51
|
Liu H, Panjikar S, Sheng X, Futamura Y, Zhang C, Shao N, Osada H, Zou H. β-Methyltryptamine Provoking the Crucial Role of Strictosidine Synthase Tyr151-OH for Its Stereoselective Pictet-Spengler Reactions to Tryptoline-type Alkaloids. ACS Chem Biol 2022; 17:187-197. [PMID: 34994203 DOI: 10.1021/acschembio.1c00844] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Strictosidine synthase (STR), the gate enzyme for monoterpenoid indole alkaloid biosynthesis, catalyzes the Pictet-Spengler reaction (PSR) of various tryptamine derivatives with secologanin assisted by "indole sandwich" stabilization. Continuous exploration with β-methyltryptamine (IPA) stereoselectively delivered the C6-methylstrictosidines and C6-methylvincosides by enzymatic and nonenzymatic PSR, respectively. Unexpectedly, the first "nonindole sandwich" binding mode was witnessed by the X-ray structures of STR1-ligand complexes. Site-directed mutagenesis revealed the critical cryptic role of the hydroxyl group of Tyr151 in IPA biotransformation. Further computational calculations demonstrated the adjustable IPA position in STR1 upon the binding of secologanin, and Tyr151-OH facilitates the productive PSR binding mode via an advantageous hydrogen-bond network. Further chemo-enzymatic manipulation of C6-methylvincosides successfully resulted in the discovered antimalarial framework (IC50 = 0.92 μM).
Collapse
Affiliation(s)
- Haicheng Liu
- College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, P. R. China
| | - Santosh Panjikar
- Australia & Department of Molecular Biology and Biochemistry, Monash University, ANSTO, Australian Synchrotron, 800 Blackburn Road, Victoria 3168, Australia
| | - Xiang Sheng
- Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, & National Technology Innovation Center for Synthetic Biology, Tianjin 300308, China
| | - Yushi Futamura
- Chemical Biology Research Group, RIKEN Center for Sustainable Resource Science, 2-1 Hirosawa, Wako, Saitama 351-0198, Japan
| | - Chenghua Zhang
- Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, & National Technology Innovation Center for Synthetic Biology, Tianjin 300308, China
- School of Basic Medical Sciences, North Sichuan Medical College, No. 55 Dongshun Road, Gaoping District, Nanchong 637000, China
| | - Nana Shao
- College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, P. R. China
| | - Hiroyuki Osada
- Chemical Biology Research Group, RIKEN Center for Sustainable Resource Science, 2-1 Hirosawa, Wako, Saitama 351-0198, Japan
| | - Hongbin Zou
- College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, P. R. China
| |
Collapse
|
52
|
Wang YP, Pan F, Wang YD, Khan A, Liu YP, Yang ML, Cao JX, Zhao TR, Cheng GG. Anti-leukemic effect and molecular mechanism of 11-methoxytabersonine from Melodinus cochinchinensis via network pharmacology, ROS-mediated mitochondrial dysfunction and PI3K/Akt signaling pathway. Bioorg Chem 2022; 120:105607. [PMID: 35033818 DOI: 10.1016/j.bioorg.2022.105607] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2021] [Revised: 12/31/2021] [Accepted: 01/07/2022] [Indexed: 12/20/2022]
Abstract
Melodinus cochinchinensis (Lour.) Merr. is a Yunnan endemic folk medicine. Our previous study showed that 11-methoxytabersonine (11-MT) isolated from M. cochinchinensis has strong cytotoxicity on human T-ALL cells, but its molecular mechanism has not been studied. In current study, the cytotoxicity and possible mechanism of 11-MT on T-cell acute lymphoblastic leukemia was explored using network pharmacology and molecular biology techniques. 11-MT significantly inhibited the cell proliferations on different four human T-ALL cells (MOLT-4, Jurkat, CCRF-CEM, and CEM/C1 cells). 11-MT triggered ROS accumulation, calcium concentration and cell apoptosis, and decreased the mitochondrial membrane potential (MMP) in human T-ALL cells, especially MOLT-4 cells. Western blot analysis showed that it can induce MOLT-4 cell apoptosis by up-regulating PI3K/Akt signaling pathway. Therefore, 11-MT induces human T-ALL cells apoptosis via up-regulation of ROS-mediated mitochondrial dysfunction and down-regulation of PI3K/Akt/mTOR signaling pathway.
Collapse
Affiliation(s)
- Yong-Peng Wang
- Faculty of Food Science and Engineering, Kunming University of Science and Technology, Kunming 650500, China
| | - Fei Pan
- Beijing Engineering and Technology Research Center of Food Additives, Beijing Technology and Business University, Beijing 100048, China
| | - Yu-Dan Wang
- Faculty of Food Science and Engineering, Kunming University of Science and Technology, Kunming 650500, China; National and Local Joint Engineering Research Center for Green Preparation Technology of Biobased Materials, Yunnan Minzu University, Kunming 650500, China
| | - Afsar Khan
- Department of Chemistry, COMSATS University Islamabad, Abbottabad Campus, Abbottabad 22060, Pakistan
| | - Ya-Ping Liu
- Faculty of Food Science and Engineering, Kunming University of Science and Technology, Kunming 650500, China
| | - Mei-Lian Yang
- Faculty of Food Science and Engineering, Kunming University of Science and Technology, Kunming 650500, China
| | - Jian-Xin Cao
- Faculty of Food Science and Engineering, Kunming University of Science and Technology, Kunming 650500, China
| | - Tian-Rui Zhao
- Faculty of Food Science and Engineering, Kunming University of Science and Technology, Kunming 650500, China.
| | - Gui-Guang Cheng
- Faculty of Food Science and Engineering, Kunming University of Science and Technology, Kunming 650500, China.
| |
Collapse
|
53
|
Deng Y, Li Y, Wang Y, Sun S, Ma S, Jia P, Li W, Wang K, Yan W. Efficient enantioselective synthesis of CF2H-containing dispiro[benzo[b]thiophene-oxindole-pyrrolidine]s via organocatalytic cycloaddition. Org Chem Front 2022. [DOI: 10.1039/d1qo01392k] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
A novel kind of CF2H-containing dispiro[benzo[b]thiophene-oxindole-pyrrolidine] has been achieved via an organocatalyzed 1,3-dipole reaction.
Collapse
Affiliation(s)
- Yabo Deng
- The Institute of Pharmacology, School of Basic Medical Sciences, Lanzhou University, Lanzhou 730000, China
| | - Yongzhen Li
- The Institute of Pharmacology, School of Basic Medical Sciences, Lanzhou University, Lanzhou 730000, China
| | - Yalan Wang
- The Institute of Pharmacology, School of Basic Medical Sciences, Lanzhou University, Lanzhou 730000, China
| | - Shuo Sun
- The Institute of Pharmacology, School of Basic Medical Sciences, Lanzhou University, Lanzhou 730000, China
| | - Sichao Ma
- The Institute of Pharmacology, School of Basic Medical Sciences, Lanzhou University, Lanzhou 730000, China
| | - Pengfei Jia
- The Institute of Pharmacology, School of Basic Medical Sciences, Lanzhou University, Lanzhou 730000, China
| | - Wenguang Li
- The Institute of Pharmacology, School of Basic Medical Sciences, Lanzhou University, Lanzhou 730000, China
| | - Kairong Wang
- The Institute of Pharmacology, School of Basic Medical Sciences, Lanzhou University, Lanzhou 730000, China
| | - Wenjin Yan
- The Institute of Pharmacology, School of Basic Medical Sciences, Lanzhou University, Lanzhou 730000, China
| |
Collapse
|
54
|
Yao L, Wei P, Ying J, Wu XF. Nickel-catalyzed carbonylative domino cyclization of arylboronic acid pinacol esters with 2-alkynyl nitroarenes toward N-aroyl indoles. Org Chem Front 2022. [DOI: 10.1039/d2qo00112h] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
A nickel-catalyzed carbonylative domino cyclization of arylboronic acid pinacol esters with 2-alkynyl nitroarenes has been developed.
Collapse
Affiliation(s)
- Lingyun Yao
- Department of Chemistry, Key Laboratory of Surface & Interface Science of Polymer Materials of Zhejiang Province, Zhejiang Sci-Tech University, Hangzhou 310018, China
| | - Ping Wei
- Department of Chemistry, Key Laboratory of Surface & Interface Science of Polymer Materials of Zhejiang Province, Zhejiang Sci-Tech University, Hangzhou 310018, China
| | - Jun Ying
- Department of Chemistry, Key Laboratory of Surface & Interface Science of Polymer Materials of Zhejiang Province, Zhejiang Sci-Tech University, Hangzhou 310018, China
| | - Xiao-Feng Wu
- Dalian National Laboratory for Clean Energy, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 116023 Dalian, Liaoning, China
- Leibniz-Institut für Katalyse e. V., Albert-Einstein-Straβe 29a, 18059 Rostock, Germany
| |
Collapse
|
55
|
Faltracco M, Ruijter E. Synthesis of tetracyclic spiroindolines by an interrupted Bischler-Napieralski reaction: total synthesis of akuammicine. Org Biomol Chem 2021; 19:9641-9644. [PMID: 34724022 PMCID: PMC8600370 DOI: 10.1039/d1ob01966j] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Judicious substrate design allows interruption of the classical Bischler–Napieralski reaction, providing access to a range of diversely substituted tetracyclic spiroindolines. These complex polycyclic scaffolds are valuable building blocks for the construction of indole alkaloids, as showcased in a concise total synthesis of (±)-akuammicine. The interrupted Bischler–Napieralski reaction of β,γ-unsaturated tryptamides affords tetracyclic spiro pyrroloindolines, which can be used in the total synthesis of the Strychnos alkaloid, akuammicine.![]()
Collapse
Affiliation(s)
- Matteo Faltracco
- Department of Chemistry & Pharmaceutical Sciences, Amsterdam Institute of Molecular & Life Sciences (AIMMS), Vrije Universiteit Amsterdam, De Boelelaan 1108, 1081 HZ Amsterdam, The Netherlands.
| | - Eelco Ruijter
- Department of Chemistry & Pharmaceutical Sciences, Amsterdam Institute of Molecular & Life Sciences (AIMMS), Vrije Universiteit Amsterdam, De Boelelaan 1108, 1081 HZ Amsterdam, The Netherlands.
| |
Collapse
|
56
|
(-)-Tubifolidine as strychnos indole alkaloid: Spectroscopic charactarization (FT-IR, NMR, UV-Vis), antioxidant activity, molecular docking, and DFT studies. J Mol Struct 2021. [DOI: 10.1016/j.molstruc.2021.130978] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|
57
|
Faltracco M, Damian M, Ruijter E. Synthesis of Carbazoles and Dihydrocarbazoles by a Divergent Cascade Reaction of Donor-Acceptor Cyclopropanes. Org Lett 2021; 23:7592-7596. [PMID: 34543040 PMCID: PMC8491164 DOI: 10.1021/acs.orglett.1c02795] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
![]()
An alkylation/olefination
cascade of indolecarboxaldehydes and
phosphonate-functionalized donor–acceptor cyclopropanes affords
functionalized dihydrocarbazoles and cyclohepta[cd]indoles in formal (3 + 3) and (4 + 3) cycloadditions. A minor modification
to the reaction conditions also allows access to the fully aromatic
heterocyclic scaffolds by thermal loss of an electron-rich aryl moiety.
