51
|
Abstract
Regenerative medicine is gaining more and more space for the treatment of Achilles pathologic conditions. Biologics could play a role in the management of midportion Achilles tendinopathy as a step between conservative and surgical treatment or as an augmentation. Higher-level studies are needed before determining a level of treatment recommendation for biologic strategies for insertional Achilles tendinopathy. Combining imaging with patient's functional requests could be the way to reach a protocol for the use of biologics for the treatment of midportion Achilles tendinopathy and, for this perspective, the authors describe the Foot and Ankle Reconstruction Group algorithm of treatment.
Collapse
Affiliation(s)
- Cristian Indino
- IRCCS Istituto Ortopedico Galeazzi, Via Riccardo Galeazzi, 4, Milan 20161, Italy.
| | - Riccardo D'Ambrosi
- IRCCS Istituto Ortopedico Galeazzi, Via Riccardo Galeazzi, 4, Milan 20161, Italy
| | - Federico G Usuelli
- Humanitas San Pio X, via Francesco Nava, 31, 20159 Milano, Lombardia, Italy
| |
Collapse
|
52
|
Valdivia A, Mingo G, Aldana V, Pinto MP, Ramirez M, Retamal C, Gonzalez A, Nualart F, Corvalan AH, Owen GI. Fact or Fiction, It Is Time for a Verdict on Vasculogenic Mimicry? Front Oncol 2019; 9:680. [PMID: 31428573 PMCID: PMC6688045 DOI: 10.3389/fonc.2019.00680] [Citation(s) in RCA: 40] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2019] [Accepted: 07/10/2019] [Indexed: 12/12/2022] Open
Abstract
The term vasculogenic mimicry (VM) refers to the capacity of certain cancer cells to form fluid-conducting structures within a tumor in an endothelial cell (EC)-free manner. Ever since its first report by Maniotis in 1999, the existence of VM has been an extremely contentious issue. The overwhelming consensus of the literature suggests that VM is frequently observed in highly aggressive tumors and correlates to lower patient survival. While the presence of VM in vivo in animal and patient tumors are claimed upon the strong positive staining for glycoproteins (Periodic Acid Schiff, PAS), it is by no means universally accepted. More controversial still is the existence of an in vitro model of VM that principally divides the scientific community. Original reports demonstrated that channels or tubes occur in cancer cell monolayers in vitro when cultured in matrigel and that these structures may support fluid movement. However, several years later many papers emerged stating that connections formed between cancer cells grown on matrigel represented VM. We speculate that this became accepted by the cancer research community and now the vast majority of the scientific literature reports both presence and mechanisms of VM based on intercellular connections, not the presence of fluid conducting tubes. In this opinion paper, we call upon evidence from an exhaustive review of the literature and original data to argue that the majority of in vitro studies presented as VM do not correspond to this phenomenon. Furthermore, we raise doubts on the validity of concluding the presence of VM in patient samples and animal models based solely on the presence of PAS+ staining. We outline the requirement for new biomarkers of VM and present criteria by which VM should be defined in vitro and in vivo.
Collapse
Affiliation(s)
- Andrés Valdivia
- Faculty of Biological Sciences, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Gabriel Mingo
- Faculty of Biological Sciences, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Varina Aldana
- Faculty of Biological Sciences, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Mauricio P Pinto
- Faculty of Medicine, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Marco Ramirez
- Faculty of Medicine, Universidad de Chile, Santiago, Chile
| | - Claudio Retamal
- Faculty of Medicine and Science, Center of Cellular Biology and Biomedicine (CEBICEM), Universidad San Sebastian, Santiago, Chile
| | - Alfonso Gonzalez
- Faculty of Medicine and Science, Center of Cellular Biology and Biomedicine (CEBICEM), Universidad San Sebastian, Santiago, Chile
| | - Francisco Nualart
- Faculty of Biological Sciences, Universidad de Concepcion, Concepción, Chile
| | - Alejandro H Corvalan
- Faculty of Medicine, Pontificia Universidad Católica de Chile, Santiago, Chile.,Advanced Center for Chronic Diseases (ACCDiS), Santiago, Chile
| | - Gareth I Owen
- Faculty of Biological Sciences, Pontificia Universidad Católica de Chile, Santiago, Chile.,Faculty of Medicine, Pontificia Universidad Católica de Chile, Santiago, Chile.,Advanced Center for Chronic Diseases (ACCDiS), Santiago, Chile.,Millennium Institute on Immunology and Immunotherapy, Santiago, Chile
