. Furthermore, centrosomal alterations in the presence of wildtype LRRK2 and RAB7L1 are at least in part mediated by aberrant LRRK2-mediated RAB8A phosphorylation, as abolished by kinase inhibitors and reduced upon knockdown of RAB8A. These results indicate that pathogenic LRRK2, as well as increased levels of RAB7L1, cause centrosomal deficits in a manner dependent on aberrant RAB8A phosphorylation and centrosomal/pericentrosomal accumulation, suggesting that centrosomal cohesion deficits may comprise a useful cellular readout for a broader spectrum of the disease.
Collapse
Affiliation(s)
- Jesús Madero-Pérez
- Institute of Parasitology and Biomedicine "López-Neyra", Consejo Superior de Investigaciones Científicas, Granada, Spain
| | - Belén Fernández
- Institute of Parasitology and Biomedicine "López-Neyra", Consejo Superior de Investigaciones Científicas, Granada, Spain
| | - Antonio Jesús Lara Ordóñez
- Institute of Parasitology and Biomedicine "López-Neyra", Consejo Superior de Investigaciones Científicas, Granada, Spain
| | - Elena Fdez
- Institute of Parasitology and Biomedicine "López-Neyra", Consejo Superior de Investigaciones Científicas, Granada, Spain
| | - Evy Lobbestael
- Laboratory for Neurobiology and Gene Therapy, KU Leuven, Leuven, Belgium
| | - Veerle Baekelandt
- Laboratory for Neurobiology and Gene Therapy, KU Leuven, Leuven, Belgium
| | - Sabine Hilfiker
- Institute of Parasitology and Biomedicine "López-Neyra", Consejo Superior de Investigaciones Científicas, Granada, Spain
| |
Collapse
|
74
|
Morris C, Foster OK, Handa S, Peloza K, Voss L, Somhegyi H, Jian Y, Vo MV, Harp M, Rambo FM, Yang C, Hermann GJ. Function and regulation of the Caenorhabditis elegans Rab32 family member GLO-1 in lysosome-related organelle biogenesis. PLoS Genet 2018; 14:e1007772. [PMID: 30419011 PMCID: PMC6268011 DOI: 10.1371/journal.pgen.1007772] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2018] [Revised: 11/30/2018] [Accepted: 10/17/2018] [Indexed: 02/07/2023] Open
Abstract
Cell type-specific modifications of conventional endosomal trafficking pathways lead to the formation of lysosome-related organelles (LROs). C. elegans gut granules are intestinally restricted LROs that coexist with conventional degradative lysosomes. The formation of gut granules requires the Rab32 family member GLO-1. We show that the loss of glo-1 leads to the mistrafficking of gut granule proteins but does not significantly alter conventional endolysosome biogenesis. GLO-3 directly binds to CCZ-1 and they both function to promote the gut granule association of GLO-1, strongly suggesting that together, GLO-3 and CCZ-1 activate GLO-1. We found that a point mutation in GLO-1 predicted to spontaneously activate, and function independently of it guanine nucleotide exchange factor (GEF), localizes to gut granules and partially restores gut granule protein localization in ccz-1(-) and glo-3(-) mutants. CCZ-1 forms a heterodimeric complex with SAND-1(MON1), which does not function in gut granule formation, to activate RAB-7 in trafficking pathways to conventional lysosomes. Therefore, our data suggest a model whereby the function of a Rab GEF can be altered by subunit exchange. glo-3(-) mutants, which retain low levels of GLO-3 activity, generate gut granules that lack GLO-1 and improperly accumulate RAB-7 in a SAND-1 dependent process. We show that GLO-1 and GLO-3 restrict the distribution of RAB-7 to conventional endolysosomes, providing insights into the segregation of pathways leading to conventional lysosomes and LROs.
Collapse
Affiliation(s)
- Caitlin Morris
- Department of Biology, Lewis & Clark College, Portland, Oregon, United States of America
| | - Olivia K. Foster
- Department of Biology, Lewis & Clark College, Portland, Oregon, United States of America
| | - Simran Handa
- Department of Biology, Lewis & Clark College, Portland, Oregon, United States of America
| | - Kimberly Peloza
- Department of Biology, Lewis & Clark College, Portland, Oregon, United States of America
| | - Laura Voss
- Department of Biology, Lewis & Clark College, Portland, Oregon, United States of America
| | - Hannah Somhegyi
- Department of Biology, Lewis & Clark College, Portland, Oregon, United States of America
| | - Youli Jian
- State Key Laboratory of Molecular and Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China
| | - My Van Vo
- Department of Biology, Lewis & Clark College, Portland, Oregon, United States of America
| | - Marie Harp
- Department of Biology, Lewis & Clark College, Portland, Oregon, United States of America
| | - Fiona M. Rambo
- Department of Biology, Lewis & Clark College, Portland, Oregon, United States of America
| | - Chonglin Yang
- State Key Laboratory of Molecular and Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China
| | - Greg J. Hermann
- Department of Biology, Lewis & Clark College, Portland, Oregon, United States of America
- * E-mail:
| |
Collapse
|
75
|
LRRK2 and its substrate Rab GTPases are sequentially targeted onto stressed lysosomes and maintain their homeostasis. Proc Natl Acad Sci U S A 2018; 115:E9115-E9124. [PMID: 30209220 PMCID: PMC6166828 DOI: 10.1073/pnas.1812196115] [Citation(s) in RCA: 186] [Impact Index Per Article: 26.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Leucine-rich repeat kinase 2 (LRRK2) has been associated with a variety of human diseases, including Parkinson's disease and Crohn's disease, whereas LRRK2 deficiency leads to accumulation of abnormal lysosomes in aged animals. However, the cellular roles and mechanisms of LRRK2-mediated lysosomal regulation have remained elusive. Here, we reveal a mechanism of stress-induced lysosomal response by LRRK2 and its target Rab GTPases. Lysosomal overload stress induced the recruitment of endogenous LRRK2 onto lysosomal membranes and activated LRRK2. An upstream adaptor Rab7L1 (Rab29) promoted the lysosomal recruitment of LRRK2. Subsequent family-wide screening of Rab GTPases that may act downstream of LRRK2 translocation revealed that Rab8a and Rab10 were specifically accumulated on overloaded lysosomes dependent on their phosphorylation by LRRK2. Rab7L1-mediated lysosomal targeting of LRRK2 attenuated the stress-induced lysosomal enlargement and promoted lysosomal secretion, whereas Rab8 stabilized by LRRK2 on stressed lysosomes suppressed lysosomal enlargement and Rab10 promoted lysosomal secretion, respectively. These effects were mediated by the recruitment of Rab8/10 effectors EHBP1 and EHBP1L1. LRRK2 deficiency augmented the chloroquine-induced lysosomal vacuolation of renal tubules in vivo. These results implicate the stress-responsive machinery composed of Rab7L1, LRRK2, phosphorylated Rab8/10, and their downstream effectors in the maintenance of lysosomal homeostasis.