Collapse
Affiliation(s)
- Matteo Faltracco
- Department of Chemistry & Pharmaceutical Sciences, Amsterdam Institute of Molecular & Life Sciences (AIMMS), Vrije Universiteit Amsterdam, De Boelelaan 1108, 1081 HZ Amsterdam, The Netherlands
| | - Matteo Damian
- Department of Chemistry & Pharmaceutical Sciences, Amsterdam Institute of Molecular & Life Sciences (AIMMS), Vrije Universiteit Amsterdam, De Boelelaan 1108, 1081 HZ Amsterdam, The Netherlands
| | - Eelco Ruijter
- Department of Chemistry & Pharmaceutical Sciences, Amsterdam Institute of Molecular & Life Sciences (AIMMS), Vrije Universiteit Amsterdam, De Boelelaan 1108, 1081 HZ Amsterdam, The Netherlands
| |
Collapse
|
58
|
Dhote PS, Patel P, Vanka K, Ramana CV. Total synthesis of the pseudoindoxyl class of natural products. Org Biomol Chem 2021; 19:7970-7994. [PMID: 34486008 DOI: 10.1039/d1ob01285a] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The pseudoindoxyl sub-structural motif, amongst the large set of the indole class of alkaloids, represents a unique subset of the oxygenated indole class of the alkaloid family. A majority of this class of natural products contains complex bridged/polycyclic scaffolds with interesting biological profiles. They are thus attractive synthetic targets. Starting from 1963, twenty-eight natural products having the pseudoindoxyl scaffold have been isolated, among which the synthesis of 13 natural products has been accomplished. In this review, we highlight the completed as well as the formal total synthesis of the natural products with a spiro-pseudoindoxyl ring, with a focus on their development. The challenges and the future perspective based on the recent developments in the field will also be discussed. We strongly believe that this review will not only update but also attract the attention of researchers in dealing with the synthesis of pseudoindoxyl compounds.
Collapse
Affiliation(s)
- Pawan S Dhote
- Organic Chemistry Division, CSIR-National Chemical Laboratory Dr Homi Bhabha Road, Pune-411008, India. .,Academy of Scientific and Innovative Research (AcSIR), Ghaziabad-201002, India
| | - Pitambar Patel
- CSIR-North East Institute of Science and Technology, Assam-785006, India.,Academy of Scientific and Innovative Research (AcSIR), Ghaziabad-201002, India
| | - Kumar Vanka
- Physical Chemistry Division, CSIR-National Chemical Laboratory Dr Homi Bhabha Road, Pune-411008, India.,Academy of Scientific and Innovative Research (AcSIR), Ghaziabad-201002, India
| | - Chepuri V Ramana
- Organic Chemistry Division, CSIR-National Chemical Laboratory Dr Homi Bhabha Road, Pune-411008, India. .,Academy of Scientific and Innovative Research (AcSIR), Ghaziabad-201002, India
| |
Collapse
|
59
|
Hu W, Wang X, Yu X, Zhu X, Hao X, Song M. Rh(III)‐Catalyzed Divergent C2‐carboxymethylation of Indoles and C7‐formylmethylation of Indolines with Vinylene Carbonate. ASIAN J ORG CHEM 2021. [DOI: 10.1002/ajoc.202100515] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Affiliation(s)
- Weinan Hu
- College of Chemistry Zhengzhou University No. 100 of Science Road Zhengzhou Henan 450001 P. R. China
| | - Xu Wang
- College of Chemistry Zhengzhou University No. 100 of Science Road Zhengzhou Henan 450001 P. R. China
| | - Xiaoni Yu
- College of Chemistry Zhengzhou University No. 100 of Science Road Zhengzhou Henan 450001 P. R. China
| | - Xinju Zhu
- College of Chemistry Zhengzhou University No. 100 of Science Road Zhengzhou Henan 450001 P. R. China
| | - Xin‐Qi Hao
- College of Chemistry Zhengzhou University No. 100 of Science Road Zhengzhou Henan 450001 P. R. China
| | - Mao‐Ping Song
- College of Chemistry Zhengzhou University No. 100 of Science Road Zhengzhou Henan 450001 P. R. China
| |
Collapse
|
60
|
Jin T, Li P, Wang C, Tang X, Cheng M, Zong Y, Luo L, Ou H, Liu K, Li G. Racemic Bisindole Alkaloids: Structure, Bioactivity, and Computational Study. CHINESE J CHEM 2021. [DOI: 10.1002/cjoc.202100255] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Affiliation(s)
- Tian‐Yun Jin
- Key Laboratory of Marine Drugs, Chinese Ministry of Education, School of Medicine and Pharmacy Department Ocean University of China Qingdao Shandong 266003 China
- Laboratory of Marine Drugs and Biological Products, National Laboratory for Marine Science and Technology Qingdao Shandong 266235 China
| | - Ping‐Lin Li
- Key Laboratory of Marine Drugs, Chinese Ministry of Education, School of Medicine and Pharmacy Department Ocean University of China Qingdao Shandong 266003 China
- Laboratory of Marine Drugs and Biological Products, National Laboratory for Marine Science and Technology Qingdao Shandong 266235 China
| | - Ci‐Li Wang
- Key Laboratory of Marine Drugs, Chinese Ministry of Education, School of Medicine and Pharmacy Department Ocean University of China Qingdao Shandong 266003 China
- Laboratory of Marine Drugs and Biological Products, National Laboratory for Marine Science and Technology Qingdao Shandong 266235 China
| | - Xu‐Li Tang
- College of Chemistry and Chemical Engineering, State‐Province Joint Engineering Laboratory of Marine Bioproducts and Technology Ocean University of China Qingdao Shandong 266003 China
| | - Mei‐Mei Cheng
- Key Laboratory of Marine Drugs, Chinese Ministry of Education, School of Medicine and Pharmacy Department Ocean University of China Qingdao Shandong 266003 China
- Laboratory of Marine Drugs and Biological Products, National Laboratory for Marine Science and Technology Qingdao Shandong 266235 China
| | - Yuan Zong
- Key Laboratory of Marine Drugs, Chinese Ministry of Education, School of Medicine and Pharmacy Department Ocean University of China Qingdao Shandong 266003 China
- Laboratory of Marine Drugs and Biological Products, National Laboratory for Marine Science and Technology Qingdao Shandong 266235 China
| | - Lian‐Zhong Luo
- Engineering Research Center of Marine Biopharmaceutical Resource Xiamen Medical College Xiamen Fujian 361023 China
| | - Hui‐Long Ou
- College of Ocean and Earth Sciences Xiamen University Xiamen Fujian 361006 China
| | - Ke‐Chun Liu
- Biology Institute, Qilu University of Technology (Shandong Academy of Sciences), Jinan Shandong 250099 China
| | - Guo‐Qiang Li
- Key Laboratory of Marine Drugs, Chinese Ministry of Education, School of Medicine and Pharmacy Department Ocean University of China Qingdao Shandong 266003 China
- Laboratory of Marine Drugs and Biological Products, National Laboratory for Marine Science and Technology Qingdao Shandong 266235 China
| |
Collapse
|
61
|
Arribas A, Calvelo M, Fernández DF, Rodrigues CAB, Mascareñas JL, López F. Highly Enantioselective Iridium(I)‐Catalyzed Hydrocarbonation of Alkenes: A Versatile Approach to Heterocyclic Systems Bearing Quaternary Stereocenters. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202105776] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Andrés Arribas
- Centro Singular de Investigación en Química Biolóxica e Materiais Moleculares (CiQUS) and Departamento de Química Orgánica Universidade de Santiago de Compostela 15782 Santiago de Compostela Spain
| | - Martín Calvelo
- Centro Singular de Investigación en Química Biolóxica e Materiais Moleculares (CiQUS) and Departamento de Química Orgánica Universidade de Santiago de Compostela 15782 Santiago de Compostela Spain
| | - David F. Fernández
- Centro Singular de Investigación en Química Biolóxica e Materiais Moleculares (CiQUS) and Departamento de Química Orgánica Universidade de Santiago de Compostela 15782 Santiago de Compostela Spain
| | - Catarina A. B. Rodrigues
- Centro Singular de Investigación en Química Biolóxica e Materiais Moleculares (CiQUS) and Departamento de Química Orgánica Universidade de Santiago de Compostela 15782 Santiago de Compostela Spain
| | - José L. Mascareñas
- Centro Singular de Investigación en Química Biolóxica e Materiais Moleculares (CiQUS) and Departamento de Química Orgánica Universidade de Santiago de Compostela 15782 Santiago de Compostela Spain
| | - Fernando López
- Centro Singular de Investigación en Química Biolóxica e Materiais Moleculares (CiQUS) and Departamento de Química Orgánica Universidade de Santiago de Compostela 15782 Santiago de Compostela Spain
- Misión Biológica de Galicia Consejo Superior de Investigaciones Científicas (CSIC) 36080 Pontevedra Spain
| |
Collapse
|
62
|
Arribas A, Calvelo M, Fernández DF, Rodrigues CAB, Mascareñas JL, López F. Highly Enantioselective Iridium(I)-Catalyzed Hydrocarbonation of Alkenes: A Versatile Approach to Heterocyclic Systems Bearing Quaternary Stereocenters. Angew Chem Int Ed Engl 2021; 60:19297-19305. [PMID: 34137152 PMCID: PMC8456945 DOI: 10.1002/anie.202105776] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2021] [Revised: 06/10/2021] [Indexed: 12/29/2022]
Abstract
We report a versatile, highly enantioselective intramolecular hydrocarbonation reaction that provides a direct access to heteropolycyclic systems bearing chiral quaternary carbon stereocenters. The method, which relies on an iridium(I)/bisphosphine chiral catalyst, is particularly efficient for the synthesis of five-, six- and seven-membered fused indole and pyrrole products, bearing one and two stereocenters, with enantiomeric excesses of up to >99 %. DFT computational studies allowed to obtain a detailed mechanistic profile and identify a cluster of weak non-covalent interactions as key factors to control the enantioselectivity.
