51
|
Photocatalytic Reduction of Hexavalent Chromium Using Cu3.21Bi4.79S9/g-C3N4 Nanocomposite. Catalysts 2022. [DOI: 10.3390/catal12101075] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
The photocatalytic reduction of hexavalent chromium, Cr(VI), to the trivalent species, Cr(III), has continued to inspire the synthesis of novel photocatalysts that are capable of achieving the task of converting Cr(VI) to the less toxic and more useful species. In this study, a novel functionalized graphitic carbon nitride (Cu3.21Bi4.79S9/gC3N4) was synthesized and characterized by using X-ray diffraction (XRD), thermogravimetry analysis (TGA), energy-dispersive X-ray spectroscopy (EDS), Fourier transform infrared spectroscopy (FTIR), transmission electron microscope (TEM), and scanning electron microscope (SEM). The composite was used for the photocatalytic reduction of hexavalent chromium, Cr(VI), under visible light irradiation. A 92.77% efficiency of the reduction was achieved at pH 2, using about 10 mg of the photocatalyst and 10 mg/L of the Cr(VI) solution. A pseudo-first-order kinetic study indicated 0.0076 min−1, 0.0286 min−1, and 0.0393 min−1 rate constants for the nanoparticles, pristine gC3N4, and the nanocomposite, respectively. This indicated an enhancement in the rate of reduction by the functionalized gC3N4 by 1.37- and 5.17-fold compared to the pristine gC3N4 and Cu3.21Bi4.79S9, respectively. A study of how the presence of other contaminants including dye (bisphenol A) and heavy-metal ions (Ag(I) and Pb(II)) in the system affects the photocatalytic process showed a reduction in the rate from 0.0393 min−1 to 0.0019 min−1 and 0.0039 min−1, respectively. Finally, the radical scavenging experiments showed that the main active species for the photocatalytic reduction of Cr(VI) are electrons (e−), hydroxyl radicals (·OH−), and superoxide (·O2−). This study shows the potential of functionalized gC3N4 as sustainable materials in the removal of hexavalent Cr from an aqueous solution.
Collapse
|
52
|
Kulhary D, Singh S. Design of g‐C
3
N
4
/BaBiO
3
Heterojunction Nanocomposites for Photodegradation of an Organic Dye and Diclofenac Sodium under Visible Light via Interfacial Charge Transfer. ChemistrySelect 2022. [DOI: 10.1002/slct.202201964] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Dinesh Kulhary
- Special Center for Nanoscience Jawaharlal Nehru University New Delhi 110067 India
| | - Satyendra Singh
- Special Center for Nanoscience Jawaharlal Nehru University New Delhi 110067 India
| |
Collapse
|
53
|
Stroyuk O, Raievska O, Brabec CJ, Dzhagan V, Havryliuk Y, Zahn DRT. Self-assembly of colloidal single-layer carbon nitride. NANOSCALE 2022; 14:12347-12357. [PMID: 35971970 DOI: 10.1039/d2nr03477h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
We introduce a new concept of a "bottom-to-top" design of intercalate carbon nitride compounds based on the effects of self-assembly of colloidal single-layer carbon nitride (SLCN) sheets stabilized by tetraethylammonium hydroxide NEt4OH upon ambient drying of the water solvent. These effects include (i) formation of stage-1 intercalates of NEt4OH during the ambient drying of SLCN colloids on glass substrates and (ii) the spontaneous formation of layered hexagonally-shaped networks of SLCN sheets on freshly-cleaved mica surfaces. The dynamics of the intercalate formation was followed by in situ X-ray diffraction allowing different stages to be identified, including the deposition of a primary "wet" intercalate of hydrated NEt4OH and the gradual elimination of excessive water during its ambient drying. The intercalated NEt4+ cations show a specific "flattened" conformation allowing the dynamics of formation and structure of the intercalate to be probed by vibrational spectroscopies. The two-dimensional self-assembly on mica is assumed to be driven both by the internal hexagonal symmetry of heptazine units and by a templating effect of the mica surface.
Collapse
Affiliation(s)
- Oleksandr Stroyuk
- Forschungszentrum Jülich GmbH, Helmholtz-Institut Erlangen Nürnberg für Erneuerbare Energien (HI ERN), 91058 Erlangen, Germany.
| | - Oleksandra Raievska
- Forschungszentrum Jülich GmbH, Helmholtz-Institut Erlangen Nürnberg für Erneuerbare Energien (HI ERN), 91058 Erlangen, Germany.
| | - Christoph J Brabec
- Forschungszentrum Jülich GmbH, Helmholtz-Institut Erlangen Nürnberg für Erneuerbare Energien (HI ERN), 91058 Erlangen, Germany.
- Friedrich-Alexander-Universität Erlangen-Nürnberg, Materials for Electronics and Energy Technology (i-MEET), Martensstrasse 7, 91058 Erlangen, Germany
| | - Volodymyr Dzhagan
- V. Lashkaryov Institute of Semiconductors Physics, National Academy of Sciences of Ukraine, 41 Nauky Av., 03028 Kyiv, Ukraine
- Taras Shevchenko National University of Kyiv, 64 Volodymyrs'ka St., 01601 Kyiv, Ukraine
| | - Yevhenii Havryliuk
- Semiconductor Physics, Chemnitz University of Technology, D-09107 Chemnitz, Germany
- Center for Materials, Architectures, and Integration of Nanomembranes (MAIN), Chemnitz University of Technology, D-09107 Chemnitz, Germany
| | - Dietrich R T Zahn
- Semiconductor Physics, Chemnitz University of Technology, D-09107 Chemnitz, Germany
- Center for Materials, Architectures, and Integration of Nanomembranes (MAIN), Chemnitz University of Technology, D-09107 Chemnitz, Germany
| |
Collapse
|
54
|
Ruiz-Bermejo M, García-Armada P, Valles P, de la Fuente JL. Semiconducting Soft Submicron Particles from the Microwave-Driven Polymerization of Diaminomaleonitrile. Polymers (Basel) 2022; 14:polym14173460. [PMID: 36080535 PMCID: PMC9460857 DOI: 10.3390/polym14173460] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Revised: 08/12/2022] [Accepted: 08/15/2022] [Indexed: 11/16/2022] Open
Abstract
The polymers based on diaminomaleonitrile (DAMN polymers) are a special group within an extensive set of complex substances, namely HCN polymers (DAMN is the formal tetramer of the HCN), which currently present a growing interest in materials science. Recently, the thermal polymerizability of DAMN has been reported, both in an aqueous medium and in bulk, offering the potential for the development of capacitors and biosensors, respectively. In the present work, the polymerization of this plausible prebiotic molecule has been hydrothermally explored using microwave radiation (MWR) via the heating of aqueous DAMN suspensions at 170–190 °C. In this way, polymeric submicron particles derived from DAMN were obtained for the first time. The structural, thermal decomposition, and electrochemical properties were also deeply evaluated. The redox behavior was characterized from DMSO solutions of these highly conjugated macromolecular systems and their potential as semiconductors was described. As a result, new semiconducting polymeric submicron particles were synthetized using a very fast, easy, highly robust, and green-solvent process. These results show a new example of the great potential of the polymerization assisted by MWR associated with the HCN-derived polymers, which has a dual interest both in chemical evolution and as functional materials.
Collapse
Affiliation(s)
- Marta Ruiz-Bermejo
- Departamento de Evolución Molecular, Centro de Astrobiología (INTA-CSIC), Ctra. Torrejón-Ajalvir, km 4, Torrejón de Ardoz, 28850 Madrid, Spain
- Correspondence: ; Tel.: +34-915206458
| | - Pilar García-Armada
- Department of Industrial Chemical Engineering, Escuela Técnica Superior de Ingenieros Industriales, Universidad Politécnica de Madrid, José Gutiérrez Abascal, 2, 28006 Madrid, Spain
| | - Pilar Valles
- Instituto Nacional de Técnica Aeroespacial “Esteban Terradas” (INTA), Ctra. Torrejón-Ajalvir, km 4, Torrejón de Ardoz, 28850 Madrid, Spain
| | - José L. de la Fuente
- Instituto Nacional de Técnica Aeroespacial “Esteban Terradas” (INTA), Ctra. Torrejón-Ajalvir, km 4, Torrejón de Ardoz, 28850 Madrid, Spain
| |
Collapse
|
55
|
Li J, Dor S, Barrio J, Shalom M. Efficient Water Cleaning by Self‐standing Carbon Nitride Films Derived from Supramolecular Hydrogels. Chemistry 2022; 28:e202201969. [DOI: 10.1002/chem.202201969] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2022] [Indexed: 11/11/2022]
Affiliation(s)
- Junyi Li
- Department of Chemistry and Ilse Katz Institute for Nanoscale Science and Technology Ben-Gurion University of the Negev Beer-Sheva 8410501 Israel
| | - Snir Dor
- Department of Materials Engineering Israel Ministry of Defense Hakirya Tel Aviv 61909 Israel
| | - Jesús Barrio
- Department of Materials, Royal School of Mines Imperial College London London SW72AZ UK
| | - Menny Shalom
- Department of Chemistry and Ilse Katz Institute for Nanoscale Science and Technology Ben-Gurion University of the Negev Beer-Sheva 8410501 Israel
| |
Collapse
|
56
|
Synthesis of vacant graphitic carbon nitride in argon atmosphere and its utilization for photocatalytic hydrogen generation. Sci Rep 2022; 12:13622. [PMID: 35948580 PMCID: PMC9365785 DOI: 10.1038/s41598-022-17940-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2022] [Accepted: 08/03/2022] [Indexed: 11/08/2022] Open
Abstract
Graphitic carbon nitride (C3N4) was synthesised from melamine at 550 °C for 4 h in the argon atmosphere and then was reheated for 1–3 h at 500 °C in argon. Two band gaps of 2.04 eV and 2.47 eV were observed in all the synthetized materials. Based on the results of elemental and photoluminescence analyses, the lower band gap was found to be caused by the formation of vacancies. Specific surface areas of the synthetized materials were 15–18 m2g−1 indicating that no thermal exfoliation occurred. The photocatalytic activity of these materials was tested for hydrogen generation. The best photocatalyst showed 3 times higher performance (1547 μmol/g) than bulk C3N4 synthetized in the air (547 μmol/g). This higher activity was explained by the presence of carbon (VC) and nitrogen (VN) vacancies grouped in their big complexes 2VC + 2VN (observed by positron annihilation spectroscopy). The effect of an inert gas on the synthesis of C3N4 was demonstrated using Graham´s law of ammonia diffusion. This study showed that the synthesis of C3N4 from nitrogen-rich precursors in the argon atmosphere led to the formation of vacancy complexes beneficial for hydrogen generation, which was not referred so far.
