51
|
Ajayi BO, Adedara IA, Farombi EO. Protective mechanisms of 6-gingerol in dextran sulfate sodium-induced chronic ulcerative colitis in mice. Hum Exp Toxicol 2018; 37:1054-1068. [PMID: 29350052 DOI: 10.1177/0960327117751235] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2023]
Abstract
Ulcerative colitis (UC) is a relapsing and remitting inflammatory disease of the colon, with an increasing incidence worldwide. 6-Gingerol (6G) is a bioactive constituent of Zingiber officinale, which has been reported to possess various biological activities. This study was designed to evaluate the role of 6G in chronic UC. Chronic UC was induced in mice by three cycles of 2.5% dextran sulfate sodium (DSS) in drinking water. Each cycle consisted of 7 days of 2.5% DSS followed by 14 days of normal drinking water. 6G (100 mg/kg) and a reference anti-colitis drug sulfasalazine (SZ) (100 mg/kg) were orally administered daily to the mice throughout exposure to three cycles of 2.5% DSS. Administration of 6G and SZ significantly prevented disease activity index and aberrant crypt foci formation in DSS-treated mice. Furthermore, 6G and SZ suppresses immunoexpression of tumor necrosis factor alpha, interleukin-1β, inducible nitric oxide synthase, Regulated on activation, normal T cell expressed and secreted (RANTES), and Monocyte chemoattractant protein-1 (MCP-1) in the DSS-treated mice. 6G effectively protected against colonic oxidative damage by augmenting the antioxidant status with marked decrease in lipid peroxidation levels in DSS-treated mice. Moreover, 6G significantly inhibited nuclear factor kappa B (P65), p38, cyclooxygenase-2, and β-catenin whereas it enhanced IL-10 and adenomatous polyposis coli expression in DSS-treated mice. In conclusion, 6G prevented DSS-induced chronic UC via anti-inflammatory and antioxidative mechanisms and preservation of the Wnt/β-catenin signaling pathway.
Collapse
Affiliation(s)
- B O Ajayi
- Department of Biochemistry, Drug Metabolism & Toxicology Research Laboratories, College of Medicine, University of Ibadan, Ibadan, Nigeria
| | - I A Adedara
- Department of Biochemistry, Drug Metabolism & Toxicology Research Laboratories, College of Medicine, University of Ibadan, Ibadan, Nigeria
| | - E O Farombi
- Department of Biochemistry, Drug Metabolism & Toxicology Research Laboratories, College of Medicine, University of Ibadan, Ibadan, Nigeria
| |
Collapse
|
52
|
Ajayi BO, Adedara IA, Ajani OS, Oyeyemi MO, Farombi EO. [6]-Gingerol modulates spermatotoxicity associated with ulcerative colitis and benzo[a]pyrene exposure in BALB/c mice. J Basic Clin Physiol Pharmacol 2018; 29:247-256. [PMID: 29902912 DOI: 10.1515/jbcpp-2017-0140] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2017] [Accepted: 12/13/2017] [Indexed: 12/16/2022]
Abstract
BACKGROUND The deterioration of male reproductive health may represent an outcome of an active disease and environmental factors. The present study investigated the modulatory role of [6]-gingerol in spermatotoxicity resulting from colitis and benzo[a]pyrene (B[a]P), an environmental and food-borne pollutant. METHODS Group I (control) mice received corn oil alone, while group II ([6]-gingerol alone) mice orally received [6]-gingerol alone at 100 mg/kg body weight. Group III [benzo[a]pyrene+dextran sulfate sodium (BDS) alone] mice were orally exposed to B[a]P at 125 mg/kg for 7 days followed by three cycles of 4% dextran sulfate sodium (DSS) in drinking water. A cycle consisted of seven consecutive days of exposure to DSS-treated water followed by 14 consecutive days of normal drinking water. Group IV (BDS+[6]-gingerol) mice were orally treated daily with 100 mg/kg of [6]-gingerol during exposure to B[a]P and DSS in the same manner as those of group III. RESULTS [6]-Gingerol significantly abrogated BDS-mediated increase in disease activity index and restored the colon wet weight, colon length and colon mass index to near normal when compared to BDS alone group. Moreover, [6]-gingerol significantly prevented BDS-induced decreases in the daily sperm production (DSP), testicular sperm number (TSN), epididymal sperm number, sperm progressive motility and sperm membrane integrity when compared with the control. [6]-Gingerol markedly increased the sperm antioxidant enzymes activities and decreased the sperm head, mid-piece and tail abnormalities as well as suppressed oxidative stress and inflammatory biomarkers in BDS-exposed mice. CONCLUSIONS [6]-Gingerol protected against spermatotoxicity in experimental model of interaction of colitis with environmental pollutant B[a]P.
