51
|
Al-Shabib NA, Husain FM, Qais FA, Ahmad N, Khan A, Alyousef AA, Arshad M, Noor S, Khan JM, Alam P, Albalawi TH, Shahzad SA. Phyto-Mediated Synthesis of Porous Titanium Dioxide Nanoparticles From Withania somnifera Root Extract: Broad-Spectrum Attenuation of Biofilm and Cytotoxic Properties Against HepG2 Cell Lines. Front Microbiol 2020; 11:1680. [PMID: 32849352 PMCID: PMC7399045 DOI: 10.3389/fmicb.2020.01680] [Citation(s) in RCA: 43] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2020] [Accepted: 06/26/2020] [Indexed: 12/18/2022] Open
Abstract
There is grave necessity to counter the menace of drug-resistant biofilms of pathogens using nanomaterials. Moreover, we need to produce nanoparticles (NPs) using inexpensive clean biological approaches that demonstrate broad-spectrum inhibition of microbial biofilms and cytotoxicity against HepG2 cell lines. In the current research work, titanium dioxide (TiO2) NPs were fabricated through an environmentally friendly green process using the root extract of Withania somnifera as the stabilizing and reducing agent to examine its antibiofilm and anticancer potential. Further, X-ray diffraction (XRD), Fourier transform infrared (FTIR), scanning electron microscopy (SEM), transmission electron micrograph (TEM), energy-dispersive X-ray spectroscopy (EDS), dynamic light scattering (DLS), thermogravimetric analysis (TGA), and Brunauer-Emmett-Teller (BET) techniques were used for determining the crystallinity, functional groups involved, shape, size, thermal behavior, surface area, and porosity measurement, respectively, of the synthesized TiO2 NPs. Antimicrobial potential of the TiO2 NPs was determined by evaluating the minimum inhibitory concentration (MIC) against Escherichia coli, Pseudomonas aeruginosa, methicillin-resistant Staphylococcus aureus, Listeria monocytogenes, Serratia marcescens, and Candida albicans. Furthermore, at levels below the MIC (0.5 × MIC), TiO2 NPs demonstrated significant inhibition of biofilm formation (43-71%) and mature biofilms (24-64%) in all test pathogens. Cell death due to enhanced reactive oxygen species (ROS) production could be responsible for the impaired biofilm production in TiO2 NP-treated pathogens. The synthesized NPs induced considerable reduction in the viability of HepG2 in vitro and could prove effective in controlling liver cancer. In summary, the green synthesized TiO2 NPs demonstrate multifarious biological properties and could be used as an anti-infective agent to treat biofilm-based infections and cancer.
Collapse
Affiliation(s)
- Nasser A. Al-Shabib
- Department of Food Science and Nutrition, College of Food and Agricultural Sciences, King Saud University, Riyadh, Saudi Arabia
| | - Fohad Mabood Husain
- Department of Food Science and Nutrition, College of Food and Agricultural Sciences, King Saud University, Riyadh, Saudi Arabia
| | - Faizan Abul Qais
- Department of Agricultural Microbiology, Aligarh Muslim University, Aligarh, India
| | - Naushad Ahmad
- Department of Chemistry, College of Sciences, King Saud University, Riyadh, Saudi Arabia
| | - Altaf Khan
- Department of Pharmacology and Toxicology, Central Laboratory, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
| | - Abdullah A. Alyousef
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, King Saud University, Riyadh, Saudi Arabia
| | - Mohammed Arshad
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, King Saud University, Riyadh, Saudi Arabia
| | - Saba Noor
- National Institute of Cancer Prevention and Research, Noida, India
| | - Javed Masood Khan
- Department of Food Science and Nutrition, College of Food and Agricultural Sciences, King Saud University, Riyadh, Saudi Arabia
| | - Pravej Alam
- Department of Biology, College of Science and Humanities, Prince Sattam Bin Abdulaziz University, Al-Kharj, Saudi Arabia
| | - Thamer H. Albalawi
- Department of Biology, College of Science and Humanities, Prince Sattam Bin Abdulaziz University, Al-Kharj, Saudi Arabia
| | - Syed Ali Shahzad
- Department of Food Science and Nutrition, College of Food and Agricultural Sciences, King Saud University, Riyadh, Saudi Arabia
| |
Collapse
|
52
|
Gómez-Gómez B, Arregui L, Serrano S, Santos A, Pérez-Corona T, Madrid Y. Selenium and tellurium-based nanoparticles as interfering factors in quorum sensing-regulated processes: violacein production and bacterial biofilm formation. Metallomics 2020; 11:1104-1114. [PMID: 31021332 DOI: 10.1039/c9mt00044e] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
A cell-to-cell communication system called quorum sensing (QS) promotes the transcription of certain target genes in bacterial cells leading to the activation of different cellular processes, some of them related to bacterial biofilm formation. The formation of bacterial biofilms favours antibiotic resistance, which is nowadays a significant public-health problem. In this study, the effect of selenium (SeNPs) and tellurium (TeNPs) nanoparticles was examined in two bacterial processes mediated by QS: violacein production by Chromobacterium violaceum and biofilm formation by Pseudomonas aeruginosa. For this purpose, quantification of the pigment production in the presence of these nanoparticles was monitored using the C. violaceum strain. Additionally, a combination of different microscopical imaging techniques was applied to examine the changes in the 3D biofilm structure of P. aeruginosa, which were quantified through performing architectural metric calculations (substratum area, cell area coverage and biovolume). SeNPs produce an 80% inhibition in the violacein production by C. violaceum and a significant effect on the P. aeruginosa biofilm architecture (a reduction of 80% in the biovolume of the bacterial biofilm was obtained). TeNPs similarly affect violacein production and the P. aeruginosa biofilm structure but at lower concentration levels. The results obtained suggest an important disruption of the QS signalling system by SeNPs and TeNPs, supporting nanotechnology as a promising tool to fight against the emerging problem of bacterial resistance related to bacterial biofilm formation.
Collapse
Affiliation(s)
- Beatriz Gómez-Gómez
- Department of Analytical Chemistry, Faculty of Chemistry, Complutense University of Madrid, Av. Complutense s/n 28040, Madrid, Spain.
| | | | | | | | | | | |
Collapse
|
53
|
Ahmed MZ, Muteeb G, Khan S, Alqahtani AS, Somvanshi P, Alqahtani MS, Ameta KL, Haque S. Identifying novel inhibitor of quorum sensing transcriptional regulator (SdiA) of Klebsiella pneumoniae through modelling, docking and molecular dynamics simulation. J Biomol Struct Dyn 2020; 39:3594-3604. [PMID: 32401149 DOI: 10.1080/07391102.2020.1767209] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
In this study, attempts have been made to identify novel inhibitor(s) of SdiA (a homolog of LuxR transcription regulator) of Klebseilla pneumoniae using various computational techniques. 4LFU was used as a template to model the structure of SdiA. ProCheck, Verify3D, Ramachandran plot scores and ProSA-Web confirmed the good quality of the model as the root mean square deviation (RMSD) between SdiA model, and 4LFU template was estimated to be 0.21 Å. The secondary structural contents of SdiA model were predicted using PDBsum. The only binding site of SdiA was identified (area = 523.083 Å2 and volume = 351.044 Å3) using CASTp. Molecular docking at three different levels [high throughput virtual screening, standard-precision (SP) and extra-precision (XP) dockings] with increasingly stringent conditions was performed using Glide on Selleck's express pick library (L3600). A total of 61 ligands were found to bind with high affinities to the active site of SdiA. Further, the effect of solvent on protein-ligand interaction was evaluated by performing molecular mechanics-general born surface area (Prime/MM-GBSA). On the basis of Prime/MM-GBSA score, molecular dynamics simulation (50 ns) was performed on the ligand (WAY-390139-A) showing lowest binding energy to confirm the stability of protein-ligand complex. Docking energy and the corresponding binding affinity of WAY-390139-A towards SdiA were estimated to be -13.005 kcal mol-1 and 3.46 × 109 M-1, respectively. Our results confirm that WAY-390139-A binds at the autoinducer binding site of SdiA with high affinity and stability and can be further exploited as potential drug against K. pneumoniae after experimental validation.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Mohammad Z Ahmed
- Department of Pharmacognosy, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
| | - Ghazala Muteeb
- Department of Nursing, College of Applied Medical Sciences, King Faisal University, Saudi Arabia
| | - Saif Khan
- Department of Basic Medical and Dental Science, College of Dentistry, University of Ha'il, Ha'il, Saudi Arabia
| | - Ali S Alqahtani
- Department of Pharmacognosy, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
| | - Pallavi Somvanshi
- Department of Biotechnology, TERI School of Advanced Studies, Plot No. 10, Institutional Area, Vasant Kunj, India
| | - Mohammed S Alqahtani
- Departmental of Pharmaceutics, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
| | - Keshav Lalit Ameta
- Department of Chemistry, Mody University of Science and Technology, Lakshmangarh, Rajasthan, India
| | - Shafiul Haque
- Research and Scientific Studies Unit, College of Nursing & Allied Health Sciences, Jazan University, Jazan, Saudi Arabia
| |
Collapse
|
54
|
Liu W, Lu H, Chu X, Lou T, Zhang N, Zhang B, Chu W. Tea polyphenols inhibits biofilm formation, attenuates the quorum sensing-controlled virulence and enhances resistance to Klebsiella pneumoniae infection in Caenorhabditis elegans model. Microb Pathog 2020; 147:104266. [PMID: 32442664 DOI: 10.1016/j.micpath.2020.104266] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2020] [Revised: 05/13/2020] [Accepted: 05/13/2020] [Indexed: 02/05/2023]
Abstract
Bacteria cells can communicate with each other via quorum sensing (QS) system. Various physiological characteristics including virulence factors and biofilm formation are controlled by QS. So interrupting the bacterial communication is an alternative strategy instead of antibiotics for control bacterial infection. The aim of this study was to investigate the effects of tea polyphenols (TPs) on quorum sensing and virulence factors of Klebsiella pneumoniae. In vitro study showed that the anti-QS activity of tea polyphenols against Chromobacterium violaceum in violacein production. At sub-MICs, TPs inhibited the motility, reduced protease and exopolysaccharide (EPS) production and also biofilm formation in K. pneumoniae. In addition, in vivo study showed that tea polyphenols at 200 μg/mL and 400 μg/mL increased the survival rate of Caenorhabditis elegans to 73.3% and 82.2% against K. pneumonia infection. Our findings suggest that tea polyphenols can act as an effective QS inhibitor and can serve as a novel anti-virulence agent for the management of bacterial pathogens.