| |
Collapse
|
53
|
Kikuchi S, Yoshioka Y, Prieto-Vila M, Ochiya T. Involvement of Extracellular Vesicles in Vascular-Related Functions in Cancer Progression and Metastasis. Int J Mol Sci 2019; 20:ijms20102584. [PMID: 31130715 PMCID: PMC6566766 DOI: 10.3390/ijms20102584] [Citation(s) in RCA: 47] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2019] [Revised: 05/23/2019] [Accepted: 05/25/2019] [Indexed: 02/07/2023] Open
Abstract
The primary cause of mortality among patients with cancer is the progression of the tumor, better known as cancer invasion and metastasis. Cancer progression involves a series of biologically important steps in which the cross-talk between cancer cells and the cells in the surrounding environment is positioned as an important issue. Notably, angiogenesis is a key tumorigenic phenomenon for cancer progression. Cancer-related extracellular vesicles (EVs) commonly contribute to the modulation of a microenvironment favorable to cancer cells through their function of cell-to-cell communication. Vascular-related cells such as endothelial cells (ECs) and platelets activated by cancer cells and cancer-derived EVs develop procoagulant and proinflammatory statuses, which help excite the tumor environment, and play major roles in tumor progression, including in tumor extravasation, tumor cell microthrombi formation, platelet aggregation, and metastasis. In particular, cancer-derived EVs influence ECs, which then play multiple roles such as contributing to tumor angiogenesis, loss of endothelial vascular barrier by binding to ECs, and the subsequent endothelial-to-mesenchymal transition, i.e., extracellular matrix remodeling. Thus, cell-to-cell communication between cancer cells and ECs via EVs may be an important target for controlling cancer progression. This review describes the current knowledge regarding the involvement of EVs, especially exosomes derived from cancer cells, in EC-related cancer progression.
Collapse
Affiliation(s)
- Shinsuke Kikuchi
- Division of Molecular and Cellular Medicine, National Cancer Center Research Institute, Tokyo 104-0045, Japan.
- Department of Vascular Surgery, Asahikawa Medical University, Asahikawa 078-8510, Japan.
| | - Yusuke Yoshioka
- Division of Molecular and Cellular Medicine, National Cancer Center Research Institute, Tokyo 104-0045, Japan.
- Division of Molecular and Cellular Medicine, Institute of Medical Science Tokyo Medical University, Tokyo 160-0023, Japan.
| | - Marta Prieto-Vila
- Division of Molecular and Cellular Medicine, National Cancer Center Research Institute, Tokyo 104-0045, Japan.
- Division of Molecular and Cellular Medicine, Institute of Medical Science Tokyo Medical University, Tokyo 160-0023, Japan.
| | - Takahiro Ochiya
- Division of Molecular and Cellular Medicine, National Cancer Center Research Institute, Tokyo 104-0045, Japan.
- Division of Molecular and Cellular Medicine, Institute of Medical Science Tokyo Medical University, Tokyo 160-0023, Japan.
| |
Collapse
|
54
|
Phase-specific functions of macrophages determine injury-mediated corneal hem- and lymphangiogenesis. Sci Rep 2019; 9:308. [PMID: 30670724 PMCID: PMC6343005 DOI: 10.1038/s41598-018-36526-6] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2018] [Accepted: 11/21/2018] [Indexed: 01/13/2023] Open
Abstract
Macrophages are critical mediators of injury-associated corneal hemangiogenesis (HA) and lymphangiogenesis (LA). Yet, molecular regulators of the hem- and lymphangiogenic potential of corneal wound macrophages are poorly understood. Using two different mouse models of acute (perforating corneal incision injury) and chronic (corneal suture placement model) corneal injury, here we identified distinct functions of early- versus late-phase corneal wound macrophages in corneal HA and LA. Whereas early-phase wound macrophages are essential for initiation and progression of injury-mediated corneal HA and LA, late-phase wound macrophages control maintenance of established corneal lymphatic vessels, but not blood vessels. Furthermore, our findings reveal that the hem- and lymphangiogenic potential of corneal wound macrophages is controlled by the type of the corneal damage. Whereas perforating corneal incision injury induced primarily wound macrophages with lymphangiogenic potential, corneal suture placement provoked wound macrophages with both hem- and lymphangiogenic potential. Our findings highlight a previously unrecognized injury-context dependent role of early- versus late-phase corneal wound macrophages with potential clinical impact on therapy development for sight-threatening corneal neovascular diseases.