Collapse
|
57
|
Büchele S, Yakimov A, Collins SM, Ruiz-Ferrando A, Chen Z, Willinger E, Kepaptsoglou DM, Ramasse QM, Müller CR, Safonova OV, López N, Copéret C, Pérez-Ramírez J, Mitchell S. Elucidation of Metal Local Environments in Single-Atom Catalysts Based on Carbon Nitrides. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2022; 18:e2202080. [PMID: 35678101 DOI: 10.1002/smll.202202080] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/02/2022] [Revised: 05/05/2022] [Indexed: 06/15/2023]
Abstract
The ability to tailor the properties of metal centers in single-atom heterogeneous catalysts depends on the availability of advanced approaches for characterization of their structure. Except for specific host materials with well-defined metal adsorption sites, determining the local atomic environment remains a crucial challenge, often relying heavily on simulations. This article reports an advanced analysis of platinum atoms stabilized on poly(triazine imide), a nanocrystalline form of carbon nitride. The approach discriminates the distribution of surface coordination sites in the host, the evolution of metal coordination at different stages during the synthesis of the material, and the potential locations of metal atoms within the lattice. Consistent with density functional theory predictions, simultaneous high-resolution imaging in high-angle annular dark field and bright field modes experimentally confirms the preferred localization of platinum in-plane in the corners of the triangular cavities. X-ray absorption spectroscopy (XAS), X-ray photoelectron spectroscopy (XPS), and dynamic nuclear polarization enhanced 15 N nuclear magnetic resonance (DNP-NMR) spectroscopies coupled with density functional theory (DFT) simulations reveal that the predominant metal species comprise Pt(II) bound to three nitrogen atoms and one chlorine atom inside the coordination sites. The findings, which narrow the gap between experimental and theoretical elucidation, contribute to the improved structural understanding and provide a benchmark for exploring the speciation of single-atom catalysts based on carbon nitrides.
Collapse
Affiliation(s)
- Simon Büchele
- Department of Chemistry and Applied Biosciences, ETH Zurich, Vladimir-Prelog-Weg 1, Zurich, 8093, Switzerland
| | - Alexander Yakimov
- Department of Chemistry and Applied Biosciences, ETH Zurich, Vladimir-Prelog-Weg 1, Zurich, 8093, Switzerland
| | - Sean M Collins
- Bragg Centre for Materials Research, School of Chemical and Process Engineering and School of Chemistry, University of Leeds, Leeds, LS2 9JT, UK
| | - Andrea Ruiz-Ferrando
- Institute of Chemical Research of Catalonia and Barcelona Institute of Science and Technology, Av. Països Catalans 16, Tarragona, 43007, Spain
| | - Zupeng Chen
- College of Chemical Engineering, Nanjing Forestry University, Nanjing, 210037, P. R. China
| | - Elena Willinger
- Department of Mechanical and Process Engineering, ETH Zurich, Leonhardstrasse 21, Zurich, 8092, Switzerland
| | | | - Quentin M Ramasse
- SuperSTEM Laboratory, SciTech Daresbury Campus, Daresbury, WA4 4AD, UK
| | - Christoph R Müller
- Department of Mechanical and Process Engineering, ETH Zurich, Leonhardstrasse 21, Zurich, 8092, Switzerland
| | - Olga V Safonova
- Paul Scherrer Institute, Forschungsstrasse 111, Villigen, 5232, Switzerland
| | - Núria López
- Institute of Chemical Research of Catalonia and Barcelona Institute of Science and Technology, Av. Països Catalans 16, Tarragona, 43007, Spain
| | - Christophe Copéret
- Department of Chemistry and Applied Biosciences, ETH Zurich, Vladimir-Prelog-Weg 1, Zurich, 8093, Switzerland
| | - Javier Pérez-Ramírez
- Department of Chemistry and Applied Biosciences, ETH Zurich, Vladimir-Prelog-Weg 1, Zurich, 8093, Switzerland
| | - Sharon Mitchell
- Department of Chemistry and Applied Biosciences, ETH Zurich, Vladimir-Prelog-Weg 1, Zurich, 8093, Switzerland
| |
Collapse
|
58
|
Navlani-García M, Salinas-Torres D, Vázquez-Álvarez FD, Cazorla-Amorós D. Formic acid dehydrogenation attained by Pd nanoparticles-based catalysts supported on MWCNT-C3N4 composites. Catal Today 2022. [DOI: 10.1016/j.cattod.2021.07.019] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
|
59
|
Pieta IS, Gieroba B, Kalisz G, Pieta P, Nowakowski R, Naushad M, Rathi A, Gawande MB, Sroka-Bartnicka A, Zboril R. Developing Benign Ni/g-C 3N 4 Catalysts for CO 2 Hydrogenation: Activity and Toxicity Study. Ind Eng Chem Res 2022; 61:10496-10510. [PMID: 35938051 PMCID: PMC9344432 DOI: 10.1021/acs.iecr.2c00452] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
This research discusses the CO2 valorization via hydrogenation over the non-noble metal clusters of Ni and Cu supported on graphitic carbon nitride (g-C3N4). The Ni and Cu catalysts were characterized by conventional techniques including XRD, AFM, ATR, Raman imaging, and TPR and were tested via the hydrogenation of CO2 at 1 bar. The transition-metal-based catalyst designed with atom-economy principles presents stable activity and good conversions for the studied processes. At 1 bar, the rise in operating temperature during CO2 hydrogenation increases the CO2 conversion and the selectivity for CO and decreases the selectivity for methanol on Cu/CN catalysts. For the Ni/CN catalyst, the selectivity to light hydrocarbons, such as CH4, also increased with rising temperature. At 623 K, the conversion attained ca. 20%, with CH4 being the primary product of the reaction (CH4 yield >80%). Above 700 K, the Ni/CN activity increases, reaching almost equilibrium values, although the Ni loading in Ni/CN is lower by more than 90% compared to the reference NiREF catalyst. The presented data offer a better understanding of the effect of the transition metals' small metal cluster and their coordination and stabilization within g-C3N4, contributing to the rational hybrid catalyst design with a less-toxic impact on the environment and health. Bare g-C3N4 is shown as a good support candidate for atom-economy-designed catalysts for hydrogenation application. In addition, cytotoxicity to the keratinocyte human HaCaT cell line revealed that low concentrations of catalysts particles (to 6.25 μg mL-1) did not cause degenerative changes.
Collapse
Affiliation(s)
- Izabela S. Pieta
- Institute
of Physical Chemistry Polish Academy of Science, Kasprzaka 44/52, 01-224 Warsaw, Poland
| | - Barbara Gieroba
- Independent
Unit of Spectroscopy and Chemical Imaging, Medical University of Lublin, Chodzki 4a, 20-093 Lublin, Poland
| | - Grzegorz Kalisz
- Independent
Unit of Spectroscopy and Chemical Imaging, Medical University of Lublin, Chodzki 4a, 20-093 Lublin, Poland
| | - Piotr Pieta
- Institute
of Physical Chemistry Polish Academy of Science, Kasprzaka 44/52, 01-224 Warsaw, Poland
| | - Robert Nowakowski
- Institute
of Physical Chemistry Polish Academy of Science, Kasprzaka 44/52, 01-224 Warsaw, Poland
| | - Mu. Naushad
- Department
of Chemistry, College of Science, King Saud
University, P.O. Box 2455, Riyadh 11451, Saudi Arabia
| | - Anuj Rathi
- Chemistry
Innovation Research Center, R&D, Jubilant Biosys, Knowledge Park II, Greater Noida, Uttar Pradesh 201310, India
| | - Manoj B. Gawande
- Regional
Centre of Advanced Technologies and Materials, Czech Advanced Technology and Research Institute, Palacký
University, Slechtitelu
27, 77900 Olomouc, Czech Republic
- Department
of Industrial and Engineering Chemistry, Institute of Chemical Technology, Mumbai-Marathwada Campus, Jalna 431 203, India
| | - Anna Sroka-Bartnicka
- Independent
Unit of Spectroscopy and Chemical Imaging, Medical University of Lublin, Chodzki 4a, 20-093 Lublin, Poland
| | - Radek Zboril
- Regional
Centre of Advanced Technologies and Materials, Czech Advanced Technology and Research Institute, Palacký
University, Slechtitelu
27, 77900 Olomouc, Czech Republic
- Nanotechnology
Centre, Centre of Energy and Environmental Technologies, VŠB−Technical University of Ostrava, 17 listopadu 2172/15, 708 00 Ostrava-Poruba, Czech Republic
| |
Collapse
|
60
|
Heydari M, Azizi N, Mirjafari Z, Hashemi MM. Aluminum anchored on g-C3N4 as robust catalysts for Mannich reaction at ambient temperature. J Mol Struct 2022. [DOI: 10.1016/j.molstruc.2022.132731] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
|
61
|
Zhou Y, Kandel N, Bartoli M, Serafim LF, ElMetwally AE, Falkenberg SM, Paredes XE, Nelson CJ, Smith N, Padovano E, Zhang W, Mintz KJ, Ferreira BC, Cilingir EK, Chen J, Shah SK, Prabhakar R, Tagliaferro A, Wang C, Leblanc RM. Structure-Activity Relationship of Carbon Nitride Dots in Inhibiting Tau Aggregation. CARBON 2022; 193:1-16. [PMID: 35463198 PMCID: PMC9030089 DOI: 10.1016/j.carbon.2022.03.021] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/06/2023]
Abstract
Due to the numerous failed clinical trials of anti-amyloid drugs, microtubule associated protein tau (MAPT) now stands out as one of the most promising targets for AD therapy. In this study, we report for the first time the structure-dependent MAPT aggregation inhibition of carbon nitride dots (CNDs). CNDs have exhibited great promise as a potential treatment of Alzheimer's disease (AD) by inhibiting the aggregation of MAPT. In order to elucidate its structure-activity relationship, CNDs were separated via column chromatography and five fractions with different structures were obtained that were characterized by multiple spectroscopy methods. The increase of surface hydrophilic functional groups is consistent with the increase of polarity from fraction 1 to 5. Particle sizes (1-2 nm) and zeta potentials (~-20 mV) are similar among five fractions. With the increase of polarity from fraction 1 to 5, their MAPT aggregation inhibition capacity was weakened. This suggests hydrophobic interactions between CNDs and MAPT, validated via molecular dynamics simulations. With a zebrafish blood-brain barrier (BBB) model, CNDs were observed to cross the BBB through passive diffusion. CNDs were also found to inhibit the generation of multiple reactive oxygen species, which is an important contributor to AD pathogenesis.
Collapse
Affiliation(s)
- Yiqun Zhou
- Department of Chemistry, University of Miami, Coral Gables, FL 33146, USA
- C-Dots, LLC, Miami, FL 33136, USA
| | - Nabin Kandel
- Department of Biological Sciences, Rensselaer Polytechnic Institute, NY 12180, USA
| | - Mattia Bartoli
- Center for Sustainable Future, Italian Institute of Technology, Via Livorno 60, Turin 10144, Italy
| | | | | | | | - Xavier E. Paredes
- Department of Chemistry, University of Miami, Coral Gables, FL 33146, USA
| | | | - Nathan Smith
- Department of Biological Sciences, Rensselaer Polytechnic Institute, NY 12180, USA
| | - Elisa Padovano
- Department of Applied Science and Technology, Politecnico di Torino, Italy
| | - Wei Zhang
- Department of Chemistry, University of Miami, Coral Gables, FL 33146, USA
| | - Keenan J. Mintz
- Department of Chemistry, University of Miami, Coral Gables, FL 33146, USA
- School of Materials Science and Engineering, Georgia Institute of Technology, Atlanta, GA 30332, USA
| | | | | | - Jiuyan Chen
- Department of Chemistry, University of Miami, Coral Gables, FL 33146, USA
| | - Sujit K. Shah
- Department of Chemistry, University of Miami, Coral Gables, FL 33146, USA
- Department of Chemistry, Mahendra Morang Adarsh Multiple Campus, Tribhuvan University, Biratnagar 56613, Nepal
| | - Rajeev Prabhakar
- Department of Chemistry, University of Miami, Coral Gables, FL 33146, USA
| | | | - Chunyu Wang
- Department of Biological Sciences, Rensselaer Polytechnic Institute, NY 12180, USA
| | - Roger M. Leblanc
- Department of Chemistry, University of Miami, Coral Gables, FL 33146, USA
| |
Collapse
|
62
|
Jiao Y, Qin J, Li Y, Wang J, He Z, Li Z. Nitrobenzene inarched carbon nitride nanotube drives efficient directional carriers separation for superior photocatalytic hydrogen production. J Colloid Interface Sci 2022; 616:691-700. [PMID: 35245795 DOI: 10.1016/j.jcis.2022.02.093] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2022] [Revised: 02/11/2022] [Accepted: 02/19/2022] [Indexed: 10/19/2022]
Abstract
Carbon nitride (g-C3N4) is aussichtsreich for photocatalytic hydrogen evolution, but its photocatalytic activity is not ideal due to the existence of photogenerated electrons and holes in the form of excitons. Herein, a novel nitrobenzene inarched g-C3N4 nanotube photocatalyst (CN-DNP) was firstly fabricated via a facial copolymerization method. The aromatic ring in nitrobenzene could enhance the conjugation of carbon nitride to promote electron delocalization. The nitro group enabled electrons to transfer from center to the both ends of g-C3N4 nanotube, which drove the separation of photogenerated electrons and holes more effectively. Compared with bulk g-C3N4 (CN), CN-DNP had narrower bandgap that can acquire adequate visible light harvesting and improve its photocatalytic performance. Consequently, CN-DNP0.1 displayed an excellent photocatalytic H2 evolution of 2262.4 μmol g-1h-1, which was 11.2 folds higher than that of CN. This strategy provides a new guidance for constructing carbon nitride nanotube materials with carrier directional transfer to enhance the photocatalytic performance.