Collapse
Affiliation(s)
- Andrés Arribas
- Centro Singular de Investigación en Química Biolóxica e Materiais Moleculares (CiQUS) and Departamento de Química OrgánicaUniversidade de Santiago de Compostela15782Santiago de CompostelaSpain
| | - Martín Calvelo
- Centro Singular de Investigación en Química Biolóxica e Materiais Moleculares (CiQUS) and Departamento de Química OrgánicaUniversidade de Santiago de Compostela15782Santiago de CompostelaSpain
| | - David F. Fernández
- Centro Singular de Investigación en Química Biolóxica e Materiais Moleculares (CiQUS) and Departamento de Química OrgánicaUniversidade de Santiago de Compostela15782Santiago de CompostelaSpain
| | - Catarina A. B. Rodrigues
- Centro Singular de Investigación en Química Biolóxica e Materiais Moleculares (CiQUS) and Departamento de Química OrgánicaUniversidade de Santiago de Compostela15782Santiago de CompostelaSpain
| | - José L. Mascareñas
- Centro Singular de Investigación en Química Biolóxica e Materiais Moleculares (CiQUS) and Departamento de Química OrgánicaUniversidade de Santiago de Compostela15782Santiago de CompostelaSpain
| | - Fernando López
- Centro Singular de Investigación en Química Biolóxica e Materiais Moleculares (CiQUS) and Departamento de Química OrgánicaUniversidade de Santiago de Compostela15782Santiago de CompostelaSpain
- Misión Biológica de GaliciaConsejo Superior de Investigaciones Científicas (CSIC)36080PontevedraSpain
| |
Collapse
|
63
|
Yang G, Pan J, Ke Y, Liu Y, Zhao Y. Tandem Catalytic Indolization/Enantioconvergent Substitution of Alcohols by Borrowing Hydrogen to Access Tricyclic Indoles. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202106514] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Affiliation(s)
- Guoqiang Yang
- Department of Chemistry, National University of Singapore 3 Science Drive 3 Singapore 117543 Singapore
| | - Jiaoting Pan
- Department of Chemistry, National University of Singapore 3 Science Drive 3 Singapore 117543 Singapore
- Joint School of National University of Singapore and Tianjin University International Campus of Tianjin University Binhai New City Fuzhou 350207 China
| | - Ya‐Ming Ke
- Department of Chemistry, National University of Singapore 3 Science Drive 3 Singapore 117543 Singapore
| | - Yongbing Liu
- Department of Chemistry, National University of Singapore 3 Science Drive 3 Singapore 117543 Singapore
| | - Yu Zhao
- Department of Chemistry, National University of Singapore 3 Science Drive 3 Singapore 117543 Singapore
- Joint School of National University of Singapore and Tianjin University International Campus of Tianjin University Binhai New City Fuzhou 350207 China
| |
Collapse
|
64
|
Ming YC, Lv XJ, Liu M, Liu YK. Synthesis of Chiral Polycyclic Tetrahydrocarbazoles by Enantioselective Aminocatalytic Double Activation of 2-Hydroxycinnamaldehydes with Dienals. Org Lett 2021; 23:6515-6519. [PMID: 34374287 DOI: 10.1021/acs.orglett.1c02309] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
An efficient aminocatalytic enantioselective double-activation strategy has been developed that combines several different aminocatalytic modes in a cascade process, such as iminium ion, vinylogous iminium ion, trienamine, and dienamine activations. By using this strategy, 2-hydroxycinnamaldehydes worked well with various dienals via [4 + 2] cycloaddition and the oxa-Michael reaction-initiated cascade, respectively, leading to chiral polycyclic tetrahydrocarbazole and chromane derivatives with excellent diastereo- and enantioselectivities.
Collapse
Affiliation(s)
- Yong-Chao Ming
- Molecular Synthesis Center & Key Laboratory of Marine Drugs, Ministry of Education, School of Medicine and Pharmacy, Ocean University of China, 5 Yushan Road, Qingdao 266003, China
| | - Xue-Jiao Lv
- Molecular Synthesis Center & Key Laboratory of Marine Drugs, Ministry of Education, School of Medicine and Pharmacy, Ocean University of China, 5 Yushan Road, Qingdao 266003, China
| | - Ming Liu
- Molecular Synthesis Center & Key Laboratory of Marine Drugs, Ministry of Education, School of Medicine and Pharmacy, Ocean University of China, 5 Yushan Road, Qingdao 266003, China.,Laboratory for Marine Drugs and Bioproducts of Qingdao National Laboratory for Marine Science and Technology, Qingdao 266003, China
| | - Yan-Kai Liu
- Molecular Synthesis Center & Key Laboratory of Marine Drugs, Ministry of Education, School of Medicine and Pharmacy, Ocean University of China, 5 Yushan Road, Qingdao 266003, China.,Laboratory for Marine Drugs and Bioproducts of Qingdao National Laboratory for Marine Science and Technology, Qingdao 266003, China
| |
Collapse
|
65
|
Mei L, Moutet J, Stull SM, Gianetti TL. Synthesis of CF 3-Containing Spirocyclic Indolines via a Red-Light-Mediated Trifluoromethylation/Dearomatization Cascade. J Org Chem 2021; 86:10640-10653. [PMID: 34255497 DOI: 10.1021/acs.joc.1c01313] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
A red-light-mediated nPr-DMQA+-catalyzed cascade intramolecular trifluoromethylation and dearomatization of indole derivatives with Umemoto's reagent has been developed. This protocol provides a facile and efficient approach for the construction of functionalized and potentially biologically important CF3-containing 3,3-spirocyclic indolines with moderate to high yields and excellent diastereoselectivities under mild conditions. The success of multiple gram-scale (1 and 10 g) experiments further highlights the robustness and practicality of this protocol and the merit of the employment of red light. Mechanistic studies support the formation of a crucial CF3 radical species and a dearomatized benzyl carbocation intermediate.
Collapse
Affiliation(s)
- Liangyong Mei
- Department of Chemistry and Biochemistry, University of Arizona, Tucson, Arizona 85721, United States
| | - Jules Moutet
- Department of Chemistry and Biochemistry, University of Arizona, Tucson, Arizona 85721, United States
| | - Savannah M Stull
- Department of Chemistry and Biochemistry, University of Arizona, Tucson, Arizona 85721, United States
| | - Thomas L Gianetti
- Department of Chemistry and Biochemistry, University of Arizona, Tucson, Arizona 85721, United States
| |
Collapse
|
66
|
Yang G, Pan J, Ke YM, Liu Y, Zhao Y. Tandem Catalytic Indolization/Enantioconvergent Substitution of Alcohols by Borrowing Hydrogen to Access Tricyclic Indoles. Angew Chem Int Ed Engl 2021; 60:20689-20694. [PMID: 34236747 DOI: 10.1002/anie.202106514] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2021] [Revised: 07/01/2021] [Indexed: 12/24/2022]
Abstract
An efficient tandem catalysis method is achieved for the direct conversion of alcohol-containing alkynyl anilines to valuable chiral 2,3-fused tricyclic indoles. This method relies on a tandem indolization followed by enantioconvergent substitution of alcohols via borrowing hydrogen to construct two rings in one step, enabled by relay and cooperative catalysis of a chiral iridium complex with a chiral phosphoric acid. Highly diastereoselective transformations of the tricyclic indole products also provide efficient access to a diverse array of complex polycyclic indoline compounds.
Collapse
Affiliation(s)
- Guoqiang Yang
- Department of Chemistry, National University of Singapore, 3 Science Drive 3, Singapore, 117543, Singapore
| | - Jiaoting Pan
- Department of Chemistry, National University of Singapore, 3 Science Drive 3, Singapore, 117543, Singapore.,Joint School of National University of Singapore and Tianjin University, International Campus of Tianjin University, Binhai New City, Fuzhou, 350207, China
| | - Ya-Ming Ke
- Department of Chemistry, National University of Singapore, 3 Science Drive 3, Singapore, 117543, Singapore
| | - Yongbing Liu
- Department of Chemistry, National University of Singapore, 3 Science Drive 3, Singapore, 117543, Singapore
| | - Yu Zhao
- Department of Chemistry, National University of Singapore, 3 Science Drive 3, Singapore, 117543, Singapore.,Joint School of National University of Singapore and Tianjin University, International Campus of Tianjin University, Binhai New City, Fuzhou, 350207, China
| |
Collapse
|
67
|
An D, Sang J, Hu R, Chen J, Feng L, Rao W. Synthesis of 2‐Phosphoryl‐3‐Monofluorovinylindoles under Catalyst‐ and Additive‐Free Conditions. Adv Synth Catal 2021. [DOI: 10.1002/adsc.202100331] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Affiliation(s)
- Di An
- Jiangsu Co-Innovation Center for Efficient Processing and Utilization of Forest Resources Jiangsu Key Lab of Biomass-Based Green Fuels and Chemicals College of Chemical Engineering Nanjing Forestry University Nanjing 210037 People's Republic of China
| | - Jingjing Sang
- Jiangsu Co-Innovation Center for Efficient Processing and Utilization of Forest Resources Jiangsu Key Lab of Biomass-Based Green Fuels and Chemicals College of Chemical Engineering Nanjing Forestry University Nanjing 210037 People's Republic of China
| | - Rui Hu
- Jiangsu Co-Innovation Center for Efficient Processing and Utilization of Forest Resources Jiangsu Key Lab of Biomass-Based Green Fuels and Chemicals College of Chemical Engineering Nanjing Forestry University Nanjing 210037 People's Republic of China
| | - Jichao Chen
- Jiangsu Co-Innovation Center for Efficient Processing and Utilization of Forest Resources Jiangsu Key Lab of Biomass-Based Green Fuels and Chemicals College of Chemical Engineering Nanjing Forestry University Nanjing 210037 People's Republic of China
| | - Li Feng
- Jiangsu Co-Innovation Center for Efficient Processing and Utilization of Forest Resources Jiangsu Key Lab of Biomass-Based Green Fuels and Chemicals College of Chemical Engineering Nanjing Forestry University Nanjing 210037 People's Republic of China
| | - Weidong Rao
- Jiangsu Co-Innovation Center for Efficient Processing and Utilization of Forest Resources Jiangsu Key Lab of Biomass-Based Green Fuels and Chemicals College of Chemical Engineering Nanjing Forestry University Nanjing 210037 People's Republic of China
| |
Collapse
|
68
|
Abualnaja MM, Cowell J, Jolliffe JD, Wills C, Waddell PG, Clegg W, Hall MJ. Diastereoselective rearomative etherifications and aminations of 2,3,9,9a-tetrahydro-1H-carbazoles. Tetrahedron 2021. [DOI: 10.1016/j.tet.2021.132144] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
|
69
|
Zhou S, Huang G, Chen G. Synthesis and anti-tumor activity of marine alkaloids. Bioorg Med Chem Lett 2021; 41:128009. [DOI: 10.1016/j.bmcl.2021.128009] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2020] [Revised: 03/20/2021] [Accepted: 03/28/2021] [Indexed: 12/16/2022]
|
70
|
Li Y, Wang XY, Ren X, Dou B, Zhu X, Hao XQ, Song MP. Iron-Mediated Selective Sulfonylmethylation of Aniline Derivatives with p-Toluenesulfonylmethyl Isocyanide (TosMIC). J Org Chem 2021; 86:7179-7188. [PMID: 33960194 DOI: 10.1021/acs.joc.1c00500] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
An iron-mediated highly selective C-H sulfonylmethylation of aniline derivatives with p-toluenesulfonylmethyl isocyanide in a mixture solvent of H2O and PEG400 under an Ar atmosphere has been realized. This transformation proceeds with operational convenience, use of earth-abundant metal catalyst and nontoxic media, broad substrate scope, and good functional group tolerance. The current methodology could be applied to the regioselective C-H sulfonylmethylation of indolines, tetrahydroquinolines, and tertiary anilines.