Collapse
Affiliation(s)
- Wugao Liu
- Lishui People's Hospital, The Sixth Affiliated Hospital of Wenzhou Medical University, Lishui, 323000, China
| | - Hongjia Lu
- School of Life Science and Technology, State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, 211198, China
| | - Xinyu Chu
- The MacDuffie School, Nanjing Campus, Nanjing, 210002, China
| | - Tianzheng Lou
- Lishui People's Hospital, The Sixth Affiliated Hospital of Wenzhou Medical University, Lishui, 323000, China
| | - Ning Zhang
- Lishui People's Hospital, The Sixth Affiliated Hospital of Wenzhou Medical University, Lishui, 323000, China
| | - Bao Zhang
- School of Life Science and Technology, State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, 211198, China
| | - Weihua Chu
- School of Life Science and Technology, State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, 211198, China.
| |
Collapse
|
55
|
Ali SG, Ansari MA, Alzohairy MA, Alomary MN, Jalal M, AlYahya S, Asiri SMM, Khan HM. Effect of Biosynthesized ZnO Nanoparticles on Multi-Drug Resistant Pseudomonas Aeruginosa. Antibiotics (Basel) 2020; 9:antibiotics9050260. [PMID: 32429514 PMCID: PMC7277366 DOI: 10.3390/antibiotics9050260] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2020] [Revised: 05/14/2020] [Accepted: 05/15/2020] [Indexed: 12/04/2022] Open
Abstract
Synthesis of nanoparticles using the plants has several advantages over other methods due to the environmentally friendly nature of plants. Besides being environmentally friendly, the synthesis of nanoparticles using plants or parts of the plants is also cost effective. The present study focuses on the biosynthesis of zinc oxide nanoparticles (ZnO NPs) using the seed extract of Butea monsoperma and their effect on to the quorum-mediated virulence factors of multidrug-resistant clinical isolates of Pseudomonas aeruginosa at sub minimum inhibitory concentration (MIC). The synthesized ZnO NPs were characterized by different techniques, such as Fourier transform infra-red spectroscopy (FTIR), scanning electron microscopy (SEM), energy dispersive X-ray (EDX), and transmission electron microscopy (TEM). The average size of the nanoparticles was 25 nm as analyzed by TEM. ZnO NPs at sub MIC decreased the production of virulence factors such as pyocyanin, protease and hemolysin for P. aeruginosa (p ≤ 0.05). The interaction of NPs with the P. aeruginosa cells on increasing concentration of NPs at sub MIC levels showed greater accumulation of nanoparticles inside the cells as analyzed by TEM.
Collapse
Affiliation(s)
- Syed Ghazanfar Ali
- Department of Microbiology, Nanotechnology and Antimicrobial Drug Resistance Research Laboratory, Jawaharlal Nehru Medical College and Hospital, Aligarh Muslim University, Aligarh 202002, Uttar Pradesh, India; (M.J.); (H.M.K.)
- Correspondence: (S.G.A.); (M.A.A.)
| | - Mohammad Azam Ansari
- Department of Epidemic Disease Research, Institute for Research & Medical Consultations (IRMC), Imam Abdulrahman Bin Faisal University, P.O. Box 1982, Dammam 31441, Saudi Arabia
- Correspondence: (S.G.A.); (M.A.A.)
| | - Mohammad A. Alzohairy
- Department of Medical Laboratories, College of Applied Medical Sciences, Qassim University, Qassim 51431, Saudi Arabia;
| | - Mohammad N. Alomary
- National Center for Biotechnology, Life Science and Environmental Research Institute, King Abdulaziz City for Science and Technology, P.O. Box 6086, Riyadh 11442, Saudi Arabia;
| | - Mohammad Jalal
- Department of Microbiology, Nanotechnology and Antimicrobial Drug Resistance Research Laboratory, Jawaharlal Nehru Medical College and Hospital, Aligarh Muslim University, Aligarh 202002, Uttar Pradesh, India; (M.J.); (H.M.K.)
| | - Sami AlYahya
- National Center for Biotechnology, King Abdulaziz City for Science and Technology, P.O. Box 6086, Riyadh 11442, Saudi Arabia;
| | - Sarah Mousa Maadi Asiri
- Department of Biophysics, Institutes for Research and Medical Consultations (IRMC), Imam Abdulrahman Bin Faisal University, Dammam 31441, Saudi Arabia;
| | - Haris M. Khan
- Department of Microbiology, Nanotechnology and Antimicrobial Drug Resistance Research Laboratory, Jawaharlal Nehru Medical College and Hospital, Aligarh Muslim University, Aligarh 202002, Uttar Pradesh, India; (M.J.); (H.M.K.)
| |
Collapse
|
56
|
Impact of Green Synthesized Metal Oxide Nanoparticles on Seed Germination and Seedling Growth of Vigna radiata (Mung Bean) and Cajanus cajan (Red Gram). J Inorg Organomet Polym Mater 2020. [DOI: 10.1007/s10904-020-01551-4] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
|
57
|
Food color 'Azorubine' interferes with quorum sensing regulated functions and obliterates biofilm formed by food associated bacteria: An in vitro and in silico approach. Saudi J Biol Sci 2020; 27:1080-1090. [PMID: 32256169 PMCID: PMC7105693 DOI: 10.1016/j.sjbs.2020.01.001] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2019] [Revised: 12/16/2019] [Accepted: 01/06/2020] [Indexed: 11/20/2022] Open
Abstract
Quorum sensing (QS) plays a crucial role in different stages of biofilm development, virulence production, and subsequently to the growth of bacteria in food environments. Biofilm mediated spoilage of food is one of the ongoing challenge faced by the food industry worldwide as it incurs substantial economic losses and leads to various health issues. In the present investigation, we studied the interference of quorum sensing, its regulated virulence functions, and biofilm in food-associated bacteria by colorant azorubine. In vitro bioassays demonstrated significant inhibition of QS and its coordinated virulence functions in Chromobacterium violaceum 12472 (violacein) and Pseudomonas aeruginosa PAO1 (elastase, protease, pyocyanin, and alginate). Further, the decrease in the production EPS (49–63%) and swarming motility (61–83%) of the pathogens was also recorded at sub-MICs. Azorubine demonstrated broad-spectrum biofilm inhibitory potency (50–65%) against Chromobacterium violaceum, Pseudomonas aeruginosa, E. coli O157:H7, Serratia marcescens, and Listeria monocytogenes. ROS generation due to the interaction between bacteria and azorubine could be responsible for the biofilm inhibitory action of the food colorant. Findings of the in vitro studies were well supported by molecular docking and simulation analysis of azorubine and QS virulence proteins. Azorubine showed strong binding to PqsA as compared to other virulent proteins (LasR, Vfr, and QscR). Thus, it is concluded that azorubine is a promising candidate to ensure food safety by curbing the menace of bacterial QS and biofilm-based spoilage of food and reduce economic losses.
Collapse
|
58
|
Gómez-Gómez B, Arregui L, Serrano S, Santos A, Pérez-Corona T, Madrid Y. Unravelling mechanisms of bacterial quorum sensing disruption by metal-based nanoparticles. THE SCIENCE OF THE TOTAL ENVIRONMENT 2019; 696:133869. [PMID: 31450048 DOI: 10.1016/j.scitotenv.2019.133869] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/20/2019] [Revised: 08/09/2019] [Accepted: 08/09/2019] [Indexed: 06/10/2023]
Abstract
Nanoparticles are released in the environment causing a negative impact in several ecosystems such as microbial communities. To adapt to environmental changes some bacteria use a collective behaviour ruled by a cell-to-cell communication process called quorum sensing (QS). In this study, the impact of some of the most employed metal-based nanoparticles, such as zinc oxide nanoparticles (ZnONPs), titanium dioxide nanoparticles (TiO2NPs) and silver nanoparticles (AgNPs) on bacterial QS has been assessed by using two different strains of the model organism Chromobacterium violaceum and by employing different experimental conditions. TiO2NPs were tested with and without applying a previous step of UV-irradiation while the effect of AgNPs of two diameter sizes (40 and 60 nm) and two different coating agents (PVP and citrate) was evaluated. Results evidenced that all nanoparticles produced a significant effect on violacein production and therefore, in the QS system. ZnONPs mainly disrupted the QS steps related to signal perception and response whereas TiO2NPs and AgNPs affected the autoinducer biosynthesis. AgNPs with the smallest size and citrate as capping agent produced the most deleterious effect while the impact of TiO2NPs was not affected by UV irradiation. The present study provides new insights into the mechanisms by which these commonly employed metal-based nanoparticles disturb bacterial QS-based communication and clearly evidences the potential risk of releasing nanoparticles to the environment, especially for microbial communities which play a key role in many environmental and technological processes.