Collapse
|
76
|
Bae EJ, Kim DK, Kim C, Mante M, Adame A, Rockenstein E, Ulusoy A, Klinkenberg M, Jeong GR, Bae JR, Lee C, Lee HJ, Lee BD, Di Monte DA, Masliah E, Lee SJ. LRRK2 kinase regulates α-synuclein propagation via RAB35 phosphorylation. Nat Commun 2018; 9:3465. [PMID: 30150626 PMCID: PMC6110743 DOI: 10.1038/s41467-018-05958-z] [Citation(s) in RCA: 116] [Impact Index Per Article: 16.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2017] [Accepted: 07/17/2018] [Indexed: 01/08/2023] Open
Abstract
Propagation of α-synuclein aggregates has been suggested as a contributing factor in Parkinson's disease (PD) progression. However, the molecular mechanisms underlying α-synuclein aggregation are not fully understood. Here, we demonstrate in cell culture, nematode, and rodent models of PD that leucine-rich repeat kinase 2 (LRRK2), a PD-linked kinase, modulates α-synuclein propagation in a kinase activity-dependent manner. The PD-linked G2019S mutation in LRRK2, which increases kinase activity, enhances propagation efficiency. Furthermore, we show that the role of LRRK2 in α-synuclein propagation is mediated by RAB35 phosphorylation. Constitutive activation of RAB35 overrides the reduced α-synuclein propagation phenotype in lrk-1 mutant C. elegans. Finally, in a mouse model of synucleinopathy, administration of an LRRK2 kinase inhibitor reduced α-synuclein aggregation via enhanced interaction of α-synuclein with the lysosomal degradation pathway. These results suggest that LRRK2-mediated RAB35 phosphorylation is a potential therapeutic target for modifying disease progression.
Collapse
Affiliation(s)
- Eun-Jin Bae
- Departments of Biomedical Sciences and Medicine, Neuroscience Research Institute, Seoul National University College of Medicine, Seoul, 03080, Korea
| | - Dong-Kyu Kim
- Departments of Biomedical Sciences and Medicine, Neuroscience Research Institute, Seoul National University College of Medicine, Seoul, 03080, Korea
| | - Changyoun Kim
- Molecular Neuropathology Section, Laboratory of Neurogenetics, National Institute on Aging, National Institutes of Health, Bethesda, MD, 20892, USA.,Department Neurosciences, School of Medicine, University of California, San Diego, La Jolla, CA, 92093, USA
| | - Michael Mante
- Department Neurosciences, School of Medicine, University of California, San Diego, La Jolla, CA, 92093, USA
| | - Anthony Adame
- Department Neurosciences, School of Medicine, University of California, San Diego, La Jolla, CA, 92093, USA
| | - Edward Rockenstein
- Department Neurosciences, School of Medicine, University of California, San Diego, La Jolla, CA, 92093, USA
| | - Ayse Ulusoy
- German Center for Neurodegenerative Diseases (DZNE), Sigmund-Freud-Strasse 27, 53127, Bonn, Germany
| | - Michael Klinkenberg
- German Center for Neurodegenerative Diseases (DZNE), Sigmund-Freud-Strasse 27, 53127, Bonn, Germany
| | - Ga Ram Jeong
- Department of Neuroscience, Graduate School, Kyung Hee University, Seoul, 02447, Korea
| | - Jae Ryul Bae
- Department of Neuroscience, Graduate School, Kyung Hee University, Seoul, 02447, Korea
| | - Cheolsoon Lee
- Department of Anatomy, School of Medicine, Konkuk University, Seoul, 05029, Korea
| | - He-Jin Lee
- Department of Anatomy, School of Medicine, Konkuk University, Seoul, 05029, Korea
| | - Byung-Dae Lee
- Department of Physiology, School of Medicine, Kyung Hee University, Seoul, 02447, Korea
| | - Donato A Di Monte
- German Center for Neurodegenerative Diseases (DZNE), Sigmund-Freud-Strasse 27, 53127, Bonn, Germany
| | - Eliezer Masliah
- Molecular Neuropathology Section, Laboratory of Neurogenetics, National Institute on Aging, National Institutes of Health, Bethesda, MD, 20892, USA.,Department Neurosciences, School of Medicine, University of California, San Diego, La Jolla, CA, 92093, USA.,Department of Pathology, School of Medicine, University of California, San Diego, La Jolla, CA, 92093, USA
| | - Seung-Jae Lee
- Departments of Biomedical Sciences and Medicine, Neuroscience Research Institute, Seoul National University College of Medicine, Seoul, 03080, Korea.
| |
Collapse
|
77
|
|
78
|
Inoshita T, Cui C, Hattori N, Imai Y. Regulation of membrane dynamics by Parkinson's disease-associated genes. J Genet 2018; 97:715-725. [PMID: 30027905] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Parkinson's disease (PD), the second most common neurodegenerative disease after Alzheimer's disease, develops sporadically, and its cause is unknown. However, 5-10% of PD cases are inherited as monogenic diseases, which provides a chance to understand the molecular mechanisms underlying neurodegeneration. Over 20 causative genes have already been identified and are being characterized. These PD-associated genes are broadly classified into two groups: genes involved in mitochondrial functions and genes related to membrane dynamics such as intracellular vesicle transport and the lysosomal pathway. In this review, we summarize the latest findings on the mechanism by which members of the latter group of PD-associated genes regulate membrane dynamics, and we discuss how mutations of these genes lead to dopaminergic neurodegeneration.
Collapse
Affiliation(s)
- Tsuyoshi Inoshita
- Department of Research for Parkinson's Disease, Juntendo University Graduate School of Medicine, Tokyo 113-8421, Japan.