Collapse
Affiliation(s)
- Yigao Li
- College of Chemistry, Zhengzhou University, No. 100 of Science Road, Zhengzhou, Henan 450001, P. R. China
| | - Xu-Yan Wang
- College of Chemistry, Zhengzhou University, No. 100 of Science Road, Zhengzhou, Henan 450001, P. R. China
| | - Xiaohuang Ren
- College of Chemistry, Zhengzhou University, No. 100 of Science Road, Zhengzhou, Henan 450001, P. R. China
| | - Baoheng Dou
- College of Chemistry, Zhengzhou University, No. 100 of Science Road, Zhengzhou, Henan 450001, P. R. China
| | - Xinju Zhu
- College of Chemistry, Zhengzhou University, No. 100 of Science Road, Zhengzhou, Henan 450001, P. R. China
| | - Xin-Qi Hao
- College of Chemistry, Zhengzhou University, No. 100 of Science Road, Zhengzhou, Henan 450001, P. R. China
| | - Mao-Ping Song
- College of Chemistry, Zhengzhou University, No. 100 of Science Road, Zhengzhou, Henan 450001, P. R. China
| |
Collapse
|
71
|
Li X, Zhang B, Zhang J, Wang X, Zhang D, Du Y, Zhao K. Synthesis of
3‐Methylthioindoles
via
Intramolecular Cyclization of
2‐Alkynylanilines
Mediated by
DMSO
/
DMSO
‐
d
6
and
SOCl
2
. CHINESE J CHEM 2021. [DOI: 10.1002/cjoc.202000701] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Affiliation(s)
- Xuemin Li
- Tianjin Key Laboratory for Modern Drug Delivery & High‐Efficiency, School of Pharmaceutical Science and Technology, Tianjin University Tianjin 300072, China State Key Laboratory of Microbial Technology, Institute of Microbial Technology, Shandong University Qingdao Shandong 266237 China
| | - Beibei Zhang
- Tianjin Key Laboratory for Modern Drug Delivery & High‐Efficiency, School of Pharmaceutical Science and Technology, Tianjin University Tianjin 300072, China State Key Laboratory of Microbial Technology, Institute of Microbial Technology, Shandong University Qingdao Shandong 266237 China
| | - Jingran Zhang
- Tianjin Key Laboratory for Modern Drug Delivery & High‐Efficiency, School of Pharmaceutical Science and Technology, Tianjin University Tianjin 300072, China State Key Laboratory of Microbial Technology, Institute of Microbial Technology, Shandong University Qingdao Shandong 266237 China
| | - Xi Wang
- Tianjin Key Laboratory for Modern Drug Delivery & High‐Efficiency, School of Pharmaceutical Science and Technology, Tianjin University Tianjin 300072, China State Key Laboratory of Microbial Technology, Institute of Microbial Technology, Shandong University Qingdao Shandong 266237 China
| | - Dongke Zhang
- Tianjin Key Laboratory for Modern Drug Delivery & High‐Efficiency, School of Pharmaceutical Science and Technology, Tianjin University Tianjin 300072, China State Key Laboratory of Microbial Technology, Institute of Microbial Technology, Shandong University Qingdao Shandong 266237 China
| | - Yunfei Du
- Tianjin Key Laboratory for Modern Drug Delivery & High‐Efficiency, School of Pharmaceutical Science and Technology, Tianjin University Tianjin 300072, China State Key Laboratory of Microbial Technology, Institute of Microbial Technology, Shandong University Qingdao Shandong 266237 China
| | - Kang Zhao
- Tianjin Key Laboratory for Modern Drug Delivery & High‐Efficiency, School of Pharmaceutical Science and Technology, Tianjin University Tianjin 300072, China State Key Laboratory of Microbial Technology, Institute of Microbial Technology, Shandong University Qingdao Shandong 266237 China
| |
Collapse
|
72
|
He H, Cao Y, Xu J, Antilla JC. Catalytic Asymmetric C-7 Friedel-Crafts Alkylation/ N-Hemiacetalization of 4-Aminoindoles. Org Lett 2021; 23:3010-3014. [PMID: 33792336 DOI: 10.1021/acs.orglett.1c00699] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
A unique catalytic asymmetric C-7 Friedel-Crafts alkylation/N-hemiacetalization cascade reaction of 4-aminoindoles with β,γ-unsaturated α-keto esters has been described. Using a chiral magnesium H8-BINOL-derived bis(phosphate) complex as catalyst, the resulting functionalized 1,7-annulated indole scaffolds are obtained in high yields (up to 98%) and with good to excellent enantioselectivities (up to 99%) and diastereoselectivities (up to >20:1) under mild reaction conditions.
Collapse
Affiliation(s)
- Hualing He
- Institute for Molecular Design and Synthesis, School of Pharmaceutical Science and Technology, Tianjin University, Tianjin 300072, P.R. China
| | - Yang Cao
- Jiangsu Key Laboratory of Marine Pharmaceutical Compound Screening, Jiangsu Ocean University, Lianyungang 222005, P.R. China
| | - Jun Xu
- Institute for Molecular Design and Synthesis, School of Pharmaceutical Science and Technology, Tianjin University, Tianjin 300072, P.R. China
| | - Jon C Antilla
- Institute for Molecular Design and Synthesis, School of Pharmaceutical Science and Technology, Tianjin University, Tianjin 300072, P.R. China
| |
Collapse
|
73
|
Ortega A, Uria U, Tejero T, Prieto L, Reyes E, Merino P, Vicario JL. Brønsted Acid Catalyzed (4 + 2) Cyclocondensation of 3-Substituted Indoles with Donor–Acceptor Cyclopropanes. Org Lett 2021; 23:2326-2331. [PMID: 33689377 PMCID: PMC9490874 DOI: 10.1021/acs.orglett.1c00470] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
![]()
Acylcyclopropanes
are employed as useful donor–acceptor
cyclopropanes that undergo formal (4 + 2) cyclocondensation with N-unprotected 3-substituted indoles in the presence of a
Brønsted acid catalyst. The reaction involves the simultaneous
alkylation of both the N and C-2 positions of the indole and provides
access to the 8,9-dihydropyrido[1,2-a]indole scaffold that is the central core of several biologically
relevant indole alkaloids in excellent yields and good selectivities.
Collapse
Affiliation(s)
- Alesandere Ortega
- Department of Organic and Inorganic Chemistry, University of the Basque Country (UPV/EHU). P.O.
Box 644, 48080 Bilbao, Spain
| | - Uxue Uria
- Department of Organic and Inorganic Chemistry, University of the Basque Country (UPV/EHU). P.O.
Box 644, 48080 Bilbao, Spain
| | - Tomás Tejero
- Instituto de Síntesis Química y Catálisis Homogénea (ISQCH), Universidad de Zaragoza, CSIC, 50009 Zaragoza, Spain
| | - Liher Prieto
- Department of Organic and Inorganic Chemistry, University of the Basque Country (UPV/EHU). P.O.
Box 644, 48080 Bilbao, Spain
| | - Efraim Reyes
- Department of Organic and Inorganic Chemistry, University of the Basque Country (UPV/EHU). P.O.
Box 644, 48080 Bilbao, Spain
| | - Pedro Merino
- Instituto de Biocomputación y Física de Sistemas Complejos (BIFI), Universidad de Zaragoza, 50009 Zaragoza, Spain
| | - Jose L. Vicario
- Department of Organic and Inorganic Chemistry, University of the Basque Country (UPV/EHU). P.O.
Box 644, 48080 Bilbao, Spain
| |
Collapse
|
74
|
Ding Y, Yan H, Chen R, Xiao X, Wang Z, Wang L, Ma Y. Expeditious Approach to Indoloquinazolinones via Double Annulations of o-Aminoacetophenones and Isocyanates. J Org Chem 2021; 86:1448-1455. [PMID: 33373228 DOI: 10.1021/acs.joc.0c02155] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
A novel procedure for a one-pot cascade reaction of o-aminoacetophenones and aryl/aliphatic isocyanates catalyzed/oxidized by the [Pd]/[Ag] system was developed. The reaction involves two C-N bond and one C-C bond formations during the double annulation process and the desired indoloquinazolinones and derivatives were afforded up to 81% yields from readily available substrates with a tolerance of a broad variety.
Collapse
Affiliation(s)
- Yuxin Ding
- Institute of Advanced Studies and School of Pharmaceutical and Chemical Engineering, Taizhou University, Taizhou 318000, P R China.,School of Pharmaceutical Science, Zhejiang Chinese Medical University, Hangzhou 310053, P R China
| | - Huihui Yan
- School of Pharmaceutical Science, Zhejiang Chinese Medical University, Hangzhou 310053, P R China
| | - Rener Chen
- Institute of Advanced Studies and School of Pharmaceutical and Chemical Engineering, Taizhou University, Taizhou 318000, P R China
| | - Xuqiong Xiao
- Key Laboratory of Organosilicon Chemistry and Material Technology of Ministry of Education, Hangzhou Normal University, No. 2318 Yuhangtang Road Hangzhou 311121, P R China
| | - Zhiming Wang
- Institute of Advanced Studies and School of Pharmaceutical and Chemical Engineering, Taizhou University, Taizhou 318000, P R China
| | - Lei Wang
- Institute of Advanced Studies and School of Pharmaceutical and Chemical Engineering, Taizhou University, Taizhou 318000, P R China
| | - Yongmin Ma
- Institute of Advanced Studies and School of Pharmaceutical and Chemical Engineering, Taizhou University, Taizhou 318000, P R China.,School of Pharmaceutical Science, Zhejiang Chinese Medical University, Hangzhou 310053, P R China
| |
Collapse
|
75
|
Yao L, Ying J, Wu XF. Nickel-catalyzed cascade carbonylative synthesis of N-benzoyl indoles from 2-nitroalkynes and aryl iodides. Org Chem Front 2021. [DOI: 10.1039/d1qo01284c] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A nickel-catalyzed carbonylative cyclization of 2-nitroalkynes and aryl iodides has been developed for the expedite construction of N-benzoyl indole scaffolds.