Collapse
Affiliation(s)
- Beatriz Gómez-Gómez
- Department of Analytical Chemistry, Faculty of Chemistry, Complutense University of Madrid, Av. Complutense s/n, 28040 Madrid, Spain
| | - Lucia Arregui
- Department of Genetics, Physiology and Microbiology, Faculty of Biology, Complutense University of Madrid, José Antonio Novais 12, 28040 Madrid, Spain
| | - Susana Serrano
- Department of Genetics, Physiology and Microbiology, Faculty of Biology, Complutense University of Madrid, José Antonio Novais 12, 28040 Madrid, Spain
| | - Antonio Santos
- Department of Genetics, Physiology and Microbiology, Faculty of Biology, Complutense University of Madrid, José Antonio Novais 12, 28040 Madrid, Spain
| | - Teresa Pérez-Corona
- Department of Analytical Chemistry, Faculty of Chemistry, Complutense University of Madrid, Av. Complutense s/n, 28040 Madrid, Spain
| | - Yolanda Madrid
- Department of Analytical Chemistry, Faculty of Chemistry, Complutense University of Madrid, Av. Complutense s/n, 28040 Madrid, Spain.
| |
Collapse
|
59
|
Husain FM, Ansari AA, Khan A, Ahmad N, Albadri A, Albalawi TH. Mitigation of acyl-homoserine lactone (AHL) based bacterial quorum sensing, virulence functions, and biofilm formation by yttrium oxide core/shell nanospheres: Novel approach to combat drug resistance. Sci Rep 2019; 9:18476. [PMID: 31811221 PMCID: PMC6898131 DOI: 10.1038/s41598-019-53920-w] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2019] [Accepted: 10/28/2019] [Indexed: 11/21/2022] Open
Abstract
The present study evaluated the efficacy of Y2O3:Tb (core) and Y2O3:Tb@SiO2 nanospheres (core/shell NSs) against virulence functions regulated by quorum sensing (QS) and biofilm formation in pathogenic bacteria. Scanning electron microscope (SEM) images were used to study the size, shape, and morphology. The images clearly displayed spherical shaped, mono-dispersed particles with narrow size distribution and an average grain size of 110-130 nm. The chemical composition of the samples was determined by using energy dispersive X-ray (EDX) and X-ray photoelectron spectroscopy (XPS). We determined the impact of core and core/shell NSs on QS using sensor strains of Chromobacterium violaceum CVO26 and Pseudomonas aeruginosa PAO1 in a comparative study. Sub-MICs of core and core/shell NSs substantially suppressed QS-controlled violacein production in C. violaceum. Similar concentration-dependent effect of sub-MICs of synthesized core and core/shell NSs was observed in the QS-regulated virulence functions (elastase, total protease, pyocyanin production, swarming motility, and exopolysaccharide production) in PAO1. A concentration-dependent decrease (14-60%) was recorded in the biofilm forming capability of PAO1, upon treatment with core and core/shell NSs. Moreover, core/shell NSs were more effective in inhibiting biofilm at higher tested concentrations as compared to core-NSs. The synthesized NSs demonstrated significantly impaired attachment of cells to the microtiter plate indicating that NSs target biofilm inhibition at the attachment stage. Based on these results, we predict that core and core/shell NSs may be an alternative to combat the threat of drug-resistant pathogenic bacteria.
Collapse
Affiliation(s)
- Fohad Mabood Husain
- Department of Food Science and Nutrition, College of Food and Agriculture Sciences, King Saud University, Riyadh, 11451, Saudi Arabia.
| | - Anees A Ansari
- King Abdullah Institute for Nanotechnology, King Saud University, Riyadh, 11451, Saudi Arabia.
| | - Aslam Khan
- King Abdullah Institute for Nanotechnology, King Saud University, Riyadh, 11451, Saudi Arabia
| | - Naushad Ahmad
- Department of Chemistry, College of Science, King Saud University, Riyadh, 11451, Saudi Arabia
| | - Abdulrahman Albadri
- National Center for Nanotechnology and Advanced Materials, King Abdulaziz City for Science & Technology, Riyadh, 11442, Saudi Arabia
| | - Thamer H Albalawi
- Department of Biology, College of Science and Humanities, Prince Sattam bin Abdulaziz University, Alkharj, 11942, Kingdom of Saudi Arabia
| |
Collapse
|
60
|
Jaffri SB, Ahmad KS. Neoteric environmental detoxification of organic pollutants and pathogenic microbes via green synthesized ZnO nanoparticles. ENVIRONMENTAL TECHNOLOGY 2019; 40:3745-3761. [PMID: 29897295 DOI: 10.1080/09593330.2018.1488888] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/11/2018] [Accepted: 06/03/2018] [Indexed: 06/08/2023]
Abstract
The present study has for the first time reported Prunus cerasifera leaf extract-mediated zinc oxide nanoparticles (ZnO NPs) in a green and one-pot synthetic mode without utilization of any chemical reducing agents. Synthesized nanoparticles were analysed by ultraviolet-visible (UV-Vis) spectroscopy, X-ray diffraction (XRD), Fourier transmission infrared spectroscopy (FTIR) and scanning electron microscopy (SEM). UV-Vis peak was detected at 380 nm due to surface plasmon resonance. A variety of biomolecules were revealed by FTIR involved in reduction cum stabilization of ZnO NPs. Wurtzite hexagonal geometry with an average crystallite size of 12 nm was obtained from XRD diffraction pattern. SEM exhibited size ranges of 80-100 nm and 60-100 nm for 200°C and 600°C calcination temperatures. Synthesized nanoparticles were used as bio-cleaning photocatalysts against organic pollutants, i.e. bromocresol green, bromophenol blue, methyl red and methyl blue, which yielded pseudo-first-order reaction kinetics (R2 = 0.98, 0.92, 0.92 and 0.90, respectively). Pollutants expressed higher degradation percentages in less than 14 min in direct solar irradiance. Moreover, synthesized nanoparticles were tested against resistant microbes, i.e. Aspergillus niger, Aspergillus flavus, Aspergillus fumigatus, Aspergillus terreus, Penicillium chrysogenum, Fusarium solani, Lasiodiplodia theobromae, Xanthomonas axonopodis pv. citri and Psuedomonas syringae for the development of a new generation of antimicrobial agents.
Collapse
Affiliation(s)
- Shaan Bibi Jaffri
- Department of Environmental Sciences, Fatima Jinnah Women University, Rawalpindi, Pakistan
| | - Khuram Shahzad Ahmad
- Department of Environmental Sciences, Fatima Jinnah Women University, Rawalpindi, Pakistan
| |
Collapse
|
61
|
Galdino ACM, de Oliveira MP, Ramalho TC, de Castro AA, Branquinha MH, Santos ALS. Anti-Virulence Strategy against the Multidrug-Resistant Bacterial Pathogen Pseudomonas aeruginosa: Pseudolysin (Elastase B) as a Potential Druggable Target. Curr Protein Pept Sci 2019; 20:471-487. [PMID: 30727891 DOI: 10.2174/1389203720666190207100415] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2018] [Revised: 01/26/2019] [Accepted: 01/31/2019] [Indexed: 11/22/2022]
Abstract
Pseudomonas aeruginosa is a non-fermentative, gram-negative bacterium that is one of the most common pathogens responsible for hospital-acquired infections worldwide. The management of the infections caused by P. aeruginosa represents a huge challenge in the healthcare settings due to the increased emergence of resistant isolates, some of them resistant to all the currently available antimicrobials, which results in elevated morbimortality rates. Consequently, the development of new therapeutic strategies against multidrug-resistant P. aeruginosa is urgent and needful. P. aeruginosa is wellrecognized for its extreme genetic versatility and its ability to produce a lush variety of virulence factors. In this context, pseudolysin (or elastase B) outstands as a pivotal virulence attribute during the infectious process, playing multifunctional roles in different aspects of the pathogen-host interaction. This protein is a 33-kDa neutral zinc-dependent metallopeptidase that is the most abundant peptidase found in pseudomonal secretions, which contributes to the invasiveness of P. aeruginosa due to its ability to cleave several extracellular matrix proteins and to disrupt the basolateral intercellular junctions present in the host tissues. Moreover, pseudolysin makes P. aeruginosa able to overcome host defenses by the hydrolysis of many immunologically relevant molecules, including antibodies and complement components. The attenuation of this striking peptidase therefore emerges as an alternative and promising antivirulence strategy to combat antibiotic-refractory infections caused by P. aeruginosa. The anti-virulence approach aims to disarm the P. aeruginosa infective arsenal by inhibiting the expression/activity of bacterial virulence factors in order to reduce the invasiveness of P. aeruginosa, avoiding the emergence of resistance since the proliferation is not affected. This review summarizes the most relevant features of pseudolysin and highlights this enzyme as a promising target for the development of new anti-virulence compounds.