Collapse
Affiliation(s)
- Yingying Jiao
- College of Chemistry, Zhengzhou University, Zhengzhou 450001, PR China
| | - Junchao Qin
- College of Chemistry, Zhengzhou University, Zhengzhou 450001, PR China
| | - Yike Li
- College of Chemistry, Zhengzhou University, Zhengzhou 450001, PR China.
| | - Jianshe Wang
- College of Chemistry, Zhengzhou University, Zhengzhou 450001, PR China.
| | - Zhanhang He
- College of Chemistry, Zhengzhou University, Zhengzhou 450001, PR China
| | - Zhongjun Li
- College of Chemistry, Zhengzhou University, Zhengzhou 450001, PR China
| |
Collapse
|
63
|
Pios S, Domcke W. Ab Initio Electronic Structure Study of the Photoinduced Reduction of Carbon Dioxide with the Heptazinyl Radical. J Phys Chem A 2022; 126:2778-2787. [PMID: 35476421 DOI: 10.1021/acs.jpca.2c00615] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The photocatalytic conversion of carbon dioxide to liquid fuels with electrons taken from water with solar photons is one of the grand goals of renewable energy research. Polymeric carbon nitrides recently emerged as metal-free materials with promising functionalities for hydrogen evolution from water as well as the activation of carbon dioxide. Molecular heptazine (Hz), the building block of polymeric carbon nitrides, is one the strongest known organic photo-oxidants and has been shown to be able to photo-oxidize water with near-visible light, resulting in reduced (hydrogenated) heptazine (HzH) and OH radicals. In the present work, we explored with ab initio computational methods whether the HzH chromophore is able to reduce carbon dioxide to the hydroxy-formyl (HOCO) radical in hydrogen-bonded HzH-CO2 complexes by the absorption of a photon. In remarkable contrast to the high barrier for carbon dioxide activation in the electronic ground state, the excited-state proton-coupled electron transfer (PCET) reaction is nearly barrierless, but requires the diabatic passage of three conical intersections. The possibility of barrierless carbon dioxide activation by excited-state PCET has so far not been taken into consideration in the interpretation of photocatalytic carbon dioxide reduction on carbon nitride materials.
Collapse
Affiliation(s)
- Sebastian Pios
- Department of Chemistry, Technical University of Munich, D-85747 Garching, Germany
| | - Wolfgang Domcke
- Department of Chemistry, Technical University of Munich, D-85747 Garching, Germany
| |
Collapse
|
64
|
Schukraft GM, Moss B, Kafizas AG, Petit C. Effect of Band Bending in Photoactive MOF-Based Heterojunctions. ACS APPLIED MATERIALS & INTERFACES 2022; 14:19342-19352. [PMID: 35442614 PMCID: PMC9073837 DOI: 10.1021/acsami.2c00335] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/06/2022] [Accepted: 04/12/2022] [Indexed: 06/01/2023]
Abstract
Semiconductor/metal-organic framework (MOF) heterojunctions have demonstrated promising performance for the photoconversion of CO2 into value-added chemicals. To further improve performance, we must understand better the factors which govern charge transfer across the heterojunction interface. However, the effects of interfacial electric fields, which can drive or hinder electron flow, are not commonly investigated in MOF-based heterojunctions. In this study, we highlight the importance of interfacial band bending using two carbon nitride/MOF heterojunctions with either Co-ZIF-L or Ti-MIL-125-NH2. Direct measurement of the electronic structures using X-ray photoelectron spectroscopy (XPS), work function, valence band, and band gap measurements led to the construction of a simple band model at the heterojunction interface. This model, based on the heterojunction components and band bending, enabled us to rationalize the photocatalytic enhancements and losses observed in MOF-based heterojunctions. Using the insight gained from a promising band bending diagram, we developed a Type II carbon nitride/MOF heterojunction with a 2-fold enhanced CO2 photoreduction activity compared to the physical mixture.
Collapse
Affiliation(s)
- Giulia
E. M. Schukraft
- Barrer
Centre, Department of Chemical Engineering, South Kensington Campus, Imperial College London, London SW7 2AZ, U.K.
- Department
of Materials, South Kensington Campus, Imperial
College London, London SW7 2AZ, U.K.
| | - Benjamin Moss
- Department
of Chemistry, Molecular Science Research Hub, White City Campus, Imperial College London, London W12 0BZ, U.K.
| | - Andreas G. Kafizas
- Department
of Chemistry, Molecular Science Research Hub, White City Campus, Imperial College London, London W12 0BZ, U.K.
- The
Grantham Institute, Imperial College London, London SW7 2AZ, U.K.
| | - Camille Petit
- Barrer
Centre, Department of Chemical Engineering, South Kensington Campus, Imperial College London, London SW7 2AZ, U.K.
| |
Collapse
|
65
|
2D Personality of Multifunctional Carbon Nitrides towards Enhanced Catalytic Performance in Energy Storage and Remediation. APPLIED SCIENCES-BASEL 2022. [DOI: 10.3390/app12083753] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Numerous scholars in the scientific and management areas have been overly focused on contemporary breakthroughs in two-dimensional objects for multiple prospective applications. Photochemical and electrocatalytic functions of integrated circuits associated with multi-component tools have been enhanced by designing the macro- and microstructures of the building blocks. Therefore, the current research attempts to explore a larger spectrum of layered graphitic carbon nitrides (g-C3N4) and their derivatives as an efficient catalyst. By executing systematic manufacturing, optimization, and evaluation of its relevance towards astonishing energy storage devices, adsorption chemistry, and remediation, many researchers have focused on the coupling of such 2D carbon nitrides combined with suitable elementals. Hybrid carbon nitrides have been promoted as reliable 2D combinations for the enhanced electrophotocatalytic functionalities, proved by experimental observations and research outputs. By appreciating the modified structural, surface, and physicochemical characteristics of the carbon nitrides, we aim to report a systematic overview of the g-C3N4 materials for the application of energy storages and environments. It has altered energy band gap, thermal stability, remarkable dimensional texturing, and electrochemistry, and therefore detailed studies are highlighted by discussing the chemical architectures and atomic alternation of g-C3N4 (2D) structures.
Collapse
|
66
|
Modelling of Electron and Thermal Transport in Quasi-Fractal Carbon Nitride Nanoribbons. FRACTAL AND FRACTIONAL 2022. [DOI: 10.3390/fractalfract6020115] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
In this work, using calculations based on the density functional theory, molecular dynamics, non-equilibrium Green functions method, and Monte Carlo simulation, we study electronic and phonon transport in a device based on quasi-fractal carbon nitride nanoribbons with Sierpinski triangle blocks. Modifications of electronic and thermal conductance with increase in generation g of quasi-fractal segments are estimated. Introducing energetic disorder, we study hopping electron transport in the quasi-fractal nanoribbons by Monte Carlo simulation of a biased random walk with generalized Miller–Abrahams transfer rates. Calculated time dependencies of the mean square displacement bear evidence of transient anomalous diffusion. Variations of anomalous drift-diffusion parameters with localization radius, temperature, electric field intensity, and energy disorder level are estimated. The hopping in quasi-fractal nanoribbons can serve as an explicit physical implementation of the generalized comb model.
Collapse
|
67
|
Parkes E, Lisowska K, McMillan PF, Corà F, Clancy AJ. New functionalisation reactions of graphitic carbon nitrides: Computational and experimental studies. JOURNAL OF CHEMICAL RESEARCH 2022. [DOI: 10.1177/17475198211073888] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
The functionalisation of two-dimensional materials is key to modify their properties and facilitate assembly into functional devices. Here, new reactions have been proposed to modify crystalline two-dimensional carbon nitrides of polytriazine imide structure. Both amine alkylation and aryl-nitrene-based reactions have been explored computationally and with exploratory synthetic trials. The approach illustrates that alkylation is unfavourable, particularly at basal-plane sites. In contrast, while initial trial reactions were inconclusive, the radical-addition of nitrenes is shown to be energetically favourable, with a preference for functionalising sheet edges to minimise steric effects.
Collapse
Affiliation(s)
- Ellen Parkes
- Department of Chemistry, University College London, London, UK
| | | | - Paul F McMillan
- Department of Chemistry, University College London, London, UK
| | - Furio Corà
- Department of Chemistry, University College London, London, UK
| | - Adam J Clancy
- Department of Chemistry, University College London, London, UK
| |
Collapse
|
68
|
Fernandes RA, Sampaio MJ, Faria JL, Silva CG. Synthesis of Vitamin B3 through a Heterogeneous Photocatalytic Approach Using Metal-Free Carbon Nitride-Based Catalysts. Molecules 2022; 27:1295. [PMID: 35209082 PMCID: PMC8878246 DOI: 10.3390/molecules27041295] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2022] [Revised: 01/26/2022] [Accepted: 02/08/2022] [Indexed: 11/17/2022] Open
Abstract
Vitamin B3 (nicotinic acid, VB3) was synthesized through the photocatalytic oxidation of 3-pyridinemethanol (3PM) under visible-light-emitting diode (LED) irradiation using metal-free graphitic carbon nitride (GCN) - based materials. A bulk (GCN) material was prepared by a simple thermal treatment using dicyandiamide as the precursor. A post-thermal treatment under static air and nitrogen flow was employed to obtain the GCN-T and GCN-T-N materials, respectively. The conditions adopted during the post-treatment revealed differences in the resulting materials' morphological, electronic, and optical properties. The post-treated photocatalysts revealed an enhanced efficiency in the oxidation of 3PM into VB3, with the GCN-T-N photocatalyst being the best-performing material. The defective surface, reduced crystallinity, and superior photoabsorption of GCN-T-N account for this material's improved performance in the production of VB3. Nevertheless, the presence of nitrogen vacancies in the carbon nitride structure and, consequently, the creation of mid-gap states also accounts to its highly oxidative ability. The immobilization of GCN-T-N in sodium alginate hydrogel was revealed as a promising strategy to produce VB3, avoiding the need for the photocatalyst separation step. Concerning the mechanism of synthesis of VB3 through the photocatalytic oxidation of 3PM, it was possible to identify the presence of 3-pyridinecarboxaldehyde (3PC) as the intermediary product.
