51
|
Chen H, Sun J, Wang Z, Zhou Y, Lou Z, Chen B, Wang P, Guo Z, Tang H, Ma J, Xia Y, Gu N, Zhang F. Magnetic Cell-Scaffold Interface Constructed by Superparamagnetic IONP Enhanced Osteogenesis of Adipose-Derived Stem Cells. ACS APPLIED MATERIALS & INTERFACES 2018; 10:44279-44289. [PMID: 30499649 DOI: 10.1021/acsami.8b17427] [Citation(s) in RCA: 51] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
One of the key factors in tissue engineering and regenerative medicine is to optimize the interaction between seed cells and scaffolds such that the cells can grow in naturally biomimetic conditions. Their similarity to macromolecules and many unique properties mean that functional nanoparticles have promising potential for the modification and improvement of traditional scaffolds to obtain excellent biocompatibility, tunable stiffness, physical sensing, and stimulus-response capabilities. In the present study, we report magnetic poly(lactic- co-glycolic acid)/polycaprolactone (PLGA/PCL) scaffolds that were fabricated using a combination of the electrospinning technique and layer-by-layer assembly of superparamagnetic iron oxide nanoparticles (IONPs). PLGA/PCL scaffolds assembled with gold nanoparticles were prepared using the same method for comparison. The results showed that the assembled film of nanoparticles on the surface greatly enhanced the hydrophilicity and increased the elastic modulus of the scaffold, which subsequently improved the osteogenesis of the stem cells. Furthermore, the magnetic property of the IONPs proved to be the key factor in enhancing osteogenic differentiation, which explained the superior osteogenic capacity of the magnetic scaffolds compared with that of the gold nanoparticle-assembled scaffold. These results demonstrated the importance of magnetic nanomaterials as a bioactive interface between cells and scaffolds and will promote the design of biomaterials to improve tissue engineering and regenerative medicine efficacy.
Collapse
Affiliation(s)
- Huimin Chen
- Jiangsu Key Laboratory of Oral Diseases , Nanjing Medical University , Nanjing , Jiangsu 210029 , China
| | - Jianfei Sun
- Jiangsu Key Laboratory for Biomaterials and Devices, School of Biological Science and Medical Engineering , Southeast University , Nanjing , Jiangsu 210096 , China
| | - Zibin Wang
- Analysis and Test Center , Nanjing Medical University Nanjing , Jiangsu 211166 , China
| | - Yi Zhou
- Yixing People's Hospital , Yixing , Jiangsu 214200 , China
| | - Zhichao Lou
- Jiangsu Key Laboratory for Biomaterials and Devices, School of Biological Science and Medical Engineering , Southeast University , Nanjing , Jiangsu 210096 , China
- College of Materials Science and Engineering , Nanjing Forestry University , Nanjing , Jiangsu 210037 , China
| | - Bo Chen
- Jiangsu Key Laboratory for Biomaterials and Devices, School of Biological Science and Medical Engineering , Southeast University , Nanjing , Jiangsu 210096 , China
- Materials Science and Devices Institute , Suzhou University of Science and Technology , Suzhou , Jiangsu 215009 , China
| | - Peng Wang
- Department of Sports Medicine and Adult Reconstructive Surgery , Drum Tower Hospital Affiliated to Medical School of Nanjing University , Nanjing , Jiangsu 210008 , China
| | - Zhirui Guo
- Department of Geriatrics, The Second Affiliated Hospital, Key Laboratory for Aging & Disease , Nanjing Medical University , Nanjing , Jiangsu 210011 , China
| | - Hui Tang
- Jiangsu Key Laboratory of Oral Diseases , Nanjing Medical University , Nanjing , Jiangsu 210029 , China
| | - Junqing Ma
- Jiangsu Key Laboratory of Oral Diseases , Nanjing Medical University , Nanjing , Jiangsu 210029 , China
| | - Yang Xia
