51
|
Hoque P, Romero B, Akins RE, Batish M. Exploring the Multifaceted Biologically Relevant Roles of circRNAs: From Regulation, Translation to Biomarkers. Cells 2023; 12:2813. [PMID: 38132133 PMCID: PMC10741722 DOI: 10.3390/cells12242813] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Revised: 12/02/2023] [Accepted: 12/05/2023] [Indexed: 12/23/2023] Open
Abstract
CircRNAs are a category of regulatory RNAs that have garnered significant attention in the field of regulatory RNA research due to their structural stability and tissue-specific expression. Their circular configuration, formed via back-splicing, results in a covalently closed structure that exhibits greater resistance to exonucleases compared to linear RNAs. The distinctive regulation of circRNAs is closely associated with several physiological processes, as well as the advancement of pathophysiological processes in several human diseases. Despite a good understanding of the biogenesis of circular RNA, details of their biological roles are still being explored. With the steady rise in the number of investigations being carried out regarding the involvement of circRNAs in various regulatory pathways, understanding the biological and clinical relevance of circRNA-mediated regulation has become challenging. Given the vast landscape of circRNA research in the development of the heart and vasculature, we evaluated cardiovascular system research as a model to critically review the state-of-the-art understanding of the biologically relevant functions of circRNAs. We conclude the review with a discussion of the limitations of current functional studies and provide potential solutions by which these limitations can be addressed to identify and validate the meaningful and impactful functions of circRNAs in different physiological processes and diseases.
Collapse
Affiliation(s)
- Parsa Hoque
- Department of Biological Sciences, University of Delaware, Newark, DE 19716, USA;
| | - Brigette Romero
- Department of Medical and Molecular Sciences, University of Delaware, Newark, DE 19716, USA;
| | - Robert E Akins
- Nemours Children’s Research, Nemours Children’s Health System, Wilmington, DE 19803, USA;
| | - Mona Batish
- Department of Biological Sciences, University of Delaware, Newark, DE 19716, USA;
- Department of Medical and Molecular Sciences, University of Delaware, Newark, DE 19716, USA;
| |
Collapse
|
52
|
Shu H, Zhang Z, Liu J, Chen P, Yang C, Wu Y, Wu D, Cao Y, Chu Y, Li L. Circular RNAs: An emerging precise weapon for diabetic nephropathy diagnosis and therapy. Biomed Pharmacother 2023; 168:115818. [PMID: 37939612 DOI: 10.1016/j.biopha.2023.115818] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2023] [Revised: 10/28/2023] [Accepted: 10/31/2023] [Indexed: 11/10/2023] Open
Abstract
Diabetic nephropathy (DN) is a prevalent chronic microvascular complication associated with diabetes mellitus and represents a major cause of chronic kidney disease and renal failure. Current treatment strategies for DN primarily focus on symptom alleviation, lacking effective approaches to halt or reverse DN progression. Circular RNA (circRNA), characterized by a closed-loop structure, has emerged as a novel non-coding RNA regulator of gene expression, attributed to its conservation, stability, specificity, and multifunctionality. Dysregulation of circRNA expression is closely associated with DN progression, whereby circRNA impacts kidney cell injury by modulating cell cycle, differentiation, cell death, as well as influencing the release of inflammatory factors and stromal fibronectin expression. Consequently, circRNA is considered a predictive biomarker and a potential therapeutic target for DN. This review provides an overview of the latest research progress in the classification, functions, monitoring methods, and databases related to circRNA. The paper focuses on elucidating the impact and underlying mechanisms of circRNA on kidney cells under diabetic conditions, aiming to offer novel insights into the prevention, diagnosis, and treatment of DN.
Collapse
Affiliation(s)
- Haiying Shu
- Heilongjiang Key Laboratory of Anti-Fibrosis Biotherapy, Mudanjiang Medical University, Mudanjiang, China; College of Life Sciences, Mudanjiang Medical University, Mudanjiang, China
| | - Zhen Zhang
- Heilongjiang Key Laboratory of Anti-Fibrosis Biotherapy, Mudanjiang Medical University, Mudanjiang, China; School of First Clinical Medical College, Mudanjiang Medical University, Mudanjiang, China
| | - Jieting Liu
- College of Life Sciences, Mudanjiang Medical University, Mudanjiang, China.
| | - Peijian Chen
- Heilongjiang Key Laboratory of Anti-Fibrosis Biotherapy, Mudanjiang Medical University, Mudanjiang, China; College of Life Sciences, Mudanjiang Medical University, Mudanjiang, China
| | - Can Yang
- Heilongjiang Key Laboratory of Anti-Fibrosis Biotherapy, Mudanjiang Medical University, Mudanjiang, China; College of Life Sciences, Mudanjiang Medical University, Mudanjiang, China
| | - Yan Wu
- Heilongjiang Key Laboratory of Anti-Fibrosis Biotherapy, Mudanjiang Medical University, Mudanjiang, China; College of Life Sciences, Mudanjiang Medical University, Mudanjiang, China
| | - Dan Wu
- Heilongjiang Key Laboratory of Anti-Fibrosis Biotherapy, Mudanjiang Medical University, Mudanjiang, China; College of Life Sciences, Mudanjiang Medical University, Mudanjiang, China
| | - Yanan Cao
- Heilongjiang Key Laboratory of Anti-Fibrosis Biotherapy, Mudanjiang Medical University, Mudanjiang, China; College of Life Sciences, Mudanjiang Medical University, Mudanjiang, China
| | - Yanhui Chu
- College of Life Sciences, Mudanjiang Medical University, Mudanjiang, China.
| | - Luxin Li
- Heilongjiang Key Laboratory of Anti-Fibrosis Biotherapy, Mudanjiang Medical University, Mudanjiang, China; College of Life Sciences, Mudanjiang Medical University, Mudanjiang, China.
| |
Collapse
|
53
|
Samavarchi Tehrani S, Goodarzi G, Panahi G, Maniati M, Meshkani R. Multiple novel functions of circular RNAs in diabetes mellitus. Arch Physiol Biochem 2023; 129:1235-1249. [PMID: 34087083 DOI: 10.1080/13813455.2021.1933047] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/30/2021] [Accepted: 05/17/2021] [Indexed: 12/13/2022]
Abstract
Circular RNAs (circRNAs), as an emerging group of non-coding RNAs (ncRNAs), have received the attention given evidence indicating that these novel ncRNAs are implicated in various biological processes. Due to the absence of 5' and 3' ends in circ-RNAs, their two ends are covalently bonded together, and they are synthesised from pre-mRNAs in a process called back-splicing, which makes them more stable than linear RNAs. There is accumulating evidence showing that circRNAs play a critical role in the pathogenesis of diabetes mellitus (DM). Moreover, it has been indicated that dysregulation of circRNAs has made them promising diagnostic biomarkers for the detection of DM. Recently, increasing attention has been paid to investigate the mechanisms underlying the DM process. It has been demonstrated that there is a strong correlation between the expression of circRNAs and DM. Hence, our aim is to discuss the crosstalk between circRNAs and DM and its complications.
Collapse
Affiliation(s)
- Sadra Samavarchi Tehrani
- Department of Clinical Biochemistry, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
- Student Scientific Research Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Golnaz Goodarzi
- Department of Clinical Biochemistry, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
- Student Scientific Research Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Ghodratollah Panahi
- Department of Clinical Biochemistry, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Mahmood Maniati
- English Department, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Reza Meshkani
- Department of Clinical Biochemistry, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
54
|
Lin HH, Chang CY, Huang YR, Shen CH, Wu YC, Chang KL, Lee YC, Lin YC, Ting WC, Chien HJ, Zheng YF, Lai CC, Hsiao KY. Exon Junction Complex Mediates the Cap-Independent Translation of Circular RNA. Mol Cancer Res 2023; 21:1220-1233. [PMID: 37527157 DOI: 10.1158/1541-7786.mcr-22-0877] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2023] [Revised: 06/22/2023] [Accepted: 07/25/2023] [Indexed: 08/03/2023]
Abstract
Evidence that circular RNAs (circRNA) serve as protein template is accumulating. However, how the cap-independent translation is controlled remains largely uncharacterized. Here, we show that the presence of intron and thus splicing promote cap-independent translation. By acquiring the exon junction complex (EJC) after splicing, the interaction between circRNA and ribosomes was promoted, thereby facilitating translation. Prevention of splicing by treatment with spliceosome inhibitor or mutating splicing signal hindered cap-independent translation of circRNA. Moreover, EJC-tethering using Cas13 technology reconstituted EJC-dependent circRNA translation. Finally, the level of a coding circRNA from succinate dehydrogenase assembly factor 2 (circSDHAF2) was found to be elevated in the tumorous tissues from patients with colorectal cancer, and shown to be critical in tumorigenesis of colorectal cancer in both cell and murine models. These findings reveal that EJC-dependent control of circSDHAF2 translation is involved in the regulation of oncogenic pathways. IMPLICATIONS EJC-mediated cap-independent translation of circRNA is implicated in the tumorigenesis of colorectal cancer.
Collapse
Affiliation(s)
- Hui-Hsuan Lin
- Doctoral Program in Tissue Engineering and Regenerative Medicine, National Chung Hsing University, Taichung, Taiwan
- Institute of Biochemistry, College of Life Sciences, National Chung Hsing University, Taichung, Taiwan
| | - Chiu-Yuan Chang
- Institute of Biochemistry, College of Life Sciences, National Chung Hsing University, Taichung, Taiwan
| | - Yi-Ren Huang
- Institute of Biochemistry, College of Life Sciences, National Chung Hsing University, Taichung, Taiwan
| | - Che-Hung Shen
- Doctoral Program in Tissue Engineering and Regenerative Medicine, National Chung Hsing University, Taichung, Taiwan
- National Institute of Cancer Research, National Health Research Institutes, Tainan, Taiwan
| | - Yu-Chen Wu
- Institute of Biochemistry, College of Life Sciences, National Chung Hsing University, Taichung, Taiwan
| | - Kai-Li Chang
- Department of Physiology, National Cheng Kung University, Tainan, Taiwan
| | - Yueh-Chun Lee
- Department of Radiation Oncology, Chung Shan Medical University Hospital, Taichung, Taiwan
- School of Medicine, Chung Shan Medical University, Taichung, Taiwan
| | - Ya-Chi Lin
- Department of Plant Pathology, College of Agriculture and Natural Resources, National Chung Hsing University, Taichung, Taiwan
- Department of Medical Laboratory Science and Biotechnology, Asia University, Taichung, Taiwan
| | - Wen-Chien Ting
- Division of Colorectal Surgery, Department of Surgery, Chung Shan Medical University Hospital, Taichung, Taiwan
| | - Han-Ju Chien
- Department of Biochemical Science and Technology, National Chiayi University, Chiayi, Taiwan
| | - Yi-Feng Zheng
- Institute of Molecular Biology, College of Life Sciences, National Chung Hsing University, Taichung, Taiwan
| | - Chien-Chen Lai
- Institute of Molecular Biology, College of Life Sciences, National Chung Hsing University, Taichung, Taiwan
| | - Kuei-Yang Hsiao
- Doctoral Program in Tissue Engineering and Regenerative Medicine, National Chung Hsing University, Taichung, Taiwan
- Institute of Biochemistry, College of Life Sciences, National Chung Hsing University, Taichung, Taiwan
- Doctoral Program in Translational Medicine, College of Life Sciences, National Chung Hsing University, Taichung
- Rong Hsing Research Center for Translational Medicine, College of Life Sciences, National Chung Hsing University, Taichung
| |
Collapse
|
55
|
Zeng L, Liu L, Ni WJ, Xie F, Leng XM. Circular RNAs in osteosarcoma: An update of recent studies (Review). Int J Oncol 2023; 63:123. [PMID: 37681483 DOI: 10.3892/ijo.2023.5571] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2023] [Accepted: 07/20/2023] [Indexed: 09/09/2023] Open
Abstract
Osteosarcoma (OS) prevailing in children and adolescents mainly occurs at the metaphysis of long bones. As it is associated with a high invasive and metastatic ability, resistance to chemotherapy, and a low 5‑year survival rate, the diagnosis and treatment of OS post a global healthy issue. Over the past decades, RNA biology has shed new light onto the pathogenesis of OS. As a type of non‑coding RNAs, circular RNAs (circRNAs) have been found to play crucial roles in cellular activities. Recently, a large number of circRNAs have been identified in OS and some of them have been validated to be functional in OS. In the present review, abnormally expressed and different types of circRNAs in OS are summarized. Functional studies on circRNAs have revealed that circRNAs can regulate gene expression at different levels, such as gene transcription, precursor mRNA splicing, miRNA sponges and translation into proteins/peptides. Mechanistic analyses on circRNAs show that circRNAs can regulate JAK‑STAT3, NF‑κB, PI3K‑AKT, Wnt/β‑catenin signaling pathways during the occurrence and development of OS. Furthermore, the potential clinical applications of circRNAs are also emphasized. The present review focus on the current knowledge on the functions and mechanisms of circRNAs in the pathogenesis of OS, aiming to provide new insight into the OS diagnosis and treatment of OS.
Collapse
Affiliation(s)
- Le Zeng
- School of Basic Medicine, Gannan Medical University, Ganzhou, Jiangxi 341000, P.R. China
| | - Longzhou Liu
- School of Basic Medicine, Gannan Medical University, Ganzhou, Jiangxi 341000, P.R. China
| | - Wen-Juan Ni
- School of Basic Medicine, Gannan Medical University, Ganzhou, Jiangxi 341000, P.R. China
| | - Fuhua Xie
- School of Basic Medicine, Gannan Medical University, Ganzhou, Jiangxi 341000, P.R. China
| | - Xiao-Min Leng
- School of Basic Medicine, Gannan Medical University, Ganzhou, Jiangxi 341000, P.R. China
| |
Collapse
|
56
|
Wang L, Cui X, Jiang F, Hu Y, Wan W, Li G, Lin Y, Xiao J. Circular RNA Translation in Cardiovascular Diseases. Curr Genomics 2023; 24:66-71. [PMID: 37994328 PMCID: PMC10662380 DOI: 10.2174/1389202924666230911121358] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2023] [Revised: 06/08/2023] [Accepted: 08/09/2023] [Indexed: 11/24/2023] Open
Abstract
Circular RNAs (circRNAs) are a class of endogenous functional RNA generated by back-splicing. Recently, circRNAs have been found to have certain coding potential. Proteins/peptides translated from circRNAs play essential roles in various diseases. Here, we briefly summarize the basic knowledge and technologies that are usually applied to study circRNA translation. Then, we focus on the research progress of circRNA translation in cardiovascular diseases and discuss the perspective and future direction of translatable circRNA study in cardiovascular diseases.