Collapse
Affiliation(s)
- Lingyun Yao
- Department of Chemistry, Key Laboratory of Surface & Interface Science of Polymer Materials of Zhejiang Province, Zhejiang Sci-Tech University, Hangzhou 310018, China
| | - Jun Ying
- Department of Chemistry, Key Laboratory of Surface & Interface Science of Polymer Materials of Zhejiang Province, Zhejiang Sci-Tech University, Hangzhou 310018, China
| | - Xiao-Feng Wu
- Dalian National Laboratory for Clean Energy, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 116023 Dalian, Liaoning, China
- Leibniz-Institut für Katalyse e. V., Albert-Einstein-Straβe 29a, 18059 Rostock, Germany
| |
Collapse
|
76
|
Shoberu A, Li CK, Qian HF, Zou JP. Copper-catalyzed, N-auxiliary group-controlled switchable transannulation/nitration initiated by nitro radicals: selective synthesis of pyridoquinazolones and 3-nitroindoles. Org Chem Front 2021. [DOI: 10.1039/d1qo01141c] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
Within the scope of nitration reactions, the efficiency of sensitive heteroaromatics such as indoles is often eroded by various competitive oxidative decomposition pathways.
Collapse
Affiliation(s)
- Adedamola Shoberu
- Key Laboratory of Organic Synthesis of Jiangsu Province, College of Chemistry and Chemical Engineering, Soochow University, 199 Renai Street, Suzhou, Jiangsu 215123, China
| | - Cheng-Kun Li
- Key Laboratory of Organic Synthesis of Jiangsu Province, College of Chemistry and Chemical Engineering, Soochow University, 199 Renai Street, Suzhou, Jiangsu 215123, China
| | - Hai-Feng Qian
- Key Laboratory of Organic Synthesis of Jiangsu Province, College of Chemistry and Chemical Engineering, Soochow University, 199 Renai Street, Suzhou, Jiangsu 215123, China
| | - Jian-Ping Zou
- Key Laboratory of Organic Synthesis of Jiangsu Province, College of Chemistry and Chemical Engineering, Soochow University, 199 Renai Street, Suzhou, Jiangsu 215123, China
| |
Collapse
|
77
|
Wang J, Wang G, Cheng X, Liu Y, Zhang J. Sequential Sonogashira/intramolecular aminopalladation/cross-coupling of ortho-ethynyl-anilines catalyzed by a single palladium source: rapid access to 2,3-diarylindoles. Org Biomol Chem 2021; 19:1329-1333. [PMID: 33464262 DOI: 10.1039/d0ob02295k] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
We have developed a practical and efficient one-pot protocol for the synthesis of 2,3-diarylindoles via Pd-catalyzed bis-arylative cyclization of various o-ethynylanilines with aryl iodides. Mechanism studies showed that a Pd-catalyzed Sonogashira reaction took place firstly, giving an internal alkyne intermediate, which subsequently underwent intramolecular aminopalladation/cross-coupling to give access to 2,3-diarylindoles. The present methodology exhibits a broad substrate scope, producing various 2,3-diaryl indoles bearing two different aryl groups.
Collapse
Affiliation(s)
- Jiwei Wang
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes, School of Chemistry & Molecular Engineering, East China Normal University, 3663 North Zhongshan Road, Shanghai 200062, China. and Key Laboratory for Advanced Materials and Joint International Research Laboratory of Precision Chemistry and Molecular Engineering, Feringa Nobel Prize Scientist Joint Research Center, School of Chemistry and Molecular Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, China.
| | - Gendi Wang
- Key Laboratory for Advanced Materials and Joint International Research Laboratory of Precision Chemistry and Molecular Engineering, Feringa Nobel Prize Scientist Joint Research Center, School of Chemistry and Molecular Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, China.
| | - Xiang Cheng
- Key Laboratory for Advanced Materials and Joint International Research Laboratory of Precision Chemistry and Molecular Engineering, Feringa Nobel Prize Scientist Joint Research Center, School of Chemistry and Molecular Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, China.
| | - Ye Liu
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes, School of Chemistry & Molecular Engineering, East China Normal University, 3663 North Zhongshan Road, Shanghai 200062, China.
| | - Jun Zhang
- Key Laboratory for Advanced Materials and Joint International Research Laboratory of Precision Chemistry and Molecular Engineering, Feringa Nobel Prize Scientist Joint Research Center, School of Chemistry and Molecular Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, China.
| |
Collapse
|
78
|
Meng JP, Li SQ, Tang Y, Xu ZG, Chen ZZ, Gao LX. Facile synthesis and biological evaluation of tryptamine-piperazine-2,5-dione conjugates as anticancer agents. RSC Adv 2021; 11:27767-27771. [PMID: 35480764 PMCID: PMC9037805 DOI: 10.1039/d1ra03740d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2021] [Accepted: 07/19/2021] [Indexed: 11/25/2022] Open
Abstract
A facile and efficient route to synthesize N-heterocyclic fused tryptamine-piperazine-2,5-dione conjugates was developed via a post-Ugi cascade reaction. The targeted compounds were prepared by means of a mild reaction and simple operation procedure, which could be applied to a broad scope of starting materials. Compound 6h was demonstrated to induce significant growth inhibition of AsPC-1 and SW1990 human pancreatic cancer cell lines (IC50 = 6 ± 0.85 μM). Our protocol allows for the construction of a structurally diverse compound library and paves a new avenue for the discovery of pancreatic cancer drug candidates. A series of tryptamine-piperazine-2,5-dione conjugates derivatives was designed and synthesized via Ugi cascade reaction. The discovery of compound 6h may provide a new avenue for pancreatic cancer drug discovery.![]()
Collapse
Affiliation(s)
- Jiang-Ping Meng
- National & Local Joint Engineering Research Center of Targeted and Innovative Therapeutics, IATTI, College of Pharmacy, Chongqing University of Arts and Sciences, Chongqing 402160, China
| | - Shi-Qiang Li
- National & Local Joint Engineering Research Center of Targeted and Innovative Therapeutics, IATTI, College of Pharmacy, Chongqing University of Arts and Sciences, Chongqing 402160, China
| | - Yan Tang
- National & Local Joint Engineering Research Center of Targeted and Innovative Therapeutics, IATTI, College of Pharmacy, Chongqing University of Arts and Sciences, Chongqing 402160, China
| | - Zhi-Gang Xu
- National & Local Joint Engineering Research Center of Targeted and Innovative Therapeutics, IATTI, College of Pharmacy, Chongqing University of Arts and Sciences, Chongqing 402160, China
| | - Zhong-Zhu Chen
- National & Local Joint Engineering Research Center of Targeted and Innovative Therapeutics, IATTI, College of Pharmacy, Chongqing University of Arts and Sciences, Chongqing 402160, China
| | - Li-Xia Gao
- National & Local Joint Engineering Research Center of Targeted and Innovative Therapeutics, IATTI, College of Pharmacy, Chongqing University of Arts and Sciences, Chongqing 402160, China
| |
Collapse
|
79
|
Chaudhari TY, Tandon V. Recent approaches to the synthesis of tetrahydrocarbazoles. Org Biomol Chem 2021; 19:1926-1939. [DOI: 10.1039/d0ob02274h] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
The tetrahydrocarbazole (THC) motif is ubiquitous in natural products and biologically active compounds.
Collapse
Affiliation(s)
| | - Vibha Tandon
- Special Centre for Molecular Medicine
- Jawaharlal Nehru University
- New Delhi 110067
- India
| |
Collapse
|
80
|
Zhou S, Liu Q, Bao M, Huang J, Wang J, Hu W, Xu X. Gold(i)-catalyzed redox transformation of o-nitroalkynes with indoles for the synthesis of 2,3′-biindole derivatives. Org Chem Front 2021. [DOI: 10.1039/d1qo00134e] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
A gold(i)-catalyzed cascade reaction of o-nitroalkynes with indoles has been reported for the rapid assembly of 2-indolyl indolone N-oxides, which exhibit high anticancer potency against SCLC cells.
Collapse
Affiliation(s)
- Su Zhou
- Guangdong Key Laboratory of Chiral Molecule and Drug Discovery
- School of Pharmaceutical Sciences
- Sun Yat-sen University
- Guangzhou 510006
- China
| | - Qianqian Liu
- Guangdong Key Laboratory of Chiral Molecule and Drug Discovery
- School of Pharmaceutical Sciences
- Sun Yat-sen University
- Guangzhou 510006
- China
| | - Ming Bao
- Guangdong Key Laboratory of Chiral Molecule and Drug Discovery
- School of Pharmaceutical Sciences
- Sun Yat-sen University
- Guangzhou 510006
- China
| | - Jie Huang
- Guangdong Lung Cancer Institute
- Guangdong Provincial Key Laboratory of Translational Medicine in Lung Cancer
- Guangdong Provincial People's Hospital and Guangdong Academy of Medical Sciences
- Guangzhou 510080
- China
| | - Junjian Wang
- Guangdong Key Laboratory of Chiral Molecule and Drug Discovery
- School of Pharmaceutical Sciences
- Sun Yat-sen University
- Guangzhou 510006
- China
| | - Wenhao Hu
- Guangdong Key Laboratory of Chiral Molecule and Drug Discovery
- School of Pharmaceutical Sciences
- Sun Yat-sen University
- Guangzhou 510006
- China
| | - Xinfang Xu
- Guangdong Key Laboratory of Chiral Molecule and Drug Discovery
- School of Pharmaceutical Sciences
- Sun Yat-sen University
- Guangzhou 510006
- China
| |
Collapse
|
81
|
Shinde MH, Ramana CV. An Apparent Umpolung Reactivity of Indole through [Au]-Catalysed Cyclisation and Lewis-Acid-Mediated Allylation. Chemistry 2020; 26:17171-17175. [PMID: 32970893 DOI: 10.1002/chem.202003441] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2020] [Revised: 09/07/2020] [Indexed: 11/10/2022]
Abstract
The sequential functionalization of indole C2 and C3 in an umpolung fashion was executed with a predesigned substrate and choice of reagents. The developed method comprises gold-catalysed alkynol cycloisomerisation/intramolecular addition of C2 of indole and subsequent BF3 ⋅OEt2 -mediated regioselective C3 allylation, resulting in the synthesis of the functionalized indoloisoquinolinone scaffold. The reaction involves 5-endo-alkynol cycloisomerisation and the dearomative addition of indole C2 to the intermediate oxocarbenium cation, which results in two equilibrating fused and spiropentacyclic intermediates, which upon treatment with allyl silane in the presence of BF3 ⋅OEt2 , undergo selective indole C3 allylation. Other nucleophiles, such as hydride, azide and indole, were also found to be compatible with this process.