Collapse
Affiliation(s)
- Babajide O Ajayi
- Drug Metabolism and Toxicology Research Laboratories, Department of Biochemistry, College of Medicine, University of Ibadan, Ibadan, Nigeria
| | - Isaac A Adedara
- Drug Metabolism and Toxicology Research Laboratories, Department of Biochemistry, College of Medicine, University of Ibadan, Ibadan, Nigeria
| | - Olumide S Ajani
- Department of Veterinary Surgery and Reproduction, Faculty of Veterinary Medicine, University of Ibadan, Ibadan, Nigeria
| | - Matthew O Oyeyemi
- Department of Veterinary Surgery and Reproduction, Faculty of Veterinary Medicine, University of Ibadan, Ibadan, Nigeria
| | - Ebenezer O Farombi
- Drug Metabolism and Toxicology Research Laboratories, Department of Biochemistry, College of Medicine, University of Ibadan, Ibadan, Nigeria
| |
Collapse
|
53
|
Prophylactic effect of Kudingcha polyphenols on oxazolone induced colitis through its antioxidant capacities. FOOD SCIENCE AND HUMAN WELLNESS 2018. [DOI: 10.1016/j.fshw.2018.06.002] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
|
54
|
Molehin OR, Adeyanju AA, Adefegha SA, Akomolafe SF. Protocatechuic acid mitigates adriamycin-induced reproductive toxicities and hepatocellular damage in rats. ACTA ACUST UNITED AC 2018. [DOI: 10.1007/s00580-018-2794-2] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
|
55
|
Impact of prepubertal exposure to dietary protocatechuic acid on the hypothalamic-pituitary-testicular axis in rats. Chem Biol Interact 2018; 290:99-109. [DOI: 10.1016/j.cbi.2018.05.013] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2018] [Revised: 05/05/2018] [Accepted: 05/25/2018] [Indexed: 11/23/2022]
|
56
|
Adedara IA, Ajayi BO, Awogbindin IO, Farombi EO. Interactive effects of ethanol on ulcerative colitis and its associated testicular dysfunction in pubertal BALB/c mice. Alcohol 2017; 64:65-75. [PMID: 28965657 DOI: 10.1016/j.alcohol.2017.06.001] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2017] [Revised: 05/02/2017] [Accepted: 06/08/2017] [Indexed: 01/01/2023]
Abstract
Available epidemiological reports have indicated an increase in the incidence of ulcerative colitis, as well as alcohol consumption, globally. The present study investigated the possible interactive effects of ethanol consumption on ulcerative colitis and its associated testicular dysfunction using six groups of 12 pubertal mice each. Group I (Control) mice received drinking water alone. Group II mice received ethanol alone at 5 g/kg body weight. Group III mice received 2.5% dextran sulphate sodium (DSS) in drinking water followed by normal drinking water. Groups IV, V, and VI mice received DSS followed by ethanol at 1.25, 2.5, and 5 g/kg, respectively. Administration of ethanol to mice with ulcerative colitis intensified the disease-activity index with marked reduction in colon length, colon mass index, body weight gain, and organo-somatic indices of testes and epididymis when compared with the DSS-alone group. Moreover, ethanol exacerbated colitis-mediated decrease in enzymatic and non-enzymatic antioxidants but increased the oxidative stress and inflammatory biomarkers in the testes and epididymis. The diminution in luteinizing hormone, follicle stimulating hormone, and testosterone levels was intensified following administration of ethanol to mice with ulcerative colitis that were administered 5 g/kg ethanol alone. The decrease in sperm functional parameters and testicular spermatogenic indices as well as histopathological damage in colon, testes, and epididymis was aggravated following administration of ethanol to mice with ulcerative colitis. In conclusion, the exacerbating effects of ethanol on ulcerative colitis-induced testicular dysfunction are related to increased oxidative stress and inflammation in the treated mice.