Collapse
Affiliation(s)
- Lijun Wang
- Institute of Geriatrics (Shanghai University), Affiliated Nantong Hospital of Shanghai University (The Sixth People’s Hospital of Nantong), School of Medicine, Shanghai University, Nantong, 226011, China
- Cardiac Regeneration and Ageing Lab, Institute of Cardiovascular Sciences, Shanghai Engineering Research Center of Organ Repair, School of Life Science, Shanghai University, Shanghai, 200444, China
| | - Xinxin Cui
- Institute of Geriatrics (Shanghai University), Affiliated Nantong Hospital of Shanghai University (The Sixth People’s Hospital of Nantong), School of Medicine, Shanghai University, Nantong, 226011, China
- Cardiac Regeneration and Ageing Lab, Institute of Cardiovascular Sciences, Shanghai Engineering Research Center of Organ Repair, School of Life Science, Shanghai University, Shanghai, 200444, China
| | - Fei Jiang
- Department of Nursing, Union Hospital, Fujian Medical University Union Hospital, Fuzhou, 350001, China
- Fujian Provincial Special Reserve Talents Laboratory, Fujian Medical University Union Hospital, Fuzhou, 350001, China
| | - Yuxue Hu
- Institute of Geriatrics (Shanghai University), Affiliated Nantong Hospital of Shanghai University (The Sixth People’s Hospital of Nantong), School of Medicine, Shanghai University, Nantong, 226011, China
- Cardiac Regeneration and Ageing Lab, Institute of Cardiovascular Sciences, Shanghai Engineering Research Center of Organ Repair, School of Life Science, Shanghai University, Shanghai, 200444, China
| | - Wensi Wan
- Institute of Geriatrics (Shanghai University), Affiliated Nantong Hospital of Shanghai University (The Sixth People’s Hospital of Nantong), School of Medicine, Shanghai University, Nantong, 226011, China
- Cardiac Regeneration and Ageing Lab, Institute of Cardiovascular Sciences, Shanghai Engineering Research Center of Organ Repair, School of Life Science, Shanghai University, Shanghai, 200444, China
| | - Guoping Li
- Cardiovascular Division of the Massachusetts General Hospital and Harvard Medical School, Boston, MA, 02114, USA
| | - Yanjuan Lin
- Department of Nursing, Union Hospital, Fujian Medical University Union Hospital, Fuzhou, 350001, China
- Fujian Provincial Special Reserve Talents Laboratory, Fujian Medical University Union Hospital, Fuzhou, 350001, China
| | - Junjie Xiao
- Institute of Geriatrics (Shanghai University), Affiliated Nantong Hospital of Shanghai University (The Sixth People’s Hospital of Nantong), School of Medicine, Shanghai University, Nantong, 226011, China
- Cardiac Regeneration and Ageing Lab, Institute of Cardiovascular Sciences, Shanghai Engineering Research Center of Organ Repair, School of Life Science, Shanghai University, Shanghai, 200444, China
| |
Collapse
|
57
|
Ruiz Esparza Garrido R, Velázquez Flores MÁ. Circular RNAs: the next level of gene regulation. Am J Transl Res 2023; 15:6122-6135. [PMID: 37969203 PMCID: PMC10641363] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2023] [Accepted: 10/07/2023] [Indexed: 11/17/2023]
Abstract
Gene regulation is a highly complex process involving the presence and participation of many molecules and complexes that regulate gene expression in the genome, which occurs in a precise and coordinated way. Among all these regulatory molecules, the circular RNAs (circRNAs) are the most novel and peculiar family of noncoding RNAs (ncRNAs) as they have a circular structure, are very specific on their expression, highly conserved, and highly resistant to degradation. These molecules have been described in recent years as excellent disease markers and as potential therapeutic targets. In this review, we focused on general characteristics and on the evolution of the circRNAs, as well as on their biological functions, emphasizing on their participation in the formation of brain tumors.
Collapse
Affiliation(s)
- Ruth Ruiz Esparza Garrido
- Investigadora por México, Laboratorio de RNAs No Codificantes de la Unidad de Investigación Médica en Genética Humana, Hospital de Pediatría CMNSXXI, Instituto Mexicano del Seguro Social (IMSS)CDMX, México
| | - Miguel Ángel Velázquez Flores
- Laboratorio de RNAs No Codificantes de la Unidad de Investigación Médica en Genética Humana, Hospital de Pediatría CMNSXXI, Instituto Mexicano del Seguro Social (IMSS)CDMX, México
| |
Collapse
|
58
|
Hwang JY, Kook TL, Paulus SM, Park JW. Translation of Circular RNAs: Functions of Translated Products and Related Bioinformatics Approaches. Curr Bioinform 2023; 19:3-13. [PMID: 38500957 PMCID: PMC10947221 DOI: 10.2174/1574893618666230505101059] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2022] [Revised: 03/09/2023] [Accepted: 03/16/2023] [Indexed: 03/20/2024]
Abstract
Over the past two decades, studies have discovered a special form of alternative splicing (AS) that produces a circular form of RNA. This stands in contrast to normal AS, which produces a linear form of RNA. Although these circRNAs have garnered considerable attention in the scientific community for their biogenesis and functions, the focus of these studies has been on the regulatory role of circRNAs with the assumption that circRNAs are non-coding. As non-coding RNAs, they may regulate mRNA transcription, tumor initiation, and translation by sponging miRNAs and RNA-binding proteins (RBPs). In addition to these regulatory roles of circRNAs, however, recent studies have provided strong evidence for their translation. The translation of circRNAs is expected to have an important role in promoting cancer cell growth and activating molecular pathways related to cancer development. In some cases, the translation of circRNAs is shown to be efficiently driven by an internal ribosome entry site (IRES). The development of a computational tool for identifying and characterizing the translation of circRNAs using high-throughput sequencing and IRES increases identifiable proteins translated from circRNAs. In turn, it has a substantial impact on helping researchers understand the functional role of proteins derived from circRNAs. New web resources for aggregating, cataloging, and visualizing translational information of circRNAs derived from previous studies have been developed. In this paper, general concepts of circRNA, circRNA biogenesis, translation of circRNA, and existing circRNA tools and databases are summarized to provide new insight into circRNA studies.
Collapse
Affiliation(s)
- Jae Yeon Hwang
- Department of Computer Science and Engineering, University of Louisville, Louisville, KY 40292, USA
| | - Tae Lim Kook
- Department of Computer Science and Engineering, University of Louisville, Louisville, KY 40292, USA
| | - Sydney M. Paulus
- Department of Computer Science and Engineering, University of Louisville, Louisville, KY 40292, USA
| | - Juw Won Park
- Department of Computer Science and Engineering, University of Louisville, Louisville, KY 40292, USA
- KY INBRE Bioinformatics Core, University of Louisville, Louisville, KY 40292, USA
- CIEHS Biostatistics and Informatics Facility Core, University of Louisville, Louisville, KY 40292, USA
| |
Collapse
|
59
|
Lu J, Ru J, Chen Y, Ling Z, Liu H, Ding B, Jiang Y, Ma J, Zhang D, Ge J, Li Y, Sun F, Chen D, Zheng S, Wu J. N 6 -methyladenosine-modified circSTX6 promotes hepatocellular carcinoma progression by regulating the HNRNPD/ATF3 axis and encoding a 144 amino acid polypeptide. Clin Transl Med 2023; 13:e1451. [PMID: 37877357 PMCID: PMC10599281 DOI: 10.1002/ctm2.1451] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2023] [Revised: 09/24/2023] [Accepted: 10/04/2023] [Indexed: 10/26/2023] Open
Abstract
BACKGROUND Circular RNAs (circRNAs) play a significant role in the initiation and progression of various cancers, including hepatocellular carcinoma (HCC). Circular syntaxin 6 (circSTX6, also known as hsa_circ_0007905) has been identified as a microRNA (miRNA) sponge in pancreatic adenocarcinoma. However, its full range of functions in terms of protein scaffold and translation remain largely unexplored in the context of HCC. METHODS The expression of circSTX6 and its encoded protein was examined in HCC tumour tissues. N6 -methyladenosine (m6 A) on circSTX6 was verified and quantified by methylated RNA immunoprecipitation (Me-RIP), RIP and dual luciferase reporter assays. The biological functions of circSTX6 and its encoded protein in HCC were clarified by in vitro and in vivo experiments. Mechanistically, the interaction between circSTX6 and heterogeneous nuclear ribonucleoprotein D (HNRNPD) was investigated by RNA pull-down, RIP and fluorescence in situ hybridization (FISH)/IF. The regulatory effects of circSTX6 and HNRNPD on activating transcription factor 3 (ATF3) mRNA were determined by mRNA stability and RIP assays. Furthermore, the presence of circSTX6-encoded protein was verified by mass spectrometry. RESULTS CircSTX6 and its encoded 144 amino acid polypeptide, circSTX6-144aa, were highly expressed in HCC tumour tissues and served as independent risk factors for overall survival in HCC patients. The expression of circSTX6 was regulated by METTL14 in an m6 A-dependent manner. Functionally, circSTX6 accelerated HCC proliferation and tumourigenicity and reinforced tumour metastasis in vitro and in vivo. Mechanistically, circSTX6 acted as a sponge for HNRNPD protein, facilitating its binding to ATF3 mRNA, consequently promoting ATF3 mRNA decay. Meanwhile, circSTX6-144aa promoted HCC proliferation, migration and invasion independent of circSTX6 itself. CONCLUSION Collectively, our study reveals that m6 A-modified circSTX6 drives malignancy in HCC through the HNRNPD/ATF3 axis, while its encoded circSTX6-144aa contributes to HCC progression independent of circSTX6. CirSTX6 and its encoded protein hold promise as potential biomarkers and therapeutic targets in HCC.
Collapse
|
60
|
Yu MZ, Wang NN, Zhu JQ, Lin YX. The clinical progress and challenges of mRNA vaccines. WILEY INTERDISCIPLINARY REVIEWS. NANOMEDICINE AND NANOBIOTECHNOLOGY 2023; 15:e1894. [PMID: 37096256 DOI: 10.1002/wnan.1894] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Revised: 03/14/2023] [Accepted: 03/20/2023] [Indexed: 04/26/2023]
Abstract
Owing to the breakthroughs in the prevention and control of the COVID-19 pandemic, messenger RNA (mRNA)-based vaccines have emerged as promising alternatives to conventional vaccine approaches for infectious disease prevention and anticancer treatments. Advantages of mRNA vaccines include flexibility in designing and manipulating antigens of interest, scalability in rapid response to new variants, ability to induce both humoral and cell-mediated immune responses, and ease of industrialization. This review article presents the latest advances and innovations in mRNA-based vaccines and their clinical translations in the prevention and treatment of infectious diseases or cancers. We also highlight various nanoparticle delivery platforms that contribute to their success in clinical translation. Current challenges related to mRNA immunogenicity, stability, and in vivo delivery and the strategies for addressing them are also discussed. Finally, we provide our perspectives on future considerations and opportunities for applying mRNA vaccines to fight against major infectious diseases and cancers. This article is categorized under: Therapeutic Approaches and Drug Discovery > Emerging Technologies Therapeutic Approaches and Drug Discovery > Nanomedicine for Infectious Disease Biology-Inspired Nanomaterials > Lipid-Based Structures.
Collapse
Affiliation(s)
- Meng-Zhen Yu
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, National Center for Nanoscience and Technology (NCNST), Beijing, People's Republic of China
- University of Chinese Academy of Sciences (UCAS), Beijing, People's Republic of China
| | - Nan-Nan Wang
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, National Center for Nanoscience and Technology (NCNST), Beijing, People's Republic of China
- University of Chinese Academy of Sciences (UCAS), Beijing, People's Republic of China
| | - Jia-Qing Zhu
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, National Center for Nanoscience and Technology (NCNST), Beijing, People's Republic of China
| | - Yao-Xin Lin
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, National Center for Nanoscience and Technology (NCNST), Beijing, People's Republic of China
- University of Chinese Academy of Sciences (UCAS), Beijing, People's Republic of China
| |
Collapse
|
61
|
Liu N, Zhang Z, Wu Y, Wang Y, Liang Y. CRBSP:Prediction of CircRNA-RBP Binding Sites Based on Multimodal Intermediate Fusion. IEEE/ACM TRANSACTIONS ON COMPUTATIONAL BIOLOGY AND BIOINFORMATICS 2023; 20:2898-2906. [PMID: 37130249 DOI: 10.1109/tcbb.2023.3272400] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
Circular RNA (CircRNA) is widely expressed and has physiological and pathological significance, regulating post-transcriptional processes via its protein-binding activity. However, whereas much work has been done on linear RNA and RNA binding protein (RBP), little is known about the binding sites of CircRNA. The current report is on the development of a medium-term multimodal data fusion strategy, CRBSP, to predict CircRNA-RBP binding sites. CRBSP represents the CircRNA trinucleotide semantic, location, composition and frequency information as the corresponding coding methods of Word to vector (Word2vec), Position-specific trinucleotide propensity (PSTNP), Pseudo trinucleotide composition (PseTNC) and Trinucleotide nucleotide composition (TNC), respectively. CNN (Convolution Neural Networks) was used to extract global information and BiLSTM (bidirectional Long- and Short-Term Memory network) encoder and LSTM (Long- and Short-Term Memory network) decoder for local sequence information. Enhancement of the contributions of key features by the self-attention mechanism was followed by mid-term fusion of the four enhanced features. Logistic Regression (LR) classifier showed that CRBSP gives a mean AUC value of 0.9362 through 5-fold Cross Validation of all 37 datasets, a performance which is superior to five current state-of-the-art models. Similar evaluation of linear RNA-RBP binding sites gave an AUC value of 0.7615 which is also higher than other prediction methods, demonstrating the robustness of CRBSP.
Collapse
|
62
|
Li J, Li X, Zhou S, Wang Y, Ying T, Wang Q, Wu Y, Zhao F. Circular RNA circARPC1B functions as a stabilisation enhancer of Vimentin to prevent high cholesterol-induced articular cartilage degeneration. Clin Transl Med 2023; 13:e1415. [PMID: 37740460 PMCID: PMC10517209 DOI: 10.1002/ctm2.1415] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2023] [Revised: 09/01/2023] [Accepted: 09/05/2023] [Indexed: 09/24/2023] Open
Abstract
BACKGROUND Osteoarthritis (OA) is a prevalent and debilitating condition, that is, directly associated with cholesterol metabolism. Nevertheless, the molecular mechanisms of OA remain largely unknown, and the role of cholesterol in this process has not been thoroughly investigated. This study aimed to investigate the role of a novel circular RNA, circARPC1B in the relationship between cholesterol and OA progression. METHODS We measured total cholesterol (TC) levels in the synovial fluid of patients with or without OA to determine the diagnostic role of cholesterol in OA. The effects of cholesterol were explored in human and mouse chondrocytes in vitro. An in vivo OA model was also established in mice fed a high-cholesterol diet (HCD) to explore the role of cholesterol in OA. RNAseq analysis was used to study the influence of cholesterol on circRNAs in chondrocytes. The role of circARPC1B in the OA development was verified through circARPC1B overexpression and knockdown. Additionally, RNA pulldown assays and RNA binding protein immunoprecipitation were used to determine the interaction between circARPC1B and Vimentin. CircARPC1B adeno-associated virus (AAV) was used to determine the role of circARPC1B in cholesterol-induced OA. RESULTS TC levels in synovial fluid of OA patients were found to be elevated and exhibited high sensitivity and specificity as predictors of OA diagnosis. Moreover, elevated cholesterol accelerated OA progression. CircARPC1B was downregulated in chondrocytes treated with cholesterol and played a crucial role in preserving the extracellular matrix (ECM). Mechanistically, circARPC1B is competitively bound to the E3 ligase synoviolin 1 (SYVN1) binding site on Vimentin, inhibiting the proteasomal degradation of Vimentin. Furthermore, circARPC1B AAV infection alleviates Vimentin degradation and OA progression caused by high cholesterol. CONCLUSIONS These findings indicate that the cholesterol-circARPC1B-Vimentin axis plays a crucial role in OA progression, and circARPC1B gene therapy has the opportunity to provide a potential therapeutic approach for OA.
Collapse
Affiliation(s)
- Jiarui Li
- Department of Orthopaedic Surgery, The First Affiliated HospitalZhejiang University School of MedicineHangzhouChina
| | - Xiang Li
- Department of Orthopaedic Surgery, The First Affiliated HospitalZhejiang University School of MedicineHangzhouChina
| | - Shengji Zhou
- Department of Orthopaedic Surgery, The First Affiliated HospitalZhejiang University School of MedicineHangzhouChina
| | - Yuxin Wang
- Department of Orthopaedic Surgery, The First Affiliated HospitalZhejiang University School of MedicineHangzhouChina
| | - Tiantian Ying
- Department of Orthopaedic Surgery, The First Affiliated HospitalZhejiang University School of MedicineHangzhouChina
| | - Quan Wang
- Department of Orthopaedic Surgery, The First Affiliated HospitalZhejiang University School of MedicineHangzhouChina
| | - Yizheng Wu
- Department of Orthopaedic Surgery, Sir Run Run Shaw Hospital, Zhejiang UniversitySchool of MedicineHangzhouChina
| | - Fengchao Zhao
- Department of Orthopaedic Surgery, The First Affiliated HospitalZhejiang University School of MedicineHangzhouChina
| |
Collapse
|
63
|
Chen YC, Chen CY, Chiang TW, Chan MH, Hsiao M, Ke HM, Tsai I, Chuang TJ. Detecting intragenic trans-splicing events from non-co-linearly spliced junctions by hybrid sequencing. Nucleic Acids Res 2023; 51:7777-7797. [PMID: 37497782 PMCID: PMC10450196 DOI: 10.1093/nar/gkad623] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2022] [Accepted: 07/14/2023] [Indexed: 07/28/2023] Open
Abstract
Trans-spliced RNAs (ts-RNAs) are a type of non-co-linear (NCL) transcripts that consist of exons in an order topologically inconsistent with the corresponding DNA template. Detecting ts-RNAs is often interfered by experimental artifacts, circular RNAs (circRNAs) and genetic rearrangements. Particularly, intragenic ts-RNAs, which are derived from separate precursor mRNA molecules of the same gene, are often mistaken for circRNAs through analyses of RNA-seq data. Here we developed a bioinformatics pipeline (NCLscan-hybrid), which integrated short and long RNA-seq reads to minimize false positives and proposed out-of-circle and rolling-circle long reads to distinguish between intragenic ts-RNAs and circRNAs. Combining NCLscan-hybrid screening and multiple experimental validation steps successfully confirmed that four NCL events, which were previously regarded as circRNAs in databases, originated from trans-splicing. CRISPR-based endogenous genome modification experiments further showed that flanking intronic complementary sequences can significantly contribute to ts-RNA formation, providing an efficient/specific method to deplete ts-RNAs. We also experimentally validated that one ts-RNA (ts-ARFGEF1) played an important role for p53-mediated apoptosis through affecting the PERK/eIF2a/ATF4/CHOP signaling pathway in breast cancer cells. This study thus described both bioinformatics procedures and experimental validation steps for rigorous characterization of ts-RNAs, expanding future studies for identification, biogenesis, and function of these important but understudied transcripts.