Collapse
Affiliation(s)
- Mahesh H Shinde
- Division of Organic Chemistry, CSIR-National Chemical Laboratory, Dr. Homi Bhabha Road, Pune, 411008, India.,Academy of Scientific and Innovative Research (AcSIR), Anusandhan Bhawan, 2 Rafi Marg, New Delhi, 110002, India
| | - Chepuri V Ramana
- Division of Organic Chemistry, CSIR-National Chemical Laboratory, Dr. Homi Bhabha Road, Pune, 411008, India.,Academy of Scientific and Innovative Research (AcSIR), Anusandhan Bhawan, 2 Rafi Marg, New Delhi, 110002, India
| |
Collapse
|
82
|
Uyanik M, Tanaka H, Ishihara K. I
+
/TBHP Catalysis For Tandem Oxidative Cyclization To Indolo[2,3‐
b
]quinolines. ASIAN J ORG CHEM 2020. [DOI: 10.1002/ajoc.202000570] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Muhammet Uyanik
- Graduate School of Engineering Nagoya University Chikusa Nagoya 464-8603 Japan
| | - Hiroki Tanaka
- Graduate School of Engineering Nagoya University Chikusa Nagoya 464-8603 Japan
| | - Kazuaki Ishihara
- Graduate School of Engineering Nagoya University Chikusa Nagoya 464-8603 Japan
| |
Collapse
|
83
|
Huang D, Wang S, Song D, Cao X, Huang W, Ke S. Discovery of γ-Lactam Alkaloid Derivatives as Potential Fungicidal Agents Targeting Steroid Biosynthesis. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2020; 68:14438-14451. [PMID: 33225708 DOI: 10.1021/acs.jafc.0c05823] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Biological control of plant pathogens is considered as one of the green and effective technologies using beneficial microorganisms or microbial secondary metabolites against plant diseases, and so microbial natural products have played important roles in the research and development of new and green agrochemicals. To explore the potential applications for natural γ-lactam alkaloids and their derivatives, 26 γ-lactams that have flexible substituent patterns were synthesized and characterized, and their in vitro antifungal activities against eight kinds of plant pathogens belonging to oomycetes, basidiomycetes, and deuteromycetes were fully evaluated. In addition, the high potential compounds were further tested using an in vivo assay against Phytophthora blight of pepper to verify a practical application for controlling oomycete diseases. The potential modes of action for compound D1 against Phytophthora capsici were also investigated using microscopic technology (optical microscopy, scanning electron microscopy, and transmission electron microscopy) and label-free quantitative proteomics analysis. The results demonstrated that compound D1 may be a potential novel fungicidal agent against oomycete diseases (EC50 = 4.9748 μg·mL-1 for P. capsici and EC50 = 5.1602 μg·mL-1 for Pythium aphanidermatum) that can act on steroid biosynthesis, which can provide a certain theoretical basis for the development of natural lactam derivatives as potential antifungal agents.
Collapse
Affiliation(s)
- Daye Huang
- National Biopesticide Engineering Research Centre, Hubei Biopesticide Engineering Research Centre, Hubei Academy of Agricultural Science, Wuhan 430064, China
| | - Shuangshuang Wang
- Department of Chemistry, College of Science, Huazhong Agricultural University, Wuhan 430070, China
| | - Di Song
- Department of Chemistry, College of Science, Huazhong Agricultural University, Wuhan 430070, China
| | - Xiufang Cao
- Department of Chemistry, College of Science, Huazhong Agricultural University, Wuhan 430070, China
| | - Wenbo Huang
- National Biopesticide Engineering Research Centre, Hubei Biopesticide Engineering Research Centre, Hubei Academy of Agricultural Science, Wuhan 430064, China
| | - Shaoyong Ke
- National Biopesticide Engineering Research Centre, Hubei Biopesticide Engineering Research Centre, Hubei Academy of Agricultural Science, Wuhan 430064, China
| |
Collapse
|
84
|
Guo YW, Liu XJ, Yuan J, Li HJ, Mahmud T, Hong MJ, Yu JC, Lan WJ. l-Tryptophan Induces a Marine-Derived Fusarium sp. to Produce Indole Alkaloids with Activity against the Zika Virus. JOURNAL OF NATURAL PRODUCTS 2020; 83:3372-3380. [PMID: 33180497 DOI: 10.1021/acs.jnatprod.0c00717] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
The effects of l-tryptophan supplementation on secondary metabolite production in the marine-derived fungus Fusarium sp. L1 were investigated by culturing the fungus in GPY medium with and without the amino acid. HPLC analysis of the products showed distinct metabolite profiles between the two cultures. The 1H NMR spectrum of the EtOAc extract of the culture supplemented with l-tryptophan displayed a series of characteristic aromatic proton signals (δH 6.50-8.50) and NH signals (δH 10.50-11.50) that were not observed in those from cultures not supplemented with l-tryptophan. Subsequently, 23 distinct indole alkaloids, including six new compounds, fusaindoterpenes A and B (1 and 2), fusariumindoles A-C (3-5), and (±)-isoalternatine A (6), together with 17 known compounds, were obtained from this culture. Fusaindoterpene A (1) contains a 6/9/6/6/5 heterocyclic system. Their chemical structures were determined by analysis of HRMS, NMR spectroscopy, optical rotation calculation, ECD calculation, and single-crystal X-ray diffraction data. Compounds 2, 9, and 15 displayed inhibitory activity against the Zika virus (ZIKV) in a standard plaque assay with EC50 values of 7.5, 4.2, and 5.0 μM, respectively, while not showing significant cell cytotoxicity against the A549 adenocarcinomic human alveolar basal epithelial cell line.
Collapse
Affiliation(s)
- Yong-Wei Guo
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, People's Republic of China
- School of Marine Sciences, Sun Yat-sen University, Guangzhou 510275, People's Republic of China
| | - Xiao-Jing Liu
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, People's Republic of China
| | - Jie Yuan
- Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou 510080, People's Republic of China
| | - Hou-Jin Li
- School of Chemistry, Sun Yat-sen University, Guangzhou 510275, People's Republic of China
| | - Taifo Mahmud
- Department of Pharmaceutical Sciences, Oregon State University, Corvallis, Oregon 97331, United States
| | - Ming-Jun Hong
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, People's Republic of China
| | - Jian-Chen Yu
- Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou 510080, People's Republic of China
| | - Wen-Jian Lan
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, People's Republic of China
| |
Collapse
|
85
|
Uyanik M, Tanaka H, Ishihara K. Hypoiodite-Catalyzed Chemoselective Tandem Oxidation of Homotryptamines to Peroxy- and Epoxytetrahydropyridoindolenines. Org Lett 2020; 22:8049-8054. [PMID: 32996315 DOI: 10.1021/acs.orglett.0c03001] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
We developed the hypoiodite-catalyzed tandem dearomative peroxycyclization of homotryptamine derivatives to peroxytetrahydropyridoindolenines under mild conditions. During the course of a mechanistic study, we found that a tandem oxidative cyclization/epoxidation as an unexpected reaction proceeded in the presence of TEMPO as an additive. Intramolecular oxidative aminocyclization of homotryptamines at the C-2 position would give tetrahydropyridoindole, a common intermediate for both reactions. Control experiments suggested that while oxidative coupling with TBHP at the C-3 position might afford peroxyindolenines, a preferential electrophilic addition of TEMPO+, which might be generated in situ by the hypoiodite-catalyzed oxidation of TEMPO, at C-3 position followed by elimination and epoxidation might give epoxyindolenines. This serendipitous finding prompted us to develop a chemoselective divergent synthesis of peroxy- and epoxyindolenines by simple modification of the reaction conditions.
Collapse
Affiliation(s)
- Muhammet Uyanik
- Graduate School of Engineering, Nagoya University, Furo-cho, Chikusa, Nagoya 464-8603, Japan
| | - Hiroki Tanaka
- Graduate School of Engineering, Nagoya University, Furo-cho, Chikusa, Nagoya 464-8603, Japan
| | - Kazuaki Ishihara
- Graduate School of Engineering, Nagoya University, Furo-cho, Chikusa, Nagoya 464-8603, Japan
| |
Collapse
|
86
|
Liu H, Gao H, Wang S, Yao S, Wu F, Zhao Y, Chan KS, Shen Z. Regulation of an Ambient-Light-Induced Photocyclization Pathway (Norrish-Yang Versus 6π) by Substituent Choice. Chemistry 2020; 26:12418-12430. [PMID: 32372418 DOI: 10.1002/chem.202000990] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2020] [Revised: 04/28/2020] [Indexed: 12/12/2022]
Abstract
Photocyclization, irrespective of whether multiple steps (e.g., Norrish-Yang cyclization) or a single concerted step (e.g., 6π photocyclization) are involved, is an intramolecular photochemical process resulting in the formation of one new single bond to afford a ring system. In particular, visible-light-induced photocyclization offers a green and sustainable route to organic cyclic compounds that are difficult to access by thermal reactions. Herein, we describe the ambient light-induced intramolecular photocyclization of a series of donor/acceptor chromophores 1 d-3 d containing two types of photoresponsive motifs, namely an electron-deficient BF2 -chelated ketone fused with an electron-rich thiophene, and probe the solution-phase and solid-state photochromic performance of these compounds. The results reveal that simple variation of R substituents on the diaryl moiety allows one to control the intramolecular photocyclization mechanism with high photochemical selectivity, e.g., under ambient light, methyl-substituted 1 d and 2 d undergo reversible 6π photocyclization, whereas ethyl-substituted 3 d exclusively undergoes irreversible Norrish-Yang photocyclization. Single-crystal X-ray analysis of Norrish-Yang cyclization products reveals the formation of four pairs of conformational enantiomers differing in the dihedral angle between benzothiophene and the BF2 core, namely (±)N-3 d@68°, (±)N-3 d@-77°, (±)N-3 d@-78°, and (±)N-3 d@-102°. The UV/Vis absorption spectra of 1 d-3 d cover a broad visible-light region (380-572 nm), while DFT and TD-DFT calculations reveal that absorption in this region is dominated by the charge-transfer (CT) transition from the thiophene-centered HOMO to the LUMO of the electron-deficient π-conjugated BF2 -chelated unit and the n→π* and π→π* transitions within the latter unit. The spatial separation of the HOMO and LUMO of these dyes promotes triplet-state generation and self-photosensitizes intramolecular photocyclization in the visible-light region. Three-dimensional time-resolved and steady-state emission spectra of 3 d show that the Norrish-Yang photocyclization takes place within milliseconds with excellent conversion efficiency (96 %).