- Jiangsu Key Laboratory of Oral Diseases , Nanjing Medical University , Nanjing , Jiangsu 210029 , China
- Jiangsu Key Laboratory for Biomaterials and Devices, School of Biological Science and Medical Engineering , Southeast University , Nanjing , Jiangsu 210096 , China
| | - Ning Gu
- Jiangsu Key Laboratory for Biomaterials and Devices, School of Biological Science and Medical Engineering , Southeast University , Nanjing , Jiangsu 210096 , China
- Collaborative Innovation Center of Suzhou Nano Science and Technology , Suzhou , Jiangsu 215123 , China
| | - Feimin Zhang
- Jiangsu Key Laboratory of Oral Diseases , Nanjing Medical University , Nanjing , Jiangsu 210029 , China
- Collaborative Innovation Center of Suzhou Nano Science and Technology , Suzhou , Jiangsu 215123 , China
| |
Collapse
|
52
|
zhao J, Zhang Z, Xue Y, Wang G, Cheng Y, Pan Y, Zhao S, Hou Y. Anti-tumor macrophages activated by ferumoxytol combined or surface-functionalized with the TLR3 agonist poly (I : C) promote melanoma regression. Theranostics 2018; 8:6307-6321. [PMID: 30613299 PMCID: PMC6299704 DOI: 10.7150/thno.29746] [Citation(s) in RCA: 93] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2018] [Accepted: 11/03/2018] [Indexed: 12/16/2022] Open
Abstract
Macrophages orchestrate inflammation and control the promotion or inhibition of tumors and metastasis. Ferumoxytol (FMT), a clinically approved iron oxide nanoparticle, possesses anti-tumor therapeutic potential by inducing pro-inflammatory macrophage polarization. Toll-like receptor 3 (TLR3) activation also potently enhances the anti-tumor response of immune cells. Herein, the anti-tumor potential of macrophages harnessed by FMT combined with the TLR3 agonist, poly (I:C) (PIC), and FP-NPs (nanoparticles composed of amino-modified FMT (FMT-NH2) surface functionalized with PIC) was explored. Methods: Proliferation of B16F10 cells co-cultured with macrophages was measured using immunofluorescence or flow cytometry (FCM). Phagocytosis was analyzed using FCM and fluorescence imaging. FP-NPs were prepared through electrostatic interactions and their properties were characterized using dynamic light scattering, transmission electron microscopy, and gel retardation assay. Anti-tumor and anti-metastasis effects were evaluated in B16F10 tumor-bearing mice, and tumor-infiltrating immunocytes were detected by immunofluorescence staining and FCM. Results: FMT, PIC, or the combination of both hardly impaired B16F10 cell viability. However, FMT combined with PIC synergistically inhibited their proliferation by shifting macrophages to a tumoricidal phenotype with upregulated TNF-α and iNOS, increased NO secretion and augmented phagocytosis induced by NOX2-derived ROS in vitro. Combined treatment with FMT/PIC and FMT-NH2/PIC respectively resulted in primary melanoma regression and alleviated pulmonary metastasis with elevated pro-inflammatory macrophage infiltration and upregulation of pro-inflammatory genes in vivo. In comparison, FP-NPs with properties of internalization by macrophages and accumulation in the lung produced a more pronounced anti-metastatic effect accompanied with decreased myeloid-derived suppressor cells, and tumor-associated macrophages shifted to M1 phenotype. In vitro mechanistic studies revealed that FP-NPs nanoparticles barely affected B16F10 cell viability, but specifically retarded their growth by steering macrophages to M1 phenotype through NF-κB signaling. Conclusion: FMT synergized with the TLR3 agonist PIC either in combination or as a nano-composition to induce macrophage activation for primary and metastatic melanoma regression, and the nano-composition of FP-NPs exhibited a more superior anti-metastatic efficacy.