Collapse
Affiliation(s)
- Yu-Chen Chen
- Genomics Research Center, Academia Sinica, Taipei, Taiwan
| | - Chia-Ying Chen
- Genomics Research Center, Academia Sinica, Taipei, Taiwan
| | - Tai-Wei Chiang
- Genomics Research Center, Academia Sinica, Taipei, Taiwan
| | - Ming-Hsien Chan
- Genomics Research Center, Academia Sinica, Taipei, Taiwan
- Department of Biomedical Imaging and Radiological Sciences, National Yang Ming Chiao Tung University, Taipei, Taiwan
| | - Michael Hsiao
- Genomics Research Center, Academia Sinica, Taipei, Taiwan
| | - Huei-Mien Ke
- Biodiversity Research Center, Academia Sinica, Taipei, Taiwan
- Department of Microbiology, Soochow University, Taipei, Taiwan
| | | | | |
Collapse
|
64
|
Rao G, Peng X, Tian Y, Fu X, Zhang Y. Circular RNAs in hepatocellular carcinoma: biogenesis, function, and pathology. Front Genet 2023; 14:1106665. [PMID: 37485335 PMCID: PMC10361733 DOI: 10.3389/fgene.2023.1106665] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2022] [Accepted: 06/16/2023] [Indexed: 07/25/2023] Open
Abstract
Hepatocellular carcinoma (HCC) is one of the most common causes of cancer-related death worldwide. Both genetic and environmental factors through a multitude of underlying molecular mechanisms participate in the pathogenesis of HCC. Recently, numerous studies have shown that circular RNAs (circRNAs), an emerging class of non-coding RNAs characterized by the presence of covalent bonds linking 3' and 5' ends, play an important role in the initiation and progression of cancers, including HCC. In this review, we outline the current status of the field of circRNAs, with an emphasis on the functions and mechanisms of circRNAs in HCC and its microenvironment. We also summarize and discuss recent advances of circRNAs as biomarkers and therapeutic targets. These efforts are anticipated to throw new insights into future perspectives about circRNAs in basic, translational and clinical research, eventually advancing the diagnosis, prevention and treatment of HCC.
Collapse
Affiliation(s)
- Guocheng Rao
- Department of Endocrinology and Metabolism, Cancer Center West China Hospital, Sichuan University, Chengdu, Sichuan, China
- Department of Endocrinology and Metabolism, West China Hospital, West China Medical School, Sichuan University, Chengdu, Sichuan, China
| | - Xi Peng
- Department of Endocrinology and Metabolism, Cancer Center West China Hospital, Sichuan University, Chengdu, Sichuan, China
- Department of Endocrinology and Metabolism, West China Hospital, West China Medical School, Sichuan University, Chengdu, Sichuan, China
| | - Yan Tian
- Department of Endocrinology and Metabolism, Cancer Center West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Xianghui Fu
- Department of Endocrinology and Metabolism, Cancer Center West China Hospital, Sichuan University, Chengdu, Sichuan, China
- Department of Endocrinology and Metabolism, West China Hospital, West China Medical School, Sichuan University, Chengdu, Sichuan, China
| | - Yuwei Zhang
- Department of Endocrinology and Metabolism, West China Hospital, West China Medical School, Sichuan University, Chengdu, Sichuan, China
| |
Collapse
|
65
|
Song R, Guo P, Ren X, Zhou L, Li P, Rahman NA, Wołczyński S, Li X, Zhang Y, Liu M, Liu J, Li X. A novel polypeptide CAPG-171aa encoded by circCAPG plays a critical role in triple-negative breast cancer. Mol Cancer 2023; 22:104. [PMID: 37408008 DOI: 10.1186/s12943-023-01806-x] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Accepted: 06/11/2023] [Indexed: 07/07/2023] Open
Abstract
BACKGROUND The treatment of Triple-negative breast cancer (TNBC) has always been challenging due to its heterogeneity and the absence of well-defined molecular targets. The present study aims to elucidate the role of protein-coding circRNAs in the etiology and carcinogenesis of TNBC. METHODS CircRNA expression data in TNBC (GEO: GSE113230, GSE101123) were reanalyzed and then circCAPG was selected for further study. To identify the polypeptide-coding function of circCAPG, a series of experiments, such as Mass spectrometry and dual-luciferase reporter assays were conducted. Cell proliferation, apoptosis and metastasis parameters were determined to investigate the cancerous functions CAPG-171aa plays in both TNBC organoids and nude mice. Mechanistically, the relation between CAPG-171aa and STK38 in TNBC was verified by immunoprecipitation analyses and mass spectrometry. The interactions between SLU7 and its binding site on circCAPG were validated by RIP-qPCR experiments. RESULTS In both TNBC clinical samples and cell lines, the expression level of circCAPG was identified to be higher compared with normal ones and positively correlated with the overall survival (n = 132) in a 10-year follow-up study, in which the area under the curve of receiver operating characteristic was 0.8723 with 100% specificity and 80% sensitivity. In addition, we found that circCAPG knockdown (KD) significantly inhibited the growth of TNBC organoids. Intriguingly, circCAPG can be translated into a polypeptide named CAPG-171aa which promotes tumor growh by disrupting the binding of serine/threonine kinase 38 (STK38) to SMAD-specific E3 ubiquitin protein ligase 1 (SMURF1) and thereby preventing MEKK2 ubiquitination and proteasomal degradation. Furthermore, we found that SLU7 Homolog- Splicing Factor (SLU7) can regulate the bio-generation of circCAPG through binding to the flanking Alu sequences of circRNA transcripts. CONCLUSIONS circCAPG significantly enhances the proliferation and metastasis of TNBC cells by encoding a novel polypeptide CAPG-171aa and afterwards activates MEKK2-MEK1/2-ERK1/2 pathway. Additionally, the formation of circCAPG is found to be mediated by SLU7. The present study provides innovative insight into the role of protein-coding circRNAs CAPG-171aa in TNBC, and its capacity to serve as a promising prognostic biomarker and potential therapeutic target in TNBC.
Collapse
Affiliation(s)
- Runjie Song
- State Key Laboratory of Agrobiotechnology, College of Biological Sciences, China Agricultural University, Beijing, 100193, China
| | - Peilan Guo
- State Key Laboratory of Agrobiotechnology, College of Biological Sciences, China Agricultural University, Beijing, 100193, China
| | - Xin Ren
- State Key Laboratory of Agrobiotechnology, College of Biological Sciences, China Agricultural University, Beijing, 100193, China
| | - Lijun Zhou
- State Key Laboratory of Agrobiotechnology, College of Biological Sciences, China Agricultural University, Beijing, 100193, China
| | - Peng Li
- State Key Laboratory of Agrobiotechnology, College of Biological Sciences, China Agricultural University, Beijing, 100193, China
| | - Nafis A Rahman
- Department of Physiology, Institute of Biomedicine, University of Turku, Turku, Finland
- Department of Reproduction and Gynecological Endocrinology, Medical University of Bialystok, Bialystok, Poland
| | - Sławomir Wołczyński
- Department of Reproduction and Gynecological Endocrinology, Medical University of Bialystok, Bialystok, Poland
| | - Xiru Li
- Department of General Surgery, Chinese PLA General Hospital, Beijing, 100071, China
| | - Yanjun Zhang
- Department of General Surgery, Chinese PLA General Hospital, Beijing, 100071, China
| | - Mei Liu
- Department of Pathology, Chinese PLA General Hospital, Beijing, 100071, China
| | - Jiali Liu
- State Key Laboratory of Agrobiotechnology, College of Biological Sciences, China Agricultural University, Beijing, 100193, China
| | - Xiangdong Li
- State Key Laboratory of Agrobiotechnology, College of Biological Sciences, China Agricultural University, Beijing, 100193, China.
- Department of Reproduction and Gynecological Endocrinology, Medical University of Bialystok, Bialystok, Poland.
| |
Collapse
|
66
|
Cheng J, Li G, Wang W, Stovall DB, Sui G, Li D. Circular RNAs with protein-coding ability in oncogenesis. Biochim Biophys Acta Rev Cancer 2023; 1878:188909. [PMID: 37172651 DOI: 10.1016/j.bbcan.2023.188909] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2023] [Revised: 05/08/2023] [Accepted: 05/08/2023] [Indexed: 05/15/2023]
Abstract
As ubiquitously expressed transcripts in eukaryotes, circular RNAs (circRNAs) are covalently closed and lack a 5'-cap and 3'-polyadenylation (poly (A)) tail. Initially, circRNAs were considered non-coding RNA (ncRNA), and their roles as sponging molecules to adsorb microRNAs have been extensively reported. However, in recent years, accumulating evidence has demonstrated that circRNAs could encode functional polypeptides through the initiation of translation mediated by internal ribosomal entry sites (IRESs) or N6-methyladenosine (m6A). In this review, we collectively discuss the biogenesis, cognate mRNA products, regulatory mechanisms, aberrant expression and biological phenotypes or clinical relevance of all currently reported, cancer-relevant protein-coding circRNAs. Overall, we provide a comprehensive overview of circRNA-encoded proteins and their physiological and pathological functions.
Collapse
Affiliation(s)
- Jiahui Cheng
- College of Life Science, Northeast Forestry University, Harbin 150040, China
| | - Guangyue Li
- College of Life Science, Northeast Forestry University, Harbin 150040, China
| | - Wenmeng Wang
- College of Life Science, Northeast Forestry University, Harbin 150040, China
| | - Daniel B Stovall
- College of Arts and Sciences, Winthrop University, Rock Hill, SC 29733, United States
| | - Guangchao Sui
- College of Life Science, Northeast Forestry University, Harbin 150040, China.
| | - Dangdang Li
- College of Life Science, Northeast Forestry University, Harbin 150040, China.
| |
Collapse
|
67
|
Montañés-Agudo P, van der Made I, Aufiero S, Tijsen AJ, Pinto YM, Creemers EE. Quaking regulates circular RNA production in cardiomyocytes. J Cell Sci 2023; 136:jcs261120. [PMID: 37272356 PMCID: PMC10323251 DOI: 10.1242/jcs.261120] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2023] [Accepted: 05/25/2023] [Indexed: 06/06/2023] Open
Abstract
Circular RNAs (circRNAs) are a class of non-coding RNA molecules that are gaining increasing attention for their roles in various pathophysiological processes. The RNA-binding protein quaking (QKI) has been identified as a regulator of circRNA formation. In this study, we investigate the role of QKI in the formation of circRNAs in the heart by performing RNA-sequencing on Qki-knockout mice. Loss of QKI resulted in the differential expression of 17% of the circRNAs in adult mouse hearts. Interestingly, the majority of the QKI-regulated circRNAs (58%) were derived from genes undergoing QKI-dependent splicing, indicating a relationship between back-splicing and linear splicing. We compared these QKI-dependent circRNAs with those regulated by RBM20, another cardiac splicing factor essential for circRNA formation. We found that QKI and RBM20 regulate the formation of a distinct, but partially overlapping set of circRNAs in the heart. Strikingly, many shared circRNAs were derived from the Ttn gene, and they were regulated in an opposite manner. Our findings indicate that QKI not only regulates alternative splicing in the heart but also the formation of circRNAs.
Collapse
Affiliation(s)
- Pablo Montañés-Agudo
- Department of Experimental Cardiology, Amsterdam Cardiovascular Sciences, Amsterdam UMC location University of Amsterdam, 1105AZ, Amsterdam, The Netherlands
| | - Ingeborg van der Made
- Department of Experimental Cardiology, Amsterdam Cardiovascular Sciences, Amsterdam UMC location University of Amsterdam, 1105AZ, Amsterdam, The Netherlands
| | - Simona Aufiero
- Department of Experimental Cardiology, Amsterdam Cardiovascular Sciences, Amsterdam UMC location University of Amsterdam, 1105AZ, Amsterdam, The Netherlands
| | - Anke J. Tijsen
- Department of Experimental Cardiology, Amsterdam Cardiovascular Sciences, Amsterdam UMC location University of Amsterdam, 1105AZ, Amsterdam, The Netherlands
| | - Yigal M. Pinto
- Department of Experimental Cardiology, Amsterdam Cardiovascular Sciences, Amsterdam UMC location University of Amsterdam, 1105AZ, Amsterdam, The Netherlands
| | - Esther E. Creemers
- Department of Experimental Cardiology, Amsterdam Cardiovascular Sciences, Amsterdam UMC location University of Amsterdam, 1105AZ, Amsterdam, The Netherlands
| |
Collapse
|
68
|
Li J, Song Y, Cai H, Zhou B, Ma J. Roles of circRNA dysregulation in esophageal squamous cell carcinoma tumor microenvironment. Front Oncol 2023; 13:1153207. [PMID: 37384299 PMCID: PMC10299836 DOI: 10.3389/fonc.2023.1153207] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2023] [Accepted: 05/30/2023] [Indexed: 06/30/2023] Open
Abstract
Esophageal squamous cell carcinoma (ESCC) is the most prevalent histological esophageal cancer characterized by advanced diagnosis, metastasis, resistance to treatment, and frequent recurrence. In recent years, numerous human disorders such as ESCC, have been linked to abnormal expression of circular RNAs (circRNAs), suggesting that they are fundamental to the intricate system of gene regulation that governs ESCC formation. The tumor microenvironment (TME), referring to the area surrounding the tumor cells, is composed of multiple components, including stromal cells, immune cells, the vascular system, extracellular matrix (ECM), and numerous signaling molecules. In this review, we briefly described the biological purposes and mechanisms of aberrant circRNA expression in the TME of ESCC, including the immune microenvironment, angiogenesis, epithelial-to-mesenchymal transition, hypoxia, metabolism, and radiotherapy resistance. As in-depth research into the processes of circRNAs in the TME of ESCC continues, circRNAs are promising therapeutic targets or delivery systems for cancer therapy and diagnostic and prognostic indicators for ESCC.
Collapse
Affiliation(s)
- Jingyi Li
- Department of Clinical Laboratory, The Second Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Yuxia Song
- Department of Reproductive Medicine, The Second Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Huihong Cai
- Department of Clinical Laboratory, The Second Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Bo Zhou
- Medical Research Center, The Second Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Jun Ma
- Department of Clinical Laboratory, The Second Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| |
Collapse
|
69
|
Liu H, Fang D, Zhang C, Zhao Z, Liu Y, Zhao S, Zhang N, Xu J. Circular MTHFD2L RNA-encoded CM-248aa inhibits gastric cancer progression by targeting the SET-PP2A interaction. Mol Ther 2023; 31:1739-1755. [PMID: 37101395 PMCID: PMC10277894 DOI: 10.1016/j.ymthe.2023.04.013] [Citation(s) in RCA: 24] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2022] [Revised: 01/10/2023] [Accepted: 04/21/2023] [Indexed: 04/28/2023] Open
Abstract
The available targeted therapies for gastric cancer (GC) are still limited, so it is important to discover novel molecules as potential treatment options. Proteins or peptides encoded by circular RNAs (circRNAs) are increasingly reported to play essential roles in malignancies. The aim of the present study was to identify an undiscovered protein encoded by circRNA and explore its key role and molecular mechanism in GC progression. CircMTHFD2L (hsa_circ_0069982) was screened and validated as a downregulated circRNA with coding potential. The protein encoded by circMTHFD2L, named CM-248aa, was identified for the first time by immunoprecipitation and mass spectrometry. CM-248aa was significantly downregulated in GC, while its low expression was associated with advanced tumor-node-metastasis (TNM) stage and histopathological grade. Low expression of CM-248aa could be an independent risk factor for poor prognosis. Functionally, CM-248aa, instead of circMTHFD2L suppressed the proliferation and metastasis of GC in vitro and in vivo. Mechanistically, CM-248aa competitively targeted the acidic domain of SET nuclear oncogene (SET) and acted as an endogenous inhibitor of the SET-protein phosphatase 2A interaction to promote dephosphorylation of AKT, extracellular signal-regulated kinase, and P65. Our discovery revealed that CM-248aa could be a potential prognostic biomarker and endogenous therapeutic option for GC.