Collapse
Affiliation(s)
- Anna Clara M Galdino
- Departamento de Microbiologia Geral, Instituto de Microbiologia Paulo de Goes, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil.,Programa de Pós-Graduação em Bioquímica, Instituto de Química, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Matheus P de Oliveira
- Department of Integrative Biology and Physiology, University of California, Los Angeles, CA, United States
| | - Teodorico C Ramalho
- Departamento de Quimica, Universidade Federal de Lavras, Minas Gerais, Brazil
| | | | - Marta H Branquinha
- Departamento de Microbiologia Geral, Instituto de Microbiologia Paulo de Goes, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - André L S Santos
- Departamento de Microbiologia Geral, Instituto de Microbiologia Paulo de Goes, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil.,Programa de Pós-Graduação em Bioquímica, Instituto de Química, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| |
Collapse
|
62
|
Fulaz S, Vitale S, Quinn L, Casey E. Nanoparticle–Biofilm Interactions: The Role of the EPS Matrix. Trends Microbiol 2019; 27:915-926. [DOI: 10.1016/j.tim.2019.07.004] [Citation(s) in RCA: 290] [Impact Index Per Article: 48.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2019] [Revised: 06/19/2019] [Accepted: 07/18/2019] [Indexed: 01/09/2023]
|
63
|
Quorum sensing in food spoilage and natural-based strategies for its inhibition. Food Res Int 2019; 127:108754. [PMID: 31882100 DOI: 10.1016/j.foodres.2019.108754] [Citation(s) in RCA: 63] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2019] [Revised: 09/27/2019] [Accepted: 10/13/2019] [Indexed: 10/25/2022]
Abstract
Food can harbor a variety of microorganisms including spoilage and pathogenic bacteria. Many bacterial processes, including production of degrading enzymes, virulence factors, and biofilm formation are known to depend on cell density through a process called quorum sensing (QS), in which cells communicate by synthesizing, detecting and reacting to small diffusible signaling molecules - autoinducers (AI). The disruption of QS could decisively contribute to control the expression of many harmful bacterial phenotypes. Several quorum sensing inhibitors (QSI) have been extensively studied, being many of them of natural origin. This review provides an analysis on the role of QS in food spoilage and biofilm formation within the food industry. QSI from natural sources are also reviewed towards their putative future applications to prolong shelf life of food products and decrease foodborne pathogenicity.
Collapse
|
64
|
Vinotha V, Iswarya A, Thaya R, Govindarajan M, Alharbi NS, Kadaikunnan S, Khaled JM, Al-Anbr MN, Vaseeharan B. Synthesis of ZnO nanoparticles using insulin-rich leaf extract: Anti-diabetic, antibiofilm and anti-oxidant properties. JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY B-BIOLOGY 2019; 197:111541. [DOI: 10.1016/j.jphotobiol.2019.111541] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/21/2019] [Revised: 05/23/2019] [Accepted: 06/23/2019] [Indexed: 10/26/2022]
|
65
|
Ahmed AA, Salih FA. Quercus infectoria gall extracts reduce quorum sensing-controlled virulence factors production and biofilm formation in Pseudomonas aeruginosa recovered from burn wounds. Altern Ther Health Med 2019; 19:177. [PMID: 31319827 PMCID: PMC6639949 DOI: 10.1186/s12906-019-2594-5] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2018] [Accepted: 07/04/2019] [Indexed: 01/05/2023]
Abstract
Background Quercus gall extracts’ ability to kill pathogens in vitro and even removal of chronic drug-resistant infections has been reported by several studies. The current investigation is focused on the action of extracts of Quercus infectoria gall in their sub-inhibitory concentrations on the corresponding bacterial behaviours instead of killing them. Methods The effect of gall extracts on the quorum sensing (QS) associated virulence of multiple drug resistant Pseudomonas aeruginosa recovered from burns wounds was studied. The influence of different extracts on the production of bacterial virulence and biofilm, and expression of the genes encoding quorum sensing and exotoxin A were investigated. Quorum sensing is a crucial regulator of virulence and biofilm development in Pseudomonas aeruginosa and other medical related microbes. Results Experiments to characterise and quantify Q. infectoria gall extracts impact on the quorum sensing networks of P.aeruginosa revealed that the expression of las, rhl, and exotoxin A (ETA) genes levels including the associated virulence were reduced by the extracts at their subinhibitory concentrations. Conclusions The obtained results indicated that extracts of Q. infectoria galls fight infections either by their inhibitory constituents, which vigorously eradicate cells or by disruption of the pathogens quorum sensing system through weakening the virulence and bacterial coordination.
Collapse
|
66
|
Parmar A, Kaur G, Kapil S, Sharma V, Sharma S. Biogenic PLGA-Zinc oxide nanocomposite as versatile tool for enhanced photocatalytic and antibacterial activity. APPLIED NANOSCIENCE 2019. [DOI: 10.1007/s13204-019-01023-3] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
67
|
Hoon Seo K, Markus J, Soshnikova V, Oh KH, Anandapadmanaban G, Elizabeth Jimenez Perez Z, Mathiyalagan R, Kim YJ, Yang DC. Facile and green synthesis of zinc oxide particles by Stevia Rebaudiana and its in vitro photocatalytic activity. INORG NANO-MET CHEM 2019. [DOI: 10.1080/24701556.2019.1580291] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Affiliation(s)
- Kwang Hoon Seo
- Department of Oriental Medicinal Biotechnology, College of Life Science, Kyung Hee University, Yongin-si, Gyeonggi-do, Republic of Korea
| | - Josua Markus
- Graduate School of Biotechnology College of life science, Kyung Hee University, Yongin-si, Gyeonggi-do, Republic of Korea
| | - Veronika Soshnikova
- Department of Oriental Medicinal Biotechnology, College of Life Science, Kyung Hee University, Yongin-si, Gyeonggi-do, Republic of Korea
| | - Keun Hyun Oh
- Department of Oriental Medicinal Biotechnology, College of Life Science, Kyung Hee University, Yongin-si, Gyeonggi-do, Republic of Korea
| | - Gokulanathan Anandapadmanaban
- Graduate School of Biotechnology College of life science, Kyung Hee University, Yongin-si, Gyeonggi-do, Republic of Korea
| | - Zuly Elizabeth Jimenez Perez
- Graduate School of Biotechnology College of life science, Kyung Hee University, Yongin-si, Gyeonggi-do, Republic of Korea
| | - Ramya Mathiyalagan
- Graduate School of Biotechnology College of life science, Kyung Hee University, Yongin-si, Gyeonggi-do, Republic of Korea
| | - Yeon Ju Kim
- Department of Oriental Medicinal Biotechnology, College of Life Science, Kyung Hee University, Yongin-si, Gyeonggi-do, Republic of Korea
| | - Deok Chun Yang
- Department of Oriental Medicinal Biotechnology, College of Life Science, Kyung Hee University, Yongin-si, Gyeonggi-do, Republic of Korea
- Graduate School of Biotechnology College of life science, Kyung Hee University, Yongin-si, Gyeonggi-do, Republic of Korea
| |
Collapse
|
68
|
Baker S, Prudnikova SV, Shumilova AA, Perianova OV, Zharkov SM, Kuzmin A. Bio-functionalization of phytogenic Ag and ZnO nanobactericides onto cellulose films for bactericidal activity against multiple drug resistant pathogens. J Microbiol Methods 2019; 159:42-50. [DOI: 10.1016/j.mimet.2019.02.009] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2018] [Revised: 02/18/2019] [Accepted: 02/19/2019] [Indexed: 11/28/2022]
|
69
|
Hassan I, Husain FM, Khan RA, Ebaid H, Al-Tamimi J, Alhazza IM, Aman S, Ibrahim KE. Ameliorative effect of zinc oxide nanoparticles against potassium bromate-mediated toxicity in Swiss albino rats. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2019; 26:9966-9980. [PMID: 30739294 DOI: 10.1007/s11356-019-04443-4] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/16/2018] [Accepted: 01/30/2019] [Indexed: 06/09/2023]
Abstract
Potassium bromate (PB) is a commonly used food additive, a prominent water disinfection by-product, and a class IIB carcinogen. It exerts a various degree of toxicity depending on its dose and exposure duration consumed with food and water in the living organisms. The present investigation aims to demonstrate the protective efficacy of zinc oxide nanoparticles (ZnO NPs) derived from Ochradenus arabicus (OA) leaf extract by green technology in PB-challenged Swiss albino rats. The rodents were randomly distributed, under the lab-standardized treatment strategy, into the following six treatment groups: control (group I), PB alone (group II), ZnO alone (group III), ZnO NP alone (group IV), PB + ZnO (group V), and PB + ZnO NPs (group VI). The rats were sacrificed after completion of the treatment, and their blood and liver samples were collected for further analysis. Group II showed extensive toxic effects with altered liver function markers (alanine aminotransferase, aspartate aminotransferase, alkaline phosphatase, lactate dehydrogenase, gamma-glutamyl transferase, glutathione-S-transferase, and thioredoxin reductase) and compromised redox status (SOD, CAT, GR, GPx, GSH, MDA, and total carbonyl content). The histopathological analysis and comet assay further supported the biochemical results of the same group. Besides, group III also showed moderate toxicity evidenced by an alteration in most of the studied parameters while group IV demonstrated mild toxicity after biochemical analysis indicating the excellent biocompatibility of the NPs. However, group VI exhibited attenuation of the PB-induced toxic insults to a significant level as compared to group II, whereas group V failed to show similar improvement in the studied parameters. All these findings entail that the ZnO NPs prepared by green synthesis have significant ameliorative property against PB-induced toxicity in vivo. Moreover, administration of the NPs improved the overall health of the treated animals profoundly. Hence, these NPs have significant therapeutic potential against the toxic effects of PB and similar compounds in vivo, and they are suitable to be used at the clinical and industrial levels.
