51
|
The SUMO pathway promotes basic helix-loop-helix proneural factor activity via a direct effect on the Zn finger protein senseless. Mol Cell Biol 2012; 32:2849-60. [PMID: 22586269 DOI: 10.1128/mcb.06595-11] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
During development, proneural transcription factors of the basic helix-loop-helix (bHLH) family are required to commit cells to a neural fate. In Drosophila neurogenesis, a key mechanism promoting sense organ precursor (SOP) fate is the synergy between proneural factors and their coactivator Senseless in transcriptional activation of target genes. Here we present evidence that posttranslational modification by SUMO enhances this synergy via an effect on Senseless protein. We show that Senseless is a direct target for SUMO modification and that mutagenesis of a predicted SUMOylation motif in Senseless reduces Senseless/proneural synergy both in vivo and in cell culture. We propose that SUMOylation of Senseless via lysine 509 promotes its synergy with proneural proteins during transcriptional activation and hence regulates an important step in neurogenesis leading to the formation and maturation of the SOPs.
Collapse
|
52
|
Rosonina E, Duncan SM, Manley JL. Sumoylation of transcription factor Gcn4 facilitates its Srb10-mediated clearance from promoters in yeast. Genes Dev 2012; 26:350-5. [PMID: 22345516 DOI: 10.1101/gad.184689.111] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
The small ubiquitin-related modifier (SUMO) is a conserved factor that post-translationally regulates proteins involved in many cellular processes, including gene transcription. We previously demonstrated that promoter-bound factors become sumoylated during activation of inducible genes in yeast, but the identity of these factors, and the role of sumoylation in their function, was unknown. Here we show that the transcriptional activator Gcn4 is sumoylated on two specific lysine residues and in a manner that depends on its ability to bind DNA, indicating that sumoylation occurs after Gcn4 binding to target promoters. Importantly, this functions to facilitate the subsequent removal of the activator from these promoters after recruitment of RNA polymerase II, which can prevent inappropriate transcription of target genes. Furthermore, we show that clearance of sumoylated Gcn4 requires the protein kinase and Mediator complex subunit Srb10, linking activator removal with target gene transcription. Our study demonstrates an unexpected role for protein sumoylation in the process of transcriptional activation.
Collapse
Affiliation(s)
- Emanuel Rosonina
- Department of Biological Sciences, Columbia University, New York, New York 10027, USA
| | | | | |
Collapse
|
53
|
Lee MH, Kang JH, Lee SW. The significance of differential expression of genes and proteins in human primary cells caused by microgrooved biomaterial substrata. Biomaterials 2012; 33:3216-34. [PMID: 22285466 DOI: 10.1016/j.biomaterials.2012.01.034] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2012] [Accepted: 01/14/2012] [Indexed: 01/18/2023]
Abstract
We demonstrate that etched microgrooves, with truncated V-shape in cross-section and subsequent acid etching, on titanium substrata alter the expression of various genes and proteins in human primary cells. Etched microgrooves with 30 or 60 μm width and 10 μm depth promoted human gingival fibroblast proliferation and significantly enhanced the osteoblast differentiation of human bone marrow-derived mesenchymal stem cells and human periodontal ligament cells by inducing differential expression of various genes involved in cell adhesion, migration, proliferation, mitosis, cytoskeletal reorganization, translation initiation, vesicular trafficking, proton transportation, transforming growth factor-β signaling, mitogen-activated protein kinase signaling, simvastatin's anabolic effect on bone, inhibitory guanine nucleotide binding protein (G protein)'s action, sumoylation pathway, survival/apoptosis, mitochondrial distribution, type I collagen production, osteoblast differentiation, and bone remodeling that were verified by the differential display PCR and quantitative real-time PCR. The most influential genes on the enhancement of fibroblast proliferation or osteoblast differentiation were determined by multiple regression analysis, and the expression of relevant proteins was confirmed by western blotting and protein quantitation.