Collapse
Affiliation(s)
- Haohan Liu
- Department of Gastrointestinal Surgery, The First Affiliated Hospital of Sun Yat-sen University, No. 58, Zhongshan 2 Road, Guangzhou, Guangdong 510080, People's Republic of China; Laboratory of General Surgery, The First Affiliated Hospital of Sun Yat-sen University, No. 58, Zhongshan 2 Road, Guangzhou, Guangdong 510080, People's Republic of China
| | - Deliang Fang
- Department of Gastrointestinal Surgery, The First Affiliated Hospital of Sun Yat-sen University, No. 58, Zhongshan 2 Road, Guangzhou, Guangdong 510080, People's Republic of China; Laboratory of General Surgery, The First Affiliated Hospital of Sun Yat-sen University, No. 58, Zhongshan 2 Road, Guangzhou, Guangdong 510080, People's Republic of China
| | - Chaoyue Zhang
- Department of Gastrointestinal Surgery, The First Affiliated Hospital of Sun Yat-sen University, No. 58, Zhongshan 2 Road, Guangzhou, Guangdong 510080, People's Republic of China
| | - Zirui Zhao
- Department of Gastrointestinal Surgery, The First Affiliated Hospital of Sun Yat-sen University, No. 58, Zhongshan 2 Road, Guangzhou, Guangdong 510080, People's Republic of China
| | - Yinan Liu
- Department of Gastrointestinal Surgery, The First Affiliated Hospital of Sun Yat-sen University, No. 58, Zhongshan 2 Road, Guangzhou, Guangdong 510080, People's Republic of China; Laboratory of General Surgery, The First Affiliated Hospital of Sun Yat-sen University, No. 58, Zhongshan 2 Road, Guangzhou, Guangdong 510080, People's Republic of China
| | - Shaoji Zhao
- Department of Gastrointestinal Surgery, The First Affiliated Hospital of Sun Yat-sen University, No. 58, Zhongshan 2 Road, Guangzhou, Guangdong 510080, People's Republic of China
| | - Nu Zhang
- Department of Neurosurgery, The First Affiliated Hospital of Sun Yat-sen University, No. 58, Zhongshan 2 Road, Guangzhou, Guangdong 510080, People's Republic of China.
| | - Jianbo Xu
- Department of Gastrointestinal Surgery, The First Affiliated Hospital of Sun Yat-sen University, No. 58, Zhongshan 2 Road, Guangzhou, Guangdong 510080, People's Republic of China.
| |
Collapse
|
70
|
Lyu Y, Tan B, Li L, Liang R, Lei K, Wang K, Wu D, Lin H, Wang M. A novel protein encoded by circUBE4B promotes progression of esophageal squamous cell carcinoma by augmenting MAPK/ERK signaling. Cell Death Dis 2023; 14:346. [PMID: 37264022 DOI: 10.1038/s41419-023-05865-2] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2022] [Revised: 04/23/2023] [Accepted: 05/16/2023] [Indexed: 06/03/2023]
Abstract
Esophageal squamous carcinoma (ESCC) is a common malignant cancer. Although the non-coding roles of circRNAs in the pathogenesis of human tumors have been well studied, whether circRNAs participate in the progression of ESCC by encoding novel proteins remains unclear. In this study, we identified an overexpression circRNA with protein-coding ability in ESCC tissues, called circUBE4B, whose expression level is correlated with tumor size and tumor differentiation level of ESCC patients. Moreover, a higher level of circUBE4B in ESCC patients is correlated with a worse prognosis. Functionally, we found that circUBE4B promoted the proliferation of ESCC cells by encoding a novel cancer-promoting protein, circUBE4B-173aa. Mechanistically, the circUBE4B-173aa protein interacts with MAPK1 and promotes the phosphorylation level of MAPK1 to eventually activate MAPK/ERK signaling pathway. The xenograft model revealed that overexpression of circUBE4B-173aa in ESCC cells significantly promoted the growth of grafts. Our study provides new insights into the mechanism of circRNA in the development of ESCC and circUBE4B-173aa has the potential to serve as a biomarker and a novel therapeutic target for ESCC therapy.
Collapse
Affiliation(s)
- Yingcheng Lyu
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, 510120, Guangzhou, China
- Department of Thoracic Surgery, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, 510120, Guangzhou, China
| | - Binghua Tan
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, 510120, Guangzhou, China
- Department of Thoracic Surgery, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, 510120, Guangzhou, China
| | - Lin Li
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, 510120, Guangzhou, China
- Department of Thoracic Surgery, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, 510120, Guangzhou, China
| | - Ruihao Liang
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, 510120, Guangzhou, China
- Department of Thoracic Surgery, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, 510120, Guangzhou, China
| | - Kai Lei
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, 510120, Guangzhou, China
- Department of Thoracic Surgery, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, 510120, Guangzhou, China
| | - Kefeng Wang
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, 510120, Guangzhou, China
- Department of Thoracic Surgery, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, 510120, Guangzhou, China
| | - Duoguang Wu
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, 510120, Guangzhou, China
- Department of Thoracic Surgery, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, 510120, Guangzhou, China
| | - Huayue Lin
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, 510120, Guangzhou, China.
- Breast Tumor Center, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, 510120, Guangzhou, China.
| | - Minghui Wang
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, 510120, Guangzhou, China.
- Department of Thoracic Surgery, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, 510120, Guangzhou, China.
| |
Collapse
|
71
|
Bersani F, Picca F, Morena D, Righi L, Napoli F, Russo M, Oddo D, Rospo G, Negrino C, Castella B, Volante M, Listì A, Zambelli V, Benso F, Tabbò F, Bironzo P, Monteleone E, Poli V, Pietrantonio F, Di Nicolantonio F, Bardelli A, Ponzetto C, Novello S, Scagliotti GV, Taulli R. Exploring circular MET RNA as a potential biomarker in tumors exhibiting high MET activity. J Exp Clin Cancer Res 2023; 42:120. [PMID: 37170152 PMCID: PMC10176894 DOI: 10.1186/s13046-023-02690-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2023] [Accepted: 04/27/2023] [Indexed: 05/13/2023] Open
Abstract
BACKGROUND MET-driven acquired resistance is emerging with unanticipated frequency in patients relapsing upon molecular therapy treatments. However, the determination of MET amplification remains challenging using both standard and next-generation sequencing-based methodologies. Liquid biopsy is an effective, non-invasive approach to define cancer genomic profiles, track tumor evolution over time, monitor treatment response and detect molecular resistance in advance. Circular RNAs (circRNAs), a family of RNA molecules that originate from a process of back-splicing, are attracting growing interest as potential novel biomarkers for their stability in body fluids. METHODS We identified a circRNA encoded by the MET gene (circMET) and exploited blood-derived cell-free RNA (cfRNA) and matched tumor tissues to identify, stratify and monitor advanced cancer patients molecularly characterized by high MET activity, generally associated with genomic amplification. RESULTS Using publicly available bioinformatic tools, we discovered that the MET locus transcribes several circRNA molecules, but only one candidate, circMET, was particularly abundant. Deeper molecular analysis revealed that circMET levels positively correlated with MET expression and activity, especially in MET-amplified cells. We developed a circMET-detection strategy and, in parallel, we performed standard FISH and IHC analyses in the same specimens to assess whether circMET quantification could identify patients displaying high MET activity. Longitudinal monitoring of circMET levels in the plasma of selected patients revealed the early emergence of MET amplification as a mechanism of acquired resistance to molecular therapies. CONCLUSIONS We found that measurement of circMET levels allows identification and tracking of patients characterized by high MET activity. Circulating circMET (ccMET) detection and analysis could be a simple, cost-effective, non-invasive approach to better implement patient stratification based on MET expression, as well as to dynamically monitor over time both therapy response and clonal evolution during treatment.
Collapse
Affiliation(s)
- Francesca Bersani
- Department of Oncology, University of Torino, Orbassano, Italy
- Center for Experimental Research and Medical Studies (CeRMS), AOU Città della Salute e della Scienza di Torino, Turin, Italy
| | - Francesca Picca
- Department of Oncology, University of Torino, Orbassano, Italy
- Center for Experimental Research and Medical Studies (CeRMS), AOU Città della Salute e della Scienza di Torino, Turin, Italy
| | - Deborah Morena
- Department of Oncology, University of Torino, Orbassano, Italy
- Center for Experimental Research and Medical Studies (CeRMS), AOU Città della Salute e della Scienza di Torino, Turin, Italy
| | - Luisella Righi
- Pathology Unit, Department of Oncology at San Luigi Hospital, University of Torino, Orbassano, Italy
| | - Francesca Napoli
- Pathology Unit, Department of Oncology at San Luigi Hospital, University of Torino, Orbassano, Italy
| | - Mariangela Russo
- Department of Oncology, University of Torino, Orbassano, Italy
- Candiolo Cancer Institute, FPO-IRCCS, Candiolo, Italy
| | - Daniele Oddo
- Department of Oncology, University of Torino, Orbassano, Italy
- Candiolo Cancer Institute, FPO-IRCCS, Candiolo, Italy
| | - Giuseppe Rospo
- Department of Oncology, University of Torino, Orbassano, Italy
- Candiolo Cancer Institute, FPO-IRCCS, Candiolo, Italy
| | - Carola Negrino
- Department of Oncology, University of Torino, Orbassano, Italy
| | - Barbara Castella
- Center for Experimental Research and Medical Studies (CeRMS), AOU Città della Salute e della Scienza di Torino, Turin, Italy
- Laboratorio di Immunologia dei Tumori del Sangue (LITS), Centro Interdipartimentale di Ricerca in Biologia Molecolare (CIRBM), University of Torino, Turin, Italy
| | - Marco Volante
- Pathology Unit, Department of Oncology at San Luigi Hospital, University of Torino, Orbassano, Italy
| | - Angela Listì
- Pathology Unit, Department of Oncology at San Luigi Hospital, University of Torino, Orbassano, Italy
| | - Vanessa Zambelli
- Pathology Unit, Department of Oncology at San Luigi Hospital, University of Torino, Orbassano, Italy
| | - Federica Benso
- Pathology Unit, Department of Oncology at San Luigi Hospital, University of Torino, Orbassano, Italy
| | - Fabrizio Tabbò
- Thoracic Unit and Medical Oncology Division, Department of Oncology at San Luigi Hospital, University of Torino, Orbassano, Italy
| | - Paolo Bironzo
- Thoracic Unit and Medical Oncology Division, Department of Oncology at San Luigi Hospital, University of Torino, Orbassano, Italy
| | - Emanuele Monteleone
- Department of Molecular Biotechnology and Health Sciences, University of Torino, Turin, Italy
- Università Vita-Salute San Raffaele, Milan, Italy
| | - Valeria Poli
- Department of Molecular Biotechnology and Health Sciences, University of Torino, Turin, Italy
| | - Filippo Pietrantonio
- Medical Oncology Department, Fondazione IRCCS Istituto Nazionale Dei Tumori, Milan, Italy
- Department of Oncology and Hemato-Oncology, University of Milano, Milan, Italy
| | - Federica Di Nicolantonio
- Department of Oncology, University of Torino, Orbassano, Italy
- Candiolo Cancer Institute, FPO-IRCCS, Candiolo, Italy
| | - Alberto Bardelli
- Department of Oncology, University of Torino, Orbassano, Italy
- IFOM, Istituto Fondazione di Oncologia Molecolare ETS, Milan, Italy
| | - Carola Ponzetto
- Department of Oncology, University of Torino, Orbassano, Italy
- Center for Experimental Research and Medical Studies (CeRMS), AOU Città della Salute e della Scienza di Torino, Turin, Italy
| | - Silvia Novello
- Thoracic Unit and Medical Oncology Division, Department of Oncology at San Luigi Hospital, University of Torino, Orbassano, Italy
| | - Giorgio V Scagliotti
- Thoracic Unit and Medical Oncology Division, Department of Oncology at San Luigi Hospital, University of Torino, Orbassano, Italy.
| | - Riccardo Taulli
- Department of Oncology, University of Torino, Orbassano, Italy.
- Center for Experimental Research and Medical Studies (CeRMS), AOU Città della Salute e della Scienza di Torino, Turin, Italy.
| |
Collapse
|
72
|
Rebolledo C, Silva JP, Saavedra N, Maracaja-Coutinho V. Computational approaches for circRNAs prediction and in silico characterization. Brief Bioinform 2023; 24:7150741. [PMID: 37139555 DOI: 10.1093/bib/bbad154] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2022] [Revised: 03/20/2023] [Accepted: 03/30/2023] [Indexed: 05/05/2023] Open
Abstract
Circular RNAs (circRNAs) are single-stranded and covalently closed non-coding RNA molecules originated from RNA splicing. Their functions include regulatory potential over other RNA species, such as microRNAs, messenger RNAs and RNA binding proteins. For circRNA identification, several algorithms are available and can be classified in two major types: pseudo-reference-based and split-alignment-based approaches. In general, the data generated from circRNA transcriptome initiatives is deposited on public specific databases, which provide a large amount of information on different species and functional annotations. In this review, we describe the main computational resources for the identification and characterization of circRNAs, covering the algorithms and predictive tools to evaluate its potential role in a particular transcriptomics project, including the public repositories containing relevant data and information for circRNAs, recapitulating their characteristics, reliability and amount of data reported.
Collapse
Affiliation(s)
- Camilo Rebolledo
- Center of Molecular Biology & Pharmacogenetics, Department of Basic Sciences, Scientific and Technological Resources, Universidad de La Frontera, Temuco, Chile
- Advanced Center for Chronic Diseases - ACCDiS, Facultad de Ciencias Químicas y Farmacéuticas, Universidad de Chile, Santiago, Chile
- Centro de Modelamiento Molecular, Biofísica y Bioinformática - CM2B2, Facultad de Ciencias Químicas y Farmacéuticas, Universidad de Chile, Santiago, Chile
| | - Juan Pablo Silva
- Centro de Modelamiento Molecular, Biofísica y Bioinformática - CM2B2, Facultad de Ciencias Químicas y Farmacéuticas, Universidad de Chile, Santiago, Chile
- ANID Anillo ACT210004 SYSTEMIX, Rancagua, Chile
| | - Nicolás Saavedra
- Center of Molecular Biology & Pharmacogenetics, Department of Basic Sciences, Scientific and Technological Resources, Universidad de La Frontera, Temuco, Chile
| | - Vinicius Maracaja-Coutinho
- Advanced Center for Chronic Diseases - ACCDiS, Facultad de Ciencias Químicas y Farmacéuticas, Universidad de Chile, Santiago, Chile
- Centro de Modelamiento Molecular, Biofísica y Bioinformática - CM2B2, Facultad de Ciencias Químicas y Farmacéuticas, Universidad de Chile, Santiago, Chile
- ANID Anillo ACT210004 SYSTEMIX, Rancagua, Chile
- Anillo Inflammation in HIV/AIDS - InflammAIDS, Santiago, Chile
| |
Collapse
|
73
|
Chuang TJ, Chiang TW, Chen CY. Assessing the impacts of various factors on circular RNA reliability. Life Sci Alliance 2023; 6:e202201793. [PMID: 36849251 PMCID: PMC9971162 DOI: 10.26508/lsa.202201793] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2022] [Revised: 02/15/2023] [Accepted: 02/15/2023] [Indexed: 03/01/2023] Open
Abstract
Circular RNAs (circRNAs) are non-polyadenylated RNAs with a continuous loop structure characterized by a non-colinear back-splice junction (BSJ). Although millions of circRNA candidates have been identified, it remains a major challenge for determining circRNA reliability because of various types of false positives. Here, we systematically assess the impacts of numerous factors related to circRNA identification, conservation, biogenesis, and function on circRNA reliability by comparisons of circRNA expression from mock and the corresponding colinear/polyadenylated RNA-depleted datasets based on three different RNA treatment approaches. Eight important indicators of circRNA reliability are determined. The relative contribution to variability explained analyses reveal that the relative importance of these factors in affecting circRNA reliability in descending order is the conservation level of circRNA, full-length circular sequences, supporting BSJ read count, both BSJ donor and acceptor splice sites at the same colinear transcript isoforms, both BSJ donor and acceptor splice sites at the annotated exon boundaries, BSJs detected by multiple tools, supporting functional features, and both BSJ donor and acceptor splice sites undergoing alternative splicing. This study thus provides a useful guideline and an important resource for selecting high-confidence circRNAs for further investigations.