| | | | | | | |
Collapse
|
79
|
The Parkinson's disease VPS35[D620N] mutation enhances LRRK2-mediated Rab protein phosphorylation in mouse and human. Biochem J 2018; 475:1861-1883. [PMID: 29743203 PMCID: PMC5989534 DOI: 10.1042/bcj20180248] [Citation(s) in RCA: 150] [Impact Index Per Article: 21.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2018] [Revised: 04/30/2018] [Accepted: 05/04/2018] [Indexed: 02/07/2023]
Abstract
Missense mutations in the LRRK2 (Leucine-rich repeat protein kinase-2) and VPS35 genes result in autosomal dominant Parkinson's disease. The VPS35 gene encodes for the cargo-binding component of the retromer complex, while LRRK2 modulates vesicular trafficking by phosphorylating a subgroup of Rab proteins. Pathogenic mutations in LRRK2 increase its kinase activity. It is not known how the only thus far described pathogenic VPS35 mutation, [p.D620N] exerts its effects. We reveal that the VPS35[D620N] knock-in mutation strikingly elevates LRRK2-mediated phosphorylation of Rab8A, Rab10, and Rab12 in mouse embryonic fibroblasts. The VPS35[D620N] mutation also increases Rab10 phosphorylation in mouse tissues (the lung, kidney, spleen, and brain). Furthermore, LRRK2-mediated Rab10 phosphorylation is increased in neutrophils as well as monocytes isolated from three Parkinson's patients with a heterozygous VPS35[D620N] mutation compared with healthy donors and idiopathic Parkinson's patients. LRRK2-mediated Rab10 phosphorylation is significantly suppressed by knock-out or knock-down of VPS35 in wild-type, LRRK2[R1441C], or VPS35[D620N] cells. Finally, VPS35[D620N] mutation promotes Rab10 phosphorylation more potently than LRRK2 pathogenic mutations. Available data suggest that Parkinson's patients with VPS35[D620N] develop the disease at a younger age than those with LRRK2 mutations. Our observations indicate that VPS35 controls LRRK2 activity and that the VPS35[D620N] mutation results in a gain of function, potentially causing PD through hyperactivation of the LRRK2 kinase. Our findings suggest that it may be possible to elaborate compounds that target the retromer complex to suppress LRRK2 activity. Moreover, patients with VPS35[D620N] associated Parkinson's might benefit from LRRK2 inhibitor treatment that have entered clinical trials in humans.
Collapse
|
80
|
Regulation of myeloid cell phagocytosis by LRRK2 via WAVE2 complex stabilization is altered in Parkinson's disease. Proc Natl Acad Sci U S A 2018; 115:E5164-E5173. [PMID: 29760073 DOI: 10.1073/pnas.1718946115] [Citation(s) in RCA: 81] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Leucine-rich repeat kinase 2 (LRRK2) has been implicated in both familial and sporadic Parkinson's disease (PD), yet its pathogenic role remains unclear. A previous screen in Drosophila identified Scar/WAVE (Wiskott-Aldrich syndrome protein-family verproline) proteins as potential genetic interactors of LRRK2 Here, we provide evidence that LRRK2 modulates the phagocytic response of myeloid cells via specific modulation of the actin-cytoskeletal regulator, WAVE2. We demonstrate that macrophages and microglia from LRRK2-G2019S PD patients and mice display a WAVE2-mediated increase in phagocytic response, respectively. Lrrk2 loss results in the opposite effect. LRRK2 binds and phosphorylates Wave2 at Thr470, stabilizing and preventing its proteasomal degradation. Finally, we show that Wave2 also mediates Lrrk2-G2019S-induced dopaminergic neuronal death in both macrophage-midbrain cocultures and in vivo. Taken together, a LRRK2-WAVE2 pathway, which modulates the phagocytic response in mice and human leukocytes, may define an important role for altered immune function in PD.
Collapse
|
81
|
Bingol B. Autophagy and lysosomal pathways in nervous system disorders. Mol Cell Neurosci 2018; 91:167-208. [PMID: 29729319 DOI: 10.1016/j.mcn.2018.04.009] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2017] [Revised: 04/26/2018] [Accepted: 04/28/2018] [Indexed: 12/12/2022] Open
Abstract
Autophagy is an evolutionarily conserved pathway for delivering cytoplasmic cargo to lysosomes for degradation. In its classically studied form, autophagy is a stress response induced by starvation to recycle building blocks for essential cellular processes. In addition, autophagy maintains basal cellular homeostasis by degrading endogenous substrates such as cytoplasmic proteins, protein aggregates, damaged organelles, as well as exogenous substrates such as bacteria and viruses. Given their important role in homeostasis, autophagy and lysosomal machinery are genetically linked to multiple human disorders such as chronic inflammatory diseases, cardiomyopathies, cancer, and neurodegenerative diseases. Multiple targets within the autophagy and lysosomal pathways offer therapeutic opportunities to benefit patients with these disorders. Here, I will summarize the mechanisms of autophagy pathways, the evidence supporting a pathogenic role for disturbed autophagy and lysosomal degradation in nervous system disorders, and the therapeutic potential of autophagy modulators in the clinic.
Collapse
Affiliation(s)
- Baris Bingol
- Genentech, Inc., Department of Neuroscience, 1 DNA Way, South San Francisco 94080, United States.
| |
Collapse
|
82
|
PFE-360-induced LRRK2 inhibition induces reversible, non-adverse renal changes in rats. Toxicology 2018; 395:15-22. [DOI: 10.1016/j.tox.2018.01.003] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2017] [Revised: 12/22/2017] [Accepted: 01/03/2018] [Indexed: 11/21/2022]
|
83
|
Abstract
Mutations in the gene encoding leucine-rich repeat kinase 2 (LRRK2) are known today as the most common genetic cause of Parkinson's disease (PD). LRRK2 is a large protein that is hypothesized to regulate other proteins as a scaffold in downstream signaling pathways. This is supported by the multiple domain composition of LRRK2 with several protein-protein interaction domains combined with kinase and GTPase activity. LRRK2 is highly phosphorylated at sites that are strictly controlled by upstream regulators, including its own kinase domain. In cultured cells, most pathogenic mutants display increased autophosphorylation at S1292, but decreased phosphorylation at sites controlled by other kinases. We only begin to understand how LRRK2 phosphorylation is regulated and how this impacts its physiological and pathological function. Intriguingly, LRRK2 kinase inhibition, currently one of the most prevailing disease-modifying therapeutic strategies for PD, induces LRRK2 dephosphorylation at sites that are also dephosphorylated in pathogenic variants. In addition, LRRK2 kinase inhibition can induce LRRK2 protein degradation, which might be related to the observed inhibitor-induced adverse effects on the lung in rodents and non-human primates, as it resembles the lung pathology in LRRK2 knock-out animals. In this review, we will provide an overview of how LRRK2 phosphorylation is regulated and how this complex regulation relates to several molecular and cellular features of LRRK2.