Collapse
Affiliation(s)
- Iftekhar Hassan
- Department of Zoology, College of Science, King Saud University, Building 05, Riyadh, 11451, Saudi Arabia.
| | - Fohad Mabood Husain
- Department of Food Science and Nutrition, College of Food and Agriculture, King Saud University, Riyadh, 11451, Saudi Arabia
| | - Rais Ahmad Khan
- Department of Chemistry, College of Science, King Saud University, Riyadh, 11451, Saudi Arabia
| | - Hossam Ebaid
- Department of Zoology, College of Science, King Saud University, Building 05, Riyadh, 11451, Saudi Arabia
| | - Jameel Al-Tamimi
- Department of Zoology, College of Science, King Saud University, Building 05, Riyadh, 11451, Saudi Arabia
| | - Ibrahim M Alhazza
- Department of Zoology, College of Science, King Saud University, Building 05, Riyadh, 11451, Saudi Arabia
| | - Shazia Aman
- Department of Biochemistry, J N Medical College and Hospital, Aligarh Muslim University, Aligarh, 202002, India
| | - Khalid Elfaki Ibrahim
- Department of Zoology, College of Science, King Saud University, Building 05, Riyadh, 11451, Saudi Arabia
| |
Collapse
|
70
|
Hameed S, Khalil AT, Ali M, Numan M, Khamlich S, Shinwari ZK, Maaza M. Greener synthesis of ZnO and Ag-ZnO nanoparticles using Silybum marianum for diverse biomedical applications. Nanomedicine (Lond) 2019; 14:655-673. [PMID: 30714480 DOI: 10.2217/nnm-2018-0279] [Citation(s) in RCA: 80] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
AIM To investigate the physical and biological properties of Silybum marianum inspired ZnO nanoparticles (NPs), Ag-ZnO heterostructures. Experiment: Nanoparticles were characterized using ultraviolet-visible and infrared spectroscopy, x-ray diffraction, high resolution electron microscopy, ζ potential and thermo-gravimetric analysis etc. Results: Ag-ZnO-NPs indicated slightly higher antimicrobial potential then ZnO-NPs. Good antileishmanial (IC50 = 246 μg/ml for Ag-ZnO; 341 μg/ml for ZnO) and antioxidant potential while moderate enzyme inhibition is reported. 2, 2-Diphenyl 1-picrylhydrazyl radical scavenging of Ag-ZnO was higher relative to ZnO-NPs. Nanocosmaceutical formulation of nanoparticles indicated stable antimicrobial performance. CONCLUSION Biosynthesized nanoparticles indicated interesting biological properties and should be subjected to further research to establish their pharmacological relevance.
Collapse
Affiliation(s)
- Safia Hameed
- Department of Biotechnology, Quaid-i-Azam University, Islamabad, Pakistan
| | - Ali T Khalil
- Department of Eastern Medicine & Surgery, Qarshi University, Lahore, Pakistan
- UNESCO UNISA Africa Chair in Nanosciences & Nanotechnology, College of Graduate Studies, University of South Africa, Pretoria, South Africa
- Nanosciences African Network (NANOAFNET), Material Research Department, iThemba LABS, Cape Town, South Africa
| | - Muhammad Ali
- Department of Biotechnology, Quaid-i-Azam University, Islamabad, Pakistan
| | - Muhammad Numan
- Department of Biotechnology, Quaid-i-Azam University, Islamabad, Pakistan
| | - Saleh Khamlich
- UNESCO UNISA Africa Chair in Nanosciences & Nanotechnology, College of Graduate Studies, University of South Africa, Pretoria, South Africa
- Nanosciences African Network (NANOAFNET), Material Research Department, iThemba LABS, Cape Town, South Africa
| | - Zabta K Shinwari
- Department of Eastern Medicine & Surgery, Qarshi University, Lahore, Pakistan
- Pakistan Academy of Sciences, Islamabad, Pakistan
| | - Malik Maaza
- Department of Eastern Medicine & Surgery, Qarshi University, Lahore, Pakistan
- Nanosciences African Network (NANOAFNET), Material Research Department, iThemba LABS, Cape Town, South Africa
| |
Collapse
|
71
|
Hussain A, Alajmi MF, Khan MA, Pervez SA, Ahmed F, Amir S, Husain FM, Khan MS, Shaik GM, Hassan I, Khan RA, Rehman MT. Biosynthesized Silver Nanoparticle (AgNP) From Pandanus odorifer Leaf Extract Exhibits Anti-metastasis and Anti-biofilm Potentials. Front Microbiol 2019; 10:8. [PMID: 30853939 PMCID: PMC6396724 DOI: 10.3389/fmicb.2019.00008] [Citation(s) in RCA: 70] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2018] [Accepted: 01/07/2019] [Indexed: 12/12/2022] Open
Abstract
Cancer and the associated secondary bacterial infections are leading cause of mortality, due to the paucity of effective drugs. Here, we have synthesized silver nanoparticles (AgNPs) from organic resource and confirmed their anti-cancer and anti-microbial potentials. Microwave irradiation method was employed to synthesize AgNPs using Pandanus odorifer leaf extract. Anti-cancer potential of AgNPs was evaluated by scratch assay on the monolayer of rat basophilic leukemia (RBL) cells, indicating that the synthesized AgNPs inhibit the migration of RBL cells. The synthesized AgNPs showed MIC value of 4-16 μg/mL against both Gram +ve and Gram -ve bacterial strains, exhibiting the anti-microbial potential. Biofilm inhibition was recorded at sub-MIC values against Gram +ve and Gram -ve bacterial strains. Violacein and alginate productions were reduced by 89.6 and 75.6%, respectively at 4 and 8 μg/mL of AgNPs, suggesting anti-quorum sensing activity. Exopolysaccharide production was decreased by 61-79 and 84% for Gram -ve and Gram +ve pathogens respectively. Flagellar driven swarming mobility was also reduced significantly. Furthermore, In vivo study confirmed their tolerability in mice, indicating their clinical perspective. Collective, we claim that the synthesized AgNPs have anti-metastasis as well as anti-microbial activities. Hence, this can be further tested for therapeutic options to treat cancer and secondary bacterial infections.
Collapse
Affiliation(s)
- Afzal Hussain
- Department of Pharmacognosy, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
| | - Mohamed F Alajmi
- Department of Pharmacognosy, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
| | - Meraj A Khan
- Program in Translational Medicine, Peter Gilgan Centre for Research and Learning, The Hospital for Sick Children, Toronto, ON, Canada
| | - Syed A Pervez
- Helmholtz Institute Ulm, Electrochemical Energy Storage, Ulm, Germany
| | - Faheem Ahmed
- Department of Physics, College of Science, King Faisal University, Al-Ahsa, Saudi Arabia
| | - Samira Amir
- Department of Chemistry, College of Science & General Studies, Al Faisal University, Riyadh, Saudi Arabia
| | - Fohad M Husain
- Department of Food Science and Nutrition, College of Food and Agriculture, King Saud University, Riyadh, Saudi Arabia
| | - Mohd S Khan
- Protein Research Chair, Department of Biochemistry, College of Science, King Saud University, Riyadh, Saudi Arabia
| | - Gouse M Shaik
- Protein Research Chair, Department of Biochemistry, College of Science, King Saud University, Riyadh, Saudi Arabia
| | - Iftekhar Hassan
- Department of Zoology, College of Science, King Saud University, Riyadh, Saudi Arabia
| | - Rais A Khan
- Department of Chemistry, College of Science, King Saud University, Riyadh, Saudi Arabia
| | - Md Tabish Rehman
- Department of Pharmacognosy, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
| |
Collapse
|
72
|
Hayat S, Muzammil S, Shabana, Aslam B, Siddique MH, Saqalein M, Nisar MA. Quorum quenching: role of nanoparticles as signal jammers in Gram-negative bacteria. Future Microbiol 2018; 14:61-72. [PMID: 30539663 DOI: 10.2217/fmb-2018-0257] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Quorum sensing (QS) is a cell density dependent regulatory process that uses signaling molecules to manage the expression of virulence genes and biofilm formation. The study of QS inhibitors has emerged as one of the most fascinating areas of research to discover novel antimicrobial agents. Compounds that block QS have become candidates as unusual antimicrobial agents, as they are leading players in the regulation of virulence of drug-resistant pathogens. Metal and metal oxide nanoparticles offer novel alternatives to combat antibiotic resistance in Gram-negative bacteria aiming their capacity as QS inhibitors. This review provides an insight into the quorum quenching potential of metal and metal oxide nanoparticles by targeting QS regulated virulence of Gram-negative bacteria.