Collapse
|
55
|
Zhang Y, Ma L, Ren C, Liu K, Tian X, Wu D, Ding Y, Li J, Borlongan CV, Ji X. Immediate remote ischemic postconditioning reduces cerebral damage in ischemic stroke mice by enhancing leptomeningeal collateral circulation. J Cell Physiol 2018; 234:12637-12645. [PMID: 30536714 PMCID: PMC6590306 DOI: 10.1002/jcp.27858] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2018] [Accepted: 11/15/2018] [Indexed: 12/22/2022]
Abstract
Remote ischemic postconditioning (RIPC) is a promising neuroprotective strategy for ischemic stroke. Here, we employed a focal ischemic stroke mouse model to test the hypothesis that poststroke collateral circulation as a potent mechanism of action underlying the therapeutic effects of immediate RIPC. During reperfusion of cerebral ischemia, the mice were randomly assigned to receive RIPC, granulocyte colony‐stimulating factor (G‐CSF) as a positive control, or no treatment. At 24 hr, we found RIPC and G‐CSF increased monocytes/macrophages in the dorsal brain surface and in the spleen, coupled with enhanced leptomeningeal collateral flow compared with nontreatment group. Blood monocytes depletion by 5‐fluorouracil (5‐FU) significantly limited the neuroprotection of RIPC or G‐CSF treatment. The protein expression of proangiogenic factors such as Ang‐2 was increased by ischemia, but treatment with either RIPC or G‐CSF showed no further upregulation. Thus, immediate RIPC confers neuroprotection, in part, by enhancing leptomeningeal collateral circulation in a mouse model of ischemic stroke.
Collapse
Affiliation(s)
- Ying Zhang
- Department of Neurobiology, Capital Medical University, Beijing, China.,Beijing Key Laboratory of Hypoxia Conditioning Translational Medicine, Xuanwu Hospital, Capital Medical University, Beijing, China.,Center of Stroke, Beijing Institute for Brain Disorders, Capital Medical University, Beijing, China
| | - Longhui Ma
- Department of Neurobiology, Capital Medical University, Beijing, China.,Center of Stroke, Beijing Institute for Brain Disorders, Capital Medical University, Beijing, China
| | - Changhong Ren
- Beijing Key Laboratory of Hypoxia Conditioning Translational Medicine, Xuanwu Hospital, Capital Medical University, Beijing, China.,Center of Stroke, Beijing Institute for Brain Disorders, Capital Medical University, Beijing, China
| | - Kaiyin Liu
- Department of Neurosurgery, Wayne State University School of Medicine, Detroit, Michigan
| | - Xin Tian
- Beijing Key Laboratory of Hypoxia Conditioning Translational Medicine, Xuanwu Hospital, Capital Medical University, Beijing, China.,Center of Stroke, Beijing Institute for Brain Disorders, Capital Medical University, Beijing, China
| | - Di Wu
- Beijing Key Laboratory of Hypoxia Conditioning Translational Medicine, Xuanwu Hospital, Capital Medical University, Beijing, China.,Center of Stroke, Beijing Institute for Brain Disorders, Capital Medical University, Beijing, China
| | - Yuchuan Ding
- Department of Neurosurgery, Wayne State University School of Medicine, Detroit, Michigan
| | - Junfa Li
- Department of Neurobiology, Capital Medical University, Beijing, China.,Center of Stroke, Beijing Institute for Brain Disorders, Capital Medical University, Beijing, China
| | - Cesar V Borlongan
- Department of Neurosurgery and Brain Repair, University of South Florida, Tampa, Florida
| | - Xunming Ji
- Beijing Key Laboratory of Hypoxia Conditioning Translational Medicine, Xuanwu Hospital, Capital Medical University, Beijing, China.,Center of Stroke, Beijing Institute for Brain Disorders, Capital Medical University, Beijing, China.,Department of Neurosurgery, Xuanwu Hospital, Capital Medical University, Beijing, China
| |
Collapse
|
56
|
Harnessing Macrophages for Vascularization in Tissue Engineering. Ann Biomed Eng 2018; 47:354-365. [PMID: 30535815 DOI: 10.1007/s10439-018-02170-4] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2018] [Accepted: 11/16/2018] [Indexed: 12/13/2022]
Abstract
In this review, we explore the roles of macrophages both in vessel development and in vascularization of tissue engineered constructs. Upon the implantation of tissue engineered constructs into the body, macrophages respond, invade and orchestrate the host's immune response. By altering their phenotype, macrophages can adopt a variety of roles. They can promote inflammation at the site of the implanted construct; they can also promote tissue repair. Macrophages support tissue repair by promoting angiogenesis through the secretion of pro-angiogenic cytokines and by behaving as support cells for nascent vasculature. Thus, the ability to manipulate the macrophage phenotype may yield macrophages capable of supporting vessel development. Moreover, macrophages are an easily isolated autologous cell source. For the generation of vascularized constructs outside of the body, these isolated macrophages can also be skewed to adopt a pro-angiogenic phenotype and enhance blood vessel development in the presence of endothelial cells. To assess the influence of macrophages on vessel development, both in vivo and in vitro models have been developed. Additionally, several groups have demonstrated the pro-angiogenic roles of macrophages in vascularization of tissue engineered constructs through the manipulation of macrophage phenotypes. This review comments on the roles of macrophages in promoting vascularization within these contexts.