Collapse
Affiliation(s)
- Tina De Wit
- 1 Laboratory for Neurobiology and Gene Therapy, Department of Neurosciences, KU Leuven, Leuven, Belgium
| | - Veerle Baekelandt
- 1 Laboratory for Neurobiology and Gene Therapy, Department of Neurosciences, KU Leuven, Leuven, Belgium
| | - Evy Lobbestael
- 1 Laboratory for Neurobiology and Gene Therapy, Department of Neurosciences, KU Leuven, Leuven, Belgium
| |
Collapse
|
84
|
Gao Y, Wilson GR, Stephenson SEM, Bozaoglu K, Farrer MJ, Lockhart PJ. The emerging role of Rab GTPases in the pathogenesis of Parkinson's disease. Mov Disord 2018; 33:196-207. [DOI: 10.1002/mds.27270] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2017] [Revised: 11/16/2017] [Accepted: 11/19/2017] [Indexed: 12/30/2022] Open
Affiliation(s)
- Yujing Gao
- Bruce Lefroy Centre for Genetic Health Research, Murdoch Children's Research Institute; Melbourne Victoria Australia
- Department of Paediatrics; The University of Melbourne; Melbourne Victoria Australia
| | - Gabrielle R. Wilson
- Bruce Lefroy Centre for Genetic Health Research, Murdoch Children's Research Institute; Melbourne Victoria Australia
- Department of Paediatrics; The University of Melbourne; Melbourne Victoria Australia
| | - Sarah E. M. Stephenson
- Bruce Lefroy Centre for Genetic Health Research, Murdoch Children's Research Institute; Melbourne Victoria Australia
- Department of Paediatrics; The University of Melbourne; Melbourne Victoria Australia
| | - Kiymet Bozaoglu
- Bruce Lefroy Centre for Genetic Health Research, Murdoch Children's Research Institute; Melbourne Victoria Australia
- Department of Paediatrics; The University of Melbourne; Melbourne Victoria Australia
| | - Matthew J. Farrer
- Djavad Mowafaghian Centre for Brain Health, Centre of Applied Neurogenetics, Department of Medical Genetics; University of British Columbia; Vancouver British Columbia Canada
| | - Paul J. Lockhart
- Bruce Lefroy Centre for Genetic Health Research, Murdoch Children's Research Institute; Melbourne Victoria Australia
- Department of Paediatrics; The University of Melbourne; Melbourne Victoria Australia
| |
Collapse
|
85
|
Schapansky J, Khasnavis S, DeAndrade MP, Nardozzi JD, Falkson SR, Boyd JD, Sanderson JB, Bartels T, Melrose HL, LaVoie MJ. Familial knockin mutation of LRRK2 causes lysosomal dysfunction and accumulation of endogenous insoluble α-synuclein in neurons. Neurobiol Dis 2017; 111:26-35. [PMID: 29246723 DOI: 10.1016/j.nbd.2017.12.005] [Citation(s) in RCA: 92] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2017] [Revised: 12/05/2017] [Accepted: 12/11/2017] [Indexed: 02/07/2023] Open
Abstract
Missense mutations in the multi-domain kinase LRRK2 cause late onset familial Parkinson's disease. They most commonly with classic proteinopathy in the form of Lewy bodies and Lewy neurites comprised of insoluble α-synuclein, but in rare cases can also manifest tauopathy. The normal function of LRRK2 has remained elusive, as have the cellular consequences of its mutation. Data from LRRK2 null model organisms and LRRK2-inhibitor treated animals support a physiological role for LRRK2 in regulating lysosome function. Since idiopathic and LRRK2-linked PD are associated with the intraneuronal accumulation of protein aggregates, a series of critical questions emerge. First, how do pathogenic mutations that increase LRRK2 kinase activity affect lysosome biology in neurons? Second, are mutation-induced changes in lysosome function sufficient to alter the metabolism of α-synuclein? Lastly, are changes caused by pathogenic mutation sensitive to reversal with LRRK2 kinase inhibitors? Here, we report that mutation of LRRK2 induces modest but significant changes in lysosomal morphology and acidification, and decreased basal autophagic flux when compared to WT neurons. These changes were associated with an accumulation of detergent-insoluble α-synuclein and increased neuronal release of α-synuclein and were reversed by pharmacologic inhibition of LRRK2 kinase activity. These data demonstrate a critical and disease-relevant influence of native neuronal LRRK2 kinase activity on lysosome function and α-synuclein homeostasis. Furthermore, they also suggest that lysosome dysfunction, altered neuronal α-synuclein metabolism, and the insidious accumulation of aggregated protein over decades may contribute to pathogenesis in this late-onset form of familial PD.
Collapse
Affiliation(s)
- Jason Schapansky
- Ann Romney Center for Neurologic Diseases, Brigham and Women's Hospital and Harvard Medical School, Boston, MA 02115, United States
| | - Saurabh Khasnavis
- Ann Romney Center for Neurologic Diseases, Brigham and Women's Hospital and Harvard Medical School, Boston, MA 02115, United States
| | - Mark P DeAndrade
- Ann Romney Center for Neurologic Diseases, Brigham and Women's Hospital and Harvard Medical School, Boston, MA 02115, United States
| | - Jonathan D Nardozzi
- Ann Romney Center for Neurologic Diseases, Brigham and Women's Hospital and Harvard Medical School, Boston, MA 02115, United States
| | - Samuel R Falkson
- Ann Romney Center for Neurologic Diseases, Brigham and Women's Hospital and Harvard Medical School, Boston, MA 02115, United States
| | - Justin D Boyd
- Ann Romney Center for Neurologic Diseases, Brigham and Women's Hospital and Harvard Medical School, Boston, MA 02115, United States
| | - John B Sanderson
- Ann Romney Center for Neurologic Diseases, Brigham and Women's Hospital and Harvard Medical School, Boston, MA 02115, United States
| | - Tim Bartels
- Ann Romney Center for Neurologic Diseases, Brigham and Women's Hospital and Harvard Medical School, Boston, MA 02115, United States
| | - Heather L Melrose
- Department of Neuroscience, Mayo Clinic Jacksonville, Jacksonville, FL 32224, United States
| | - Matthew J LaVoie
- Ann Romney Center for Neurologic Diseases, Brigham and Women's Hospital and Harvard Medical School, Boston, MA 02115, United States.
| |
Collapse
|
86
|
Purlyte E, Dhekne HS, Sarhan AR, Gomez R, Lis P, Wightman M, Martinez TN, Tonelli F, Pfeffer SR, Alessi DR. Rab29 activation of the Parkinson's disease-associated LRRK2 kinase. EMBO J 2017; 37:1-18. [PMID: 29212815 PMCID: PMC5753036 DOI: 10.15252/embj.201798099] [Citation(s) in RCA: 205] [Impact Index Per Article: 25.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2017] [Revised: 11/13/2017] [Accepted: 11/16/2017] [Indexed: 11/17/2022] Open
Abstract
Parkinson's disease predisposing LRRK2 kinase phosphorylates a group of Rab GTPase proteins including Rab29, within the effector‐binding switch II motif. Previous work indicated that Rab29, located within the PARK16 locus mutated in Parkinson's patients, operates in a common pathway with LRRK2. Here, we show that Rab29 recruits LRRK2 to the trans‐Golgi network and greatly stimulates its kinase activity. Pathogenic LRRK2 R1441G/C and Y1699C mutants that promote GTP binding are more readily recruited to the Golgi and activated by Rab29 than wild‐type LRRK2. We identify conserved residues within the LRRK2 ankyrin domain that are required for Rab29‐mediated Golgi recruitment and kinase activation. Consistent with these findings, knockout of Rab29 in A549 cells reduces endogenous LRRK2‐mediated phosphorylation of Rab10. We show that mutations that prevent LRRK2 from interacting with either Rab29 or GTP strikingly inhibit phosphorylation of a cluster of highly studied biomarker phosphorylation sites (Ser910, Ser935, Ser955 and Ser973). Our data reveal that Rab29 is a master regulator of LRRK2, controlling its activation, localization, and potentially biomarker phosphorylation.