Collapse
Affiliation(s)
- Hui Liu
- State Key Laboratory of Coordination Chemistry, Collaborative Innovation Center of Advanced Microstructures, School of Chemistry and Chemical Engineering Nanjing University, Nanjing, 210046, P. R. China
| | - Hu Gao
- State Key Laboratory of Coordination Chemistry, Collaborative Innovation Center of Advanced Microstructures, School of Chemistry and Chemical Engineering Nanjing University, Nanjing, 210046, P. R. China
| | - Sisi Wang
- State Key Laboratory of Coordination Chemistry, Collaborative Innovation Center of Advanced Microstructures, School of Chemistry and Chemical Engineering Nanjing University, Nanjing, 210046, P. R. China
| | - Shengxin Yao
- State Key Laboratory of Coordination Chemistry, Collaborative Innovation Center of Advanced Microstructures, School of Chemistry and Chemical Engineering Nanjing University, Nanjing, 210046, P. R. China
| | - Fan Wu
- State Key Laboratory of Coordination Chemistry, Collaborative Innovation Center of Advanced Microstructures, School of Chemistry and Chemical Engineering Nanjing University, Nanjing, 210046, P. R. China
| | - Yue Zhao
- State Key Laboratory of Coordination Chemistry, Collaborative Innovation Center of Advanced Microstructures, School of Chemistry and Chemical Engineering Nanjing University, Nanjing, 210046, P. R. China
| | - Kin Shing Chan
- State Key Laboratory of Coordination Chemistry, Collaborative Innovation Center of Advanced Microstructures, School of Chemistry and Chemical Engineering Nanjing University, Nanjing, 210046, P. R. China
| | - Zhen Shen
- State Key Laboratory of Coordination Chemistry, Collaborative Innovation Center of Advanced Microstructures, School of Chemistry and Chemical Engineering Nanjing University, Nanjing, 210046, P. R. China
| |
Collapse
|
87
|
Mu Y, Yuan Y, Wang Y, Xu M, Feng Y, Zhao Y, Li Y. Synthesis of indoline-fused eight-membered azaheterocycles through Zn-catalyzed dearomatization of indoles and subsequent base-promoted C-C activation. Org Biomol Chem 2020; 18:6916-6926. [PMID: 32869825 DOI: 10.1039/d0ob01626h] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A cascade reaction involving the Zn-catalyzed dearomatization of indoles, base-promoted ring-expansion and intramolecular SNAr reaction has been developed. This process realized a novel, atom economical and efficient synthesis of indoline-fused eight-membered azaheterocycles in a one pot manner.
Collapse
Affiliation(s)
- Yuanyang Mu
- School of Chemistry and Molecular Engineering, East China Normal University, 500 Dongchuan Road, Shanghai 200241, China.
| | | | | | | | | | | | | |
Collapse
|
88
|
Zhou S, Huang G. Retracted Article: The synthesis and biological activity of marine alkaloid derivatives and analogues. RSC Adv 2020; 10:31909-31935. [PMID: 35518151 PMCID: PMC9056551 DOI: 10.1039/d0ra05856d] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2020] [Accepted: 07/29/2020] [Indexed: 12/11/2022] Open
Abstract
The ocean is the origin of life, with a unique ecological environment, which has given birth to a wealth of marine organisms. The ocean is an important source of biological resources and tens of thousands of monomeric compounds have been separated from marine organisms using modern separation technology. Most of these monomeric compounds have some kind of biological activity that has attracted extensive attention from researchers. Marine alkaloids are a kind of compound that can be separated from marine organisms. They have complex and special chemical structures, but at the same time, they can show diversity in biological activities. The biological activities of marine alkaloids mainly manifest in the form of anti-tumor, anti-fungus, anti-viral, anti-malaria, and anti-osteoporosis properties. Many marine alkaloids have good medicinal prospects and can possibly be used as anti-tumor, anti-viral, and anti-fungal clinical drugs or as lead compounds. The limited amounts of marine alkaloids that can be obtained by separation, coupled with the high cytotoxicity and low selectivity of these lead compounds, has restricted the clinical research and industrial development of marine alkaloids. Marine alkaloid derivatives and analogues have been obtained via rational drug design and chemical synthesis, to make up for the shortcomings of marine alkaloids; this has become an urgent subject for research and development. This work systematically reviews the recent developments relating to marine alkaloid derivatives and analogues in the field of medical chemistry over the last 10 years (2010-2019). We divide marine alkaloid derivatives and analogues into five types from the point-of-view of biological activity and elaborated on these activities. We also briefly discuss the optimization process, chemical synthesis, biological activity evaluation, and structure-activity relationship (SAR) of each of these compounds. The abundant SAR data provides reasonable approaches for the design and development of new biologically active marine alkaloid derivatives and analogues.
Collapse
Affiliation(s)
- Shiyang Zhou
- Chongqing Key Laboratory of Green Synthesis and Application, Active Carbohydrate Research Institute, College of Chemistry, Chongqing Normal University Chongqing 401331 China
- Key Laboratory of Tropical Medicinal Resource Chemistry of Ministry of Education, College of Chemistry and Chemical Engineering, Hainan Normal University Haikou Hainan 571158 China
| | - Gangliang Huang
- Chongqing Key Laboratory of Green Synthesis and Application, Active Carbohydrate Research Institute, College of Chemistry, Chongqing Normal University Chongqing 401331 China
| |
Collapse
|
89
|
Vaaland IC, Sydnes MO. Consecutive Palladium Catalyzed Reactions in One-Pot Reactions. MINI-REV ORG CHEM 2020. [DOI: 10.2174/1570193x16666190716150048] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Combining palladium catalyzed reactions in one-pot reactions represents an efficient and
economical use of catalyst. The Suzuki-Miyaura cross-coupling has been proven to be a reaction
which can be combined with other palladium catalyzed reactions in the same pot. This mini-review
will highlight some of the latest examples where Suzuki-Miyaura cross-coupling reactions have been
combined with other palladium catalyzed reactions in one-pot reaction. Predominantly, examples
with homogeneous reaction conditions will be discussed in addition to a few examples from the authors
where Pd/C have been used as a catalyst.
Collapse
Affiliation(s)
- Ingrid Caroline Vaaland
- Department of Chemistry, Bioscience and Environmental Engineering, Faculty of Science and Technology, University of Stavanger, NO-4036 Stavanger, Norway
| | - Magne Olav Sydnes
- Department of Chemistry, Bioscience and Environmental Engineering, Faculty of Science and Technology, University of Stavanger, NO-4036 Stavanger, Norway
| |
Collapse
|
90
|
Saini K, Singh J, Shah R, Kaur J, Singh D, Singh N, Jaggi AS, Chopra DS, Singh RS. Synthesis of 1-(4-hydroxy-3-methoxyphenyl)-2,3,4,9-tetrahydro-1H-β-carboline-3-carboxylic acid derivatives as mast cell stabilizers. Med Chem Res 2020. [DOI: 10.1007/s00044-020-02555-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
91
|
Pal K, Sontakke GS, Volla CMR. Rh(II)‐Catalyzed Denitrogenative Reaction of 1,2,3‐Triazolyl Esters with Indoles or Arenes: Efficient Synthesis of Homotryptamines or Allylamines. Adv Synth Catal 2020. [DOI: 10.1002/adsc.202000632] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Affiliation(s)
- Kuntal Pal
- Department of ChemistryIndian Institute of Technology Bombay, Powai Mumbai 400076, India
| | - Geetanjali S. Sontakke
- Department of ChemistryIndian Institute of Technology Bombay, Powai Mumbai 400076, India
| | - Chandra M. R. Volla
- Department of ChemistryIndian Institute of Technology Bombay, Powai Mumbai 400076, India
| |
Collapse
|
92
|
Chu MM, Chen XY, Wang YF, Qi SS, Jiang ZH, Xu DQ, Xu ZY. Regio- and Enantioselective Friedel–Crafts Benzhydrylation of Indoles in Carbocyclic Ring with ortho-Quinomethanes: Access to Chiral Diarylindolylmethanes. J Org Chem 2020; 85:9491-9502. [DOI: 10.1021/acs.joc.9b03479] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Affiliation(s)
- Ming-Ming Chu
- State Key Laboratory Breeding Base of Green Chemistry-Synthesis Technology, Key Laboratory of Green Pesticides and Cleaner Production Technology of Zhejiang Province, Department of Green Chemistry and Technology, Zhejiang University of Technology, Hangzhou 310014, P. R. China
| | - Xue-Yang Chen
- State Key Laboratory Breeding Base of Green Chemistry-Synthesis Technology, Key Laboratory of Green Pesticides and Cleaner Production Technology of Zhejiang Province, Department of Green Chemistry and Technology, Zhejiang University of Technology, Hangzhou 310014, P. R. China
| | - Yi-Feng Wang
- State Key Laboratory Breeding Base of Green Chemistry-Synthesis Technology, Key Laboratory of Green Pesticides and Cleaner Production Technology of Zhejiang Province, Department of Green Chemistry and Technology, Zhejiang University of Technology, Hangzhou 310014, P. R. China
| | - Suo-Suo Qi
- State Key Laboratory Breeding Base of Green Chemistry-Synthesis Technology, Key Laboratory of Green Pesticides and Cleaner Production Technology of Zhejiang Province, Department of Green Chemistry and Technology, Zhejiang University of Technology, Hangzhou 310014, P. R. China
| | - Zhen-Hui Jiang
- State Key Laboratory Breeding Base of Green Chemistry-Synthesis Technology, Key Laboratory of Green Pesticides and Cleaner Production Technology of Zhejiang Province, Department of Green Chemistry and Technology, Zhejiang University of Technology, Hangzhou 310014, P. R. China
| | - Dan-Qian Xu
- State Key Laboratory Breeding Base of Green Chemistry-Synthesis Technology, Key Laboratory of Green Pesticides and Cleaner Production Technology of Zhejiang Province, Department of Green Chemistry and Technology, Zhejiang University of Technology, Hangzhou 310014, P. R. China
| | - Zhen-Yuan Xu
- State Key Laboratory Breeding Base of Green Chemistry-Synthesis Technology, Key Laboratory of Green Pesticides and Cleaner Production Technology of Zhejiang Province, Department of Green Chemistry and Technology, Zhejiang University of Technology, Hangzhou 310014, P. R. China
| |
Collapse
|
93
|
Porcheddu A, Colacino E, De Luca L, Delogu F. Metal-Mediated and Metal-Catalyzed Reactions Under Mechanochemical Conditions. ACS Catal 2020. [DOI: 10.1021/acscatal.0c00142] [Citation(s) in RCA: 103] [Impact Index Per Article: 20.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Affiliation(s)
- Andrea Porcheddu
- Dipartimento di Scienze Chimiche e Geologiche, Università degli Studi di Cagliari, Cittadella Universitaria, SS 554 bivio per Sestu, 09042 Monserrato, Cagliari, Italy
- Consorzio C.I.N.M.P.I.S., 70125 Bari, Italy
| | | | - Lidia De Luca
- Dipartimento di Chimica e Farmacia, Università degli Studi di Sassari, via Vienna 2, 07100 Sassari, Italy
| | - Francesco Delogu
- Dipartimento di Ingegneria Meccanica, Chimica, e dei Materiali, Università degli Studi di Cagliari, via Marengo 2, 09123 Cagliari, Italy
| |
Collapse
|
94
|
Saha M, Das AR. Nanocrystalline ZnO: A Competent and Reusable Catalyst for the Preparation of Pharmacology Relevant Heterocycles in the Aqueous Medium. CURRENT GREEN CHEMISTRY 2020. [DOI: 10.2174/2213346107666200218122718] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
:Nanoparticle catalyzed synthesis is a green and convenient method to achieve most of the chemical transformations in water or other green solvents. Nanoparticle ensures an easy isolation process of catalyst as well as products from the reaction mixture avoiding the hectic work up procedure. Zinc oxide is a biocompatible, environmentally benign and economically viable nanocatalyst with effectivity comparable to the other metal nanocatalyst employed in several reaction strategies. This review mainly focuses on the recent applications of zinc oxide in the synthesis of biologically important heterocyclic molecules under sustainable reaction conditions.:Application of zinc oxide in organic synthesis: Considering the achievable advantages of this nanocatalyst, presently several research groups are paying attention in anchoring zincoxide or its modified structure in several types of organic conversions e.g. multicomponent reactions, ligand-free coupling reactions, cycloaddition reaction, etc. The advantages and limitations of this nanocatalyst are also demonstrated. The present study aims to highlight the recent multifaceted applications of ZnO towards the synthesis of diverse heterocyclic motifs. Being a promising biocompatible nanoparticle, this catalyst has an important contribution in the fields of synthetic chemistry and medicinal chemistry.