Collapse
|
57
|
Tasoulas J, Tsourouflis G, Theocharis S. Neovascularization: an attractive but tricky target in thyroid cancer. Expert Opin Ther Targets 2018; 22:799-810. [DOI: 10.1080/14728222.2018.1513494] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Affiliation(s)
- Jason Tasoulas
- First Department of Pathology, Medical School, National and Kapodistrian University of Athens, Athens, Greece
| | - Gerasimos Tsourouflis
- First Department of Pathology, Medical School, National and Kapodistrian University of Athens, Athens, Greece
| | - Stamatios Theocharis
- First Department of Pathology, Medical School, National and Kapodistrian University of Athens, Athens, Greece
| |
Collapse
|
58
|
Zhang Q, Li Y, Miao C, Wang Y, Xu Y, Dong R, Zhang Z, Griffin BB, Yuan C, Yan S, Yang X, Liu Z, Kong B. Anti-angiogenesis effect of Neferine via regulating autophagy and polarization of tumor-associated macrophages in high-grade serous ovarian carcinoma. Cancer Lett 2018; 432:144-155. [PMID: 29879497 DOI: 10.1016/j.canlet.2018.05.049] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2018] [Revised: 05/27/2018] [Accepted: 05/30/2018] [Indexed: 12/26/2022]
Abstract
High-grade serous ovarian carcinoma (HGSOC) is one of the most lethal gynecologic malignancies. Currently, anti-angiogenesis therapy is the most promising strategy for the successful treatment of HGSOC. In this study, we found Neferine could inhibit the angiogenesis of ovarian cancer cells both in vitro and in vivo. Further analysis revealed that its suppressive effect on human umbilical vein endothelial cell (HUVEC) proliferation correlated with promoting cell cycle arrest and autophagy. The cell cycle genes were dose-dependently reduced and the level of LC3II/LC3I (microtubule associated protein 1 light chain 3) was increased. Using a specific marker for macrophages (CD206 and Mrc1), we indicated that Neferine could inhibit M2-macrophage in vivo. Finally, CD206 was stained in 150 HGSOC samples and its high expression predicted inferior overall survival. Our current study is the first to demonstrate the anti-angiogenesis mechanism of Neferine by inducing autophagy via mTOR/p70S6K pathway inhibition and suppressing M2-macrophage polarization. Our findings suggest that Neferine is an attractive reagent with great potential in HGSOC therapy, especially in standard-therapy resistant cases.
Collapse
Affiliation(s)
- Qing Zhang
- Department of Obstetrics and Gynecology, Qilu Hospital, Shandong University, Ji'nan, Shandong, 250012, PR China; Gynecology Oncology Key Laboratory, Qilu Hospital, Shandong University, Ji'nan, Shandong, 250012, PR China.
| | - Yinuo Li
- Department of Obstetrics and Gynecology, Qilu Hospital, Shandong University, Ji'nan, Shandong, 250012, PR China; Gynecology Oncology Key Laboratory, Qilu Hospital, Shandong University, Ji'nan, Shandong, 250012, PR China; Department of Pathology, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA.
| | - Chunying Miao
- Department of Obstetrics and Gynecology, Qilu Hospital, Shandong University, Ji'nan, Shandong, 250012, PR China; Gynecology Oncology Key Laboratory, Qilu Hospital, Shandong University, Ji'nan, Shandong, 250012, PR China.
| | - Yuqiong Wang
- Department of Obstetrics and Gynecology, Qilu Hospital, Shandong University, Ji'nan, Shandong, 250012, PR China; Gynecology Oncology Key Laboratory, Qilu Hospital, Shandong University, Ji'nan, Shandong, 250012, PR China.
| | - Ying Xu
- Department of Obstetrics and Gynecology, Qilu Hospital, Shandong University, Ji'nan, Shandong, 250012, PR China; Gynecology Oncology Key Laboratory, Qilu Hospital, Shandong University, Ji'nan, Shandong, 250012, PR China.