Collapse
|
57
|
Hwang YH, Kim DG, Li W, Yang HJ, Yim NH, Ma JY. Anti-inflammatory effects of Forsythia suspensa in dextran sulfate sodium-induced colitis. JOURNAL OF ETHNOPHARMACOLOGY 2017; 206:73-77. [PMID: 28502906 DOI: 10.1016/j.jep.2017.05.011] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/27/2017] [Revised: 04/25/2017] [Accepted: 05/10/2017] [Indexed: 06/07/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Forsythia suspensa Fructus (FS) is used to treat various inflammatory disorders in traditional Oriental medicine, including gastrointestinal diseases, but its therapeutic potential in ulcerative colitis is unclear. Thus, we investigated any potential therapeutic effects of FS against intestinal inflammation and the bioactive constituents in FS. MATERIALS AND METHODS After the induction of colitis using 3% dextran sulfate sodium, FS (100mg/kg/day) was administered orally during the experimental period. We evaluated body weight, bloody diarrhea, colon length, and pro-inflammatory cytokine levels. Subsequently, the bioactive constituents of FS were identified using UPLC/MS/MS. RESULTS FS significantly decreased the body weight loss, colon length shortening, and tumor necrosis factor-α and interleukin-6 elevations induced by colitis compared with the negative control (P < 0.05). Moreover, FS improved the colitis-induced histopathological damage to the colon, including epithelial necrosis, infiltration of inflammatory cells, ulceration, and submucosal edema. In phytochemical analyses, 7 flavonoids, 9 lignans, 13 phenolics, and 2 triterpenes were identified by comparison with the retention times and mass fragmentations of authentic standards. CONCLUSIONS We demonstrated beneficial effects of FS and its constituents, suggesting their potential for treatment of intestinal inflammation. These data could provide useful information for managing ulcerative colitis.
Collapse
Affiliation(s)
- Youn-Hwan Hwang
- KM Application Center, Korea Institute of Oriental Medicine, South Korea.
| | - Dong-Gun Kim
- KM Application Center, Korea Institute of Oriental Medicine, South Korea.
| | - Wei Li
- KM Application Center, Korea Institute of Oriental Medicine, South Korea.
| | - Hye Jin Yang
- KM Application Center, Korea Institute of Oriental Medicine, South Korea.
| | - Nam-Hui Yim
- KM Application Center, Korea Institute of Oriental Medicine, South Korea.
| | - Jin Yeul Ma
- KM Application Center, Korea Institute of Oriental Medicine, South Korea.