Collapse
Affiliation(s)
| | - Tai-Wei Chiang
- Genomics Research Center, Academia Sinica, Taipei, Taiwan
| | - Chia-Ying Chen
- Genomics Research Center, Academia Sinica, Taipei, Taiwan
| |
Collapse
|
74
|
Loan Young T, Chang Wang K, James Varley A, Li B. Clinical Delivery of Circular RNA: Lessons Learned from RNA Drug Development. Adv Drug Deliv Rev 2023; 197:114826. [PMID: 37088404 DOI: 10.1016/j.addr.2023.114826] [Citation(s) in RCA: 56] [Impact Index Per Article: 28.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2023] [Revised: 03/28/2023] [Accepted: 04/11/2023] [Indexed: 04/25/2023]
Abstract
Circular RNAs (circRNA) represent a distinct class of covalently closed-loop RNA molecules, which play diverse roles in regulating biological processes and disease states. The enhanced stability of synthetic circRNAs compared to their linear counterparts has recently garnered considerable research interest, paving the way for new therapeutic applications. While clinical circRNA technology is still in its early stages, significant advancements in mRNA technology offer valuable insights into its potential future applications. Two primary obstacles that must be addressed are the development of efficient production methods and the optimization of delivery systems. To expedite progress in this area, this review aims to provide an overview of the current state of knowledge on circRNA structure and function, outline recent techniques for synthesizing circRNAs, highlight key delivery strategies and applications, and discuss the current challenges and future prospects in the field of circRNA-based therapeutics.
Collapse
Affiliation(s)
- Tiana Loan Young
- Leslie Dan Faculty of Pharmacy, University of Toronto, Toronto, ON M5S 3M2, Canada
| | - Kevin Chang Wang
- Leslie Dan Faculty of Pharmacy, University of Toronto, Toronto, ON M5S 3M2, Canada
| | - Andrew James Varley
- Leslie Dan Faculty of Pharmacy, University of Toronto, Toronto, ON M5S 3M2, Canada
| | - Bowen Li
- Leslie Dan Faculty of Pharmacy, University of Toronto, Toronto, ON M5S 3M2, Canada; Institute of Biomedical Engineering, University of Toronto, Toronto, ON M5S 3M2, Canada; Princess Margaret Cancer Center, University Health Network, Toronto, ON M5G 2C1, Canada.
| |
Collapse
|
75
|
Kumar R, Mondal R, Lahiri T, Pal MK. Application of sequence semantic and integrated cellular geography approach to study alternative biogenesis of exonic circular RNA. BMC Bioinformatics 2023; 24:148. [PMID: 37069509 PMCID: PMC10108499 DOI: 10.1186/s12859-023-05279-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2023] [Accepted: 04/09/2023] [Indexed: 04/19/2023] Open
Abstract
BACKGROUND Concurrent existence of lncRNA and circular RNA at both nucleus and cytosol within a cell at different proportions is well reported. Previous studies showed that circular RNAs are synthesized in nucleus followed by transportation across the nuclear membrane and the export is primarily defined by their length. lncRNAs primarily originated through inefficient splicing and seem to use NXF1 for cytoplasm export. However, it is not clear whether circularization of lncRNA happens only in nucleus or it also occurs in cytoplasm. Studies indicate that circular RNAs arise when the splicing apparatus undergoes a phenomenon of back splicing. Minor spliceosome (U12 type) mediated splicing occurs in cytoplasm and is responsible for the splicing of 0.5% of introns of human cells. Therefore, possibility of cRNA biogenesis mediated by minor spliceosome at cytoplasm cannot be ruled out. Secondly, information on genes transcribing both circular and lncRNAs along with total number of RBP binding sites for both of these RNA types is extractable from databases. This study showed how these apparently unconnected pieces of reports could be put together to build a model for exploring biogenesis of circular RNA. RESULTS As a result of this study, a model was built under the premises that, sequences with special semantics were molecular precursors in biogenesis of circular RNA which occurred through catalytic role of some specific RBPs. The model outcome was further strengthened by fulfillment of three logical lemmas which were extracted and assimilated in this work using a novel data analytic approach, Integrated Cellular Geography. Result of the study was found to be in well agreement with proposed model. Furthermore this study also indicated that biogenesis of circular RNA was a post-transcriptional event. CONCLUSIONS Overall, this study provides a novel systems biology based model under the paradigm of Integrated Cellular Geography which can assimilate independently performed experimental results and data published by global researchers on RNA biology to provide important information on biogenesis of circular RNAs considering lncRNAs as precursor molecule. This study also suggests the possible RBP-mediated circularization of RNA in the cytoplasm through back-splicing using minor spliceosome.
Collapse
Affiliation(s)
- Rajnish Kumar
- Department of Pathology and Laboratory Medicine, Medical Center, University of Kansas, Kansas City, 66160, USA
| | - Rajkrishna Mondal
- Department of Biotechnology, Nagaland University, Dimapur, Nagaland, 797112, India
| | - Tapobrata Lahiri
- Room No. 4302, Department of Applied Sciences, Computer Centre - II, Indian Institute of Information Technology-Allahabad, Allahabad, 211015, India.
| | - Manoj Kumar Pal
- Faculty of Engineering and Technology, United University Prayagraj, Prayagraj, UP, 211012, India
| |
Collapse
|
76
|
Wu P, Nie Z, Huang Z, Zhang X. CircPCBL: Identification of Plant CircRNAs with a CNN-BiGRU-GLT Model. PLANTS (BASEL, SWITZERLAND) 2023; 12:1652. [PMID: 37111874 PMCID: PMC10143888 DOI: 10.3390/plants12081652] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/20/2023] [Revised: 04/10/2023] [Accepted: 04/13/2023] [Indexed: 06/19/2023]
Abstract
Circular RNAs (circRNAs), which are produced post-splicing of pre-mRNAs, are strongly linked to the emergence of several tumor types. The initial stage in conducting follow-up studies involves identifying circRNAs. Currently, animals are the primary target of most established circRNA recognition technologies. However, the sequence features of plant circRNAs differ from those of animal circRNAs, making it impossible to detect plant circRNAs. For example, there are non-GT/AG splicing signals at circRNA junction sites and few reverse complementary sequences and repetitive elements in the flanking intron sequences of plant circRNAs. In addition, there have been few studies on circRNAs in plants, and thus it is urgent to create a plant-specific method for identifying circRNAs. In this study, we propose CircPCBL, a deep-learning approach that only uses raw sequences to distinguish between circRNAs found in plants and other lncRNAs. CircPCBL comprises two separate detectors: a CNN-BiGRU detector and a GLT detector. The CNN-BiGRU detector takes in the one-hot encoding of the RNA sequence as the input, while the GLT detector uses k-mer (k = 1 - 4) features. The output matrices of the two submodels are then concatenated and ultimately pass through a fully connected layer to produce the final output. To verify the generalization performance of the model, we evaluated CircPCBL using several datasets, and the results revealed that it had an F1 of 85.40% on the validation dataset composed of six different plants species and 85.88%, 75.87%, and 86.83% on the three cross-species independent test sets composed of Cucumis sativus, Populus trichocarpa, and Gossypium raimondii, respectively. With an accuracy of 90.9% and 90%, respectively, CircPCBL successfully predicted ten of the eleven circRNAs of experimentally reported Poncirus trifoliata and nine of the ten lncRNAs of rice on the real set. CircPCBL could potentially contribute to the identification of circRNAs in plants. In addition, it is remarkable that CircPCBL also achieved an average accuracy of 94.08% on the human datasets, which is also an excellent result, implying its potential application in animal datasets. Ultimately, CircPCBL is available as a web server, from which the data and source code can also be downloaded free of charge.
Collapse
Affiliation(s)
- Pengpeng Wu
- Anhui Province Key Laboratory of Smart Agricultural Technology and Equipment, Anhui Agricultural University, Hefei 230036, China
- School of Life Science, Anhui Agricultural University, Hefei 230036, China
| | - Zhenjun Nie
- Anhui Province Key Laboratory of Smart Agricultural Technology and Equipment, Anhui Agricultural University, Hefei 230036, China
- School of Information and Computer Science, Anhui Agricultural University, Hefei 230036, China
| | - Zhiqiang Huang
- Anhui Province Key Laboratory of Smart Agricultural Technology and Equipment, Anhui Agricultural University, Hefei 230036, China
- School of Information and Computer Science, Anhui Agricultural University, Hefei 230036, China
| | - Xiaodan Zhang
- Anhui Province Key Laboratory of Smart Agricultural Technology and Equipment, Anhui Agricultural University, Hefei 230036, China
- School of Information and Computer Science, Anhui Agricultural University, Hefei 230036, China
| |
Collapse
|
77
|
Crudele F, Bianchi N, Terrazzan A, Ancona P, Frassoldati A, Gasparini P, D'Adamo AP, Papaioannou D, Garzon R, Wójcicka A, Gaj P, Jażdżewski K, Palatini J, Volinia S. Circular RNAs Could Encode Unique Proteins and Affect Cancer Pathways. BIOLOGY 2023; 12:biology12040493. [PMID: 37106694 PMCID: PMC10135897 DOI: 10.3390/biology12040493] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/07/2023] [Revised: 03/10/2023] [Accepted: 03/21/2023] [Indexed: 04/29/2023]
Abstract
circRNAs constitute a novel class of RNA, generally considered as non-coding RNAs; nonetheless, their coding potential has been under scrutiny. In this work, we systematically explored the predicted proteins of more than 160,000 circRNAs detected by exome capture RNA-sequencing and collected in the MiOncoCirc pan-cancer compendium, including normal and cancer samples from different types of tissues. For the functional evaluation, we compared their primary structure and domain composition with those derived from the same linear mRNAs. Among the 4362 circRNAs potentially encoding proteins with a unique primary structure and 1179 encoding proteins with a novel domain composition, 183 were differentially expressed in cancer. In particular, eight were associated with prognosis in acute myeloid leukemia. The functional classification of the dysregulated circRNA-encoded polypeptides showed an enrichment in the heme and cancer signaling, DNA-binding, and phosphorylation processes, and disclosed the roles of some circRNA-based effectors in cancer.
Collapse
Affiliation(s)
- Francesca Crudele
- Department of Translational Medicine, University of Ferrara, 44121 Ferrara, Italy
- Genetics Unit, Institute for Maternal and Child Health, Scientific Institute for Research, Hospitalization and Healthcare (IRCCS) Burlo Garofolo, 34137 Trieste, Italy
| | - Nicoletta Bianchi
- Department of Translational Medicine, University of Ferrara, 44121 Ferrara, Italy
| | - Anna Terrazzan
- Department of Translational Medicine, University of Ferrara, 44121 Ferrara, Italy
- Laboratory for Advanced Therapy Technologies (LTTA), University of Ferrara, 44121 Ferrara, Italy
| | - Pietro Ancona
- Department of Translational Medicine, University of Ferrara, 44121 Ferrara, Italy
| | - Antonio Frassoldati
- Department of Oncology, Azienda Ospedaliero-Universitaria St. Anna di Ferrara, 44124 Ferrara, Italy
| | - Paolo Gasparini
- Genetics Unit, Institute for Maternal and Child Health, Scientific Institute for Research, Hospitalization and Healthcare (IRCCS) Burlo Garofolo, 34137 Trieste, Italy
| | - Adamo P D'Adamo
- Genetics Unit, Institute for Maternal and Child Health, Scientific Institute for Research, Hospitalization and Healthcare (IRCCS) Burlo Garofolo, 34137 Trieste, Italy
| | - Dimitrios Papaioannou
- Laura and Isaac Perlmutter Cancer Center, New York University School of Medicine, NYU Langone Health, New York, NY 10016, USA
| | - Ramiro Garzon
- Division of Hematology and Hematological Malignancies, University of Utah, Salt Lake City, UT 84112, USA
| | | | - Paweł Gaj
- Warsaw Genomics INC, 01-682 Warszawa, Poland
| | - Krystian Jażdżewski
- Human Cancer Genetics, Biological and Chemical Research Centre, University of Warsaw, 02-089 Warsaw, Poland
| | - Jeffrey Palatini
- Genomics Core Facility, Centre of New Technologies, University of Warsaw, 02-097 Warsaw, Poland
| | - Stefano Volinia
- Department of Translational Medicine, University of Ferrara, 44121 Ferrara, Italy
- Laboratory for Advanced Therapy Technologies (LTTA), University of Ferrara, 44121 Ferrara, Italy
- CNBCh, Biological and Chemical Research Centre, University of Warsaw, 02-089 Warsaw, Poland
| |
Collapse
|
78
|
Hu F, Peng Y, Fan X, Zhang X, Jin Z. Circular RNAs: implications of signaling pathways and bioinformatics in human cancer. Cancer Biol Med 2023; 20:j.issn.2095-3941.2022.0466. [PMID: 36861443 PMCID: PMC9978890 DOI: 10.20892/j.issn.2095-3941.2022.0466] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/03/2023] Open
Abstract
Circular RNAs (circRNAs) form a class of endogenous single-stranded RNA transcripts that are widely expressed in eukaryotic cells. These RNAs mediate post-transcriptional control of gene expression and have multiple functions in biological processes, such as transcriptional regulation and splicing. They serve predominantly as microRNA sponges, RNA-binding proteins, and templates for translation. More importantly, circRNAs are involved in cancer progression, and may serve as promising biomarkers for tumor diagnosis and therapy. Although traditional experimental methods are usually time-consuming and laborious, substantial progress has been made in exploring potential circRNA-disease associations by using computational models, summarized signaling pathway data, and other databases. Here, we review the biological characteristics and functions of circRNAs, including their roles in cancer. Specifically, we focus on the signaling pathways associated with carcinogenesis, and the status of circRNA-associated bioinformatics databases. Finally, we explore the potential roles of circRNAs as prognostic biomarkers in cancer.
Collapse
Affiliation(s)
- Fan Hu
- Guangdong Provincial Key Laboratory of Genome Stability and Disease Prevention and Regional Immunity and Diseases, Department of Pathology, School of Basic Medical Sciences, Medical School, Shenzhen University, Shenzhen 518060, China
| | - Yin Peng
- Guangdong Provincial Key Laboratory of Genome Stability and Disease Prevention and Regional Immunity and Diseases, Department of Pathology, School of Basic Medical Sciences, Medical School, Shenzhen University, Shenzhen 518060, China
| | - Xinmin Fan
- Guangdong Provincial Key Laboratory of Genome Stability and Disease Prevention and Regional Immunity and Diseases, Department of Pathology, School of Basic Medical Sciences, Medical School, Shenzhen University, Shenzhen 518060, China
| | - Xiaojing Zhang
- Guangdong Provincial Key Laboratory of Genome Stability and Disease Prevention and Regional Immunity and Diseases, Department of Pathology, School of Basic Medical Sciences, Medical School, Shenzhen University, Shenzhen 518060, China
- Correspondence to: Zhe Jin and Xiaojing Zhang, E-mail: and
| | - Zhe Jin
- Guangdong Provincial Key Laboratory of Genome Stability and Disease Prevention and Regional Immunity and Diseases, Department of Pathology, School of Basic Medical Sciences, Medical School, Shenzhen University, Shenzhen 518060, China
- Correspondence to: Zhe Jin and Xiaojing Zhang, E-mail: and
| |
Collapse
|
79
|
Das A, Sinha T, Mishra SS, Das D, Panda AC. Identification of potential proteins translated from circular RNA splice variants. Eur J Cell Biol 2023; 102:151286. [PMID: 36645925 PMCID: PMC7614519 DOI: 10.1016/j.ejcb.2023.151286] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2022] [Revised: 01/09/2023] [Accepted: 01/09/2023] [Indexed: 01/11/2023] Open
Abstract
Circular RNAs (circRNAs) are covalently closed RNA molecules generated from precursor RNAs by the head-to-tail backsplicing of exons. Hundreds of studies demonstrated that circRNAs are ubiquitously expressed and regulate cellular events by modulating microRNA (miRNA) and RNA-binding protein (RBP) activities. A few circRNAs are also known to translate into functional polypeptides regulating cellular physiology. All these functions primarily depend on the full-length sequence of the circRNAs. CircRNA backsplice junction sequence is the key to identifying circRNAs and their full-length mature sequence. However, some multi-exonic circRNAs exist in different isoforms sharing identical backsplice junction sequences and are termed circRNA splice variants. Here, we analyzed the previously published HeLa cell RNA-seq datasets to identify circRNA splice variants using the de novo module of the CIRCexplorer2 circRNA annotation pipeline. A subset of circRNAs with splice variants was validated by the circRNA-rolling circle amplification (circRNA-RCA) method. Interestingly, several validated circRNAs were predicted to translate into proteins by the riboCIRC database. Furthermore, polyribosome fractionation followed by quantitative PCR confirmed the association of a subset of circRNAs with polyribosome supporting their protein-coding potential. Finally, bioinformatics analysis of proteins derived from splice variants of circCORO1C and circASPH suggested altered protein sequences and structures that could affect their physiological functions. Together, our study identified novel circRNA splice variants and their potential translation into protein isoforms which may regulate various physiological processes.