| | - Ruifen Dong
- Department of Obstetrics and Gynecology, Qilu Hospital, Shandong University, Ji'nan, Shandong, 250012, PR China; Gynecology Oncology Key Laboratory, Qilu Hospital, Shandong University, Ji'nan, Shandong, 250012, PR China.
| | - Zhiwei Zhang
- Department of Obstetrics and Gynecology, Qilu Hospital, Shandong University, Ji'nan, Shandong, 250012, PR China; Gynecology Oncology Key Laboratory, Qilu Hospital, Shandong University, Ji'nan, Shandong, 250012, PR China.
| | - Brannan B Griffin
- Department of Pathology, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA.
| | - Cunzhong Yuan
- Department of Obstetrics and Gynecology, Qilu Hospital, Shandong University, Ji'nan, Shandong, 250012, PR China; Gynecology Oncology Key Laboratory, Qilu Hospital, Shandong University, Ji'nan, Shandong, 250012, PR China.
| | - Shi Yan
- Department of Obstetrics and Gynecology, Qilu Hospital, Shandong University, Ji'nan, Shandong, 250012, PR China; Gynecology Oncology Key Laboratory, Qilu Hospital, Shandong University, Ji'nan, Shandong, 250012, PR China.
| | - Xingsheng Yang
- Department of Obstetrics and Gynecology, Qilu Hospital, Shandong University, Ji'nan, Shandong, 250012, PR China; Gynecology Oncology Key Laboratory, Qilu Hospital, Shandong University, Ji'nan, Shandong, 250012, PR China.
| | - Zhaojian Liu
- Department of Cell Biology, Shandong University, School of Medicine, Ji'nan, Shandong, 250012, PR China.
| | - Beihua Kong
- Department of Obstetrics and Gynecology, Qilu Hospital, Shandong University, Ji'nan, Shandong, 250012, PR China; Gynecology Oncology Key Laboratory, Qilu Hospital, Shandong University, Ji'nan, Shandong, 250012, PR China.
| |
Collapse
|
59
|
Quiros-Gonzalez I, Tomaszewski MR, Aitken SJ, Ansel-Bollepalli L, McDuffus LA, Gill M, Hacker L, Brunker J, Bohndiek SE. Optoacoustics delineates murine breast cancer models displaying angiogenesis and vascular mimicry. Br J Cancer 2018; 118:1098-1106. [PMID: 29576623 PMCID: PMC5931091 DOI: 10.1038/s41416-018-0033-x] [Citation(s) in RCA: 39] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2017] [Revised: 01/08/2018] [Accepted: 01/08/2018] [Indexed: 01/07/2023] Open
Abstract
BACKGROUND Optoacoustic tomography (OT) of breast tumour oxygenation is a promising new technique, currently in clinical trials, which may help to determine disease stage and therapeutic response. However, the ability of OT to distinguish breast tumours displaying different vascular characteristics has yet to be established. The aim of the study is to prove OT as a sensitive technique for differentiating breast tumour models with manifestly different vasculatures. METHODS Multispectral OT (MSOT) was performed in oestrogen-dependent (MCF-7) and oestrogen-independent (MDA-MB-231) orthotopic breast cancer xenografts. Total haemoglobin (THb) and oxygen saturation (SO2MSOT) were calculated. Pathological and biochemical evaluation of the tumour vascular phenotype was performed for validation. RESULTS MCF-7 tumours show SO2MSOT similar to healthy tissue in both rim and core, despite significantly lower THb in the core. MDA-MB-231 tumours show markedly lower SO2MSOT with a significant rim-core disparity. Ex vivo analysis revealed that MCF-7 tumours contain fewer blood vessels (CD31+) that are more mature (CD31+/aSMA+) than MDA-MB-231. MCF-7 presented higher levels of stromal VEGF and iNOS, with increased NO serum levels. The vasculogenic process observed in MCF-7 was consistent with angiogenesis, while MDA-MB-231 appeared to rely more on vascular mimicry. CONCLUSIONS OT is sensitive to differences in the vascular phenotypes of our breast cancer models.