Collapse
Affiliation(s)
- Sumreen Hayat
- Department of Biotechnology, University of Sargodha, University Road, Sargodha 40100, Pakistan.,Department of Microbiology, Government College University, Faisalabad, Pakistan
| | - Saima Muzammil
- Department of Microbiology, Government College University, Faisalabad, Pakistan
| | - Shabana
- Department of Microbiology & Molecular Genetics, Quaid-e-Azam Campus, University of the Punjab, Lahore, Pakistan
| | - Bilal Aslam
- Department of Microbiology, Government College University, Faisalabad, Pakistan
| | | | - Muhammad Saqalein
- Department of Microbiology, Government College University, Faisalabad, Pakistan
| | - Muhammad Atif Nisar
- Department of Microbiology, Government College University, Faisalabad, Pakistan
| |
Collapse
|
73
|
Al-Shabib NA, Husain FM, Ahmed F, Khan RA, Khan MS, Ansari FA, Alam MZ, Ahmed MA, Khan MS, Baig MH, Khan JM, Shahzad SA, Arshad M, Alyousef A, Ahmad I. Low Temperature Synthesis of Superparamagnetic Iron Oxide (Fe 3O 4) Nanoparticles and Their ROS Mediated Inhibition of Biofilm Formed by Food-Associated Bacteria. Front Microbiol 2018; 9:2567. [PMID: 30464757 PMCID: PMC6234955 DOI: 10.3389/fmicb.2018.02567] [Citation(s) in RCA: 39] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2018] [Accepted: 10/08/2018] [Indexed: 01/11/2023] Open
Abstract
In the present study, a facile environmentally friendly approach was described to prepare monodisperse iron oxide (Fe3O4) nanoparticles (IONPs) by low temperature solution route. The synthesized nanoparticles were characterized using x-ray diffraction spectroscopy (XRD), Raman spectroscopy, field emission scanning electron microscopy (FESEM) measurements, Fourier-Transform Infrared Spectroscopy (FTIR), and Thermogravimetric analysis (TGA) analyses. XRD patterns revealed high crystalline quality of the nanoparticles. SEM micrographs showed the monodispersed IONPs with size ranging from 6 to 9 nm. Synthesized nanoparticles demonstrated MICs of 32, 64, and 128 μg/ml against Gram negative bacteria i.e., Serratia marcescens, Escherichia coli, and Pseudomonas aeruginosa, respectively, and 32 μg/ml against Gram positive bacteria Listeria monocytogenes. IOPNs at its respective sub-MICs demonstrated significant reduction of alginate and exopolysaccharide production and subsequently demonstrated broad-spectrum inhibition of biofilm ranging from 16 to 88% in the test bacteria. Biofilm reduction was also examined using SEM and Confocal Laser Scanning Microscopy (CLSM). Interaction of IONPs with bacterial cells generated ROS contributing to reduced biofilm formation. The present study for the first time report that these IONPs were effective in obliterating pre-formed biofilms. Thus, it is envisaged that these nanoparticles with broad-spectrum biofilm inhibitory property could be exploited in the food industry as well as in medical settings to curtail biofilm based infections and losses.
Collapse
Affiliation(s)
- Nasser A. Al-Shabib
- Department of Food Science and Nutrition, College of Food and Agriculture, King Saud University, Riyadh, Saudi Arabia
| | - Fohad Mabood Husain
- Department of Food Science and Nutrition, College of Food and Agriculture, King Saud University, Riyadh, Saudi Arabia
| | - Faheem Ahmed
- College of Science and General Studies, Alfaisal University, Riyadh, Saudi Arabia
| | - Rais Ahmad Khan
- Department of Chemistry, College of Science, King Saud University, Riyadh, Saudi Arabia
| | - Mohammad Shavez Khan
- Department of Agricultural Microbiology, Aligarh Muslim University, Aligarh, India
| | - Firoz Ahmad Ansari
- Department of Agricultural Microbiology, Aligarh Muslim University, Aligarh, India
| | - Mohammad Zubair Alam
- King Fahd Medical Research Center, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Mohammed Asif Ahmed
- Department of Food Science and Nutrition, College of Food and Agriculture, King Saud University, Riyadh, Saudi Arabia
| | - Mohd Shahnawaz Khan
- Protein Research Chair, Department of Biochemistry, College of Science, King Saud University, Riyadh, Saudi Arabia
| | | | - Javed Masood Khan
- Department of Food Science and Nutrition, College of Food and Agriculture, King Saud University, Riyadh, Saudi Arabia
| | - Syed Ali Shahzad
- Department of Food Science and Nutrition, College of Food and Agriculture, King Saud University, Riyadh, Saudi Arabia
| | - Mohammed Arshad
- Clinical Laboratory Sciences Department, College of Applied Medical Sciences, King Saud University, Riyadh, Saudi Arabia
| | - Abdullah Alyousef
- Clinical Laboratory Sciences Department, College of Applied Medical Sciences, King Saud University, Riyadh, Saudi Arabia
| | - Iqbal Ahmad
- Department of Agricultural Microbiology, Aligarh Muslim University, Aligarh, India
| |
Collapse
|
74
|
Joo SH, Aggarwal S. Factors impacting the interactions of engineered nanoparticles with bacterial cells and biofilms: Mechanistic insights and state of knowledge. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2018; 225:62-74. [PMID: 30071367 DOI: 10.1016/j.jenvman.2018.07.084] [Citation(s) in RCA: 43] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/23/2017] [Revised: 03/19/2018] [Accepted: 07/24/2018] [Indexed: 06/08/2023]
Abstract
Since their advent a few decades ago, engineered nanoparticles (ENPs) have been extensively used in consumer products and industrial applications and their use is expected to continue at the rate of thousands of tons per year in the next decade. The widespread use of ENPs poses a potential risk of large scale environmental proliferation of ENPs which can impact and endanger environmental health and safety. Recent studies have shown that microbial biofilms can serve as an important biotic component for partitioning and perhaps storage of ENPs released into aqueous systems. Considering that biofilms can be one of the major sinks for ENPs in the environment, and that the field of biofilms itself is only three to four decades old, there is a recent and growing body of literature investigating the ENP-biofilm interactions. While looking at biofilms, it is imperative to consider the interactions of ENPs with the planktonic microbial cells inhabiting the bulk systems in the vicinity of surface-attached biofilms. In this review article, we attempt to establish the state of current knowledge regarding the interactions of ENPs with bacterial cells and biofilms, identifying key governing factors and interaction mechanisms, as well as prominent knowledge gaps. Since the context of ENP-biofilm interactions can be multifarious-ranging from ecological systems to water and wastewater treatment to dental/medically relevant biofilms- and includes devising novel strategies for biofilm control, we believe this review will serve an interdisciplinary audience. Finally, the article also touches upon the future directions that the research in the ENP-microbial cells/biofilm interactions could take. Continued research in this area is important to not only enhance our scientific knowledge and arsenal for biofilm control, but to also support environmental health while reaping the benefits of the 'nanomaterial revolution'.
Collapse
Affiliation(s)
- Sung Hee Joo
- Department of Civil, Architectural, and Environmental Engineering, University of Miami, 1251 Memorial Dr. McArthur Engineering Building, Coral Gables, FL 33146-0630, USA.
| | - Srijan Aggarwal
- Department of Civil and Environmental Engineering, University of Alaska Fairbanks, 1760 Tanana Loop, Duckering Building, Fairbanks, AK 99775, USA
| |
Collapse
|
75
|
Huang Y, Mei L, Chen X, Wang Q. Recent Developments in Food Packaging Based on Nanomaterials. NANOMATERIALS (BASEL, SWITZERLAND) 2018; 8:E830. [PMID: 30322162 PMCID: PMC6215134 DOI: 10.3390/nano8100830] [Citation(s) in RCA: 90] [Impact Index Per Article: 12.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/31/2018] [Revised: 09/29/2018] [Accepted: 10/08/2018] [Indexed: 01/27/2023]
Abstract
The increasing demand for high food quality and safety, and concerns of environment sustainable development have been encouraging researchers in the food industry to exploit the robust and green biodegradable nanocomposites, which provide new opportunities and challenges for the development of nanomaterials in the food industry. This review paper aims at summarizing the recent three years of research findings on the new development of nanomaterials for food packaging. Two categories of nanomaterials (i.e., inorganic and organic) are included. The synthetic methods, physical and chemical properties, biological activity, and applications in food systems and safety assessments of each nanomaterial are presented. This review also highlights the possible mechanisms of antimicrobial activity against bacteria of certain active nanomaterials and their health concerns. It concludes with an outlook of the nanomaterials functionalized in food packaging.
Collapse
Affiliation(s)
- Yukun Huang
- School of Food and Bioengineering, Xihua University, Chengdu, Sichuan 610039, China.
| | - Lei Mei
- Department of Nutrition and Food Science, College of Agriculture and Natural Resources, University of Maryland, College Park, MD 20740, USA.
| | - Xianggui Chen
- School of Food and Bioengineering, Xihua University, Chengdu, Sichuan 610039, China.
| | - Qin Wang
- School of Food and Bioengineering, Xihua University, Chengdu, Sichuan 610039, China.
- Department of Nutrition and Food Science, College of Agriculture and Natural Resources, University of Maryland, College Park, MD 20740, USA.
| |
Collapse
|
76
|
Stratakos AC, Linton M, Ward P, Campbell M, Kelly C, Pinkerton L, Stef L, Pet I, Stef D, Iancu T, Theodoridou K, Gundogdu O, Corcionivoschi N. The Antimicrobial Effect of a Commercial Mixture of Natural Antimicrobials Against Escherichia coli O157:H7. Foodborne Pathog Dis 2018; 16:119-129. [PMID: 30277811 DOI: 10.1089/fpd.2018.2465] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
Ruminants are important reservoirs of E. coli O157:H7 and are considered as the major source of most foodborne outbreaks (e.g., 2017 outbreak in Germany, 2014 and 2016 outbreaks in United States, all linked to beef products). A promising strategy to reduce E. coli O157 is using antimicrobials to reduce the pathogen levels and/or virulence within the animal gastrointestinal tract and thus foodborne disease. The aim of the study was to determine the efficacy of a commercial mixture of natural antimicrobials against E. coli O157. The minimum inhibitory concentration and minimum bactericidal concentration of the antimicrobial were quantitatively determined and found to be 0.5% and 0.75% (v/v) of the natural antimicrobial, respectively. Microbial growth kinetics was also used to determine the effect of the antimicrobial on the pathogen. The natural antimicrobial affected the cell membrane of E. coli O157, as demonstrated by the increase in relative electric conductivity and increase in protein and nucleic acid release. The antimicrobial was also able to significantly reduce the concentration on E. coli O157 in a model rumen system. Biofilm assays showed that subinhibitory concentrations of the antimicrobial significantly reduced the E. coli 0157 biofilm forming capacity without influencing pathogen growth. In addition, the natural antimicrobial was able to reduce motility and exopolysaccharide production. Subinhibitory concentrations of the antimicrobial had no effect on AI-2 production. These findings suggest that the natural antimicrobial exerts an antimicrobial effect against E. coli O157 in vitro and in a model rumen system and could be potentially used to control this pathogen in the animal gut. The results also indicate that subinhibitory concentrations of the antimicrobial effectively reduce biofilm formation, motility, and exopolysaccharide production.