Collapse
Affiliation(s)
- Aniruddha Das
- Institute of Life Sciences, Nalco Square, Bhubaneswar 751023, Odisha, India; School of Biotechnology, KIIT University, Bhubaneswar 751024, India
| | - Tanvi Sinha
- Institute of Life Sciences, Nalco Square, Bhubaneswar 751023, Odisha, India
| | | | - Debojyoti Das
- Institute of Life Sciences, Nalco Square, Bhubaneswar 751023, Odisha, India
| | - Amaresh C Panda
- Institute of Life Sciences, Nalco Square, Bhubaneswar 751023, Odisha, India.
| |
Collapse
|
80
|
Insight on Non-Coding RNAs from Biofluids in Ovarian Tumors. Cancers (Basel) 2023; 15:cancers15051539. [PMID: 36900328 PMCID: PMC10001105 DOI: 10.3390/cancers15051539] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2023] [Revised: 02/22/2023] [Accepted: 02/24/2023] [Indexed: 03/05/2023] Open
Abstract
Ovarian tumors are the most frequent adnexal mass, raising diagnostic and therapeutic issues linked to a large spectrum of tumors, with a continuum from benign to malignant. Thus far, none of the available diagnostic tools have proven efficient in deciding strategy, and no consensus exists on the best strategy between "single test", "dual testing", "sequential testing", "multiple testing options" and "no testing". In addition, there is a need for prognostic tools such as biological markers of recurrence and theragnostic tools to detect women not responding to chemotherapy in order to adapt therapies. Non-coding RNAs are classified as small or long based on their nucleotide count. Non-coding RNAs have multiple biological functions such as a role in tumorigenesis, gene regulation and genome protection. These ncRNAs emerge as new potential tools to differentiate benign from malignant tumors and to evaluate prognostic and theragnostic factors. In the specific setting of ovarian tumors, the goal of the present work is to offer an insight into the contribution of biofluid non-coding RNAs (ncRNA) expression.
Collapse
|
81
|
Sun K, Yao H, Zhang P, Sun Y, Ma J, Xia Q. Emerging landscape of circFNDC3B and its role in human malignancies. Front Oncol 2023; 13:1097956. [PMID: 36793611 PMCID: PMC9924128 DOI: 10.3389/fonc.2023.1097956] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2022] [Accepted: 01/06/2023] [Indexed: 01/31/2023] Open
Abstract
In recent years, more attention has been paid to expanding the abundance of Circular RNAs (circRNAs), while the circRNAs that have been found to have significant functions have not been studied in different diseases. CircFNDC3B is one of the most researched circRNAs generated from fibronectin type III domain-containing protein 3B (FNDC3B) gene. Accumulating researches have reported the multiple functions of circFNDC3B in different cancer types and other non-neoplastic diseases, and predicted that circFNDC3B might be a potential biomarker. Notably, circFNDC3B can play roles in different diseases by binding to various microRNAs (miRNAs), binding to RNA-binding proteins (RBPs), or encoding functional peptides. This paper systematically summarizes the biogenesis and function of circRNAs, reviews and discusses the roles and molecular mechanisms of circFNDC3B and its target genes in different cancers and non-neoplastic diseases, which will do favor to broaden our comprehension of the function of circRNAs and facilitate subsequent research on circFNDC3B.
Collapse
Affiliation(s)
- Kai Sun
- Department of Urology, Shandong Province Hospital, Shandong University, Jinan, China
| | - Huibao Yao
- Department of Urology, The Affiliated Yantai Yuhuangding Hospital of Qingdao University, Yantai, Shandong, China
| | - Peizhi Zhang
- Department of Urology, Shandong Province Hospital, Shandong University, Jinan, China
| | - Yanning Sun
- Department of Urology, Shandong Province Hospital, Shandong University, Jinan, China
| | - Jian Ma
- Department of Urology, The Affiliated Yantai Yuhuangding Hospital of Qingdao University, Yantai, Shandong, China
| | - Qinghua Xia
- Department of Urology, Shandong Province Hospital, Shandong University, Jinan, China
| |
Collapse
|
82
|
Circular RNAs-New Kids on the Block in Cancer Pathophysiology and Management. Cells 2023; 12:cells12040552. [PMID: 36831219 PMCID: PMC9953808 DOI: 10.3390/cells12040552] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2022] [Revised: 01/30/2023] [Accepted: 02/04/2023] [Indexed: 02/11/2023] Open
Abstract
The ever-increasing number of cancer cases and persistently high mortality underlines the urgent need to acquire new perspectives for developing innovative therapeutic approaches. As the research on protein-coding genes brought significant yet only incremental progress in the development of anticancer therapy, much attention is now devoted to understanding the role of non-coding RNAs (ncRNAs) in various types of cancer. Recent years have brought about the awareness that ncRNAs recognized previously as "dark matter" are, in fact, key players in shaping cancer development. Moreover, breakthrough discoveries concerning the role of a new group of ncRNAs, circular RNAs, have evidenced their high importance in many diseases, including malignancies. Therefore, in the following review, we focus on the role of circular RNAs in cancer, particularly in cancer stem-like cells, summarize their mechanisms of action, and provide an overview of the state-of-the-art toolkits to study them.
Collapse
|
83
|
Wang K, Gao XQ, Wang T, Zhou LY. The Function and Therapeutic Potential of Circular RNA in Cardiovascular Diseases. Cardiovasc Drugs Ther 2023; 37:181-198. [PMID: 34269929 DOI: 10.1007/s10557-021-07228-5] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 07/06/2021] [Indexed: 01/14/2023]
Abstract
Circular RNA (circRNA) has a closed-loop structure, and its 3' and 5' ends are directly covalently connected by reverse splicing, which is more stable than linear RNA. CircRNAs usually possess microRNA (miRNA) binding sites, which can bind miRNAs and inhibit miRNA function. Many studies have shown that circRNAs are involved in the processes of cell senescence, proliferation and apoptosis and a series of signalling pathways, playing an important role in the prevention and treatment of diseases. CircRNAs are potential biological diagnostic markers and therapeutic targets for cardiovascular diseases (CVDs). To identify biomarkers and potential effective therapeutic targets without toxicity for heart disease, we summarize the biogenesis, biology, characterization and functions of circRNAs in CVDs, hoping that this information will shed new light on the prevention and treatment of CVDs.
Collapse
Affiliation(s)
- Kai Wang
- Institute of Translational Medicine, The Affiliated Hospital of Qingdao University, College of Medicine, Qingdao University, Qingdao, 266021, Shandong, China
| | - Xiang-Qian Gao
- Institute of Translational Medicine, The Affiliated Hospital of Qingdao University, College of Medicine, Qingdao University, Qingdao, 266021, Shandong, China
| | - Tao Wang
- Institute of Translational Medicine, The Affiliated Hospital of Qingdao University, College of Medicine, Qingdao University, Qingdao, 266021, Shandong, China
| | - Lu-Yu Zhou
- Institute of Translational Medicine, The Affiliated Hospital of Qingdao University, College of Medicine, Qingdao University, Qingdao, 266021, Shandong, China.
| |
Collapse
|
84
|
Digby B, Finn SP, Ó Broin P. nf-core/circrna: a portable workflow for the quantification, miRNA target prediction and differential expression analysis of circular RNAs. BMC Bioinformatics 2023; 24:27. [PMID: 36694127 PMCID: PMC9875403 DOI: 10.1186/s12859-022-05125-8] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2022] [Accepted: 12/22/2022] [Indexed: 01/26/2023] Open
Abstract
BACKGROUND Circular RNAs (circRNAs) are a class of covalenty closed non-coding RNAs that have garnered increased attention from the research community due to their stability, tissue-specific expression and role as transcriptional modulators via sequestration of miRNAs. Currently, multiple quantification tools capable of detecting circRNAs exist, yet none delineate circRNA-miRNA interactions, and only one employs differential expression analysis. Efforts have been made to bridge this gap by way of circRNA workflows, however these workflows are limited by both the types of analyses available and computational skills required to run them. RESULTS We present nf-core/circrna, a multi-functional, automated high-throughput pipeline implemented in nextflow that allows users to characterise the role of circRNAs in RNA Sequencing datasets via three analysis modules: (1) circRNA quantification, robust filtering and annotation (2) miRNA target prediction of the mature spliced sequence and (3) differential expression analysis. nf-core/circrna has been developed within the nf-core framework, ensuring robust portability across computing environments via containerisation, parallel deployment on cluster/cloud-based infrastructures, comprehensive documentation and maintenance support. CONCLUSION nf-core/circrna reduces the barrier to entry for researchers by providing an easy-to-use, platform-independent and scalable workflow for circRNA analyses. Source code, documentation and installation instructions are freely available at https://nf-co.re/circrna and https://github.com/nf-core/circrna .
Collapse
Affiliation(s)
- Barry Digby
- grid.6142.10000 0004 0488 0789School of Mathematical and Statistical Sciences, National University of Ireland, Galway, Ireland
| | - Stephen P. Finn
- Department of Histopathology and Morbid Anatomy, Trinity Translational Medicine Institute, Dublin, Ireland
| | - Pilib Ó Broin
- grid.6142.10000 0004 0488 0789School of Mathematical and Statistical Sciences, National University of Ireland, Galway, Ireland
| |
Collapse
|
85
|
Chen JW, Shrestha L, Green G, Leier A, Marquez-Lago TT. The hitchhikers' guide to RNA sequencing and functional analysis. Brief Bioinform 2023; 24:bbac529. [PMID: 36617463 PMCID: PMC9851315 DOI: 10.1093/bib/bbac529] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2022] [Revised: 10/18/2022] [Accepted: 11/07/2022] [Indexed: 01/10/2023] Open
Abstract
DNA and RNA sequencing technologies have revolutionized biology and biomedical sciences, sequencing full genomes and transcriptomes at very high speeds and reasonably low costs. RNA sequencing (RNA-Seq) enables transcript identification and quantification, but once sequencing has concluded researchers can be easily overwhelmed with questions such as how to go from raw data to differential expression (DE), pathway analysis and interpretation. Several pipelines and procedures have been developed to this effect. Even though there is no unique way to perform RNA-Seq analysis, it usually follows these steps: 1) raw reads quality check, 2) alignment of reads to a reference genome, 3) aligned reads' summarization according to an annotation file, 4) DE analysis and 5) gene set analysis and/or functional enrichment analysis. Each step requires researchers to make decisions, and the wide variety of options and resulting large volumes of data often lead to interpretation challenges. There also seems to be insufficient guidance on how best to obtain relevant information and derive actionable knowledge from transcription experiments. In this paper, we explain RNA-Seq steps in detail and outline differences and similarities of different popular options, as well as advantages and disadvantages. We also discuss non-coding RNA analysis, multi-omics, meta-transcriptomics and the use of artificial intelligence methods complementing the arsenal of tools available to researchers. Lastly, we perform a complete analysis from raw reads to DE and functional enrichment analysis, visually illustrating how results are not absolute truths and how algorithmic decisions can greatly impact results and interpretation.
Collapse
Affiliation(s)
- Jiung-Wen Chen
- Department of Biology, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Lisa Shrestha
- Department of Genetics, University of Alabama at Birmingham, School of Medicine, Birmingham, AL, USA
| | - George Green
- Department of Biology, University of Alabama at Birmingham, Birmingham, AL, USA
| | - André Leier
- Department of Genetics, University of Alabama at Birmingham, School of Medicine, Birmingham, AL, USA
- Department of Cell, Developmental and Integrative Biology, University of Alabama at Birmingham, School of Medicine, Birmingham, AL, USA
| | - Tatiana T Marquez-Lago
- Department of Genetics, University of Alabama at Birmingham, School of Medicine, Birmingham, AL, USA
- Department of Cell, Developmental and Integrative Biology, University of Alabama at Birmingham, School of Medicine, Birmingham, AL, USA
- Department of Microbiology, University of Alabama at Birmingham, School of Medicine, Birmingham, AL, USA
| |
Collapse
|
86
|
Loganathan T, Doss C GP. Non-coding RNAs in human health and disease: potential function as biomarkers and therapeutic targets. Funct Integr Genomics 2023; 23:33. [PMID: 36625940 PMCID: PMC9838419 DOI: 10.1007/s10142-022-00947-4] [Citation(s) in RCA: 77] [Impact Index Per Article: 38.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2022] [Revised: 12/14/2022] [Accepted: 12/15/2022] [Indexed: 01/11/2023]
Abstract
Human diseases have been a critical threat from the beginning of human history. Knowing the origin, course of action and treatment of any disease state is essential. A microscopic approach to the molecular field is a more coherent and accurate way to explore the mechanism, progression, and therapy with the introduction and evolution of technology than a macroscopic approach. Non-coding RNAs (ncRNAs) play increasingly important roles in detecting, developing, and treating all abnormalities related to physiology, pathology, genetics, epigenetics, cancer, and developmental diseases. Noncoding RNAs are becoming increasingly crucial as powerful, multipurpose regulators of all biological processes. Parallel to this, a rising amount of scientific information has revealed links between abnormal noncoding RNA expression and human disorders. Numerous non-coding transcripts with unknown functions have been found in addition to advancements in RNA-sequencing methods. Non-coding linear RNAs come in a variety of forms, including circular RNAs with a continuous closed loop (circRNA), long non-coding RNAs (lncRNA), and microRNAs (miRNA). This comprises specific information on their biogenesis, mode of action, physiological function, and significance concerning disease (such as cancer or cardiovascular diseases and others). This study review focuses on non-coding RNA as specific biomarkers and novel therapeutic targets.
Collapse
Affiliation(s)
- Tamizhini Loganathan
- Laboratory of Integrative Genomics, Department of Integrative Biology, School of Biosciences and Technology, Vellore Institute of Technology (VIT), Vellore- 632014, Tamil Nadu, India
| | - George Priya Doss C
- Laboratory of Integrative Genomics, Department of Integrative Biology, School of Biosciences and Technology, Vellore Institute of Technology (VIT), Vellore- 632014, Tamil Nadu, India.
| |
Collapse
|
87
|
Jiao L, Liu Y, Yu XY, Pan X, Zhang Y, Tu J, Song YH, Li Y. Ribosome biogenesis in disease: new players and therapeutic targets. Signal Transduct Target Ther 2023; 8:15. [PMID: 36617563 PMCID: PMC9826790 DOI: 10.1038/s41392-022-01285-4] [Citation(s) in RCA: 116] [Impact Index Per Article: 58.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2022] [Revised: 12/01/2022] [Accepted: 12/08/2022] [Indexed: 01/10/2023] Open
Abstract
The ribosome is a multi-unit complex that translates mRNA into protein. Ribosome biogenesis is the process that generates ribosomes and plays an essential role in cell proliferation, differentiation, apoptosis, development, and transformation. The mTORC1, Myc, and noncoding RNA signaling pathways are the primary mediators that work jointly with RNA polymerases and ribosome proteins to control ribosome biogenesis and protein synthesis. Activation of mTORC1 is required for normal fetal growth and development and tissue regeneration after birth. Myc is implicated in cancer development by enhancing RNA Pol II activity, leading to uncontrolled cancer cell growth. The deregulation of noncoding RNAs such as microRNAs, long noncoding RNAs, and circular RNAs is involved in developing blood, neurodegenerative diseases, and atherosclerosis. We review the similarities and differences between eukaryotic and bacterial ribosomes and the molecular mechanism of ribosome-targeting antibiotics and bacterial resistance. We also review the most recent findings of ribosome dysfunction in COVID-19 and other conditions and discuss the consequences of ribosome frameshifting, ribosome-stalling, and ribosome-collision. We summarize the role of ribosome biogenesis in the development of various diseases. Furthermore, we review the current clinical trials, prospective vaccines for COVID-19, and therapies targeting ribosome biogenesis in cancer, cardiovascular disease, aging, and neurodegenerative disease.