Collapse
Affiliation(s)
- Myung Hyun Lee
- Green Ceramics Division, Korea Institute of Ceramic Engineering and Technology, 77 10-gil, Digital-ro, Geumcheon-gu, Seoul 153-801, Republic of Korea
| | | | | |
Collapse
|
54
|
Felberbaum R, Wilson NR, Cheng D, Peng J, Hochstrasser M. Desumoylation of the endoplasmic reticulum membrane VAP family protein Scs2 by Ulp1 and SUMO regulation of the inositol synthesis pathway. Mol Cell Biol 2012; 32:64-75. [PMID: 22025676 PMCID: PMC3255706 DOI: 10.1128/mcb.05878-11] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2011] [Accepted: 10/11/2011] [Indexed: 11/20/2022] Open
Abstract
Posttranslational protein modification by the ubiquitin-like SUMO protein is critical to eukaryotic cell regulation, but much remains unknown regarding its operation and substrates. Here we report that specific mutations in the Saccharomyces cerevisiae Ulp1 SUMO protease, including its coiled-coil (CC) domain, lead to the accumulation of distinct sumoylated proteins in vivo. A prominent ~50-kDa sumoylated protein accumulates in a Ulp1 CC mutant. The protein was identified as Scs2, an endoplasmic reticulum (ER) membrane protein that regulates phosphatidylinositol synthesis and lipid trafficking. Mutation of lysine 180 of Scs2 abolishes its sumoylation. Notably, impairment of either cellular sumoylation or cellular desumoylation mechanisms inhibits cell growth in the absence of inositol and exacerbates the inositol auxotrophy caused by deletion of SCS2. Mutants lacking the Ulp2 SUMO protease are the most severely affected, and this defect was traced to the mutants' impaired ability to induce transcription of INO1, which encodes the rate-limiting enzyme of inositol biosynthesis. Conversely, inositol starvation induces a striking change in the profiles of total cellular SUMO conjugates. These results provide the first evidence of cross-regulation between the SUMO and inositol pathways, including the sumoylation of an ER membrane protein central to phospholipid synthesis and phosphoinositide signaling.
Collapse
Affiliation(s)
| | - Nicole R. Wilson
- Molecular Biophysics & Biochemistry, Yale University, New Haven, Connecticut, USA
| | - Dongmei Cheng
- Department of Human Genetics, Center for Neurodegenerative Diseases, Emory University, Atlanta, Georgia, USA
| | - Junmin Peng
- Department of Human Genetics, Center for Neurodegenerative Diseases, Emory University, Atlanta, Georgia, USA
| | - Mark Hochstrasser
- Departments of Molecular, Cell, & Developmental Biology
- Molecular Biophysics & Biochemistry, Yale University, New Haven, Connecticut, USA
| |
Collapse
|
55
|
Abstract
When a transcription factor is modified by small ubiquitin-like modifier (SUMO), this usually represses its transcriptional activity. In this issue of Developmental Cell, Lee et al. (2011) use a knockin mouse model to show that SUMO-less SF-1 binds and activates inappropriate targets, causing changes in cell fates and endocrine abnormalities.
Collapse
Affiliation(s)
- Feng-Ming Lin
- Texas Heart Institute/St. Luke's Episcopal Hospital, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | | |
Collapse
|
56
|
Abstract
The transcription factor p63 is expressed as at least six different isoforms, of which two have been assigned critical biological roles within ectodermal development and skin stem cell biology on the one hand and supervision of the genetic stability of oocytes on the other hand. These two isoforms contain a C-terminal inhibitory domain that negatively regulates their transcriptional activity. This inhibitory domain contains two individual components: one that uses an internal binding mechanism to interact with and mask the transactivation domain and one that is based on sumoylation. We have carried out an extensive alanine scanning study to identify critical regions within the inhibitory domain. These experiments show that a stretch of ∼13 amino acids is crucial for the binding function. Further, investigation of transcriptional activity and the intracellular level of mutants that cannot be sumoylated suggests that sumoylation reduces the concentration of p63. We therefore propose that the inhibitory function of the C-terminal domain is in part due to direct inhibition of the transcriptional activity of the protein and in part due to indirect inhibition by controlling the concentration of p63.
Collapse
|
57
|
Abstract
The biologic effects of IFNγ are mediated by the transcription factor STAT1. The activity of STAT1 is inhibited by small ubiquitin-like modifier (SUMO) conjugation. This occurs both directly through decreasing STAT1 tyrosine phosphorylation and indirectly by facilitating STAT1 dephosphorylation consequential to increased STAT1 solubility because of suppressed paracrystal assembly. However, the physiologic implications of SUMO conjugation have remained unclear. Here, we used fibroblasts and bone marrow-derived macrophages (BMMs) from knockin mice expressing SUMO-free STAT1 to explore the consequences of STAT1 sumoylation for IFNγ signaling. Our experiments demonstrated buffer property of paracrystals for activated STAT1, such that SUMO-mediated paracrystal dispersal profoundly reduced phosphorylation of STAT1, which affected both the activating tyrosine 701 and the transcription-enhancing serine 727. Accordingly, the curtailed STAT1 activity in the nucleus caused by SUMO conjugation resulted in diminished transcription of IFNγ-responsive genes; and increased the IFNγ concentration more than 100-fold required to trigger lipopolysaccharide-induced cytotoxicity in bone marrow-derived macrophages. These experiments identify SUMO conjugation of STAT1 as a mechanism to permanently attenuate the IFNγ sensitivity of cells, which prevents hyperresponsiveness to this cytokine and its potentially self-destructive consequences. This sets the mode of SUMO-mediated inhibition apart from the other negative STAT regulators known to date.