Collapse
Affiliation(s)
- Isabel Quiros-Gonzalez
- Department of Physics, University of Cambridge, JJ Thomson Avenue, Cambridge, CB3 0HE, UK
- Cancer Research UK Cambridge Institute, University of Cambridge, Robinson Way, Cambridge, CB2 0RE, UK
| | - Michal R Tomaszewski
- Department of Physics, University of Cambridge, JJ Thomson Avenue, Cambridge, CB3 0HE, UK
- Cancer Research UK Cambridge Institute, University of Cambridge, Robinson Way, Cambridge, CB2 0RE, UK
| | - Sarah J Aitken
- Cancer Research UK Cambridge Institute, University of Cambridge, Robinson Way, Cambridge, CB2 0RE, UK
- Department of Histopathology, Addenbrooke's Hospital, Cambridge University Hospitals NHS Foundation Trust, Hills Road, Cambridge, CB2 0QQ, UK
| | - Laura Ansel-Bollepalli
- Department of Physics, University of Cambridge, JJ Thomson Avenue, Cambridge, CB3 0HE, UK
- Cancer Research UK Cambridge Institute, University of Cambridge, Robinson Way, Cambridge, CB2 0RE, UK
| | - Leigh-Ann McDuffus
- Cancer Research UK Cambridge Institute, University of Cambridge, Robinson Way, Cambridge, CB2 0RE, UK
| | - Michael Gill
- Cancer Research UK Cambridge Institute, University of Cambridge, Robinson Way, Cambridge, CB2 0RE, UK
| | - Lina Hacker
- Department of Physics, University of Cambridge, JJ Thomson Avenue, Cambridge, CB3 0HE, UK
- Cancer Research UK Cambridge Institute, University of Cambridge, Robinson Way, Cambridge, CB2 0RE, UK
| | - Joanna Brunker
- Department of Physics, University of Cambridge, JJ Thomson Avenue, Cambridge, CB3 0HE, UK
- Cancer Research UK Cambridge Institute, University of Cambridge, Robinson Way, Cambridge, CB2 0RE, UK
| | - Sarah E Bohndiek
- Department of Physics, University of Cambridge, JJ Thomson Avenue, Cambridge, CB3 0HE, UK.
- Cancer Research UK Cambridge Institute, University of Cambridge, Robinson Way, Cambridge, CB2 0RE, UK.
| |
Collapse
|
60
|
Rodrigues M, Gurtner G. Black, White, and Gray: Macrophages in Skin Repair and Disease. CURRENT PATHOBIOLOGY REPORTS 2017; 5:333-342. [PMID: 30288366 PMCID: PMC6166434 DOI: 10.1007/s40139-017-0152-8] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
PURPOSE OF REVIEW Macrophages alter their responses during the temporal stages of wound healing. During the inflammatory phase macrophages perform phagocytosis. During neovascularization macrophages activate angiogenesis. In the proliferation phase of wound healing, macrophages deposit extracellular matrix and during wound resolution macrophages phagocytize excessive cellular components. This review addresses how these changing phenotypes affect skin repair and disease. RECENT FINDINGS Macrophages can determine the outcome of repair and can shift the normal wound healing response into fibrosis or chronic wounds. Emerging single cell technologies for the first time provide us with tools to uncover macrophage origin, heterogeneity and function. SUMMARY Macrophages may exist as one population where all cells alter their phenotype in response to signals from the microenvironment. Alternatively, macrophages may exist as distinct subsets that can control wound outcomes. A clarified understanding will strengthen our knowledge of skin biology and aid in the development of wound healing therapies.
Collapse
Affiliation(s)
- Melanie Rodrigues
- Division of Plastic and Reconstructive Surgery, Department of Surgery, Stanford University, USA
| | - Geoffrey Gurtner
- Division of Plastic and Reconstructive Surgery, Department of Surgery, Stanford University, USA
| |
Collapse
|
61
|
Zhang Y, Du W, Chen Z, Xiang C. Upregulation of PD-L1 by SPP1 mediates macrophage polarization and facilitates immune escape in lung adenocarcinoma. Exp Cell Res 2017; 359:449-457. [PMID: 28830685 DOI: 10.1016/j.yexcr.2017.08.028] [Citation(s) in RCA: 207] [Impact Index Per Article: 25.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2017] [Revised: 08/15/2017] [Accepted: 08/18/2017] [Indexed: 12/14/2022]
Abstract
Tumor-associated macrophages (TAMs) polarization represents a key regulatory process of tumor progression. However, the underlying mechanisms are unclear. This study aimed to investigate the relationship between secreted phosphoprotein 1 (SPP1) and TAMs in lung adenocarcinoma cells. THP-1 monocytes were differentiated into macrophages using PMA. PMA-treated THP-1 cells were co-cultured with human A549 cells culture supernatant. SPP1 expression in TAMs isolated from lung adenocarcinoma tissues and PMA-treated THP-1 cells were measured. Macrophage polarization was identified by flow cytometric analysis. Cell migration and apoptosis were assessed by Transwell migration assays and flow cytometric analysis, respectively. SPP1 is highly expressed in tumor tissues and TAMs isolated from patients with an advanced TNM stage, and also in PMA-treated THP-1 cells. Co-culture with A549 cells strongly induced SPP-1 expression as well as M2 polarization of THP-1 cells, but it had little effect on short hairpin SPP1 (shSPP1)-transfected THP-1 cells. Interestingly, programmed death ligand 1 (PD-L1), a critical regulator of M2 polarization, was downregulated in SPP1 knockdown THP-1 cells. Inhibition of PD-L1 induced a greater decline of the M2 markers IL-10 and Arg-1 but an increase in the M1 markers IL-12 and TNF-α. In addition, SPP1 knockdown in THP-1 cells can mitigate migration but promote apoptosis of A549 cells, and PD-L1 inhibition can further enhance this effect. THP-1 cells co-cultured with A549 cells attenuated CD4+ T-cell activation, whereas SPP1 inhibition restored T-cell activation. These results highlight the importance of SPP1 in mediating macrophage polarization and lung cancer evasion, suggesting a potential therapeutic target for lung cancer.