Collapse
Affiliation(s)
- Elena Purlyte
- MRC Protein Phosphorylation and Ubiquitylation Unit, School of Life Sciences, University of Dundee, Dundee, UK
| | - Herschel S Dhekne
- Department of Biochemistry, Stanford University School of Medicine, Stanford, CA, USA
| | - Adil R Sarhan
- MRC Protein Phosphorylation and Ubiquitylation Unit, School of Life Sciences, University of Dundee, Dundee, UK
| | - Rachel Gomez
- Department of Biochemistry, Stanford University School of Medicine, Stanford, CA, USA
| | - Pawel Lis
- MRC Protein Phosphorylation and Ubiquitylation Unit, School of Life Sciences, University of Dundee, Dundee, UK
| | - Melanie Wightman
- MRC Protein Phosphorylation and Ubiquitylation Unit, School of Life Sciences, University of Dundee, Dundee, UK
| | - Terina N Martinez
- The Michael J. Fox Foundation for Parkinson's Research, New York, NY, USA
| | - Francesca Tonelli
- MRC Protein Phosphorylation and Ubiquitylation Unit, School of Life Sciences, University of Dundee, Dundee, UK
| | - Suzanne R Pfeffer
- Department of Biochemistry, Stanford University School of Medicine, Stanford, CA, USA
| | - Dario R Alessi
- MRC Protein Phosphorylation and Ubiquitylation Unit, School of Life Sciences, University of Dundee, Dundee, UK
| |
Collapse
|
87
|
Fujimoto T, Kuwahara T, Eguchi T, Sakurai M, Komori T, Iwatsubo T. Parkinson's disease-associated mutant LRRK2 phosphorylates Rab7L1 and modifies trans-Golgi morphology. Biochem Biophys Res Commun 2017; 495:1708-1715. [PMID: 29223392 DOI: 10.1016/j.bbrc.2017.12.024] [Citation(s) in RCA: 64] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2017] [Accepted: 12/05/2017] [Indexed: 10/18/2022]
Abstract
Mutations in leucine-rich repeat kinase 2 (LRRK2) are the major genetic cause of autosomal-dominantly inherited Parkinson's disease. LRRK2 is implicated in the regulation of intracellular trafficking, neurite outgrowth and PD risk in connection with Rab7L1, a putative interactor of LRRK2. Recently, a subset of Rab GTPases have been reported as substrates of LRRK2. Here we examine the kinase activity of LRRK2 on Rab7L1 in situ in cells. Phos-tag analyses and metabolic labeling assays revealed that LRRK2 readily phosphorylates Golgi-localized wild-type Rab7L1 but not mutant forms that are distributed in the cytoplasm. In vitro assays demonstrated direct phosphorylation of Rab7L1 by LRRK2. Subsequent screening using Rab7L1 mutants harboring alanine-substitution for every single Ser/Thr residue revealed that Ser72 is a major phosphorylation site, which was confirmed by using a phospho-Ser72-specific antibody. Moreover, LRRK2 pathogenic Parkinson mutants altogether markedly enhanced the phosphorylation at Ser72. The modulation of Ser72 phosphorylation in Rab7L1 resulted in an alteration of the morphology and distribution of the trans-Golgi network. These data collectively support the involvement of Rab7L1 phosphorylation in the LRRK2-mediated cellular and pathogenetic mechanisms.
Collapse
Affiliation(s)
- Tetta Fujimoto
- Department of Neuropathology, Graduate School of Medicine, The University of Tokyo, Tokyo, 113-0033, Japan
| | - Tomoki Kuwahara
- Department of Neuropathology, Graduate School of Medicine, The University of Tokyo, Tokyo, 113-0033, Japan
| | - Tomoya Eguchi
- Department of Neuropathology, Graduate School of Medicine, The University of Tokyo, Tokyo, 113-0033, Japan
| | - Maria Sakurai
- Department of Neuropathology, Graduate School of Medicine, The University of Tokyo, Tokyo, 113-0033, Japan
| | - Tadayuki Komori
- Department of Neuropathology, Graduate School of Medicine, The University of Tokyo, Tokyo, 113-0033, Japan
| | - Takeshi Iwatsubo
- Department of Neuropathology, Graduate School of Medicine, The University of Tokyo, Tokyo, 113-0033, Japan.
| |
Collapse
|
88
|
Choudhary B, Kamak M, Ratnakaran N, Kumar J, Awasthi A, Li C, Nguyen K, Matsumoto K, Hisamoto N, Koushika SP. UNC-16/JIP3 regulates early events in synaptic vesicle protein trafficking via LRK-1/LRRK2 and AP complexes. PLoS Genet 2017; 13:e1007100. [PMID: 29145394 PMCID: PMC5716593 DOI: 10.1371/journal.pgen.1007100] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2017] [Revised: 12/05/2017] [Accepted: 11/02/2017] [Indexed: 01/02/2023] Open
Abstract
JIP3/UNC-16/dSYD is a MAPK-scaffolding protein with roles in protein trafficking. We show that it is present on the Golgi and is necessary for the polarized distribution of synaptic vesicle proteins (SVPs) and dendritic proteins in neurons. UNC-16 excludes Golgi enzymes from SVP transport carriers and facilitates inclusion of specific SVPs into the same transport carrier. The SVP trafficking roles of UNC-16 are mediated through LRK-1, whose localization to the Golgi is reduced in unc-16 animals. UNC-16, through LRK-1, also enables Golgi-localization of the μ-subunit of the AP-1 complex. AP1 regulates the size but not the composition of SVP transport carriers. Additionally, UNC-16 and LRK-1 through the AP-3 complex regulates the composition but not the size of the SVP transport carrier. These early biogenesis steps are essential for dependence on the synaptic vesicle motor, UNC-104 for axonal transport. Our results show that UNC-16 and its downstream effectors, LRK-1 and the AP complexes function at the Golgi and/or post-Golgi compartments to control early steps of SV biogenesis. The UNC-16 dependent steps of exclusion, inclusion and motor recruitment are critical for polarized distribution of neuronal cargo. Synaptic vesicles (SVs) have a defined composition and size at the synapse. The multiple synaptic vesicle proteins (SVPs) found on these vesicle membranes are synthesized at and trafficked out of the cell body in distinct transport carriers. However, we do not yet understand how different SVPs are sorted and trafficked to the synapse. We show that UNC-16/JIP3 plays a critical role, in a series of essential steps, to ensure proper membrane composition and size of the ensuing SVP carrier exiting the cell body. These processes are “exclusion” of resident Golgi enzymes followed by the “inclusion” of synaptic vesicle proteins in the same transport carrier. Regulation of composition and size seems to occur independently of each other and depends on two distinct AP complexes acting downstream to LRK-1. Our study further indicates that the composition of the transport carrier formed is important for the recruitment of motors and consequently for the polarized localization of SVPs.