Collapse
Affiliation(s)
- Lijuan Jiao
- grid.263761.70000 0001 0198 0694Institute for Cardiovascular Science and Department of Cardiovascular Surgery, First Affiliated Hospital and Medical College of Soochow University, Collaborative Innovation Center of Hematology, Soochow University, Suzhou, Jiangsu 215123 P. R. China
| | - Yuzhe Liu
- grid.452829.00000000417660726Department of Orthopedics, the Second Hospital of Jilin University, Changchun, Jilin 130000 P. R. China
| | - Xi-Yong Yu
- grid.410737.60000 0000 8653 1072Key Laboratory of Molecular Target & Clinical Pharmacology and the NMPA State Key Laboratory of Respiratory Disease, Guangzhou Medical University, Guangzhou, Guangdong 511436 P. R. China
| | - Xiangbin Pan
- grid.506261.60000 0001 0706 7839Department of Structural Heart Disease, National Center for Cardiovascular Disease, China & Fuwai Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, P. R. China ,Key Laboratory of Cardiovascular Appratus Innovation, Beijing, 100037 P. R. China
| | - Yu Zhang
- grid.263761.70000 0001 0198 0694Institute for Cardiovascular Science and Department of Cardiovascular Surgery, First Affiliated Hospital and Medical College of Soochow University, Collaborative Innovation Center of Hematology, Soochow University, Suzhou, Jiangsu 215123 P. R. China
| | - Junchu Tu
- grid.263761.70000 0001 0198 0694Institute for Cardiovascular Science and Department of Cardiovascular Surgery, First Affiliated Hospital and Medical College of Soochow University, Collaborative Innovation Center of Hematology, Soochow University, Suzhou, Jiangsu 215123 P. R. China
| | - Yao-Hua Song
- Cyrus Tang Hematology Center, Collaborative Innovation Center of Hematology, Soochow University, National Clinical Research Center for Hematologic Diseases, the First Affiliated Hospital of Soochow University, Suzhou, P. R. China. .,State Key Laboratory of Radiation Medicine and Protection, Soochow University, Suzhou, 215123, P. R. China.
| | - Yangxin Li
- Institute for Cardiovascular Science and Department of Cardiovascular Surgery, First Affiliated Hospital and Medical College of Soochow University, Collaborative Innovation Center of Hematology, Soochow University, Suzhou, Jiangsu, 215123, P. R. China.
| |
Collapse
|
88
|
Karami Fath M, Akhavan Masouleh R, Afifi N, Loghmani S, Tamimi P, Fazeli A, Mousavian SA, Falsafi MM, Barati G. PI3K/AKT/mTOR signaling pathway modulation by circular RNAs in breast cancer progression. Pathol Res Pract 2023; 241:154279. [PMID: 36584499 DOI: 10.1016/j.prp.2022.154279] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/26/2022] [Revised: 12/13/2022] [Accepted: 12/15/2022] [Indexed: 12/23/2022]
Abstract
The PI3K/Akt/mTOR signaling pathway is responsible for many cellular behaviors, including survival, growth, and proliferation. A newly identified RNA, circular RNA (circRNA), plays a crucial role in the regulation of gene expression. The upregulation of the PI3K/Akt pathway through dysregulated circRNAs promotes breast tumor initiation, growth, and progression. The dysregulation of PI3K/Akt-regulating circRNAs seems to be directly correlated with breast cancer clinical features, including overall survival, tumor size, cancer stage, and lymph node metastasis. In addition, targeting these circRNAs may be a promising option in cancer-targeted therapy. Understanding the molecular pathogenesis of the circRNA-PI3K/AKT axis may give the insight to develop new therapeutic and diagnostic approaches for breast cancer therapy. Here we reviewed the expression and functions of PI3K/AKT-regulating circRNAs, and their correlation with breast cancer clinical features. In addition, the potential of PI3K/AKT-regulating circRNAs as diagnostic/prognostic biomarkers or therapeutic targets was discussed.
Collapse
Affiliation(s)
- Mohsen Karami Fath
- Department of Cellular and Molecular Biology, Faculty of Biological Sciences, Kharazmi University, Tehran, Iran
| | | | - Negin Afifi
- School of Medicine, Islamic Azad University, Qeshm Branch, Qeshm, Iran
| | - Shirin Loghmani
- Faculty of Medicine, Shahrekord University of Medical Sciences, Shahrekord, Iran
| | - Parham Tamimi
- School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Alireza Fazeli
- Department of Medical Education, Medical Education Research Center, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Seyed Ali Mousavian
- Pharmacy Department, EMU(Eastern Mediterranean University), Famagusta, North Cyprus, Republic of Cyprus
| | | | - Ghasem Barati
- Department of Medical Biotechnology, School of Medicine, Zanjan University of Medical Sciences, Zanjan, Iran; Stem Cell Technology Research Center, Tehran, Iran.
| |
Collapse
|
89
|
Liao J, Zhang Q, Huang J, He H, Lei J, Shen Y, Wang J, Xiao Y. The emerging role of circular RNAs in Parkinson's disease. Front Neurosci 2023; 17:1137363. [PMID: 36925739 PMCID: PMC10012279 DOI: 10.3389/fnins.2023.1137363] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2023] [Accepted: 02/03/2023] [Indexed: 02/18/2023] Open
Abstract
Parkinson's disease (PD) is the second most prevalent neurodegenerative disease and the most common movement disorder. It involves a gradual loss of dopaminergic neurons in the substantia nigra. Although many studies have been conducted, the underlying molecular pathways of PD remain largely unknown. Circular RNAs (circRNAs), a novel class of non-coding RNAs with a covalently closed loop structure, are common in the brain. They are stable, conserved molecules that are widely expressed in eukaryotes in tissue-, cell-, and development-specific patterns. Many circRNAs have recently been identified in nervous system diseases, and some circRNA expression profiles have been linked to PD. Given that recent research has indicated the essential roles of various circRNAs in the development and progression of neurodegenerative diseases, the identification of individual circRNAs may be a promising strategy for finding new treatment targets for PD. Moreover, the search for circRNAs with high specificity and sensitivity will open up new avenues for the early diagnosis and treatment of PD. Herein, we address the biogenesis, properties, and roles of circRNAs and review their potential utility as biomarkers and therapeutic targets in PD.
Collapse
Affiliation(s)
- Jiajia Liao
- Department of Neurology, The First Affiliated Hospital of Guangxi Medical University, Nanning, China.,Department of Rehabilitation Medicine, Jiangbin Hospital of Guangxi Zhuang Autonomous Region, Nanning, China
| | - Qinxin Zhang
- Department of Neurology, The First Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Jinjun Huang
- Department of Rehabilitation, Guiping People's Hospital, Guiping, China
| | - Honghu He
- Department of Neurology, The First Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Jiang Lei
- Department of Neurology, The First Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Yuefei Shen
- Department of Neurology, The First Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Jin Wang
- Department of Neurology, The First Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Yousheng Xiao
- Department of Neurology, The First Affiliated Hospital of Guangxi Medical University, Nanning, China
| |
Collapse
|
90
|
Samra M, Srivastava K. Non-coding RNA and their potential role in cardiovascular diseases. Gene 2023; 851:147011. [DOI: 10.1016/j.gene.2022.147011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2022] [Revised: 09/27/2022] [Accepted: 10/21/2022] [Indexed: 11/27/2022]
|
91
|
Yang J, Liu M, Fang X, Zhang H, Ren Q, Zheng Y, Wang Y, Zhou Y. Advances in peptides encoded by non-coding RNAs: A cargo in exosome. Front Oncol 2022; 12:1081997. [PMID: 36620552 PMCID: PMC9822543 DOI: 10.3389/fonc.2022.1081997] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2022] [Accepted: 11/28/2022] [Indexed: 12/24/2022] Open
Abstract
The metastasis of malignant tumors determines patient prognosis. This is the main reason for the poor prognosis of patients with cancer and the most challenging aspect of treating malignant tumors. Therefore, it is important to identify early tumor markers and molecules that can predict patient prognosis. However, there are currently no molecular markers with good clinical accuracy and specificity. Many non-coding RNA (ncRNAs)have been identified, which can regulate the process of tumor development at multiple levels. Interestingly, some ncRNAs are translated to produce functional peptides. Exosomes act as signal carriers, are encapsulated in nucleic acids and proteins, and play a messenger role in cell-to-cell communication. Recent studies have identified exosome peptides with potential diagnostic roles. This review aims to provide a theoretical basis for ncRNA-encoded peptides or proteins transported by exosomes and ultimately to provide ideas for further development of new diagnostic and prognostic cancer markers.
Collapse
Affiliation(s)
- Jing Yang
- The First Clinical Medical College, Lanzhou University, Lanzhou, China,Department of Gastroenterology, The First Hospital of Lanzhou University, Lanzhou, China,Key Laboratory for Gastrointestinal Diseases of Gansu Province, The First Hospital of Lanzhou University, Lanzhou, China
| | - Mengxiao Liu
- The First Clinical Medical College, Lanzhou University, Lanzhou, China,Department of Gastroenterology, The First Hospital of Lanzhou University, Lanzhou, China,Key Laboratory for Gastrointestinal Diseases of Gansu Province, The First Hospital of Lanzhou University, Lanzhou, China
| | - Xidong Fang
- The First Clinical Medical College, Lanzhou University, Lanzhou, China,Department of Gastroenterology, The First Hospital of Lanzhou University, Lanzhou, China,Key Laboratory for Gastrointestinal Diseases of Gansu Province, The First Hospital of Lanzhou University, Lanzhou, China
| | - Huiyun Zhang
- The First Clinical Medical College, Lanzhou University, Lanzhou, China,Department of Gastroenterology, The First Hospital of Lanzhou University, Lanzhou, China,Key Laboratory for Gastrointestinal Diseases of Gansu Province, The First Hospital of Lanzhou University, Lanzhou, China
| | - Qian Ren
- Department of Gastroenterology, The First Hospital of Lanzhou University, Lanzhou, China,Key Laboratory for Gastrointestinal Diseases of Gansu Province, The First Hospital of Lanzhou University, Lanzhou, China
| | - Ya Zheng
- Department of Gastroenterology, The First Hospital of Lanzhou University, Lanzhou, China,Key Laboratory for Gastrointestinal Diseases of Gansu Province, The First Hospital of Lanzhou University, Lanzhou, China
| | - Yuping Wang
- Department of Gastroenterology, The First Hospital of Lanzhou University, Lanzhou, China,Key Laboratory for Gastrointestinal Diseases of Gansu Province, The First Hospital of Lanzhou University, Lanzhou, China,*Correspondence: Yongning Zhou, ; Yuping Wang,
| | - Yongning Zhou
- Department of Gastroenterology, The First Hospital of Lanzhou University, Lanzhou, China,Key Laboratory for Gastrointestinal Diseases of Gansu Province, The First Hospital of Lanzhou University, Lanzhou, China,*Correspondence: Yongning Zhou, ; Yuping Wang,
| |
Collapse
|
92
|
Hussen BM, Abdullah SR, Hama Faraj GS, Rasul MF, Salihi A, Ghafouri-Fard S, Taheri M, Mokhtari M. Exosomal circular RNA: a signature for lung cancer progression. Cancer Cell Int 2022; 22:378. [PMID: 36457039 PMCID: PMC9714134 DOI: 10.1186/s12935-022-02793-7] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2022] [Accepted: 11/15/2022] [Indexed: 12/03/2022] Open
Abstract
Membrane vesicles having a diameter of 30-150 nm are known as exosomes. Several cancer types secrete exosomes, which may contain proteins, circular RNAs (circRNAs), microRNAs, or DNA. CircRNAs are endogenous RNAs that do not code for proteins and can create continuous and covalently closed loops. In cancer pathogenesis, especially metastasis, exosomal circRNAs (exo-circRNAs) have a crucial role mainly due to the frequently aberrant expression levels within tumors. However, neither the activities nor the regulatory mechanisms of exo-circRNAs in advancing lung cancer (LC) are obvious. A better understanding of the regulation and network connections of exo-circRNAs will lead to better treatment for LCs. The main objective of the current review is to highlight the functions and mechanisms of exo-circRNAs in LC and assess the relationships between exo-circRNA dysregulation and LC progression. In addition, underline the possible therapeutic targets based on exo-circRNA modulating.
Collapse
Affiliation(s)
- Bashdar Mahmud Hussen
- Department of Pharmacognosy, College of Pharmacy, Hawler Medical University, Erbil, Kurdistan Region, Iraq
- Medical Laboratory Science, Lebanese French University, Erbil, Kurdistan Region, Iraq
| | - Snur Rasool Abdullah
- Medical Laboratory Science, Lebanese French University, Erbil, Kurdistan Region, Iraq
| | - Goran Sedeeq Hama Faraj
- Department of Medical Laboratory Science, Komar University of Science and Technology, Sulaymaniyah, Iraq
| | - Mohammed Fatih Rasul
- Department of Pharmaceutical Basic Science, Faculty of Pharmacy, Tishk International University, Erbil, Kurdistan Region, Iraq
| | - Abbas Salihi
- Department of Biology, College of Science, Salahaddin University-Erbil, Erbil, Kurdistan Region, Iraq
- Department of Biomedical Sciences, Cihan University-Erbil, Kurdistan Region, Erbil, 44001, Iraq
| | - Soudeh Ghafouri-Fard
- Department of Medical Genetics, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mohammad Taheri
- Urology and Nephrology Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
- Institute of Human Genetics, Jena University Hospital, Jena, Germany.
| | - Majid Mokhtari
- Tracheal Diseases Research Center, National Research Institute of Tuberculosis and Lung Diseases (NRITLD), Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
93
|
Song J, Zheng J, Liu X, Dong W, Yang C, Wang D, Ruan X, Zhao Y, Liu L, Wang P, Zhang M, Liu Y. A novel protein encoded by ZCRB1-induced circHEATR5B suppresses aerobic glycolysis of GBM through phosphorylation of JMJD5. J Exp Clin Cancer Res 2022; 41:171. [PMID: 35538499 PMCID: PMC9086421 DOI: 10.1186/s13046-022-02374-6] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2022] [Accepted: 04/26/2022] [Indexed: 12/28/2022] Open
Abstract
Abstract
Background
RNA-binding proteins (RBPs) and circular RNAs (circRNAs) play important roles in glioblastoma multiforme (GBM). Aerobic glycolysis is a metabolic characteristic of GBM. However, the roles of RBPs and circRNAs in aerobic glycolysis in GBM remain unclear. The aim of this study is to explore the mechanisms by which RBPs and circRNAs regulate aerobic glycolysis in GBM cells.
Methods
RNA sequencing and circRNA microarray analysis were performed to identify RBPs and circRNAs for further study. Mass spectrometry validated the encoded protein and its interacting proteins. Quantitative reverse transcription PCR and western blot assays were used to determine the mRNA and protein expression, respectively. Furthermore, immunofluorescence and fluorescence in situ hybridization assays were used to determine the protein and RNA localization, respectively. Glucose and lactate measurement assays, Seahorse XF glycolysis stress assays and cell viability assays were conducted to investigate the effects on glycolysis and proliferation in GBM cells.
Results
We selected zinc finger CCHC-type and RNA-binding motif 1 (ZCRB1) and circRNA HEAT repeat containing 5B (circHEATR5B) as candidates for this study. These genes were expressed at low levels in GBM tissues and cells. Both ZCRB1 and circHEATR5B overexpression suppressed aerobic glycolysis and proliferation in GBM cells. ZCRB1 overexpression promoted the Alu element-mediated formation of circHEATR5B. In addition, circHEATR5B encoded a novel protein HEATR5B-881aa which interacted directly with Jumonji C-domain-containing 5 (JMJD5) and reduced its stability by phosphorylating S361. JMJD5 knockdown increased pyruvate kinase M2 (PKM2) enzymatic activity and suppressed glycolysis and proliferation in GBM cells. Finally, ZCRB1, circHEATR5B and HEATR5B-881aa overexpression inhibited GBM xenograft growth and prolonged the survival time of nude mice.
Conclusions
This study reveals a novel mechanism of regulating aerobic glycolysis and proliferation in GBM cells through the ZCRB1/circHEATR5B/HEATR5B-881aa/JMJD5/PKM2 pathway, which can provide novel strategies and potential targets for GBM therapy.