Collapse
Affiliation(s)
- Yan Zhang
- Department of Oncology, The First Hospital of Shijiazhuang City, Shijiazhuang 050010, China
| | - Weiwei Du
- Department of Oncology, Henan Province Hospital of TCM, Zhengzhou 450002, China
| | - Zhaoliang Chen
- Department of Oncology, Binzhou City Center Hospital, Binzhou 251700, China
| | - Cheng Xiang
- Department of Oncology, The First Hospital of Shijiazhuang City, Shijiazhuang 050010, China.
| |
Collapse
|
62
|
Structural and functional identification of vasculogenic mimicry in vitro. Sci Rep 2017; 7:6985. [PMID: 28765613 PMCID: PMC5539303 DOI: 10.1038/s41598-017-07622-w] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2017] [Accepted: 06/30/2017] [Indexed: 12/20/2022] Open
Abstract
Vasculogenic mimicry (VM) describes a process by which cancer cells establish an alternative perfusion pathway in an endothelial cell-free manner. Despite its strong correlation with reduced patient survival, controversy still surrounds the existence of an in vitro model of VM. Furthermore, many studies that claim to demonstrate VM fail to provide solid evidence of true hollow channels, raising concerns as to whether actual VM is actually being examined. Herein, we provide a standardized in vitro assay that recreates the formation of functional hollow channels using ovarian cancer cell lines, cancer spheres and primary cultures derived from ovarian cancer ascites. X-ray microtomography 3D-reconstruction, fluorescence confocal microscopy and dye microinjection conclusively confirm the existence of functional glycoprotein-rich lined tubular structures in vitro and demonstrate that many of structures reported in the literature may not represent VM. This assay may be useful to design and test future VM-blocking anticancer therapies.
Collapse
|
63
|
Abstract
Tumours display considerable variation in the patterning and properties of angiogenic blood vessels, as well as in their responses to anti-angiogenic therapy. Angiogenic programming of neoplastic tissue is a multidimensional process regulated by cancer cells in concert with a variety of tumour-associated stromal cells and their bioactive products, which encompass cytokines and growth factors, the extracellular matrix and secreted microvesicles. In this Review, we discuss the extrinsic regulation of angiogenesis by the tumour microenvironment, highlighting potential vulnerabilities that could be targeted to improve the applicability and reach of anti-angiogenic cancer therapies.