Collapse
Affiliation(s)
- Bikash Choudhary
- National Centre for Biological Sciences-Tata Institute of Fundamental Research, Bangalore, Karnataka, India
| | - Madhushree Kamak
- Department of Biological Sciences, Tata Institute of Fundamental Research, Mumbai, Maharashtra, India
| | - Neena Ratnakaran
- Department of Biological Sciences, Tata Institute of Fundamental Research, Mumbai, Maharashtra, India
| | - Jitendra Kumar
- National Centre for Biological Sciences-Tata Institute of Fundamental Research, Bangalore, Karnataka, India
| | - Anjali Awasthi
- National Centre for Biological Sciences-Tata Institute of Fundamental Research, Bangalore, Karnataka, India
- Department of Biological Sciences, Birla Institute of Technology and Science, Pilani, Rajasthan, India
| | - Chun Li
- Group of Signaling Mechanisms, Nagoya University, Nagoya, Japan
| | - Ken Nguyen
- Center for C. elegans Anatomy, Albert Einstein College of Medicine, New York, New York, United States of America
| | | | - Naoki Hisamoto
- Group of Signaling Mechanisms, Nagoya University, Nagoya, Japan
| | - Sandhya P. Koushika
- Department of Biological Sciences, Tata Institute of Fundamental Research, Mumbai, Maharashtra, India
- * E-mail:
| |
Collapse
|
89
|
Steger M, Diez F, Dhekne HS, Lis P, Nirujogi RS, Karayel O, Tonelli F, Martinez TN, Lorentzen E, Pfeffer SR, Alessi DR, Mann M. Systematic proteomic analysis of LRRK2-mediated Rab GTPase phosphorylation establishes a connection to ciliogenesis. eLife 2017; 6:31012. [PMID: 29125462 PMCID: PMC5695910 DOI: 10.7554/elife.31012] [Citation(s) in RCA: 301] [Impact Index Per Article: 37.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2017] [Accepted: 11/09/2017] [Indexed: 12/21/2022] Open
Abstract
We previously reported that Parkinson’s disease (PD) kinase LRRK2 phosphorylates a subset of Rab GTPases on a conserved residue in their switch-II domains (Steger et al., 2016) (PMID: 26824392). Here, we systematically analyzed the Rab protein family and found 14 of them (Rab3A/B/C/D, Rab5A/B/C, Rab8A/B, Rab10, Rab12, Rab29, Rab35 and Rab43) to be specifically phosphorylated by LRRK2, with evidence for endogenous phosphorylation for ten of them (Rab3A/B/C/D, Rab8A/B, Rab10, Rab12, Rab35 and Rab43). Affinity enrichment mass spectrometry revealed that the primary ciliogenesis regulator, RILPL1 specifically interacts with the LRRK2-phosphorylated forms of Rab8A and Rab10, whereas RILPL2 binds to phosphorylated Rab8A, Rab10, and Rab12. Induction of primary cilia formation by serum starvation led to a two-fold reduction in ciliogenesis in fibroblasts derived from pathogenic LRRK2-R1441G knock-in mice. These results implicate LRRK2 in primary ciliogenesis and suggest that Rab-mediated protein transport and/or signaling defects at cilia may contribute to LRRK2-dependent pathologies.
Collapse
Affiliation(s)
- Martin Steger
- Department of Proteomics and Signal Transduction, Max-Planck-Institute of Biochemistry, Martinsried, Germany
| | - Federico Diez
- Medical Research Council Protein Phosphorylation and Ubiquitylation Unit, School of Life Sciences, University of Dundee, Dundee, United Kingdom
| | - Herschel S Dhekne
- Department of Biochemistry, Stanford University School of Medicine, Stanford, United States
| | - Pawel Lis
- Medical Research Council Protein Phosphorylation and Ubiquitylation Unit, School of Life Sciences, University of Dundee, Dundee, United Kingdom
| | - Raja S Nirujogi
- Medical Research Council Protein Phosphorylation and Ubiquitylation Unit, School of Life Sciences, University of Dundee, Dundee, United Kingdom
| | - Ozge Karayel
- Department of Proteomics and Signal Transduction, Max-Planck-Institute of Biochemistry, Martinsried, Germany
| | - Francesca Tonelli
- Medical Research Council Protein Phosphorylation and Ubiquitylation Unit, School of Life Sciences, University of Dundee, Dundee, United Kingdom
| | - Terina N Martinez
- The Michael J. Fox Foundation for Parkinson's Research, New York, United States
| | - Esben Lorentzen
- Department of Molecular Biology and Genetics, Aarhus University, Aarhus, Denmark
| | - Suzanne R Pfeffer
- Department of Biochemistry, Stanford University School of Medicine, Stanford, United States
| | - Dario R Alessi
- Medical Research Council Protein Phosphorylation and Ubiquitylation Unit, School of Life Sciences, University of Dundee, Dundee, United Kingdom
| | - Matthias Mann
- Department of Proteomics and Signal Transduction, Max-Planck-Institute of Biochemistry, Martinsried, Germany
| |
Collapse
|
90
|
Age-Dependent Dopaminergic Neurodegeneration and Impairment of the Autophagy-Lysosomal Pathway in LRRK-Deficient Mice. Neuron 2017; 96:796-807.e6. [PMID: 29056298 DOI: 10.1016/j.neuron.2017.09.036] [Citation(s) in RCA: 89] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2017] [Revised: 09/14/2017] [Accepted: 09/22/2017] [Indexed: 12/21/2022]
Abstract
LRRK2 mutations are the most common genetic cause of Parkinson's disease, but LRRK2's normal physiological role in the brain is unclear. Here, we show that inactivation of LRRK2 and its functional homolog LRRK1 results in earlier mortality and age-dependent, selective neurodegeneration. Loss of dopaminergic (DA) neurons in the substantia nigra pars compacta (SNpc) and of noradrenergic neurons in the locus coeruleus is accompanied with increases in apoptosis, whereas the cerebral cortex and cerebellum are unaffected. Furthermore, selective age-dependent neurodegeneration is only present in LRRK-/-, not LRRK1-/- or LRRK2-/- brains, and it is accompanied by increases in α-synuclein and impairment of the autophagy-lysosomal pathway. Quantitative electron microscopy (EM) analysis revealed age-dependent increases of autophagic vacuoles in the SNpc of LRRK-/- mice before the onset of DA neuron loss. These findings revealed an essential role of LRRK in the survival of DA neurons and in the regulation of the autophagy-lysosomal pathway in the aging brain.