Collapse
Affiliation(s)
- Alexandros Ch Stratakos
- 1 Veterinary Sciences Division, Bacteriology Branch, Agri-Food and Biosciences Institute , Belfast, Northern Ireland .,2 Auranta, Nova UCD, Belfield Innovation Park , Belfield, Ireland
| | - Mark Linton
- 1 Veterinary Sciences Division, Bacteriology Branch, Agri-Food and Biosciences Institute , Belfast, Northern Ireland
| | - Patrick Ward
- 2 Auranta, Nova UCD, Belfield Innovation Park , Belfield, Ireland
| | - Mairead Campbell
- 3 Institute for Global Food Security, School of Biological Sciences, Queen's University Belfast , Belfast, Northern Ireland
| | - Carmel Kelly
- 1 Veterinary Sciences Division, Bacteriology Branch, Agri-Food and Biosciences Institute , Belfast, Northern Ireland
| | - Laurette Pinkerton
- 1 Veterinary Sciences Division, Bacteriology Branch, Agri-Food and Biosciences Institute , Belfast, Northern Ireland
| | - Lavinia Stef
- 4 Banat's University of Agricultural Sciences and Veterinary Medicine , King Michael I of Romania, Timisoara, Timisoara, Romania
| | - Ioan Pet
- 4 Banat's University of Agricultural Sciences and Veterinary Medicine , King Michael I of Romania, Timisoara, Timisoara, Romania
| | - Ducu Stef
- 4 Banat's University of Agricultural Sciences and Veterinary Medicine , King Michael I of Romania, Timisoara, Timisoara, Romania
| | - Tiberiu Iancu
- 4 Banat's University of Agricultural Sciences and Veterinary Medicine , King Michael I of Romania, Timisoara, Timisoara, Romania
| | - Katerina Theodoridou
- 3 Institute for Global Food Security, School of Biological Sciences, Queen's University Belfast , Belfast, Northern Ireland
| | - Ozan Gundogdu
- 5 Faculty of Infectious & Tropical Diseases, London School of Hygiene and Tropical Medicine , London, United Kingdom
| | - Nicolae Corcionivoschi
- 1 Veterinary Sciences Division, Bacteriology Branch, Agri-Food and Biosciences Institute , Belfast, Northern Ireland .,4 Banat's University of Agricultural Sciences and Veterinary Medicine , King Michael I of Romania, Timisoara, Timisoara, Romania
| |
Collapse
|
77
|
Cloning, overexpression, purification of bacteriocin enterocin-B and structural analysis, interaction determination of enterocin-A, B against pathogenic bacteria and human cancer cells. Int J Biol Macromol 2018; 116:502-512. [DOI: 10.1016/j.ijbiomac.2018.05.002] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2017] [Revised: 02/01/2018] [Accepted: 05/01/2018] [Indexed: 01/14/2023]
|
78
|
Gilja V, Vrban I, Mandić V, Žic M, Hrnjak-Murgić Z. Preparation of a PANI/ZnO Composite for Efficient Photocatalytic Degradation of Acid Blue. Polymers (Basel) 2018; 10:E940. [PMID: 30960865 PMCID: PMC6403582 DOI: 10.3390/polym10090940] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2018] [Revised: 08/10/2018] [Accepted: 08/18/2018] [Indexed: 11/24/2022] Open
Abstract
Polyaniline/zinc oxide (PANI/ZnO) composite photocatalysts were prepared from neutral media by in situ chemical oxidation of aniline (ANI) in the presence of different amounts of diethylene glycol (DEG). The PANI/ZnO composite photocatalysts were synthesized to efficiently remove organic dye (acid blue, AB25) from model wastewater. The PANI/ZnO composite photocatalysts were studied with the intention of efficient removal of organic dye (acid blue, AB25) from wastewater to obtain low-cost heterogeneous catalysts that offer high catalytic activity and stability. The conductive PANI polymer, which absorbs Vis irradiation, was used in this work as ZnO absorbs only ultraviolet (UV) irradiation; thus, the composite photocatalysts' activity was broadened into the Vis region. Characterization of the composite photocatalysts was done by Fourier transform infrared spectroscopy, X-ray diffraction, thermogravimetric analysis, scanning electron microscopy, electric conductivity, UV-Vis spectroscopy, and by specific surface area (SBET) measurements. The composites' photocatalytic activity under solar irradiation was validated by monitoring degradation of the AB25 dye. This study presented that it was possible both to prepare PANI and to prevent ZnO dissolution if in situ polymerization starts from neutral media with the addition of DEG. Additionally, efficient removal of AB25 dye, about 90% in 60 min, was achieved. The first-order rate constants of the photodegradation of AB25 by PANI/ZnO 0.02/0.024/0.04 DEG (and pure ZnO)) were computed to be 0.0272/0.0281/0.0325 (and 0.0062) min-1, indicating that the morphology and surface of the photocatalysts have significantly influenced the catalytic activity.
Collapse
Affiliation(s)
- Vanja Gilja
- Faculty of Chemical Engineering and Technology, University of Zagreb, Marulićev trg 19, 10000 Zagreb, Croatia.
| | - Ivan Vrban
- Faculty of Chemical Engineering and Technology, University of Zagreb, Marulićev trg 19, 10000 Zagreb, Croatia.
| | - Vilko Mandić
- Faculty of Chemical Engineering and Technology, University of Zagreb, Marulićev trg 19, 10000 Zagreb, Croatia.
| | - Mark Žic
- Division of Materials Physics, Ruđer Bošković Institute, Bijenička cesta 54, 10000 Zagreb, Croatia.
| | - Zlata Hrnjak-Murgić
- Faculty of Chemical Engineering and Technology, University of Zagreb, Marulićev trg 19, 10000 Zagreb, Croatia.
| |
Collapse
|
79
|
Galié S, García-Gutiérrez C, Miguélez EM, Villar CJ, Lombó F. Biofilms in the Food Industry: Health Aspects and Control Methods. Front Microbiol 2018; 9:898. [PMID: 29867809 PMCID: PMC5949339 DOI: 10.3389/fmicb.2018.00898] [Citation(s) in RCA: 483] [Impact Index Per Article: 69.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2017] [Accepted: 04/18/2018] [Indexed: 12/18/2022] Open
Abstract
Diverse microorganisms are able to grow on food matrixes and along food industry infrastructures. This growth may give rise to biofilms. This review summarizes, on the one hand, the current knowledge regarding the main bacterial species responsible for initial colonization, maturation and dispersal of food industry biofilms, as well as their associated health issues in dairy products, ready-to-eat foods and other food matrixes. These human pathogens include Bacillus cereus (which secretes toxins that can cause diarrhea and vomiting symptoms), Escherichia coli (which may include enterotoxigenic and even enterohemorrhagic strains), Listeria monocytogenes (a ubiquitous species in soil and water that can lead to abortion in pregnant women and other serious complications in children and the elderly), Salmonella enterica (which, when contaminating a food pipeline biofilm, may induce massive outbreaks and even death in children and elderly), and Staphylococcus aureus (known for its numerous enteric toxins). On the other hand, this review describes the currently available biofilm prevention and disruption methods in food factories, including steel surface modifications (such as nanoparticles with different metal oxides, nanocomposites, antimicrobial polymers, hydrogels or liposomes), cell-signaling inhibition strategies (such as lactic and citric acids), chemical treatments (such as ozone, quaternary ammonium compounds, NaOCl and other sanitizers), enzymatic disruption strategies (such as cellulases, proteases, glycosidases and DNAses), non-thermal plasma treatments, the use of bacteriophages (such as P100), bacteriocins (such us nisin), biosurfactants (such as lichenysin or surfactin) and plant essential oils (such as citral- or carvacrol-containing oils).