Collapse
Affiliation(s)
- Raquel A. Fernandes
- ALiCE–Associate Laboratory in Chemical Engineering, Faculty of Engineering, University of Porto, Rua Dr. Roberto Frias, 4200-465 Porto, Portugal; (R.A.F.); (M.J.S.); (J.L.F.)
- LSRE-LCM – Laboratory of Separation and Reaction Engineering-Laboratory of Catalysis and Materials, Faculty of Engineering, University of Porto, Rua Dr. Roberto s/n, 4200-465 Porto, Portugal
| | - Maria J. Sampaio
- ALiCE–Associate Laboratory in Chemical Engineering, Faculty of Engineering, University of Porto, Rua Dr. Roberto Frias, 4200-465 Porto, Portugal; (R.A.F.); (M.J.S.); (J.L.F.)
- LSRE-LCM – Laboratory of Separation and Reaction Engineering-Laboratory of Catalysis and Materials, Faculty of Engineering, University of Porto, Rua Dr. Roberto s/n, 4200-465 Porto, Portugal
| | - Joaquim L. Faria
- ALiCE–Associate Laboratory in Chemical Engineering, Faculty of Engineering, University of Porto, Rua Dr. Roberto Frias, 4200-465 Porto, Portugal; (R.A.F.); (M.J.S.); (J.L.F.)
- LSRE-LCM – Laboratory of Separation and Reaction Engineering-Laboratory of Catalysis and Materials, Faculty of Engineering, University of Porto, Rua Dr. Roberto s/n, 4200-465 Porto, Portugal
| | - Cláudia G. Silva
- ALiCE–Associate Laboratory in Chemical Engineering, Faculty of Engineering, University of Porto, Rua Dr. Roberto Frias, 4200-465 Porto, Portugal; (R.A.F.); (M.J.S.); (J.L.F.)
- LSRE-LCM – Laboratory of Separation and Reaction Engineering-Laboratory of Catalysis and Materials, Faculty of Engineering, University of Porto, Rua Dr. Roberto s/n, 4200-465 Porto, Portugal
| |
Collapse
|
69
|
Lavado N, de la Concepción JG, Cintas P, Babiano R. Synthesis of C xN y-rich polycyclic oligomers from primeval monomers in aqueous media. Phys Chem Chem Phys 2022; 24:3632-3646. [PMID: 35103738 DOI: 10.1039/d1cp05204g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A multichannel, non-thermolytic and efficient pathway is described toward the formation of functionalized carbon nitride-like oligomers, starting from readily available cyanamide and glyoxal (in ratios >2), in aqueous media under mild conditions. Such oligomers can be isolated as stable solids that result from structures involving cyanamide self-additions along with structures formally derived from the condensation of cyanamide, dicyandiamide or melamine with glyoxal, leading occasionally to oxygen-containing units. The oligomeric aggregates have masses up to 500 u, as inferred from mass spectra analyses, and their formation can be rationalized in terms of polyadditions of cyanamide (up to 10-mer) and glyoxal. The latter is not only a willing reaction partner, but also promotes facile condensation by enhancing the reactivity of nitrile fragments and inducing a significant lowering of the energy barriers. This mechanistic surmise is also supported by DFT calculations of the early condensation steps. As a result, melamine/triazine-type structures are obtained in aquatic environments under much milder conditions than those usually required by other synthetic procedures. Moreover, our results also help unveil the abiotic processes affording complex organic matter on celestial bodies and early earth.
Collapse
Affiliation(s)
- Nieves Lavado
- Departamento de Química Orgánica e Inorgánica, Facultad de Ciencias, and IACYS-Unidad de Química Verde y Desarrollo Sostenible, Universidad de Extremadura, E-06006 Badajoz, Spain.
| | - Juan García de la Concepción
- Departamento de Astrofísica, Centro de Astrobiología (INTA-CSIC), 28850 Torrejón de Ardoz, Madrid, Spain.,Departamento de Química Orgánica e Inorgánica, Facultad de Ciencias, and IACYS-Unidad de Química Verde y Desarrollo Sostenible, Universidad de Extremadura, E-06006 Badajoz, Spain.
| | - Pedro Cintas
- Departamento de Química Orgánica e Inorgánica, Facultad de Ciencias, and IACYS-Unidad de Química Verde y Desarrollo Sostenible, Universidad de Extremadura, E-06006 Badajoz, Spain.
| | - Reyes Babiano
- Departamento de Química Orgánica e Inorgánica, Facultad de Ciencias, and IACYS-Unidad de Química Verde y Desarrollo Sostenible, Universidad de Extremadura, E-06006 Badajoz, Spain.
| |
Collapse
|
70
|
Ojha RP, Singh P, Azad UP, Prakash R. Impedimetric Immunosensor for the NS1 Dengue Biomarker Based on the Gold Nanorod Decorated Graphitic Carbon Nitride Modified Electrode. Electrochim Acta 2022. [DOI: 10.1016/j.electacta.2022.140069] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
|
71
|
Burmeister D, Tran HA, Müller J, Guerrini M, Cocchi C, Plaickner J, Kochovski Z, List‐Kratochvil EJW, Bojdys MJ. Optimierte Synthese von in Lösung verarbeitbarem kristallinem Poly(triazinimid) mit minimalen Defekten für OLED‐Anwendungen. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202111749] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- David Burmeister
- Department of Chemistry Department of Physics IRIS Adlershof Humboldt-Universität zu Berlin Zum Großen Windkanal 2 12489 Berlin Deutschland
| | - Ha Anh Tran
- Department of Chemistry Department of Physics IRIS Adlershof Humboldt-Universität zu Berlin Zum Großen Windkanal 2 12489 Berlin Deutschland
| | - Johannes Müller
- Department of Physics IRIS Adlershof Humboldt-Universität zu Berlin Brook-Taylor-Straße 15 12489 Berlin Deutschland
| | - Michele Guerrini
- Institute of Physics Carl von Ossietzky Universität Oldenburg 26129 Oldenburg Deutschland
| | - Caterina Cocchi
- Department of Physics IRIS Adlershof Humboldt-Universität zu Berlin Brook-Taylor-Straße 15 12489 Berlin Deutschland
- Institute of Physics Carl von Ossietzky Universität Oldenburg 26129 Oldenburg Deutschland
| | - Julian Plaickner
- Helmholtz-Zentrum Berlin für Materialien und Energie GmbH Hahn-Meitner-Platz 1 14109 Berlin Deutschland
- Leibniz-Institut für Analytische Wissenschaften – IAS e.V. Schwarzschildstraße 8 12489 Berlin Deutschland
| | - Zdravko Kochovski
- Institute of Electrochemical Energy Storage Helmholtz-Zentrum Berlin für Materialien und Energie Hahn-Meitner-Platz 1 14109 Berlin Deutschland
| | - Emil J. W. List‐Kratochvil
- Department of Chemistry Department of Physics IRIS Adlershof Humboldt-Universität zu Berlin Zum Großen Windkanal 2 12489 Berlin Deutschland
| | - Michael J. Bojdys
- Department of Chemistry Kings College London Britannia House Guy's Campus, 7 Trinity Street London SE1 1DB Vereinigtes Königreich
- Department of Chemistry Department of Physics IRIS Adlershof Humboldt-Universität zu Berlin Zum Großen Windkanal 2 12489 Berlin Deutschland
| |
Collapse
|
72
|
Zhang Y, Zhang L, Zeng D, Wang W, Wang J, Wang W, Wang W. An efficient strategy for photocatalytic hydrogen peroxide production over oxygen-enriched graphitic carbon nitride with sodium phosphate. CHINESE JOURNAL OF CATALYSIS 2022. [DOI: 10.1016/s1872-2067(22)64114-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/17/2023]
|
73
|
HCN-derived polymers from thermally induced polymerization of diaminomaleonitrile: A non-enzymatic peroxide sensor based on prebiotic chemistry. Eur Polym J 2022. [DOI: 10.1016/j.eurpolymj.2021.110897] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
74
|
Kim DW, Choi J, Byun J, Kim JT, Lee GS, Kim JG, Kim D, Boonmongkolras P, McMillan PF, Lee HM, Clancy AJ, Shin B, Kim SO. Monodisperse Carbon Nitride Nanosheets as Multifunctional Additives for Efficient and Durable Perovskite Solar Cells. ACS APPLIED MATERIALS & INTERFACES 2021; 13:61215-61226. [PMID: 34905920 DOI: 10.1021/acsami.1c19587] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Two-dimensional (2D) materials are promising components for defect passivation of metal halide perovskites. Unfortunately, commonly used polydisperse liquid-exfoliated 2D materials generally suffer from heterogeneous structures and properties while incorporated into perovskite films. We introduce monodisperse multifunctional 2D crystalline carbon nitride, poly(triazine imide) (PTI), as an effective defect passivation agent in perovskite films via typical solution processing. Incorporation of PTI into perovskite film can be readily attained by simple solution mixing of PTI dispersions with perovskite precursor solutions, resulting in the highly selective distribution of PTI localized at the defective crystal grain boundaries and layer interfaces in the functional perovskite layer. Several chemical, optical, and electronic characterizations, in conjunction with density functional theory calculations, reveal multiple beneficial roles from PTI: passivation of undercoordinated organic cations at the surface of perovskite crystal, suppression of ion migration by blocking diffusion channels, and prevention of hole quenching at perovskite/SnO2 interfaces. Consequently, a noticeably improved power conversion efficiency is achieved in perovskite solar cells, accompanied with promoted stability under humid air and thermal stress. Our strategy highlights the potential of judiciously designed 2D materials as a simple-to-implement material for various optoelectronic devices, including solar cells, based on hybrid perovskites.