Collapse
|
58
|
Guo B, Panagiotaki N, Warwood S, Sharrocks AD. Dynamic modification of the ETS transcription factor PEA3 by sumoylation and p300-mediated acetylation. Nucleic Acids Res 2011; 39:6403-13. [PMID: 21543453 PMCID: PMC3159455 DOI: 10.1093/nar/gkr267] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
Transcription factor activity is often controlled through the dynamic use of post-translational modifications. Two such modifications are acetylation and sumoylation, which both occur on lysine residues, providing the opportunity for cross-talk at the molecular level. Here, we focussed on the ETS-domain transcription factor PEA3 and studied the potential interplay between these two modifications. We demonstrate that PEA3 is acetylated in a p300-dependent manner. ERK MAPK pathway signalling potentiates acetylation of PEA3, and enhances its trans-activation capacity. However, the major acetylation and sumoylation events take place on the same sites in PEA3 making simultaneous modification impossible. Indeed, manipulation of either the sumoylation or acetylation pathways causes reciprocal changes in PEA3 acetylation and sumoylation respectively. However, despite the mutually exclusive nature of these modifications, both contribute to the trans-activation capacity of PEA3, implying that a dynamic series of modification events occurs during the activation process.
Collapse
Affiliation(s)
- Baoqiang Guo
- Faculty of Life Sciences, University of Manchester, Michael Smith Building, Oxford Road, Manchester, M13 9PT, UK
| | | | | | | |
Collapse
|
59
|
Huang Y, Tang Q, Nguyen M, Dulal K, Wang W, Zhu H. Histone deacetylase 3, not histone deacetylase 2, interacts with the major immediate early locus of human cytomegalovirus. Virol J 2011; 8:151. [PMID: 21453528 PMCID: PMC3077330 DOI: 10.1186/1743-422x-8-151] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2010] [Accepted: 03/31/2011] [Indexed: 11/10/2022] Open
Abstract
Evidence suggests that genome chromatinization and the posttranslational modification of histones are involved in the regulation of viral gene expression, including the human cytomegalovirus (HCMV). We performed a ChIP-on-Chip assay to determine whether histone deacetylases (HDACs) interact with HCMV genomic DNA on a global level. Surprisingly, we found that HDAC3, but not HDAC2, interacts not only with the major immediate early (MIE) promoter but also with the entire MIE locus, suggesting a heterogeneous interaction of HDAC3 with HCMV DNA. The interaction of HDAC3 with the MIE region is related to inhibition of viral replication because HDAC3 inhibitors enhanced HCMV replication.
Collapse
Affiliation(s)
- Ying Huang
- Department of Microbiology and Molecular Genetics, UMDNJ-New Jersey Medical School, 225 Warren Street, Newark, NJ 07101, USA
| | | | | | | | | | | |
Collapse
|
60
|
Influenza A virus interacts extensively with the cellular SUMOylation system during infection. Virus Res 2011; 158:12-27. [PMID: 21376763 DOI: 10.1016/j.virusres.2011.02.017] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2011] [Revised: 02/20/2011] [Accepted: 02/23/2011] [Indexed: 01/12/2023]
Abstract
SUMOylation, the post-translational conjugation of the Small Ubiquitin-like MOdifier (SUMO) to a target protein, regulates a wide array of cellular processes and plays important roles for numerous viruses during infection. However, the relevance of the cellular SUMOylation system for influenza virus infection remains mostly unexplored. We previously reported that the non-structural protein of influenza A virus NS1 is a bona fide SUMO target. Here we determine that at least four additional influenza virus proteins, namely PB1, NP, M1, and NS2, are also authentic SUMO targets, and provide data supporting that PB1, NP, and M1 are SUMOylated during viral infection. The functional relevance of SUMOylation for these proteins is supported by the observation that, despite no apparent changes in the cellular levels of the E1 and E2 SUMO enzymes, influenza viral infection leads to a global increase in cellular SUMOylation. This increase, characterized by the appearance of two new SUMOylated proteins of ∼70kDa and ∼52kDa of molecular weight, is dependent upon viral replication and cannot be recreated by interferon stimulation alone. Altogether, these observations indicate that influenza A virus interacts extensively with the cellular SUMOylation system during infection and suggest that SUMOylation plays an important role during influenza virus infection, potentially contributing to the functional diversity exhibited by influenza viral proteins.