Collapse
|
91
|
Bai Y, Dong L, Huang X, Zheng S, Qiu P, Lan F. Associations of rs823128, rs1572931, and rs823156 polymorphisms with reduced Parkinson's disease risks. Neuroreport 2017; 28:936-941. [PMID: 28749816 PMCID: PMC5585133 DOI: 10.1097/wnr.0000000000000846] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2017] [Revised: 06/29/2017] [Indexed: 12/14/2022]
Abstract
The PARK16 locus is considered to play a protective role in Parkinson's disease (PD). However, the epidemiological evidence on the relationships between PARK16 single-nucleotide polymorphisms (rs823128, rs1572931, and rs823156) and PD is inconsistent. Therefore, we carried out a meta-analysis to validate the relationships and performed a bioinformatic analysis to explore putative regulation mechanisms of the single-nucleotide polymorphisms in PD. Through meta-analysis, we confirmed that minor variants of rs823128A>G, rs1572931C>T, and rs823156A>G played protective roles in PD. Through bioinformatic analysis, we predicted that rs823128, rs1572931, and rs823156 as noncoding variants of NUCKS1, RAB29, and SLC41A1, respectively, might affect PD risk by altering the transcription factor-binding capability of the genes. These findings suggest new clues for PD research and potential targets for PD prevention and treatment.
Collapse
Affiliation(s)
- Ye Bai
- Department of Clinical Genetics and Experimental Medicine, Fuzhou General Hospital
| | - Lihong Dong
- Department of Clinical Genetics and Experimental Medicine, Fuzhou General Hospital
| | - Xinghua Huang
- Department of Clinical Genetics and Experimental Medicine, Fuzhou General Hospital
| | - Shuanglin Zheng
- Department of Clinical Genetics and Experimental Medicine, Affiliated Dongfang Hospital of Xiamen University, Fuzhou, China
| | - Ping Qiu
- Department of Clinical Genetics and Experimental Medicine, Affiliated Dongfang Hospital of Xiamen University, Fuzhou, China
| | - Fenghua Lan
- Department of Clinical Genetics and Experimental Medicine, Fuzhou General Hospital
| |
Collapse
|
92
|
Effects of α-synuclein on axonal transport. Neurobiol Dis 2017; 105:321-327. [DOI: 10.1016/j.nbd.2016.12.008] [Citation(s) in RCA: 43] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2016] [Revised: 12/05/2016] [Accepted: 12/07/2016] [Indexed: 11/22/2022] Open
|
93
|
Selective LRRK2 kinase inhibition reduces phosphorylation of endogenous Rab10 and Rab12 in human peripheral mononuclear blood cells. Sci Rep 2017; 7:10300. [PMID: 28860483 PMCID: PMC5578959 DOI: 10.1038/s41598-017-10501-z] [Citation(s) in RCA: 72] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2017] [Accepted: 08/10/2017] [Indexed: 01/09/2023] Open
Abstract
Genetic variation in the leucine-rich repeat kinase 2 (LRRK2) gene is associated with risk of familial and sporadic Parkinson’s disease (PD). To support clinical development of LRRK2 inhibitors as disease-modifying treatment in PD biomarkers for kinase activity, target engagement and kinase inhibition are prerequisite tools. In a combined proteomics and phosphoproteomics study on human peripheral mononuclear blood cells (PBMCs) treated with the LRRK2 inhibitor Lu AF58786 a number of putative biomarkers were identified. Among the phospho-site hits were known LRRK2 sites as well as two phospho-sites on human Rab10 and Rab12. LRRK2 dependent phosphorylation of human Rab10 and human Rab12 at positions Thr73 and Ser106, respectively, was confirmed in HEK293 and, more importantly, Rab10-pThr73 inhibition was validated in immune stimulated human PBMCs using two distinct LRRK2 inhibitors. In addition, in non-stimulated human PBMCs acute inhibition of LRRK2 with two distinct LRRK2 inhibitor compounds reduced Rab10-Thr73 phosphorylation in a concentration-dependent manner with apparent IC50’s equivalent to IC50’s on LRRK2-pSer935. The identification of Rab10 phosphorylated at Thr73 as a LRRK2 inhibition marker in human PBMCs strongly support inclusion of assays quantifying Rab10-pThr73 levels in upcoming clinical trials evaluating LRRK2 kinase inhibition as a disease-modifying treatment principle in PD.
Collapse
|
94
|
Cellular functions of LRRK2 implicate vesicular trafficking pathways in Parkinson's disease. Biochem Soc Trans 2017; 44:1603-1610. [PMID: 27913668 DOI: 10.1042/bst20160228] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2016] [Revised: 08/31/2016] [Accepted: 09/05/2016] [Indexed: 11/17/2022]
Abstract
Mutations in the leucine-rich repeat kinase 2 (LRRK2) gene, associated with Parkinson's disease, have been shown to affect intracellular trafficking pathways in a variety of cells and organisms. An emerging theme is that LRRK2 can bind to multiple membranous structures in cells, and several recent studies have suggested that the Rab family of small GTPases might be important in controlling the recruitment of LRRK2 to specific cellular compartments. Once localized to membranes, LRRK2 then influences downstream events, evidenced by changes in the autophagy-lysosome pathway. Here, I will discuss available evidence that supports or challenges this outline, with a specific emphasis on those aspects of LRRK2 function that have been controversial or remain to be fully clarified.
Collapse
|
95
|
Abstract
Intracellular bacterial pathogens survive and replicate within specialized eukaryotic cell organelles. To establish their intracellular niches these pathogens have adopted sophisticated strategies to control intracellular membrane trafficking. Since Rab-family GTPases are critical regulators of endocytic and secretory membrane trafficking events, many intracellular pathogens have evolved specific mechanisms to modulate or hijack Rab GTPases dynamics and trafficking functions. One such strategy is the delivery of bacterial effectors through specialized machines to specifically target Rab GTPases. Some of these effectors functionally mimic host proteins that regulate the Rab GTP cycle, while others regulate Rabs proteins through their post-translation modifications or proteolysis. In this review, we examine how the localization and function of Rab-family GTPases are altered during infection with 3 well-studied intracellular bacterial pathogens, Mycobacterium tuberculosis, Salmonella enterica and Legionella pneumophila. We also discuss recent findings about specific mechanisms by which these intracellular pathogens target this protein family.