Collapse
Affiliation(s)
- Dae-Won Kim
- National Creative Research Initiative Center for Multi-Dimensional Directed Nanoscale Assembly, Department of Material Science and Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Republic of Korea
| | - Jungwoo Choi
- Department of Material Science and Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Republic of Korea
| | - Jinwoo Byun
- National Creative Research Initiative Center for Multi-Dimensional Directed Nanoscale Assembly, Department of Material Science and Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Republic of Korea
| | - Jun Tae Kim
- National Creative Research Initiative Center for Multi-Dimensional Directed Nanoscale Assembly, Department of Material Science and Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Republic of Korea
| | - Gang San Lee
- National Creative Research Initiative Center for Multi-Dimensional Directed Nanoscale Assembly, Department of Material Science and Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Republic of Korea
| | - Jin Goo Kim
- National Creative Research Initiative Center for Multi-Dimensional Directed Nanoscale Assembly, Department of Material Science and Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Republic of Korea
| | - Daehan Kim
- Department of Material Science and Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Republic of Korea
| | - Passarut Boonmongkolras
- Department of Material Science and Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Republic of Korea
| | - Paul F McMillan
- Department of Chemistry, University College London (UCL), Gower St., London WC1E 6BT, U.K
| | - Hyuck Mo Lee
- Department of Material Science and Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Republic of Korea
| | - Adam J Clancy
- Department of Chemistry, University College London (UCL), Gower St., London WC1E 6BT, U.K
| | - Byungha Shin
- Department of Material Science and Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Republic of Korea
| | - Sang Ouk Kim
- National Creative Research Initiative Center for Multi-Dimensional Directed Nanoscale Assembly, Department of Material Science and Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Republic of Korea
| |
Collapse
|
75
|
Baghdadi YN, Sinno J, Bouhadir K, Harb M, Mustapha S, Patra D, Tehrani‐Bagha AR. The mechanical and thermal properties of graphitic carbon nitride (
g‐C
3
N
4
)‐based epoxy composites. J Appl Polym Sci 2021. [DOI: 10.1002/app.51324] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Yasmine N. Baghdadi
- Department of Mechanical Engineering American University of Beirut Beirut Lebanon
| | - Jihad Sinno
- Department of Mechanical Engineering American University of Beirut Beirut Lebanon
| | - Kamal Bouhadir
- Department of Chemistry American University of Beirut Beirut Lebanon
| | - Mohammad Harb
- Department of Mechanical Engineering American University of Beirut Beirut Lebanon
| | - Samir Mustapha
- Department of Mechanical Engineering American University of Beirut Beirut Lebanon
| | - Digambara Patra
- Department of Chemistry American University of Beirut Beirut Lebanon
| | - Ali R. Tehrani‐Bagha
- B. & W. Bassatne Department of Chemical Engineering and Advanced Energy American University of Beirut Beirut Lebanon
- School of Chemical Engineering Alto University Espoo Finland
| |
Collapse
|
76
|
Kuntz C, Kuhn C, Weickenmeier H, Tischer S, Börnhorst M, Deutschmann O. Kinetic modeling and simulation of high-temperature by-product formation from urea decomposition. Chem Eng Sci 2021. [DOI: 10.1016/j.ces.2021.116876] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
77
|
Functionalization of 0-D and 2-D carbon nitride nanostructures on bio-derived carbon spheres for sustainable electrochemical supercapacitors. J Electroanal Chem (Lausanne) 2021. [DOI: 10.1016/j.jelechem.2021.115808] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
78
|
Nikookar M, Rezaeifard A, Maasoumeh Jafarpour, Grzhegorzhevskii KV, Ostroushko AA. A top-down design for easy gram scale synthesis of melem nano rectangular prisms with improved surface area. RSC Adv 2021; 11:38862-38867. [PMID: 35493241 PMCID: PMC9044278 DOI: 10.1039/d1ra07440g] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2021] [Accepted: 11/24/2021] [Indexed: 11/21/2022] Open
Abstract
An unprecedented top-down design for the preparation of melem by 1 h stirring of melamine-based g-C3N4 in 80 °C concentrated sulfuric acid (95-98%) was discovered. The melem product was formed selectively as a monomer on the gram scale without the need for controlled conditions, inert atmosphere, and a special purification technique. The as-prepared air-stable melem showed a distinctive nano rectangular prism morphology that possesses a larger surface area than the melems achieved by traditional bottom-up designs making it a promising candidate for catalysis and adsorption processes.
Collapse
Affiliation(s)
- Mahsa Nikookar
- Catalysis Research Laboratory, Department of Chemistry, Faculty of Science, University of Birjand Birjand 97175-414 Iran
| | - Abdolreza Rezaeifard
- Catalysis Research Laboratory, Department of Chemistry, Faculty of Science, University of Birjand Birjand 97175-414 Iran
| | - Maasoumeh Jafarpour
- Catalysis Research Laboratory, Department of Chemistry, Faculty of Science, University of Birjand Birjand 97175-414 Iran
| | - Kirill V Grzhegorzhevskii
- Institute of Natural Sciences and Mathematics, Ural Federal University named after the B. N. Yeltsin Ekaterinburg 620002 Russia
| | - Alexander A Ostroushko
- Institute of Natural Sciences and Mathematics, Ural Federal University named after the B. N. Yeltsin Ekaterinburg 620002 Russia
| |
Collapse
|
79
|
Bafekry A, Faraji M, Hieu NN, Ang YS, Karbasizadeh S, Abdolhosseini Sarsari I, Ghergherehchi M. Two-dimensional Dirac half-metal in porous carbon nitride C 6N 7monolayer via atomic doping. NANOTECHNOLOGY 2021; 33:075707. [PMID: 34673552 DOI: 10.1088/1361-6528/ac31e7] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/12/2021] [Accepted: 10/21/2021] [Indexed: 06/13/2023]
Abstract
Motivated by the recent experimental discovery of C6N7monolayer (Zhaoet al2021Science Bulletin66, 1764), we show that C6N7monolayer co-doped with C atom is a Dirac half-metal by employing first-principle density functional theory calculations. The structural, mechanical, electronic and magnetic properties of the co-doped C6N7are investigated by both the PBE and HSE06 functionals. Pristine C6N7monolayer is a semiconductor with almost isotropic electronic dispersion around the Γ point. As the doping of the C6N7takes place, the substitution of an N atom with a C atom transforms the monolayer into a dilute magnetic semiconductor, with the spin-up channel showing a band gap of 2.3 eV, while the spin-down channel exhibits a semimetallic phase with multiple Dirac points. The thermodynamic stability of the system is also checked out via AIMD simulations, showing the monolayer to be free of distortion at 500 K. The emergence of Dirac half-metal in carbon nitride monolayer via atomic doping reveals an exciting material platform for designing novel nanoelectronics and spintronics devices.
Collapse
Affiliation(s)
- A Bafekry
- Department of Radiation Application, Shahid Beheshti University, Tehran, Iran
| | - M Faraji
- Micro and Nanotechnology Graduate Program, TOBB University of Economics and Technology, Sogutozu Caddesi No 43 Sogutozu, 06560 Ankara, Turkey
| | - N N Hieu
- Institute of Research and Development, Duy Tan University, Da Nang 550000, Vietnam
- Faculty of Natural Sciences, Duy Tan University, Da Nang 550000, Vietnam
| | - Yee Sin Ang
- Science, Mathematics and Technology (SMT) Cluster, Singapore University of Technology and Design, 487372, Singapore
| | - S Karbasizadeh
- Department of Physics, Isfahan University of Technology, Isfahan 84156-83111, Iran
| | | | - M Ghergherehchi
- Department of Electrical and Computer Engineering, Sungkyunkwan University, 16419 Suwon, Republic of Korea
| |
Collapse
|
80
|
Li H, Zhang C, Wang J, Chong H, Zhang T, Wang C. Pristine Graphic Carbon Nitride Quantum Dots for the Visualized Detection of Latent Fingerprints. ANAL SCI 2021; 37:1497-1503. [PMID: 33867399 DOI: 10.2116/analsci.20p336] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
User-friendly fingerprint powders, namely efficient, low-cost and nontoxic ones, are always desirable for the development of latent fingerprints (LFPs). Here, we described the use of pristine graphic carbon nitride quantum dots (g-C3N4 QDs) as a new kind of user-friendly fingerprint powder. The g-C3N4 QDs can be easily prepared from urea and sodium citrate precursors through low temperature solid-phase reaction. Due to their good optical properties and selective interactions with secretion residuals, the g-C3N4 QDs powders were exploited to develop LFPs on different substrates by the powder dusting technique. The LFP images on a plastic bag exhibited a high ridge and furrow contrast ratio, allowing for easy identification of level 1 - 3 details of LFPs. This work indicates that the g-C3N4 QD powders provide good performance for LFP visualization and is likely to be adopted for some applications in forensic investigations.
Collapse
Affiliation(s)
- Haidong Li
- School of Chemistry and Chemical Engineering, Yangzhou University
| | | | - Jun Wang
- School of Chemistry and Chemical Engineering, Yangzhou University
| | - Hui Chong
- School of Chemistry and Chemical Engineering, Yangzhou University
| | - Tian Zhang
- School of Chemistry and Chemical Engineering, Yangzhou University
| | - Chengyin Wang
- School of Chemistry and Chemical Engineering, Yangzhou University
| |
Collapse
|
81
|
Trangwachirachai K, Chen CH, Lin YC. Anaerobic conversion of methane to acetonitrile over solid-state-pyrolysis-synthesized GaN catalysts. MOLECULAR CATALYSIS 2021. [DOI: 10.1016/j.mcat.2021.111961] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
82
|
Torad NL, El-Hosainy H, Esmat M, El-Kelany KE, Tahawy R, Na J, Ide Y, Fukata N, Chaikittisilp W, Hill JP, Zhang X, El-Kemary M, Yamauchi Y. Phenyl-Modified Carbon Nitride Quantum Nanoflakes for Ultra-Highly Selective Sensing of Formic Acid: A Combined Experimental by QCM and Density Functional Theory Study. ACS APPLIED MATERIALS & INTERFACES 2021; 13:48595-48610. [PMID: 34633180 DOI: 10.1021/acsami.1c12196] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Formic acid (HCOOH) is an important intermediate in chemical synthesis, pharmaceuticals, the food industry, and leather tanning and is considered to be an effective hydrogen storage molecule. Direct contact with its vapor and its inhalation lead to burns, nerve injury, and dermatosis. Thus, it is critical to establish efficient sensing materials and devices for the rapid detection of HCOOH. In the present study, we introduce a chemical sensor based on a quartz crystal microbalance (QCM) sensor capable of detecting trace amounts of HCOOH. This sensor is composed of colloidal phenyl-terminated carbon nitride (Ph-g-C3N4) quantum nanoflakes prepared using a facile solid-state method involving the supramolecular preorganization technology. In contrast to other synthetic methods of modified carbon nitride materials, this approach requires no hard templates, hazardous chemicals, or hydrothermal treatments. Comprehensive characterization and density functional theory (DFT) calculations revealed that the QCM sensor designed and prepared here exhibits enhanced detection sensitivity and selectivity for volatile HCOOH, which originates from chemical and hydrogen-bonding interactions between HCOOH and the surface of Ph-g-C3N4. According to DFT results, HCOOH is located close to the cavity of the Ph-g-C3N4 unit, with bonding to graphitic carbon and pyridinic nitrogen atoms of the nanoflake. The sensitivity of the Ph-g-C3N4-nanoflake-based QCM sensor was found to be the highest (128.99 Hz ppm-1) of the substances studied, with a limit of detection (LOD) of HCOOH down to a sub-ppm level of 80 ppb. This sensing technology based on phenyl-terminated attached-g-C3N4 nanoflakes establishes a simple, low-cost solution to improve the performance of QCM sensors for the effective discrimination of HCOOH, HCHO, and CH3COOH vapors using smart electronic noses.