Collapse
Affiliation(s)
- Serena Galié
- Research Group BIONUC (Biotechnology of Nutraceuticals and Bioactive Compounds), Departamento de Biología Funcional, Área de Microbiología, University of Oviedo, Oviedo, Spain
- Instituto Universitario de Oncología del Principado de Asturias (IUOPA), Oviedo, Spain
- Instituto de Investigación Sanitaria del Principado de Asturias (ISPA), Oviedo, Spain
| | - Coral García-Gutiérrez
- Research Group BIONUC (Biotechnology of Nutraceuticals and Bioactive Compounds), Departamento de Biología Funcional, Área de Microbiología, University of Oviedo, Oviedo, Spain
- Instituto Universitario de Oncología del Principado de Asturias (IUOPA), Oviedo, Spain
- Instituto de Investigación Sanitaria del Principado de Asturias (ISPA), Oviedo, Spain
| | - Elisa M. Miguélez
- Research Group BIONUC (Biotechnology of Nutraceuticals and Bioactive Compounds), Departamento de Biología Funcional, Área de Microbiología, University of Oviedo, Oviedo, Spain
- Instituto Universitario de Oncología del Principado de Asturias (IUOPA), Oviedo, Spain
- Instituto de Investigación Sanitaria del Principado de Asturias (ISPA), Oviedo, Spain
| | - Claudio J. Villar
- Research Group BIONUC (Biotechnology of Nutraceuticals and Bioactive Compounds), Departamento de Biología Funcional, Área de Microbiología, University of Oviedo, Oviedo, Spain
- Instituto Universitario de Oncología del Principado de Asturias (IUOPA), Oviedo, Spain
- Instituto de Investigación Sanitaria del Principado de Asturias (ISPA), Oviedo, Spain
| | - Felipe Lombó
- Research Group BIONUC (Biotechnology of Nutraceuticals and Bioactive Compounds), Departamento de Biología Funcional, Área de Microbiología, University of Oviedo, Oviedo, Spain
- Instituto Universitario de Oncología del Principado de Asturias (IUOPA), Oviedo, Spain
- Instituto de Investigación Sanitaria del Principado de Asturias (ISPA), Oviedo, Spain
| |
Collapse
|
80
|
Al-Shabib NA, Husain FM, Khan RA, Khan MS, Alam MZ, Ansari FA, Laeeq S, Zubair M, Shahzad SA, Khan JM, Alsalme A, Ahmad I. Interference of phosphane copper (I) complexes of β-carboline with quorum sensing regulated virulence functions and biofilm in foodborne pathogenic bacteria: A first report. Saudi J Biol Sci 2018; 26:308-316. [PMID: 31485170 PMCID: PMC6717094 DOI: 10.1016/j.sjbs.2018.04.013] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2017] [Revised: 03/01/2018] [Accepted: 04/15/2018] [Indexed: 11/19/2022] Open
Abstract
Foodborne pathogens are one of the major cause of food-related diseases and food poisoning. Bacterial biofilms and quorum sensing (QS) mechanism of cell–cell communication have also been found to be associated with several outbreaks of foodborne diseases and are great threat to food safety. Therefore, In the present study, we investigated the activity of three tetrahedrally coordinated copper(I) complexes against quorum sensing and biofilms of foodborne bacteria. All the three complexes demonstrated similar antimicrobial properties against the selected pathogens. Concentration below the MIC i.e. at sub-MICs all the three complexes interfered significantly with the quorum sensing regulated functions in C. violaceum (violacein), P. aeruginosa (elastase, pyocyanin and alginate production) and S. marcescens (prodigiosin). The complexes demonstrated potent broad-spectrum biofilm inhibition in Pseudomonas aeruginosa, E. coli, Chromobacterium violaceum, Serratia marcescens, Klebsiella pneumoniae and Listeria monocytogenes. Biofilm inhibition was visualized using SEM and CLSM images. Action of the copper(I) complexes on two key QS regulated functions contributing to biofilm formation i.e. EPS production and swarming motility was also studied and statistically significant reduction was recorded. These results could form the basis for development of safe anti-QS and anti-biofilm agents that can be utilized in the food industry as well as healthcare sector to prevent food-associated diseases.
Collapse
Affiliation(s)
- Nasser A Al-Shabib
- Department of Food Science and Nutrition, College of Food and Agriculture, King Saud University, Riyadh 11451, Saudi Arabia
| | - Fohad Mabood Husain
- Department of Food Science and Nutrition, College of Food and Agriculture, King Saud University, Riyadh 11451, Saudi Arabia
| | - Rais Ahmad Khan
- Department of Chemistry, College of Science, King Saud University, Riyadh 11451, Saudi Arabia
| | - Mohammad Shavez Khan
- Department of Agricultural Microbiology, Aligarh Muslim University, Aligarh 202002, India
| | - Mohammad Zubair Alam
- King Fahd Medical Research Centre, King AbdulAziz University, Jeddah, Saudi Arabia
| | - Firoz Ahmad Ansari
- Department of Agricultural Microbiology, Aligarh Muslim University, Aligarh 202002, India
| | - Sameen Laeeq
- Department of Applied Chemistry, Aligarh Muslim University, Aligarh 202002, India
| | - Mohammad Zubair
- Department of Medical Microbiology, Faculty of Medicine, University of Tabuk, 71491, Saudi Arabia
| | - Syed Ali Shahzad
- Department of Food Science and Nutrition, College of Food and Agriculture, King Saud University, Riyadh 11451, Saudi Arabia
| | - Javed Masood Khan
- Department of Food Science and Nutrition, College of Food and Agriculture, King Saud University, Riyadh 11451, Saudi Arabia
| | - Ali Alsalme
- Department of Chemistry, College of Science, King Saud University, Riyadh 11451, Saudi Arabia
| | - Iqbal Ahmad
- Department of Agricultural Microbiology, Aligarh Muslim University, Aligarh 202002, India
| |
Collapse
|
81
|
Gupta A, Srivastava R. Zinc oxide nanoleaves: A scalable disperser-assisted sonochemical approach for synthesis and an antibacterial application. ULTRASONICS SONOCHEMISTRY 2018; 41:47-58. [PMID: 29137777 DOI: 10.1016/j.ultsonch.2017.09.029] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/27/2017] [Revised: 09/15/2017] [Accepted: 09/15/2017] [Indexed: 06/07/2023]
Abstract
Current study reports a new and highly scalable method for the synthesis of novel structure Zinc oxide nanoleaves (ZnO-NLs) using disperser-assisted sonochemical approach. The synthesis was carried out in different batches from 50mL to 1L to ensure the scalability of the method which produced almost similar results. The use of high speed (9000rpm) mechanical dispersion while bath sonication (200W, 33kHz) yield 4.4g of ZnO-NLs powder in 1L batch reaction within 2h (>96% yield). The ZnO-NLs shows an excellent thermal stability even at a higher temperature (900°C) and high surface area. The high antibacterial activity of ZnO-NLs against diseases causing Gram-positive bacteria Staphylococcus aureus shows a reduction in CFU, morphological changes like eight times reduction in cell size, cell burst, and cellular leakage at 200µg/mL concentration. This study provides an efficient, cost-effective and an environmental friendly approach for the synthesis of ZnO-NLs at industrial scale as well as new technique to increase the efficiency of the existing sonochemical method. We envisage that this method can be applied to various fields where ZnO is significantly consumed like rubber manufacturing, ceramic industry and medicine.
Collapse
Affiliation(s)
- Anadi Gupta
- Department of Biosciences and Bioengineering, Indian Institute of Technology Bombay, Mumbai, India
| | - Rohit Srivastava
- Department of Biosciences and Bioengineering, Indian Institute of Technology Bombay, Mumbai, India.
| |
Collapse
|
82
|
Abul Qais F, Samreen, Ahmad I. Broad‐spectrum inhibitory effect of green synthesised silver nanoparticles from Withania somnifera (L.) on microbial growth, biofilm and respiration: a putative mechanistic approach. IET Nanobiotechnol 2018; 12:325-335. [PMCID: PMC8676045 DOI: 10.1049/iet-nbt.2017.0193] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2017] [Revised: 11/14/2017] [Accepted: 11/21/2017] [Indexed: 09/05/2023] Open
Abstract
Multi‐drug resistance in pathogenic bacteria has created immense clinical problem globally. To address these, there is need to develop new therapeutic strategies to combat bacterial infections. Silver nanoparticles (AgNPs) might prove to be next generation nano‐antibiotics. However, improved efficacy and broad‐spectrum activity is still needed to be evaluated and understood. The authors have synthesised AgNPs from Withania somnifera (WS) by green process and characterised. The effect of WS‐AgNPs on growth kinetics, biofilm inhibition as well as eradication of preformed biofilms on both gram‐positive and gram‐negative pathogenic bacteria was evaluated. The authors have demonstrated the inhibitory effect on bacterial respiration and disruption of membrane permeability and integrity. It was found that WS‐AgNPs inhibited growth of pathogenic bacteria even at 16 µg/ml. At sub‐minimum inhibitory concentration concentration, there was approximately 50% inhibition in biofilm formation which was further validated by light and electron microscopy. WS‐AgNPs also eradicated the performed biofilms by varying levels at elevated concentration. The bacterial respiration was also significantly inhibited. Interaction of WS‐AgNPs with test pathogen caused the disruption of cell membrane leading to leakage of cellular content. The production of intracellular reactive oxygen species reveals that WS‐AgNPs exerted oxidative stress inside bacterial cell causing microbial growth inhibition and disrupting cellular functions.
Collapse
Affiliation(s)
- Faizan Abul Qais
- Department of Agricultural MicrobiologyAligarh Muslim UniversityAligarhUP202002India
| | - Samreen
- Department of Agricultural MicrobiologyAligarh Muslim UniversityAligarhUP202002India
| | - Iqbal Ahmad
- Department of Agricultural MicrobiologyAligarh Muslim UniversityAligarhUP202002India
| |
Collapse
|
83
|
Ankaiah D, Esakkiraj P, Perumal V, Ayyanna R, Venkatesan A. Probiotic characterization of Enterococcus faecium por1: Cloning, over expression of Enterocin-A and evaluation of antibacterial, anti-cancer properties. J Funct Foods 2017. [DOI: 10.1016/j.jff.2017.09.034] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022] Open
|