Collapse
|
94
|
Chen Y, Wang J, Wang C, Liu M, Zou Q. Deep learning models for disease-associated circRNA prediction: a review. Brief Bioinform 2022; 23:6696465. [PMID: 36130259 DOI: 10.1093/bib/bbac364] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2022] [Revised: 07/30/2022] [Accepted: 08/03/2022] [Indexed: 12/14/2022] Open
Abstract
Emerging evidence indicates that circular RNAs (circRNAs) can provide new insights and potential therapeutic targets for disease diagnosis and treatment. However, traditional biological experiments are expensive and time-consuming. Recently, deep learning with a more powerful ability for representation learning enables it to be a promising technology for predicting disease-associated circRNAs. In this review, we mainly introduce the most popular databases related to circRNA, and summarize three types of deep learning-based circRNA-disease associations prediction methods: feature-generation-based, type-discrimination and hybrid-based methods. We further evaluate seven representative models on benchmark with ground truth for both balance and imbalance classification tasks. In addition, we discuss the advantages and limitations of each type of method and highlight suggested applications for future research.
Collapse
Affiliation(s)
- Yaojia Chen
- College of Electronics and Information Engineering Guangdong Ocean University, Zhanjiang, China and the Institute of Fundamental and Frontier Sciences, University of Electronic Science and Technology of China, Chengdu, China
| | - Jiacheng Wang
- Institute of Fundamental and Frontier Sciences, University of Electronic Science and Technology of China, Chengdu, China
| | - Chuyu Wang
- Faculty of Computing, Harbin Institute of Technology, Harbin, China
| | - Mingxin Liu
- College of Electronics and Information Engineering, Guangdong Ocean University, Zhanjiang, China
| | - Quan Zou
- University of Electronic Science and Technology of China, China
| |
Collapse
|
95
|
Ding P, Liu P, Wu H, Yang P, Tian Y, Zhao Q. Functional properties of circular RNAs and research progress in gastric cancer. Front Oncol 2022; 12:954637. [DOI: 10.3389/fonc.2022.954637] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2022] [Accepted: 10/24/2022] [Indexed: 11/18/2022] Open
Abstract
Circular RNAs (circRNAs) are a class of closed circular non-coding RNAs widely exist in eukaryotes, with high stability and species conservation. A large number of studies have shown that circRNAs are abnormally expressed in various tumor tissues, and are abundant in plasma with long half-life and high specificity, which may be served as potential tumor biomarkers for early diagnosis, treatment and prognosis of malignant tumors. However, the role of circRNAs is still poorly understood in gastric cancer. This article reviews the research progress of circRNAs in gastric cancer in recent years so as to explore the relationship between circRNAs and the occurrence and the development of gastric cancer, and provide new ideas for the diagnosis and treatment of gastric cancer.
Collapse
|
96
|
Involvement of circRNAs in the Development of Heart Failure. Int J Mol Sci 2022; 23:ijms232214129. [PMID: 36430607 PMCID: PMC9697219 DOI: 10.3390/ijms232214129] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2022] [Revised: 11/05/2022] [Accepted: 11/14/2022] [Indexed: 11/18/2022] Open
Abstract
In recent years, interest in non-coding RNAs as important physiological regulators has grown significantly. Their participation in the pathophysiology of cardiovascular diseases is extremely important. Circular RNA (circRNA) has been shown to be important in the development of heart failure. CircRNA is a closed circular structure of non-coding RNA fragments. They are formed in the nucleus, from where they are transported to the cytoplasm in a still unclear mechanism. They are mainly located in the cytoplasm or contained in exosomes. CircRNA expression varies according to the type of tissue. In the brain, almost 12% of genes produce circRNA, while in the heart it is only 9%. Recent studies indicate a key role of circRNA in cardiomyocyte hypertrophy, fibrosis, autophagy and apoptosis. CircRNAs act mainly by interacting with miRNAs through a "sponge effect" mechanism. The involvement of circRNA in the development of heart failure leads to the suggestion that they may be promising biomarkers and useful targets in the treatment of cardiovascular diseases. In this review, we will provide a brief introduction to circRNA and up-to-date understanding of their role in the mechanisms leading to the development of heart failure.
Collapse
|
97
|
Ma L, Chu H, Wang M, Zhang Z. Biological functions and potential implications of circular RNAs. J Biomed Res 2022; 37:89-99. [PMID: 36814375 PMCID: PMC10018409 DOI: 10.7555/jbr.36.20220095] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/22/2023] Open
Abstract
Circular RNAs (circRNAs) are characterized by a covalent closed-loop structure with an absence of both 5' cap structure and 3' polyadenylated tail. Numerous studies have found that circRNAs play an important role in various diseases and have a variety of biological regulatory mechanisms, including acting as microRNA sponges, interacting with proteins, modulating the expression of related genes and translating into peptides or proteins. CircRNAs have also been used as biomarkers for a number of diseases, which could improve clinical practice. This review summarizes the most recent advances in biogenesis and knowledge of the biological functions of circRNAs as well as the related bioinformatics databases. We specifically describe developments in understanding of circRNA functions in the field of environmental exposure-induced diseases. Finally, we focus on potential clinical implications of circRNAs to facilitate their clinical transformation into disease treatment.
Collapse
Affiliation(s)
- Lan Ma
- Department of Genetic Toxicology, The Key Laboratory of Modern Toxicology of Ministry of Education, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing, Jiangsu 211166, China.,Department of Environmental Genomics, Jiangsu Key Laboratory of Cancer Biomarkers, Prevention and Treatment, Collaborative Innovation Center for Cancer Personalized Medicine, Nanjing Medical University, Nanjing, Jiangsu 211166, China
| | - Haiyan Chu
- Department of Genetic Toxicology, The Key Laboratory of Modern Toxicology of Ministry of Education, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing, Jiangsu 211166, China.,Department of Environmental Genomics, Jiangsu Key Laboratory of Cancer Biomarkers, Prevention and Treatment, Collaborative Innovation Center for Cancer Personalized Medicine, Nanjing Medical University, Nanjing, Jiangsu 211166, China
| | - Meilin Wang
- Department of Genetic Toxicology, The Key Laboratory of Modern Toxicology of Ministry of Education, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing, Jiangsu 211166, China.,Department of Environmental Genomics, Jiangsu Key Laboratory of Cancer Biomarkers, Prevention and Treatment, Collaborative Innovation Center for Cancer Personalized Medicine, Nanjing Medical University, Nanjing, Jiangsu 211166, China
| | - Zhengdong Zhang
- Department of Genetic Toxicology, The Key Laboratory of Modern Toxicology of Ministry of Education, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing, Jiangsu 211166, China.,Department of Environmental Genomics, Jiangsu Key Laboratory of Cancer Biomarkers, Prevention and Treatment, Collaborative Innovation Center for Cancer Personalized Medicine, Nanjing Medical University, Nanjing, Jiangsu 211166, China
| |
Collapse
|
98
|
Ren W, Yuan Y, Peng J, Mutti L, Jiang X. The function and clinical implication of circular RNAs in lung cancer. Front Oncol 2022; 12:862602. [PMID: 36338714 PMCID: PMC9629004 DOI: 10.3389/fonc.2022.862602] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2022] [Accepted: 08/26/2022] [Indexed: 12/02/2022] Open
Abstract
Lung cancer is the leading cause of cancer-related deaths worldwide. Despite the recent advent of promising new targeted therapies, lung cancer diagnostic strategies still have difficulty in identifying the disease at an early stage. Therefore, the characterizations of more sensible and specific cancer biomarkers have become an important goal for clinicians. Circular RNAs are covalently close, endogenous RNAs without 5' end caps or 3'poly (A) tails and have been characterized by high stability, abundance, and conservation as well as display cell/tissue/developmental stage-specific expressions. Numerous studies have confirmed that circRNAs act as microRNA (miRNA) sponges, RNA-binding protein, and transcriptional regulators; some circRNAs even act as translation templates that participate in multiple pathophysiological processes. Growing evidence have confirmed that circRNAs are involved in the pathogenesis of lung cancers through the regulation of proliferation and invasion, cell cycle, autophagy, apoptosis, stemness, tumor microenvironment, and chemotherapy resistance. Moreover, circRNAs have emerged as potential biomarkers for lung cancer diagnosis and prognosis and targets for developing new treatments. In this review, we will summarize recent progresses in identifying the biogenesis, biological functions, potential mechanisms, and clinical applications of these molecules for lung cancer diagnosis, prognosis, and targeted therapy.
Collapse
Affiliation(s)
- Wenjun Ren
- Department of Cardiovascular Surgery, The First People's Hospital of Yunnan Province, Kunming, Yunnan, China
- Department of Thoracic Surgery, The Second Affiliated Hospital of Kunming Medical University, Kunming, Yunnan, China
| | - Yixiao Yuan
- Key Laboratory of Molecular Oncology and Epigenetics, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Jun Peng
- Department of Thoracic Surgery, The First People's Hospital of Yunnan Province, Kunming, Yunnan, China
| | - Luciano Mutti
- The Sbarro Institute for Cancer Research and Molecular Medicine, Center for Biotechnology, College of Science and Technology, Temple University, Philadelphia, PA, United States
| | - Xiulin Jiang
- Kunming College of Life Science, University of Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
99
|
Hong X, Li Q, Li J, Chen K, He Q, Zhao Y, Liang Y, Zhao Y, Qiao H, Liu N, Ma J, Li Y. CircIPO7 Promotes Nasopharyngeal Carcinoma Metastasis and Cisplatin Chemoresistance by Facilitating YBX1 Nuclear Localization. Clin Cancer Res 2022; 28:4521-4535. [PMID: 35917517 DOI: 10.1158/1078-0432.ccr-22-0991] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2022] [Revised: 06/06/2022] [Accepted: 07/28/2022] [Indexed: 12/24/2022]
Abstract
PURPOSE Cisplatin-based chemotherapy effectively improves the distant-metastasis control in nasopharyngeal carcinoma (NPC), but approximately 30% of patients develop treatment failure due to chemoresistance. However, the underlying mechanisms remain poorly understood. EXPERIMENTAL DESIGN Circular RNA (circRNA) sequencing data were used to identify metastasis-specific circRNAs and the expression of circIPO7 was validated in NPC tissues as well as NPC cell lines by qRT-PCR. The whole transcriptional profile upon circIPO7 knockdown was applied to explore the biological function and regulatory mechanism, which were further confirmed by in vitro and in vivo metastasis/chemosensitivity assays. We also evaluated the value of circIPO7 expression in predicting NPC metastasis and cisplatin chemoresistance by analyzing a cohort of 183 NPC patients. RESULTS In this study, circIPO7, a novel circRNA, is found to be specifically overexpressed in NPC patients with distant metastasis. Knockdown of circIPO7 in NPC cells suppresses their metastasis and increases sensitivity to cisplatin treatment in vitro and in vivo. Mechanistically, circIPO7 binds to Y-box binding protein-1 (YBX1) protein in the cytoplasm and facilitates its phosphorylation at serine 102 (p-YBX1S102) by the kinase AKT, which further promotes YBX1 nuclear translocation and activates FGFR1, TNC, and NTRK1 transcription. Clinically, higher circIPO7 expression indicates unfavorable distant metastasis-free survival in NPC patients given cisplatin-based chemotherapy. CONCLUSIONS Altogether, this study identifies oncogenic circIPO7 as a prognostic marker after cisplatin-based chemotherapy and as a potential therapeutic target for overcoming metastasis and chemoresistance in NPC.
Collapse
Affiliation(s)
- Xiaohong Hong
- Sun Yat-sen University Cancer Center, the State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Center for Precision Medicine of Sun Yat-sen University, Guangzhou, P.R. China.,Department of Radiation Oncology, Sun Yat-sen University Cancer Center, Guangzhou, P.R. China
| | - Qian Li
- Sun Yat-sen University Cancer Center, the State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Center for Precision Medicine of Sun Yat-sen University, Guangzhou, P.R. China.,Department of Radiation Oncology, Sun Yat-sen University Cancer Center, Guangzhou, P.R. China
| | - Junyan Li
- Sun Yat-sen University Cancer Center, the State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Center for Precision Medicine of Sun Yat-sen University, Guangzhou, P.R. China.,Department of Radiation Oncology, Sun Yat-sen University Cancer Center, Guangzhou, P.R. China
| | - Kailin Chen
- Sun Yat-sen University Cancer Center, the State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Center for Precision Medicine of Sun Yat-sen University, Guangzhou, P.R. China.,Department of Radiation Oncology, Sun Yat-sen University Cancer Center, Guangzhou, P.R. China
| | - Qingmei He
- Sun Yat-sen University Cancer Center, the State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Center for Precision Medicine of Sun Yat-sen University, Guangzhou, P.R. China.,Department of Experimental Research, Sun Yat-sen University Cancer Center, Guangzhou, P.R. China
| | - Yuheng Zhao
- Sun Yat-sen University Cancer Center, the State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Center for Precision Medicine of Sun Yat-sen University, Guangzhou, P.R. China.,Department of Experimental Research, Sun Yat-sen University Cancer Center, Guangzhou, P.R. China
| | - Yelin Liang
- Sun Yat-sen University Cancer Center, the State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Center for Precision Medicine of Sun Yat-sen University, Guangzhou, P.R. China.,Department of Radiation Oncology, Sun Yat-sen University Cancer Center, Guangzhou, P.R. China
| | - Yin Zhao
- Sun Yat-sen University Cancer Center, the State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Center for Precision Medicine of Sun Yat-sen University, Guangzhou, P.R. China.,Department of Experimental Research, Sun Yat-sen University Cancer Center, Guangzhou, P.R. China
| | - Han Qiao
- Sun Yat-sen University Cancer Center, the State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Center for Precision Medicine of Sun Yat-sen University, Guangzhou, P.R. China.,Department of Experimental Research, Sun Yat-sen University Cancer Center, Guangzhou, P.R. China
| | - Na Liu
- Sun Yat-sen University Cancer Center, the State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Center for Precision Medicine of Sun Yat-sen University, Guangzhou, P.R. China.,Department of Experimental Research, Sun Yat-sen University Cancer Center, Guangzhou, P.R. China
| | - Jun Ma
- Sun Yat-sen University Cancer Center, the State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Center for Precision Medicine of Sun Yat-sen University, Guangzhou, P.R. China.,Department of Radiation Oncology, Sun Yat-sen University Cancer Center, Guangzhou, P.R. China
| | - Yingqin Li
- Sun Yat-sen University Cancer Center, the State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Center for Precision Medicine of Sun Yat-sen University, Guangzhou, P.R. China.,Department of Experimental Research, Sun Yat-sen University Cancer Center, Guangzhou, P.R. China
| |
Collapse
|
100
|
A Review and In Silico Analysis of Tissue and Exosomal Circular RNAs: Opportunities and Challenges in Thyroid Cancer. Cancers (Basel) 2022; 14:cancers14194728. [PMID: 36230649 PMCID: PMC9564022 DOI: 10.3390/cancers14194728] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2022] [Revised: 09/22/2022] [Accepted: 09/26/2022] [Indexed: 11/16/2022] Open
Abstract
Simple Summary Thyroid cancer is the most common endocrine neoplasm. Recently, knowledge of the molecular genetic changes of thyroid cancer has dramatically improved. Understanding the roles of these molecular changes in thyroid cancer tumorigenesis and progression is essential in developing a successful treatment strategy and improving disease outcomes. As a family of non-coding RNAs, circular RNAs (circRNAs) have been involved in several aspects of the physiological and pathological processes of the cells. The roles of circRNAs in cancer development and progress are evident. In the current review, we aimed to explore the clinical potential of circRNAs as potential diagnostic, prognostic, and therapeutic targets in thyroid cancer. Furthermore, screening the genome-wide circRNAs and performing functional enrichment analyses for all associated dysregulated circRNAs in thyroid cancer have been done. Given the unique advantages circRNAs have, such as superior stability, higher abundance, and presence in different body fluids, this family of non-coding RNAs could be promising diagnostic and prognostic biomarkers and potential therapeutic targets for thyroid cancer. Abstract Thyroid cancer (TC) is the most common endocrine tumor. The genetic and epigenetic molecular alterations of TC have become more evident in recent years. However, a deeper understanding of the roles these molecular changes play in TC tumorigenesis and progression is essential in developing a successful treatment strategy and improving patients’ prognoses. Circular RNAs (circRNAs), a family of non-coding RNAs, have been implicated in several aspects of carcinogenesis in multiple cancers, including TC. In the current review, we aimed to explore the clinical potential of circRNAs as putative diagnostic, prognostic, and therapeutic targets in TC. The current analyses, including genome-wide circRNA screening and functional enrichment for all deregulated circRNA expression signatures, show that circRNAs display atypical contributions, such as sponging for microRNAs, regulating transcription and translation processes, and decoying for proteins. Given their exceptional clinical advantages, such as higher stability, wider abundance, and occurrence in several body fluids, circRNAs are promising prognostic and theranostic biomarkers for TC.
Collapse
|