Collapse
Affiliation(s)
- Nagy L Torad
- Jiangsu Key Laboratory of Electrochemical Energy-Storage Technologies, College of Materials Science and Technology, Nanjing University of Aeronautics and Astronautics (NUAA), Nanjing 210016, China
- JST-ERATO Yamauchi Materials Space-Tectonics Project and International Center for Materials Nanoarchitectonics (WPI-MANA), National Institute for Materials Science (NIMS), 1-1 Namiki, Tsukuba, Ibaraki 305-0044, Japan
- Australian Institute for Bioengineering and Nanotechnology (AIBN) and School of Chemical Engineering, The University of Queensland, Brisbane, QLD 4072, Australia
- Chemistry Department, Faculty of Science, Tanta University, Tanta 31527, Egypt
| | - Hamza El-Hosainy
- JST-ERATO Yamauchi Materials Space-Tectonics Project and International Center for Materials Nanoarchitectonics (WPI-MANA), National Institute for Materials Science (NIMS), 1-1 Namiki, Tsukuba, Ibaraki 305-0044, Japan
- Institute of Nanoscience & Nanotechnology, Kafrelsheikh University, Kafrelsheikh 33516, Egypt
| | - Mohamed Esmat
- JST-ERATO Yamauchi Materials Space-Tectonics Project and International Center for Materials Nanoarchitectonics (WPI-MANA), National Institute for Materials Science (NIMS), 1-1 Namiki, Tsukuba, Ibaraki 305-0044, Japan
- Materials Science and Nanotechnology Department, Faculty of Postgraduate Studies for Advanced Sciences (PSAS), Beni-Suef University (BSU), Beni-Suef 62511, Egypt
| | - Khaled E El-Kelany
- Institute of Nanoscience & Nanotechnology, Kafrelsheikh University, Kafrelsheikh 33516, Egypt
| | - Rafat Tahawy
- JST-ERATO Yamauchi Materials Space-Tectonics Project and International Center for Materials Nanoarchitectonics (WPI-MANA), National Institute for Materials Science (NIMS), 1-1 Namiki, Tsukuba, Ibaraki 305-0044, Japan
| | - Jongbeom Na
- Australian Institute for Bioengineering and Nanotechnology (AIBN) and School of Chemical Engineering, The University of Queensland, Brisbane, QLD 4072, Australia
| | - Yusuke Ide
- JST-ERATO Yamauchi Materials Space-Tectonics Project and International Center for Materials Nanoarchitectonics (WPI-MANA), National Institute for Materials Science (NIMS), 1-1 Namiki, Tsukuba, Ibaraki 305-0044, Japan
| | - Naoki Fukata
- JST-ERATO Yamauchi Materials Space-Tectonics Project and International Center for Materials Nanoarchitectonics (WPI-MANA), National Institute for Materials Science (NIMS), 1-1 Namiki, Tsukuba, Ibaraki 305-0044, Japan
| | - Watcharop Chaikittisilp
- JST-ERATO Yamauchi Materials Space-Tectonics Project and International Center for Materials Nanoarchitectonics (WPI-MANA), National Institute for Materials Science (NIMS), 1-1 Namiki, Tsukuba, Ibaraki 305-0044, Japan
- Research and Services Division of Materials Data and Integrated System (MaDIS), National Institute for Materials Science (NIMS), 1-1 Namiki, Tsukuba, Ibaraki 305-0044, Japan
| | - Jonathan P Hill
- JST-ERATO Yamauchi Materials Space-Tectonics Project and International Center for Materials Nanoarchitectonics (WPI-MANA), National Institute for Materials Science (NIMS), 1-1 Namiki, Tsukuba, Ibaraki 305-0044, Japan
| | - Xiaogang Zhang
- Jiangsu Key Laboratory of Electrochemical Energy-Storage Technologies, College of Materials Science and Technology, Nanjing University of Aeronautics and Astronautics (NUAA), Nanjing 210016, China
| | - Maged El-Kemary
- Institute of Nanoscience & Nanotechnology, Kafrelsheikh University, Kafrelsheikh 33516, Egypt
| | - Yusuke Yamauchi
- JST-ERATO Yamauchi Materials Space-Tectonics Project and International Center for Materials Nanoarchitectonics (WPI-MANA), National Institute for Materials Science (NIMS), 1-1 Namiki, Tsukuba, Ibaraki 305-0044, Japan
- Australian Institute for Bioengineering and Nanotechnology (AIBN) and School of Chemical Engineering, The University of Queensland, Brisbane, QLD 4072, Australia
| |
Collapse
|
83
|
Burmeister D, Trunk MG, Bojdys MJ. Development of metal-free layered semiconductors for 2D organic field-effect transistors. Chem Soc Rev 2021; 50:11559-11576. [PMID: 34661213 PMCID: PMC8521667 DOI: 10.1039/d1cs00497b] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2021] [Indexed: 12/23/2022]
Abstract
To this day, the active components of integrated circuits consist mostly of (semi-)metals. Concerns for raw material supply and pricing aside, the overreliance on (semi-)metals in electronics limits our abilities (i) to tune the properties and composition of the active components, (ii) to freely process their physical dimensions, and (iii) to expand their deployment to applications that require optical transparency, mechanical flexibility, and permeability. 2D organic semiconductors match these criteria more closely. In this review, we discuss a number of 2D organic materials that can facilitate charge transport across and in-between their π-conjugated layers as well as the challenges that arise from modulation and processing of organic polymer semiconductors in electronic devices such as organic field-effect transistors.
Collapse
Affiliation(s)
- David Burmeister
- Institut für Chemie, Humboldt-Universität zu Berlin, Brook-Taylor-Str. 2, 12489 Berlin, Germany.
- Integrative Research Institute for the Sciences Adlershof, Humboldt-Universität zu Berlin, Zum Großen Windkanal 2, 12489 Berlin, Germany
| | - Matthias G Trunk
- Institut für Chemie, Humboldt-Universität zu Berlin, Brook-Taylor-Str. 2, 12489 Berlin, Germany.
- Integrative Research Institute for the Sciences Adlershof, Humboldt-Universität zu Berlin, Zum Großen Windkanal 2, 12489 Berlin, Germany
| | - Michael J Bojdys
- Institut für Chemie, Humboldt-Universität zu Berlin, Brook-Taylor-Str. 2, 12489 Berlin, Germany.
- Integrative Research Institute for the Sciences Adlershof, Humboldt-Universität zu Berlin, Zum Großen Windkanal 2, 12489 Berlin, Germany
- Department of Chemistry, King's College London, Britannia House Guy's Campus, 7 Trinity Street, London, SE1 1DB, UK
| |
Collapse
|
84
|
Energy landscapes of perfect and defective solids: from structure prediction to ion conduction. Theor Chem Acc 2021. [DOI: 10.1007/s00214-021-02834-w] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
AbstractThe energy landscape concept is increasingly valuable in understanding and unifying the structural, thermodynamic and dynamic properties of inorganic solids. We present a range of examples which include (i) structure prediction of new bulk phases including carbon nitrides, phosphorus carbides, LiMgF3 and low-density, ultra-flexible polymorphs of B2O3, (ii) prediction of graphene and related forms of ZnO, ZnS and other compounds which crystallise in the bulk with the wurtzite structure, (iii) solid solutions, (iv) understanding grossly non-stoichiometric oxides including the superionic phases of δ-Bi2O3 and BIMEVOX and the consequences for the mechanisms of ion transport in these fast ion conductors. In general, examination of the energy landscapes of disordered materials highlights the importance of local structural environments, rather than sole consideration of the average structure.
Collapse
|
85
|
Burmeister D, Tran HA, Müller J, Guerrini M, Cocchi C, Plaickner J, Kochovski Z, List-Kratochvil EJW, Bojdys MJ. Optimized Synthesis of Solution-Processable Crystalline Poly(Triazine Imide) with Minimized Defects for OLED Application. Angew Chem Int Ed Engl 2021; 61:e202111749. [PMID: 34634165 PMCID: PMC9300060 DOI: 10.1002/anie.202111749] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2021] [Revised: 09/29/2021] [Indexed: 11/13/2022]
Abstract
Poly(triazine imide) (PTI) is a highly crystalline semiconductor, and though no techniques exist that enable synthesis of macroscopic monolayers of PTI, it is possible to study it in thin layer device applications that are compatible with its polycrystalline, nanoscale morphology. We find that the by‐product of conventional PTI synthesis is a C−C carbon‐rich phase that is detrimental for charge transport and photoluminescence. An optimized synthetic protocol yields a PTI material with an increased quantum yield, enabled photocurrent and electroluminescence. We report that protonation of the PTI structure happens preferentially at the pyridinic N atoms of the triazine rings, is accompanied by exfoliation of PTI layers, and contributes to increases in quantum yield and exciton lifetimes. This study describes structure–property relationships in PTI that link the nature of defects, their formation, and how to avoid them with the optical and electronic performance of PTI. On the basis of our findings, we create an OLED prototype with PTI as the active, metal‐free material.
Collapse
Affiliation(s)
- David Burmeister
- Department of Chemistry, Department of Physics, IRIS Adlershof, Humboldt-Universität zu Berlin, Zum Grossen Windkanal 2, 12489, Berlin, Germany
| | - Ha Anh Tran
- Department of Chemistry, Department of Physics, IRIS Adlershof, Humboldt-Universität zu Berlin, Zum Grossen Windkanal 2, 12489, Berlin, Germany
| | - Johannes Müller
- Department of Physics, IRIS Adlershof, Humboldt-Universität zu Berlin, Brook-Taylor-Strasse 15, 12489, Berlin, Germany
| | - Michele Guerrini
- Institute of Physics, Carl von Ossietzky Universität Oldenburg, 26129, Oldenburg, Germany
| | - Caterina Cocchi
- Department of Physics, IRIS Adlershof, Humboldt-Universität zu Berlin, Brook-Taylor-Strasse 15, 12489, Berlin, Germany.,Institute of Physics, Carl von Ossietzky Universität Oldenburg, 26129, Oldenburg, Germany
| | - Julian Plaickner
- Helmholtz-Zentrum Berlin für Materialien und Energie GmbH, Hahn-Meitner-Platz 1, 14109, Berlin, Germany.,Leibniz-Institut für Analytische Wissenschaften-IAS e.V., Schwarzschildstrasse 8, 12489, Berlin, Germany
| | - Zdravko Kochovski
- Institute of Electrochemical Energy Storage, Helmholtz-Zentrum Berlin für Materialien und Energie, Hahn-Meitner-Platz 1, 14109, Berlin, Germany
| | - Emil J W List-Kratochvil
- Department of Chemistry, Department of Physics, IRIS Adlershof, Humboldt-Universität zu Berlin, Zum Grossen Windkanal 2, 12489, Berlin, Germany
| | - Michael J Bojdys
- Department of Chemistry, Kings College London, Britannia House Guy's Campus, 7 Trinity Street, London, SE1 1DB, United Kingdom.,Department of Chemistry, Department of Physics, IRIS Adlershof, Humboldt-Universität zu Berlin, Zum Grossen Windkanal 2, 12489, Berlin, Germany
| |
Collapse
|
86
|
Fallah S, Hadadzadeh H, Farrokhpour H, Shakeri J, Weil M, Foelske A, Sauer M. Enhancement of photocatalytic oxidation of benzyl alcohol by edge-functionalized modified carbon nitride: A DFT evaluation. J Photochem Photobiol A Chem 2021. [DOI: 10.1016/j.jphotochem.2021.113452] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
87
|
Stroyuk O, Raievska O, Zahn DRT. Single-layer carbon nitride: synthesis, structure, photophysical/photochemical properties, and applications. Phys Chem Chem Phys 2021; 23:20745-20764. [PMID: 34542127 DOI: 10.1039/d1cp03457j] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
This Perspective provides a critical summary of the current state of the art in the synthesis and properties of polyheptazine single-layer carbon nitride (SLCN). The summary combines the authors' research and literature reports on SLCN concerning the synthesis of single-layer polyheptazine sheets, light absorption and emission by SLCN, photochemical and photocatalytic properties of SLCN as well as examples of applications of SLCN sheets as "building blocks" in heterostructures with nanocrystalline semiconductors and metals. The Perspective is concluded with an outlook discussing the most promising directions for further studies and applications of SLCN and related composites.