Collapse
Affiliation(s)
- Jiaojiao zhao
- The State Key Laboratory of Pharmaceutical Biotechnology, Division of Immunology, Medical School, Nanjing University, Nanjing 210093, PR China
| | - Zhengkui Zhang
- MOE Key Laboratory of High Performance Polymer Materials and Technology, Department of Polymer Science & Engineering, College of Chemistry & Chemical Engineering, and Jiangsu Key Laboratory for Nanotechnology, Nanjing University , Nanjing, 210093, PR China
| | - Yaxian Xue
- The State Key Laboratory of Pharmaceutical Biotechnology, Division of Immunology, Medical School, Nanjing University, Nanjing 210093, PR China
| | - Guoqun Wang
- Department of Oncology, First Affiliated Hospital, Nanjing Medical University, Nanjing 211166, PR China
| | - Yuan Cheng
- Department of Biomedical Engineering, College of Engineering and Applied Sciences, Nanjing National Laboratory of Microstructures, Nanjing University, Nanjing, Jiangsu 210093, PR China
| | - Yuchen Pan
- The State Key Laboratory of Pharmaceutical Biotechnology, Division of Immunology, Medical School, Nanjing University, Nanjing 210093, PR China
| | - Shuli Zhao
- General Clinical Research Center, Nanjing First Hospital, Nanjing Medical University, Nanjing 210006, PR China
| | - Yayi Hou
- The State Key Laboratory of Pharmaceutical Biotechnology, Division of Immunology, Medical School, Nanjing University, Nanjing 210093, PR China
- Jiangsu Key Laboratory of Molecular Medicine, Nanjing University, Nanjing 210093, PR China
| |
Collapse
|
53
|
Qin Z, Li Y, Gu N. Progress in Applications of Prussian Blue Nanoparticles in Biomedicine. Adv Healthc Mater 2018; 7:e1800347. [PMID: 29974662 DOI: 10.1002/adhm.201800347] [Citation(s) in RCA: 164] [Impact Index Per Article: 23.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2018] [Revised: 06/03/2018] [Indexed: 12/29/2022]
Abstract
Prussian blue nanoparticles (PBNPs) with favorable biocompatibility and unique properties have captured the attention of extensive biomedical researchers. A great progress is made in the application of PBNPs as therapy and diagnostics agents in biomedicine. This review begins with the recent synthetic strategies of PBNPs and the regulatory approaches for their size, shape, and uniformity. Then, according to the different properties of PBNPs, their application in biomedicine is summarized in detail. With modifiable features, PBNPs can be used as drug carriers to improve the therapeutic efficacy. Moreover, the exchangeable protons and adsorbability enable PBNPs to decontaminate the radioactive ions from the body. For biomedical imaging, photoacoustic and magnetic resonance imaging based on PBNPs are summarized, as well as the strategies to improve the diagnostic effectiveness. The applications related to the photothermal effects and nanoenzyme activities of PBNPs are described. The challenges and critical factors for the clinical translation of PBNPs as multifunctional theranostic agents are also discussed. Finally, the future prospects for the application of PBNPs are considered. The aim of this review is to provide a better understanding and key consideration for rational design of this increasingly important new paradigm of PBNPs as theranostics.
Collapse
Affiliation(s)
- Zhiguo Qin
- State Key Laboratory of Bioelectronics; Jiangsu Key Laboratory for Biomaterials and Devices; School of Biological Science and Medical Engineering; Southeast University; Nanjing 210009 China
| | - Yan Li
- State Key Laboratory of Bioelectronics; Jiangsu Key Laboratory for Biomaterials and Devices; School of Biological Science and Medical Engineering; Southeast University; Nanjing 210009 China
| | - Ning Gu
- State Key Laboratory of Bioelectronics; Jiangsu Key Laboratory for Biomaterials and Devices; School of Biological Science and Medical Engineering; Southeast University; Nanjing 210009 China
| |
Collapse
|