Collapse
Affiliation(s)
- Michele De Palma
- The Swiss Institute for Experimental Cancer Research (ISREC), School of Life Sciences, École Polytechnique Fédérale de Lausanne (EPFL), 1015 Lausanne, Switzerland
| | - Daniela Biziato
- The Swiss Institute for Experimental Cancer Research (ISREC), School of Life Sciences, École Polytechnique Fédérale de Lausanne (EPFL), 1015 Lausanne, Switzerland
| | - Tatiana V Petrova
- Department of Fundamental Oncology, Ludwig Institute for Cancer Research and Division of Experimental Pathology, University of Lausanne and University of Lausanne Hospital, 1066 Lausanne, Switzerland
| |
Collapse
|
64
|
Wound-Healing Studies in Cornea and Skin: Parallels, Differences and Opportunities. Int J Mol Sci 2017; 18:ijms18061257. [PMID: 28604651 PMCID: PMC5486079 DOI: 10.3390/ijms18061257] [Citation(s) in RCA: 139] [Impact Index Per Article: 17.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2017] [Revised: 05/24/2017] [Accepted: 05/31/2017] [Indexed: 02/06/2023] Open
Abstract
The cornea and the skin are both organs that provide the outer barrier of the body. Both tissues have developed intrinsic mechanisms that protect the organism from a wide range of external threats, but at the same time also enable rapid restoration of tissue integrity and organ-specific function. The easy accessibility makes the skin an attractive model system to study tissue damage and repair. Findings from skin research have contributed to unravelling novel fundamental principles in regenerative biology and the repair of other epithelial-mesenchymal tissues, such as the cornea. Following barrier disruption, the influx of inflammatory cells, myofibroblast differentiation, extracellular matrix synthesis and scar formation present parallel repair mechanisms in cornea and skin wound healing. Yet, capillary sprouting, while pivotal in proper skin wound healing, is a process that is rather associated with pathological repair of the cornea. Understanding the parallels and differences of the cellular and molecular networks that coordinate the wound healing response in skin and cornea are likely of mutual importance for both organs with regard to the development of regenerative therapies and understanding of the disease pathologies that affect epithelial-mesenchymal interactions. Here, we review the principal events in corneal wound healing and the mechanisms to restore corneal transparency and barrier function. We also refer to skin repair mechanisms and their potential implications for regenerative processes in the cornea.
Collapse
|
65
|
Delgado-Bellido D, Serrano-Saenz S, Fernández-Cortés M, Oliver FJ. Vasculogenic mimicry signaling revisited: focus on non-vascular VE-cadherin. Mol Cancer 2017; 16:65. [PMID: 28320399 PMCID: PMC5359927 DOI: 10.1186/s12943-017-0631-x] [Citation(s) in RCA: 162] [Impact Index Per Article: 20.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2016] [Accepted: 03/06/2017] [Indexed: 12/11/2022] Open
Abstract
Vasculogenic mimicry (VM) is a blood supply system independent of endothelial vessels in tumor cells from different origins. It reflects the plasticity of aggressive tumor cells that express vascular cell markers and line tumor vasculature. The presence of VM is associated with a high tumor grade, short survival, invasion and metastasis. Endothelial cells (ECs) express various members of the cadherin superfamily, in particular vascular endothelial (VE-) cadherin, which is the main adhesion receptor of endothelial adherent junctions. Aberrant extra-vascular expression of VE-cadherin has been observed in certain cancer types associated with VM. In this review we focus on non-endothelial VE-cadherin as a prominent factor involved in the acquisition of tubules-like structures by aggressive tumor cells and we summarize the specific signaling pathways, the association with trans-differentiation and stem-like phenotype and the therapeutic opportunities derived from the in-depth knowledge of the peculiarities of the biology of VE-cadherin and other key components of VM.
Collapse
Affiliation(s)
| | | | | | - F Javier Oliver
- IPBLN, CSIC, CIBERONC, Granada, Spain. .,IPBLN, CSIC, Av. Conocimiento s/n, 18016, Granada, Spain.
| |
Collapse
|
66
|
Graney PL, Lurier EB, Spiller KL. Biomaterials and Bioactive Factor Delivery Systems for the Control of Macrophage Activation in Regenerative Medicine. ACS Biomater Sci Eng 2017; 4:1137-1148. [PMID: 33418652 DOI: 10.1021/acsbiomaterials.6b00747] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Macrophages play an important role in tissue repair, regeneration, and the ability of biomaterials to mediate these processes. Macrophages are highly plastic cells that exhibit altered behavior in response to changes in the microenvironment. With the growing knowledge of the roles that different macrophage phenotypes play in specific pathologies and/or injuries, researchers are now focusing on designing biomaterials to actively control macrophage behavior and promote healing outcomes. In this review, we highlight a variety of biomaterial strategies for controlling macrophage phenotype in chronic wounds, tissue defects, and inflammatory conditions, although these strategies can be applied to many other applications. In particular, we highlight the different situations in which biomaterials should inhibit or promote M1 or M2 activation, or both, for therapeutic outcomes.
Collapse
Affiliation(s)
- Pamela L Graney
- School of Biomedical Engineering, Science, and Health Systems, Drexel University, Philadelphia, Pennsylvania 19104, United States
| | - Emily B Lurier
- School of Biomedical Engineering, Science, and Health Systems, Drexel University, Philadelphia, Pennsylvania 19104, United States
| | - Kara L Spiller
- School of Biomedical Engineering, Science, and Health Systems, Drexel University, Philadelphia, Pennsylvania 19104, United States
| |
Collapse
|