Collapse
Affiliation(s)
- Oleksandr Stroyuk
- Forschungszentrum Jülich GmbH, Helmholtz-Institut Erlangen Nürnberg für Erneuerbare Energien (HI ERN), Immerwahrstr. 2, 91058 Erlangen, Germany.
| | - Oleksandra Raievska
- Semiconductor Physics, Chemnitz University of Technology, D-09107 Chemnitz, Germany. .,Center for Materials, Architectures, and Integration of Nanomembranes (MAIN), Chemnitz University of Technology, D-09107 Chemnitz, Germany
| | - Dietrich R T Zahn
- Semiconductor Physics, Chemnitz University of Technology, D-09107 Chemnitz, Germany. .,Center for Materials, Architectures, and Integration of Nanomembranes (MAIN), Chemnitz University of Technology, D-09107 Chemnitz, Germany
| |
Collapse
|
88
|
Development of g-C3N4-TiO2 visible active hybrid photocatalyst for the photodegradation of methyl orange. RESEARCH ON CHEMICAL INTERMEDIATES 2021. [DOI: 10.1007/s11164-021-04561-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
89
|
Photocatalytic Fixation of Molecular Nitrogen in Systems Based on Graphite-Like Carbon Nitride: a Review. THEOR EXP CHEM+ 2021. [DOI: 10.1007/s11237-021-09678-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
90
|
Lim XB, Ong WJ. A current overview of the oxidative desulfurization of fuels utilizing heat and solar light: from materials design to catalysis for clean energy. NANOSCALE HORIZONS 2021; 6:588-633. [PMID: 34018529 DOI: 10.1039/d1nh00127b] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/26/2023]
Abstract
The ceaseless increase of pollution cases due to the tremendous consumption of fossil fuels has steered the world towards an environmental crisis and necessitated urgency to curtail noxious sulfur oxide emissions. Since the world is moving toward green chemistry, a fuel desulfurization process driven by clean technology is of paramount significance in the field of environmental remediation. Among the novel desulfurization techniques, the oxidative desulfurization (ODS) process has been intensively studied and is highlighted as the rising star to effectuate sulfur-free fuels due to its mild reaction conditions and remarkable desulfurization performances in the past decade. This critical review emphasizes the latest advances in thermal catalytic ODS and photocatalytic ODS related to the design and synthesis routes of myriad materials. This encompasses the engineering of metal oxides, ionic liquids, deep eutectic solvents, polyoxometalates, metal-organic frameworks, metal-free materials and their hybrids in the customization of advantageous properties in terms of morphology, topography, composition and electronic states. The essential connection between catalyst characteristics and performances in ODS will be critically discussed along with corresponding reaction mechanisms to provide thorough insight for shaping future research directions. The impacts of oxidant type, solvent type, temperature and other pivotal factors on the effectiveness of ODS are outlined. Finally, a summary of confronted challenges and future outlooks in the journey to ODS application is presented.
Collapse
Affiliation(s)
- Xian Bin Lim
- School of Energy and Chemical Engineering, Xiamen University Malaysia, Selangor Darul Ehsan 43900, Malaysia. and Center of Excellence for NaNo Energy & Catalysis Technology (CONNECT), Xiamen University Malaysia, Selangor Darul Ehsan 43900, Malaysia
| | - Wee-Jun Ong
- School of Energy and Chemical Engineering, Xiamen University Malaysia, Selangor Darul Ehsan 43900, Malaysia. and Center of Excellence for NaNo Energy & Catalysis Technology (CONNECT), Xiamen University Malaysia, Selangor Darul Ehsan 43900, Malaysia and College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
| |
Collapse
|
91
|
Azhdari A, Azizi N. Design and preparation of HPW-anchored magnetic carbon nitride nanosheets: an efficient and eco-friendly nanocomposite for one-pot synthesis of α-amino phosphonates. RESEARCH ON CHEMICAL INTERMEDIATES 2021. [DOI: 10.1007/s11164-021-04545-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
|
92
|
Keshavarz M, Dekamin MG, Mamaghani M, Nikpassand M. Tetramethylguanidine-functionalized melamine as a multifunctional organocatalyst for the expeditious synthesis of 1,2,4-triazoloquinazolinones. Sci Rep 2021; 11:14457. [PMID: 34262059 PMCID: PMC8280119 DOI: 10.1038/s41598-021-91463-1] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2020] [Accepted: 05/27/2021] [Indexed: 11/08/2022] Open
Abstract
Novel nano-ordered 1,1,3,3-tetramethylguanidine-functionalized melamine (Melamine@TMG) organocatalyst was prepared and adequately identified by various techniques including FTIR, EDX, XRD and SEM spectroscopic or microscopic methods as well as TGA and DTG analytical methods. The Melamine@TMG, as an effective multifunctional organocatalyst, was found to promote smoothly the three-component synthesis of 1,2,4-triazoloquinazolinone derivatives using cyclic dimedone, 3-amino-1,2,4-triazole and different benzaldehyde derivatives in EtOH at 40 °C. This practical method afforded the desired products in high to excellent yields (86-99%) and short reaction times (10-25 min). The main advantages of this new method are the use of heterogeneous multifunctional nanocatalyst, simple work-up procedure with no need for chromatographic purification, highly selective conversion of substrates and recyclability of the catalyst, which could be used in five consecutive runs with only a small decrease in its activity.
Collapse
Affiliation(s)
- Mahnoush Keshavarz
- Department of Chemistry, Faculty of Basic Sciences, Rasht Branch , Islamic Azad University, P.O. Box 41335-3516, Rasht, Iran
| | - Mohammad G Dekamin
- Department of Chemistry, Iran University of Science and Technology, 16846-13114, Tehran, Iran.
| | - Manouchehr Mamaghani
- Department of Chemistry, Faculty of Sciences, University of Guilan, P.O. Box 41335-1914, Rasht, Iran.
| | - Mohammad Nikpassand
- Department of Chemistry, Faculty of Basic Sciences, Rasht Branch , Islamic Azad University, P.O. Box 41335-3516, Rasht, Iran
| |
Collapse
|
93
|
Ma L, Jiang P, Wang K, Huang X, Yang M, Gong L, Li R. High‐efficiency catalyst for copper nanoparticles attached to porous nitrogen‐doped carbon materials: Applied to the coupling reaction of alkyne groups under mild conditions. Appl Organomet Chem 2021. [DOI: 10.1002/aoc.6163] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Affiliation(s)
- Lei Ma
- State Key Laboratory of Applied Organic Chemistry (SKLAOC), the Key Laboratory of Catalytic Engineering of Gansu Province, College of Chemistry and Chemical Engineering Lanzhou University Lanzhou China
| | - Pengbo Jiang
- State Key Laboratory of Applied Organic Chemistry (SKLAOC), the Key Laboratory of Catalytic Engineering of Gansu Province, College of Chemistry and Chemical Engineering Lanzhou University Lanzhou China
| | - Kaizhi Wang
- State Key Laboratory of Applied Organic Chemistry (SKLAOC), the Key Laboratory of Catalytic Engineering of Gansu Province, College of Chemistry and Chemical Engineering Lanzhou University Lanzhou China
| | - Xiaokang Huang
- State Key Laboratory of Applied Organic Chemistry (SKLAOC), the Key Laboratory of Catalytic Engineering of Gansu Province, College of Chemistry and Chemical Engineering Lanzhou University Lanzhou China
| | - Ming Yang
- State Key Laboratory of Applied Organic Chemistry (SKLAOC), the Key Laboratory of Catalytic Engineering of Gansu Province, College of Chemistry and Chemical Engineering Lanzhou University Lanzhou China
| | - Li Gong
- State Key Laboratory of Applied Organic Chemistry (SKLAOC), the Key Laboratory of Catalytic Engineering of Gansu Province, College of Chemistry and Chemical Engineering Lanzhou University Lanzhou China
| | - Rong Li
- State Key Laboratory of Applied Organic Chemistry (SKLAOC), the Key Laboratory of Catalytic Engineering of Gansu Province, College of Chemistry and Chemical Engineering Lanzhou University Lanzhou China
| |
Collapse
|
94
|
Hortelano C, Ruiz-Bermejo M, de la Fuente JL. Solid-state polymerization of diaminomaleonitrile: Toward a new generation of conjugated functional materials. POLYMER 2021. [DOI: 10.1016/j.polymer.2021.123696] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|
95
|
Hu S, Yu A, Lu R. A comparison study of sodium ion- and potassium ion-modified graphitic carbon nitride for photocatalytic hydrogen evolution. RSC Adv 2021; 11:15701-15709. [PMID: 35481164 PMCID: PMC9029307 DOI: 10.1039/d1ra01395e] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2021] [Accepted: 04/14/2021] [Indexed: 11/21/2022] Open
Abstract
It is well known that modifying graphitic carbon nitride (GCN) is an imperative strategy to improve its photocatalytic activity. In this study, Na-doped and K-doped graphitic carbon nitride (GCN-Na and GCN-K) were prepared via the simple thermal polymerization of a mixture of melamine and NaCl or KCl, respectively. The structure characterization showed that both Na+ and K+ intercalation could reduce the interlayer distance of GCN and introduce cyano defects in GCN, while K+ apparently had a stronger influence on the structure variation of GCN. The chemical composition data showed that both Na+ and K+ could easily interact with GCN, while K-doping caused a greater change in the C/N ratio than Na-doping. Moreover, compared to GCN-Na-5 (5 represents weight ratio of alkali halide to melamine), the conduction and valence bands of GCN-K-5 both shifted upward based on the electronic and optical measurements. Consequently, GCN-K-5 yielded an H2 evolution rate around 4 times higher than that of GCN-Na-5 under visible light irradiation (>420 nm). The cation size effect on GCN was proposed to be mainly responsible for the variation in the structure, optical and electronic properties of ion-doped GCNs, and hence the enhanced photocatalytic H2 evolution. The current work can provide new insight into optimizing photocatalysts for enhanced photocatalytic performances. The ion size effect on graphitic carbon nitride is responsible for variations in its structure, optical and electronic properties, and hence the enhancement in photocatalytic hydrogen evolution.![]()
Collapse
Affiliation(s)
- Siyu Hu
- Department of Chemistry, Renmin University of China Beijing 100872 P. R. China +86-10-6251-6444
| | - Anchi Yu
- Department of Chemistry, Renmin University of China Beijing 100872 P. R. China +86-10-6251-6444
| | - Rong Lu
- Department of Chemistry, Renmin University of China Beijing 100872 P. R. China +86-10-6251-6444
| |
Collapse
|
96
|
Zhang X, Yang P, Jiang SP. Pt nanoparticles embedded spine-like g-C 3N 4 nanostructures with superior photocatalytic activity for H 2 generation and CO 2 reduction. NANOTECHNOLOGY 2021; 32:175401. [PMID: 33461184 DOI: 10.1088/1361-6528/abdcee] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Conventional two-dimensional (2D) graphitic carbon nitride, 2D g-C3N4 with its layered structures and flat and smooth 2D surface possesses certain disadvantages that is affecting their photocatalytic performances. In this paper, new nanostructured spine-like three-dimensional (3D) g-C3N4 nanostructures are created for the first time via a new three-step synthesis method. In this method, self-assembly of layered precursors and H+ intercalation introduced by acid treatment play an important role for the unique nanostructure formation of 3D g-C3N4 nanostructures. The spine-like 3D g-C3N4 nanostructures show a superior photocatalytic performance for H2 generation, achieving 4500 μmol·g-1·h-1, 8.2 times higher than that on conventional 2D g-C3N4. Remarkably spine-like 3D g-C3N4 nanostructures demonstrate a clear photocatalytic activity toward CO2 reduction to CH4 (0.71 μmol·g-1·h-1) in contrast to the negligible photocatalytic performance of conventional 2D g-C3N4 for the reaction. Adding Pt clusters as co-catalysts substantially enhance the CH4 generation rate of the 3D g-C3N4 nanostructures by 4 times (2.7 μmol·g-1·h-1). Spine-like 3D g-C3N4 caged nanostructure leads to the significantly increased active sites and negatively shifted conduction band position in comparison with conventional 2D g-C3N4, favorable for the photocatalytic reduction reaction. This study demonstrates a new platform for the development of efficient photocatalysts based on nanostructured 3D g-C3N4 for H2 generation and conversion of CO2 to useful fuels such as CH4.