Collapse
Affiliation(s)
- Stefania Spanò
- a Institute of Medical Sciences, University of Aberdeen , Foresterhill , Aberdeen , UK
| | - Jorge E Galán
- b Department of Microbial Pathogenesis , Yale University School of Medicine , New Haven , CT , USA
| |
Collapse
|
96
|
Lv Z, Tian W, Ma Q, Hao Y, Yang Y. Interactions between four gene polymorphisms and their association with patients with Parkinson's disease in a Chinese Han population. Int J Neurosci 2017; 127:1154-1160. [PMID: 28535700 DOI: 10.1080/00207454.2017.1332601] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
The four previously reported Parkinson's disease (PD)-related single-nucleotide polymorphisms (SNPs) - rs1775143, rs823114, rs2071746 and rs62063857 - have rarely been studied in Chinese Han populations. To examine the association between these SNPs and PD, we conducted a case-control study of 158 patients with PD and 210 controls. All participants were Chinese Han from Northern China. With covariate adjustment for clinical characteristics, logistic regression analysis revealed no differences in genotype or allele frequencies for the four SNPs. Stratified by age of disease onset, sex, smoking status, duration of disease, baseline UPDRS, Hoehn-Yahr Stage, PD subtypes, scores of Hamilton anxiety scale, Hamilton depression scale and activity of daily living, all of the p values did not remain significant after Bonferroni correction. However, the haplotype rs1775143T-rs823114G-rs2071746T-rs62063857A was associated with increased risk of developing PD (p = 0.003, OR = 456.88, 95% CI: 27.40-7619.75) in our case-control sample set. The haplotype rs1775143T-rs823114G-rs2071746T was also associated with increased risk of developing PD (p = 0.003, OR = 338.43, 95% CI: 20.68-5538.27). Although the haplotype rs1775143T-rs823114G-rs62063857A was associated with increased risk of PD (p = 0.03), the 95% CI was 0.993-22.469. Our data demonstrate that although specific SNPs were not related with PD patients, certain haplotypes were associated with increased risk for PD in the Chinese Han population. These results provide further evidence that the etiology of PD is multifactorial, although the underling mechanism needs further study.
Collapse
Affiliation(s)
- Zhanyun Lv
- a Department of Neurology , Affiliated Hospital of Jining Medical University , Jining , People's Republic of China
| | - Wenjing Tian
- a Department of Neurology , Affiliated Hospital of Jining Medical University , Jining , People's Republic of China
| | - Qianqian Ma
- a Department of Neurology , Affiliated Hospital of Jining Medical University , Jining , People's Republic of China
| | - Yanlei Hao
- a Department of Neurology , Affiliated Hospital of Jining Medical University , Jining , People's Republic of China
| | - Yan Yang
- a Department of Neurology , Affiliated Hospital of Jining Medical University , Jining , People's Republic of China
| |
Collapse
|
97
|
Tang BL. Rabs, Membrane Dynamics, and Parkinson's Disease. J Cell Physiol 2016; 232:1626-1633. [DOI: 10.1002/jcp.25713] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2016] [Accepted: 11/29/2016] [Indexed: 12/18/2022]
Affiliation(s)
- Bor Luen Tang
- Department of Biochemistry, Yong Loo Lin School of Medicine; National University of Singapore; Singapore 117597
- NUS Graduate School for Integrative Sciences and Engineering; National University of Singapore; Singapore 117456
| |
Collapse
|
98
|
Roosen DA, Cookson MR. LRRK2 at the interface of autophagosomes, endosomes and lysosomes. Mol Neurodegener 2016; 11:73. [PMID: 27927216 PMCID: PMC5142374 DOI: 10.1186/s13024-016-0140-1] [Citation(s) in RCA: 131] [Impact Index Per Article: 14.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2016] [Accepted: 12/03/2016] [Indexed: 02/07/2023] Open
Abstract
Over the past 20 years, substantial progress has been made in identifying the underlying genetics of Parkinson's disease (PD). Of the known genes, LRRK2 is a major genetic contributor to PD. However, the exact function of LRRK2 remains to be elucidated. In this review, we discuss how familial forms of PD have led us to hypothesize that alterations in endomembrane trafficking play a role in the pathobiology of PD. We will discuss the major observations that have been made to elucidate the role of LRRK2 in particular, including LRRK2 animal models and high-throughput proteomics approaches. Taken together, these studies strongly support a role of LRRK2 in vesicular dynamics. We also propose that targeting these pathways may not only be beneficial for developing therapeutics for LRRK2-driven PD, but also for other familial and sporadic cases.
Collapse
Affiliation(s)
- Dorien A. Roosen
- Cell Biology and Gene Expression Section, Laboratory of Neurogenetics, National Institute on Aging, National Institutes of Health, Bldg. 35, 35 Convent Drive, Bethesda, MD 20892-3707 USA
- School of Pharmacy, University of Reading, Whiteknights, Reading, RG6 6AP UK
| | - Mark R. Cookson
- Cell Biology and Gene Expression Section, Laboratory of Neurogenetics, National Institute on Aging, National Institutes of Health, Bldg. 35, 35 Convent Drive, Bethesda, MD 20892-3707 USA
| |
Collapse
|
99
|
Atashrazm F, Dzamko N. LRRK2 inhibitors and their potential in the treatment of Parkinson's disease: current perspectives. Clin Pharmacol 2016; 8:177-189. [PMID: 27799832 PMCID: PMC5076802 DOI: 10.2147/cpaa.s102191] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Major advances in understanding how genetics underlies Parkinson's disease (PD) have provided new opportunities for understanding disease pathogenesis and potential new targets for therapeutic intervention. One such target is leucine-rich repeat kinase 2 (LRRK2), an enigmatic enzyme implicated in both familial and idiopathic PD risk. Both academia and industry have promoted the development of potent and selective inhibitors of LRRK2, and these are currently being employed to assess the safety and efficacy of such compounds in preclinical models of PD. This review examines the evidence that LRRK2 kinase activity contributes to the pathogenesis of PD and outlines recent progress on inhibitor development and early results from preclinical safety and efficacy testing. This review also looks at some of the challenges remaining for translation of LRRK2 inhibitors to the clinic, if indeed this is ultimately warranted. As a disease with no current cure that is increasing in prevalence in line with an aging population, there is much need for developing new treatments for PD, and targeting LRRK2 is currently a promising option.
Collapse
Affiliation(s)
| | - Nicolas Dzamko
- School of Medical Sciences, Faculty of Medicine, University of New South Wales, Kensington, NSW, Australia
| |
Collapse
|