Collapse
Affiliation(s)
- Moumita Saha
- Department of Chemistry, University of Calcutta, Kolkata-700009, India
| | - Asish R. Das
- Department of Chemistry, University of Calcutta, Kolkata-700009, India
| |
Collapse
|
95
|
Gannarapu MR, Zhou J, Jiang B, Shibata N. Two Catalytic Annulation Modes via Cu-Allenylidenes with Sulfur Ylides that Are Dominated by the Presence or Absence of Trifluoromethyl Substituents. iScience 2020; 23:100994. [PMID: 32259670 PMCID: PMC7132161 DOI: 10.1016/j.isci.2020.100994] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2019] [Revised: 02/18/2020] [Accepted: 03/13/2020] [Indexed: 01/12/2023] Open
Abstract
We disclose the Cu-catalyzed enantioselective synthesis of 3-methyl-3-propargyl-indolines, which contain a quaternary stereogenic carbon center, via the decarboxylative [4 + 1] annulation of 4-methyl-4-propargyl-benzoxazinanones with variety of sulfur ylides. The reaction proceeds predominantly through a γ-attack at the Cu-allenylidene intermediates by sulfur ylides to provide the corresponding indolines in good yield and high enantioselectivity (up to 91% ee). In contrast, the reaction of 4-trifluoromethyl-4-propargyl-benzoxazinanones with sulfur ylides delivers 3-trifluoromethyl-2-functionalized indoles in good to high yield via an unexpected α-attack at the Cu-allenylidene intermediates. Control over the α/γ-attack at the Cu-allenylidene intermediates by the same interceptors was achieved for the first time by the use of trifluoromethyl substituents.
Collapse
Affiliation(s)
- Malla Reddy Gannarapu
- Departments of Nanopharmaceutical Science & Life Science and Applied Chemistry, Nagoya Institute of Technology, Gokiso, Showa-ku, Nagoya 466-8555, Japan
| | - Jun Zhou
- Departments of Nanopharmaceutical Science & Life Science and Applied Chemistry, Nagoya Institute of Technology, Gokiso, Showa-ku, Nagoya 466-8555, Japan
| | - Bingyao Jiang
- Departments of Nanopharmaceutical Science & Life Science and Applied Chemistry, Nagoya Institute of Technology, Gokiso, Showa-ku, Nagoya 466-8555, Japan
| | - Norio Shibata
- Departments of Nanopharmaceutical Science & Life Science and Applied Chemistry, Nagoya Institute of Technology, Gokiso, Showa-ku, Nagoya 466-8555, Japan; Institute of Advanced Fluorine-Containing Materials, Zhejiang Normal University, 688 Yingbin Avenue, 321004 Jinhua, China.
| |
Collapse
|
96
|
Shao L, Wu P, Xu L, Xue J, Li H, Wei X. Colletotryptins A–F, new dimeric tryptophol derivatives from the endophytic fungus Colletotrichum sp. SC1355. Fitoterapia 2020; 141:104465. [DOI: 10.1016/j.fitote.2019.104465] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2019] [Revised: 12/18/2019] [Accepted: 12/19/2019] [Indexed: 01/15/2023]
|
97
|
Miyazaki Y, Zhou B, Tsuji H, Kawatsura M. Nickel-Catalyzed Asymmetric Friedel-Crafts Propargylation of 3-Substituted Indoles with Propargylic Carbonates Bearing an Internal Alkyne Group. Org Lett 2020; 22:2049-2053. [PMID: 32073861 DOI: 10.1021/acs.orglett.0c00465] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
The nickel-catalyzed highly enantioselective Friedel-Crafts propargylation of 3-substituted indoles with propargylic carbonates bearing an internal alkyne group was developed. A wide array of the propargylic carbonates as well as 3-substituted indoles can be applicable to the asymmetric nickel catalysis, providing the corresponding chiral C-3 propargylated indolenine derivatives bearing two vicinal chiral centers in up to 89% yield with up to >99% ee and 94:6 dr (24 examples).
Collapse
Affiliation(s)
- Yusuke Miyazaki
- Department of Chemistry, College of Humanities & Sciences, Nihon University, Sakurajosui, Setagaya-ku, Tokyo 156-8550, Japan
| | - Biao Zhou
- Department of Chemistry, College of Humanities & Sciences, Nihon University, Sakurajosui, Setagaya-ku, Tokyo 156-8550, Japan
| | - Hiroaki Tsuji
- Department of Chemistry, College of Humanities & Sciences, Nihon University, Sakurajosui, Setagaya-ku, Tokyo 156-8550, Japan
| | - Motoi Kawatsura
- Department of Chemistry, College of Humanities & Sciences, Nihon University, Sakurajosui, Setagaya-ku, Tokyo 156-8550, Japan
| |
Collapse
|
98
|
Zhang P, Wang C, Cui M, Du M, Li W, Jia Z, Zhao Q. Synthesis of Difluoroalkylated Benzofuran, Benzothiophene, and Indole Derivatives via Palladium-Catalyzed Cascade Difluoroalkylation and Arylation of 1,6-Enynes. Org Lett 2020; 22:1149-1154. [DOI: 10.1021/acs.orglett.9b04681] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Pengbo Zhang
- School of Public Health, Xinxiang Medical University, Xinxiang 453003, China
| | - Chen Wang
- College of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang 453003, China
| | - Mengchao Cui
- School of Public Health, Xinxiang Medical University, Xinxiang 453003, China
| | - Mengsi Du
- School of Public Health, Xinxiang Medical University, Xinxiang 453003, China
| | - Wenwu Li
- School of Public Health, Xinxiang Medical University, Xinxiang 453003, China
| | - Zexin Jia
- School of Public Health, Xinxiang Medical University, Xinxiang 453003, China
| | - Qian Zhao
- School of Public Health, Xinxiang Medical University, Xinxiang 453003, China
| |
Collapse
|
99
|
Ma S, Long D, Chen P, Shi H, Li H, Fang R, Wang X, Xie X, She X. Synthesis of 2,3-disubstituted indoles via a tandem reaction. Org Chem Front 2020. [DOI: 10.1039/d0qo00765j] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
A wide array of 2,3-disubstituted indoles were accessed in modest to good yields via a tandem reduction/condensation/fragmentation/cyclization sequence. Differential fragmentation made the reaction more complicated.
Collapse
Affiliation(s)
- Shiqiang Ma
- State Key Laboratory of Applied Organic Chemistry
- College of Chemistry and Chemical Engineering
- Lanzhou University
- Lanzhou 730000
- P. R. China
| | - Dan Long
- State Key Laboratory of Applied Organic Chemistry
- College of Chemistry and Chemical Engineering
- Lanzhou University
- Lanzhou 730000
- P. R. China
| | - Peiqi Chen
- State Key Laboratory of Applied Organic Chemistry
- College of Chemistry and Chemical Engineering
- Lanzhou University
- Lanzhou 730000
- P. R. China
| | - Hongliang Shi
- State Key Laboratory of Applied Organic Chemistry
- College of Chemistry and Chemical Engineering
- Lanzhou University
- Lanzhou 730000
- P. R. China
| | - Huilin Li
- State Key Laboratory of Applied Organic Chemistry
- College of Chemistry and Chemical Engineering
- Lanzhou University
- Lanzhou 730000
- P. R. China
| | - Ran Fang
- State Key Laboratory of Applied Organic Chemistry
- College of Chemistry and Chemical Engineering
- Lanzhou University
- Lanzhou 730000
- P. R. China
| | - Xiaolei Wang
- State Key Laboratory of Applied Organic Chemistry
- College of Chemistry and Chemical Engineering
- Lanzhou University
- Lanzhou 730000
- P. R. China
| | - Xingang Xie
- State Key Laboratory of Applied Organic Chemistry
- College of Chemistry and Chemical Engineering
- Lanzhou University
- Lanzhou 730000
- P. R. China
| | - Xuegong She
- State Key Laboratory of Applied Organic Chemistry
- College of Chemistry and Chemical Engineering
- Lanzhou University
- Lanzhou 730000
- P. R. China
| |
Collapse
|
100
|
Yang J, He Z, Hong L, Sun W, Wang R. Asymmetric N-aminoalkylation of 3-substituted indoles by N-protected N,O-acetals: an access to chiral propargyl aminals. Org Biomol Chem 2020; 18:4169-4173. [DOI: 10.1039/d0ob00795a] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A direct enantioselective N1 aminoalkylation of 3-substituted indoles is efficiently catalyzed by a phosphoric acid catalyst under mild conditions, which could be applied to the modification of tryptophan containing oligopeptides.
Collapse
Affiliation(s)
- Junxian Yang
- Key Laboratory of Preclinical Study for New Drugs of Gansu Province
- Institute of Pharmacology
- School of Basic Medical Sciences & Research Unit of Peptide Science
- Chinese Academy of Medical Sciences
- 2019RU066
| | - Zeyuan He
- Key Laboratory of Preclinical Study for New Drugs of Gansu Province
- Institute of Pharmacology
- School of Basic Medical Sciences & Research Unit of Peptide Science
- Chinese Academy of Medical Sciences
- 2019RU066
| | - Liang Hong
- Guangdong Key Laboratory of Chiral Molecule and Drug Discovery
- School of Pharmaceutical Sciences
- Sun Yat-sen University
- Guangzhou 510006
- China
| | - Wangsheng Sun
- Key Laboratory of Preclinical Study for New Drugs of Gansu Province
- Institute of Pharmacology
- School of Basic Medical Sciences & Research Unit of Peptide Science
- Chinese Academy of Medical Sciences
- 2019RU066
| | - Rui Wang
- Key Laboratory of Preclinical Study for New Drugs of Gansu Province
- Institute of Pharmacology
- School of Basic Medical Sciences & Research Unit of Peptide Science
- Chinese Academy of Medical Sciences
- 2019RU066
| |
Collapse
|