Collapse
Affiliation(s)
- Xiao Zhang
- Fuels and Energy Technology Institute and Department of Chemical Engineering, Curtin University, Perth, WA6845, Australia
| | - Ping Yang
- School of Material Science and Engineering, University of Jinan, 250022, Jinan, People's Republic of China
| | - San Ping Jiang
- Fuels and Energy Technology Institute and Department of Chemical Engineering, Curtin University, Perth, WA6845, Australia
| |
Collapse
|
97
|
Lanzilotto V, Grazioli C, Stredansky M, Zhang T, Schio L, Goldoni A, Floreano L, Motta A, Cossaro A, Puglia C. Tailoring surface-supported water-melamine complexes by cooperative H-bonding interactions. NANOSCALE ADVANCES 2021; 3:2359-2365. [PMID: 36133766 PMCID: PMC9419257 DOI: 10.1039/d0na01034k] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/09/2020] [Accepted: 02/23/2021] [Indexed: 06/15/2023]
Abstract
The water-splitting photo-catalysis by carbon nitride heterocycles has been the subject of recent theoretical investigations, revealing a proton-coupled electron transfer (PCET) reaction from the H-bonded water molecule to the CN-heterocycle. In this context, a detailed characterization of the water-catalyst binding configuration becomes mandatory in order to validate and possibly improve the theoretical modeling. To this aim, we built a well-defined surface-supported water/catalyst interface by adsorbing water under ultra-high vacuum (UHV) conditions on a monolayer of melamine grown on the Cu(111) surface. By combining X-ray photoemission (XPS) and absorption (NEXAFS) spectroscopy we observed that melamine adsorbed onto copper is strongly tilted off the surface, with one amino group dangling to the vacuum side. The binding energy (BE) of the corresponding N 1s component is significantly higher compared to other N 1s contributions and displays a clear shift to lower BE as water is adsorbed. This finding along with density functional theory (DFT) results reveals that two adjacent melamine molecules concurrently work for stabilizing the H-bonded water-catalyst complex: one melamine acting as a H-donor via the amino-N (NH⋯OHH) and another one as a H-acceptor via the triazine-N (C[double bond, length as m-dash]N⋯HOH).
Collapse
Affiliation(s)
- Valeria Lanzilotto
- Department of Physics and Astronomy, Uppsala University P.O. Box 516 751 20 Uppsala Sweden
- Department of Chemistry, Sapienza University of Rome P.le Aldo Moro 8 00185 Roma Italy
- IOM-CNR, Istituto Officina dei Materiali Basovizza SS-14, Km 163.5 34149 Trieste Italy
| | - Cesare Grazioli
- IOM-CNR, Istituto Officina dei Materiali Basovizza SS-14, Km 163.5 34149 Trieste Italy
| | - Matus Stredansky
- IOM-CNR, Istituto Officina dei Materiali Basovizza SS-14, Km 163.5 34149 Trieste Italy
- Department of Physics, University of Trieste Via A. Valerio 2 34127 Trieste Italy
- School of Information and Electronics, MIIT Key Laboratory for Low-Dimensional Quantum Structure and Devices, Beijing Institute of Technology (BIT) 100081 Beijing China
| | - Teng Zhang
- Department of Physics and Astronomy, Uppsala University P.O. Box 516 751 20 Uppsala Sweden
- School of Information and Electronics, MIIT Key Laboratory for Low-Dimensional Quantum Structure and Devices, Beijing Institute of Technology (BIT) 100081 Beijing China
| | - Luca Schio
- IOM-CNR, Istituto Officina dei Materiali Basovizza SS-14, Km 163.5 34149 Trieste Italy
| | - Andrea Goldoni
- Elettra-Sincrotrone Trieste S.C.p.A. Basovizza SS-14, Km 163.5 34149 Trieste Italy
| | - Luca Floreano
- IOM-CNR, Istituto Officina dei Materiali Basovizza SS-14, Km 163.5 34149 Trieste Italy
| | - Alessandro Motta
- Consortium INSTM Via G. Giusti 9 50121 Firenze Italy
- Department of Chemistry, Sapienza University of Rome P.le Aldo Moro 8 00185 Roma Italy
| | - Albano Cossaro
- IOM-CNR, Istituto Officina dei Materiali Basovizza SS-14, Km 163.5 34149 Trieste Italy
- Department of Chemical and Pharmaceutical Sciences, University of Trieste Via Giorgieri 1 34127 Trieste Italy
| | - Carla Puglia
- Department of Physics and Astronomy, Uppsala University P.O. Box 516 751 20 Uppsala Sweden
| |
Collapse
|
98
|
Kumar S, Battula VR, Sharma N, Samanta S, Kailasam K. Understanding the role of soft linkers in designing hepatzine-based polymeric frameworks as heterogeneous (photo)catalyst. J Colloid Interface Sci 2021; 588:138-146. [PMID: 33388579 DOI: 10.1016/j.jcis.2020.12.040] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2020] [Revised: 11/30/2020] [Accepted: 12/14/2020] [Indexed: 11/24/2022]
Abstract
The emerging class of heptazine-based polymeric materials has shown potential candidature as photocatalyst materials for hydrogen evolution. At the same time, they have shown promising application as solid base materials to catalyse various organic transformations. Thus, the material design rationale needs to be developed around the heptazine-based polymeric frameworks in order to specifically design task specific materials. Herein, we utilised controlled reaction conditions to synthesize the desired polymeric networks with trichloroheptazine as precursor. Material design strategy employed nitrogen rich [tris(2-aminoethylamine) and hydrazine] as soft linkers to understand the effect on band structure of developed heptazine-based polymeric networks. The developed polymeric networks were explored as platform to study systematically the effect on their respective photophysical properties and understand their surface basicity. The framework having aminoalkyl linker showed superior activity in photocatalysis as well as heterogeneous base catalysis. Further, model catalysts revealed the importance of N-atoms as active basic sites in these systems.
Collapse
Affiliation(s)
- Sunil Kumar
- Advanced Functional Nanomaterials, Institute of Nano Science and Technology, Knowledge City, Sector 81, Manauli, SAS Nagar 140306, Punjab, India.
| | - Venugopala Rao Battula
- Advanced Functional Nanomaterials, Institute of Nano Science and Technology, Knowledge City, Sector 81, Manauli, SAS Nagar 140306, Punjab, India
| | - Neha Sharma
- Advanced Functional Nanomaterials, Institute of Nano Science and Technology, Knowledge City, Sector 81, Manauli, SAS Nagar 140306, Punjab, India
| | - Soumadri Samanta
- Advanced Functional Nanomaterials, Institute of Nano Science and Technology, Knowledge City, Sector 81, Manauli, SAS Nagar 140306, Punjab, India
| | - Kamalakannan Kailasam
- Advanced Functional Nanomaterials, Institute of Nano Science and Technology, Knowledge City, Sector 81, Manauli, SAS Nagar 140306, Punjab, India.
| |
Collapse
|
99
|
Vijeta A, Casadevall C, Roy S, Reisner E. Visible-Light Promoted C-O Bond Formation with an Integrated Carbon Nitride-Nickel Heterogeneous Photocatalyst. ANGEWANDTE CHEMIE (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2021; 133:8575-8580. [PMID: 38505321 PMCID: PMC10947600 DOI: 10.1002/ange.202016511] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/12/2020] [Indexed: 11/11/2022]
Abstract
Ni-deposited mesoporous graphitic carbon nitride (Ni-mpg-CNx) is introduced as an inexpensive, robust, easily synthesizable and recyclable material that functions as an integrated dual photocatalytic system. This material overcomes the need of expensive photosensitizers, organic ligands and additives as well as limitations of catalyst deactivation in the existing photo/Ni dual catalytic cross-coupling reactions. The dual catalytic Ni-mpg-CNx is demonstrated for C-O coupling between aryl halides and aliphatic alcohols under mild condition. The reaction affords the ether product in good-to-excellent yields (60-92 %) with broad substrate scope, including heteroaryl and aryl halides bearing electron-withdrawing, -donating and neutral groups. The heterogeneous Ni-mpg-CNx can be easily recovered from the reaction mixture and reused over multiple cycles without loss of activity. The findings highlight exciting opportunities for dual catalysis promoted by a fully heterogeneous system.
Collapse
Affiliation(s)
- Arjun Vijeta
- Department of ChemistryUniversity of CambridgeLensfield RoadCambridgeCB2 1EWUK
| | - Carla Casadevall
- Department of ChemistryUniversity of CambridgeLensfield RoadCambridgeCB2 1EWUK
| | - Souvik Roy
- Department of ChemistryUniversity of CambridgeLensfield RoadCambridgeCB2 1EWUK
- Current address: School of ChemistryUniversity of LincolnJoseph Banks LaboratoriesLincolnLN6 7DLUK
| | - Erwin Reisner
- Department of ChemistryUniversity of CambridgeLensfield RoadCambridgeCB2 1EWUK
| |
Collapse
|
100
|
Vijeta A, Casadevall C, Roy S, Reisner E. Visible-Light Promoted C-O Bond Formation with an Integrated Carbon Nitride-Nickel Heterogeneous Photocatalyst. Angew Chem Int Ed Engl 2021; 60:8494-8499. [PMID: 33559927 PMCID: PMC8048670 DOI: 10.1002/anie.202016511] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2020] [Indexed: 11/10/2022]
Abstract
Ni-deposited mesoporous graphitic carbon nitride (Ni-mpg-CNx ) is introduced as an inexpensive, robust, easily synthesizable and recyclable material that functions as an integrated dual photocatalytic system. This material overcomes the need of expensive photosensitizers, organic ligands and additives as well as limitations of catalyst deactivation in the existing photo/Ni dual catalytic cross-coupling reactions. The dual catalytic Ni-mpg-CNx is demonstrated for C-O coupling between aryl halides and aliphatic alcohols under mild condition. The reaction affords the ether product in good-to-excellent yields (60-92 %) with broad substrate scope, including heteroaryl and aryl halides bearing electron-withdrawing, -donating and neutral groups. The heterogeneous Ni-mpg-CNx can be easily recovered from the reaction mixture and reused over multiple cycles without loss of activity. The findings highlight exciting opportunities for dual catalysis promoted by a fully heterogeneous system.
Collapse
Affiliation(s)
- Arjun Vijeta
- Department of ChemistryUniversity of CambridgeLensfield RoadCambridgeCB2 1EWUK
| | - Carla Casadevall
- Department of ChemistryUniversity of CambridgeLensfield RoadCambridgeCB2 1EWUK
| | - Souvik Roy
- Department of ChemistryUniversity of CambridgeLensfield RoadCambridgeCB2 1EWUK
- Current address: School of ChemistryUniversity of LincolnJoseph Banks LaboratoriesLincolnLN6 7DLUK
| | - Erwin Reisner
- Department of ChemistryUniversity of CambridgeLensfield RoadCambridgeCB2 1EWUK
| |
Collapse
|