| |
Collapse
|
58
|
Farombi EO, Adedara IA, Ajayi BO, Idowu TE, Eriomala OO, Akinbote FO. 6-Gingerol improves testicular function in mice model of chronic ulcerative colitis. Hum Exp Toxicol 2017; 37:358-372. [DOI: 10.1177/0960327117703689] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Affiliation(s)
- EO Farombi
- Drug Metabolism and Toxicology Research Laboratories, Department of Biochemistry, College of Medicine, University of Ibadan, Ibadan, Nigeria
| | - IA Adedara
- Drug Metabolism and Toxicology Research Laboratories, Department of Biochemistry, College of Medicine, University of Ibadan, Ibadan, Nigeria
| | - BO Ajayi
- Drug Metabolism and Toxicology Research Laboratories, Department of Biochemistry, College of Medicine, University of Ibadan, Ibadan, Nigeria
| | - TE Idowu
- Drug Metabolism and Toxicology Research Laboratories, Department of Biochemistry, College of Medicine, University of Ibadan, Ibadan, Nigeria
| | - OO Eriomala
- Drug Metabolism and Toxicology Research Laboratories, Department of Biochemistry, College of Medicine, University of Ibadan, Ibadan, Nigeria
| | - FO Akinbote
- Drug Metabolism and Toxicology Research Laboratories, Department of Biochemistry, College of Medicine, University of Ibadan, Ibadan, Nigeria
| |
Collapse
|
59
|
Crespo I, San-Miguel B, Mauriz JL, Ortiz de Urbina JJ, Almar M, Tuñón MJ, González-Gallego J. Protective Effect of Protocatechuic Acid on TNBS-Induced Colitis in Mice Is Associated with Modulation of the SphK/S1P Signaling Pathway. Nutrients 2017; 9:E288. [PMID: 28300788 PMCID: PMC5372951 DOI: 10.3390/nu9030288] [Citation(s) in RCA: 44] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2017] [Revised: 03/09/2017] [Accepted: 03/13/2017] [Indexed: 01/07/2023] Open
Abstract
(1) Background: The present study aimed to investigate whether beneficial effects of protocatechuic acid (PCA) are associated with inhibition of the SphK/S1P axis and related signaling pathways in a 2,4,6-trinitrobenzenesulfonic acid (TNBS) model of inflammatory bowel disease; (2) Methods: Colitis was induced in male Balb/c mice by intracolonic administration of 2 mg of TNBS. PCA (30 or 60 mg/kg body wt) was given intraperitoneally daily for five days; (3) Results: Administration of PCA prevented the macroscopic and microscopic damage to the colonic mucosa, the decrease in body weight gain and the increase in myeloperoxidase activity induced by TNBS. PCA-treated mice exhibited a lower oxidized/reduced glutathione ratio, increased expression of antioxidant enzymes and Nrf2 and reduced expression of proinflammatory cytokines. Following TNBS treatment mRNA levels, protein concentration and immunohistochemical labelling for SphK1 increased significantly. S1P production and expression of S1P receptor 1 and S1P phosphatase 2 were significantly elevated. However, there was a decreased expression of S1P lyase. Furthermore, TNBS-treated mice exhibited increased phosphorylation of AKT and ERK, and a higher expression of pSTAT3 and the NF-κB p65 subunit. PCA administration significantly prevented those changes; (4) Conclusions: Data obtained suggest a contribution of the SphK/S1P system and related signaling pathways to the anti-inflammatory effect of PCA.
Collapse
Affiliation(s)
- Irene Crespo
- Institute of Biomedicine (IBIOMED), University of León, 24071 León, Spain.
- Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), 24071, Spain.
| | - Beatriz San-Miguel
- Institute of Biomedicine (IBIOMED), University of León, 24071 León, Spain.
| | - José Luis Mauriz
- Institute of Biomedicine (IBIOMED), University of León, 24071 León, Spain.
- Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), 24071, Spain.
| | | | - Mar Almar
- Institute of Biomedicine (IBIOMED), University of León, 24071 León, Spain.
| | - María Jesús Tuñón
- Institute of Biomedicine (IBIOMED), University of León, 24071 León, Spain.
- Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), 24071, Spain.
| | - Javier González-Gallego
- Institute of Biomedicine (IBIOMED), University of León, 24071 León, Spain.
- Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), 24071, Spain.
| |
Collapse
|
60
|
Abolaji AO, Adedara IA, Abajingin AO, Fatunmibi OJ, Ladipo EO, Farombi EO. Evidence of oxidative damage and reproductive dysfunction accompanying 4-vinylcyclohexene diepoxide exposure in female Wistar rats. Reprod Toxicol 2016; 66:10-19. [DOI: 10.1016/j.reprotox.2016.09.009] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2016] [Revised: 09/02/2016] [Accepted: 09/15/2016] [Indexed: 12/20/2022]
|
61
|
Colonic and Hepatic Modulation by Lipoic Acid and/or N-Acetylcysteine Supplementation in Mild Ulcerative Colitis Induced by Dextran Sodium Sulfate in Rats. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2016; 2016:4047362. [PMID: 27957238 PMCID: PMC5124475 DOI: 10.1155/2016/4047362] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/22/2016] [Revised: 10/03/2016] [Accepted: 10/10/2016] [Indexed: 02/07/2023]
Abstract
Lipoic acid (LA) and N-acetylcysteine (NAC) are antioxidant and anti-inflammatory agents that have not yet been tested on mild ulcerative colitis (UC). This study aims to evaluate the action of LA and/or NAC, on oxidative stress and inflammation markers in colonic and hepatic rat tissues with mild UC, induced by dextran sodium sulfate (DSS) (2% w/v). LA and/or NAC (100 mg·kg·day-1, each) were given, once a day, in the diet, in a pretreatment phase (7 days) and during UC induction (5 days). Colitis induction was confirmed by histological and biochemical analyses (high performance liquid chromatography, spectrophotometry, and Multiplex®). A redox imbalance occurred before an immunological disruption in the colon. NAC led to a decrease in hydrogen peroxide (H2O2), malondialdehyde (MDA) levels, and myeloperoxidase activity. In the liver, DSS did not cause damage but treatments with both antioxidants were potentially harmful, with LA increasing MDA and LA + NAC increasing H2O2, tumor necrosis factor alpha, interferon gamma, and transaminases. In summary, NAC exhibited the highest colonic antioxidant and anti-inflammatory activity, while LA + NAC caused hepatic damage.
Collapse
|
62
|
Liu B, Piao X, Guo L, Liu S, Chai F, Gao L. Ursolic acid protects against ulcerative colitis via anti-inflammatory and antioxidant effects in mice. Mol Med Rep 2016; 13:4779-85. [PMID: 27082984 DOI: 10.3892/mmr.2016.5094] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2015] [Accepted: 02/16/2016] [Indexed: 11/05/2022] Open
Abstract
Ursolic acid (UA) has been reported to have a protective effect in colitis. However, the underlying mechanisms remain to be elucidated. In the present study, experimental ulcerative colitis was induced in male BALB/c mice by the administration of 5% dextran sulfate sodium (DSS) for 7 days, followed by treatment with UA for another 7 days. Hematoxylin & eosin staining was performed to evaluate colon tissue damage, and enzyme assays were used to measure malondialdehyde (MDA) content and superoxide dismutase (SOD) activity in colon homogenate. In addition, serum levels of interleukin (IL)‑1β and tumor necrosis factor (TNF)‑α were measured using an ELISA, and the level of nuclear factor (NF)‑κB p65 in the colonic tissues was assessed by western blotting. The 7‑day DSS administration induced marked colon damage, increased the serum levels of IL‑1β and TNF‑α, increased MDA content and decreased SOD activity in the colon homogenate. These changes were significantly improved by treatment with UA. UA also reduced the DSS‑stimulated high nuclear level of NF‑κB p65 in the colon tissues. These results demonstrate a protective role of UA in ulcerative colitis, and suggest that anti-inflammatory and antioxidant activities are involved in the underlying mechanisms.
Collapse
Affiliation(s)
- Baohai Liu
- Department of Gastroenterology, The First Affiliated Hospital, Liaoning Medical University, Jinzhou, Liaoning 121001, P.R. China
| | - Xuehua Piao
- Department of Traditional Chinese Medicine, The First Affiliated Hospital, Liaoning Medical University, Jinzhou, Liaoning 121001, P.R. China
| | - Lianyi Guo
- Department of Gastroenterology, The First Affiliated Hospital, Liaoning Medical University, Jinzhou, Liaoning 121001, P.R. China
| | - Shanshan Liu
- Department of Clinical Laboratory, The First Affiliated Hospital, Liaoning Medical University, Jinzhou, Liaoning 121001, P.R. China
| | - Fang Chai
- Department of General Surgery, The First Affiliated Hospital, Liaoning Medical University, Jinzhou, Liaoning 121001, P.R. China
| | - Leming Gao
- The 2nd Clinic, Stomatology Hospital, Peking University, Beijing 100101, P.R. China
| |
Collapse
|