Collapse
|
61
|
Hegde AN, Upadhya SC. Role of ubiquitin-proteasome-mediated proteolysis in nervous system disease. BIOCHIMICA ET BIOPHYSICA ACTA 2011; 1809:128-40. [PMID: 20674814 PMCID: PMC2995838 DOI: 10.1016/j.bbagrm.2010.07.006] [Citation(s) in RCA: 74] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 10/31/2009] [Revised: 07/15/2010] [Accepted: 07/21/2010] [Indexed: 12/12/2022]
Abstract
Proteolysis by the ubiquitin-proteasome pathway (UPP) is now widely recognized as a molecular mechanism controlling myriad normal functions in the nervous system. Also, this pathway is intimately linked to many diseases and disorders of the brain. Among the diseases connected to the UPP are neurodegenerative disorders such as Alzheimer's, Parkinson's and Huntington's diseases. Perturbation in the UPP is also believed to play a causative role in mental disorders such as Angelman syndrome. The pathology of neurodegenerative diseases is characterized by abnormal deposition of insoluble protein aggregates or inclusion bodies within neurons. The ubiquitinated protein aggregates are believed to result from dysfunction of the UPP or from structural changes in the protein substrates which prevent their recognition and degradation by the UPP. An early effect of abnormal UPP in diseases of the nervous system is likely to be impairment of synaptic function. Here we discuss the UPP and its physiological roles in the nervous system and how alterations in the UPP relate to development of nervous system diseases. This article is part of a Special Issue entitled The 26S Proteasome: When degradation is just not enough!
Collapse
Affiliation(s)
- Ashok N Hegde
- Department of Neurology and Anatomy, Wake Forest University Health Sciences, Winston-Salem, NC 27157, USA.
| | | |
Collapse
|
62
|
Roles of Small Ubiquitin-Related Modifiers in Male Reproductive Function. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2011; 288:227-59. [DOI: 10.1016/b978-0-12-386041-5.00006-6] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
|
63
|
Sumoylation activates the transcriptional activity of Pax-6, an important transcription factor for eye and brain development. Proc Natl Acad Sci U S A 2010; 107:21034-9. [PMID: 21084637 DOI: 10.1073/pnas.1007866107] [Citation(s) in RCA: 68] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Pax-6 is an evolutionarily conserved transcription factor regulating brain and eye development. Four Pax-6 isoforms have been reported previously. Although the longer Pax-6 isoforms (p46 and p48) bear two DNA-binding domains, the paired domain (PD) and the homeodomain (HD), the shorter Pax-6 isoform p32 contains only the HD for DNA binding. Although a third domain, the proline-, serine- and threonine-enriched activation (PST) domain, in the C termini of all Pax-6 isoforms mediates their transcriptional modulation via phosphorylation, how p32 Pax-6 could regulate target genes remains to be elucidated. In the present study, we show that sumoylation at K91 is required for p32 Pax-6 to bind to a HD-specific site and regulate expression of target genes. First, in vitro-synthesized p32 Pax-6 alone cannot bind the P3 sequence, which contains the HD recognition site, unless it is preincubated with nuclear extracts precleared by anti-Pax-6 but not by anti-small ubiquitin-related modifier 1 (anti-SUMO1) antibody. Second, in vitro-synthesized p32 Pax-6 can be sumoylated by SUMO1, and the sumoylated p32 Pax-6 then can bind to the P3 sequence. Third, Pax-6 and SUMO1 are colocalized in the embryonic optic and lens vesicles and can be coimmunoprecipitated. Finally, SUMO1-conjugated p32 Pax-6 exists in both the nucleus and cytoplasm, and sumoylation significantly enhances the DNA-binding ability of p32 Pax-6 and positively regulates gene expression. Together, our results demonstrate that sumoylation activates p32 Pax-6 in both DNA-binding and transcriptional activities. In addition, our studies demonstrate that p32 and p46 Pax-6 possess differential DNA-binding and regulatory activities.
Collapse
|
64
|
CHEEMA AMRITA, KNIGHTS CHADD, RAO MAHADEV, CATANIA JASON, PEREZ RICARDO, SIMONS BRIGITTE, DAKSHANAMURTHY SIVANESAN, KOLUKULA VAMSIK, TILLI MADDALENA, FURTH PRISCILLAA, ALBANESE CHRISTOPHER, AVANTAGGIATI MARIALAURA. Functional mimicry of the acetylated C-terminal tail of p53 by a SUMO-1 acetylated domain, SAD. J Cell Physiol 2010; 225:371-84. [PMID: 20458745 PMCID: PMC3614007 DOI: 10.1002/jcp.22224] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
The ubiquitin-like molecule, SUMO-1, a small protein essential for a variety of biological processes, is covalently conjugated to many intracellular proteins, especially to regulatory components of the transcriptional machinery, such as histones and transcription factors. Sumoylation provides either a stimulatory or an inhibitory signal for proliferation and for transcription, but the molecular mechanisms by which SUMO-1 achieves such versatility of effects are incompletely defined. The tumor suppressor and transcription regulator p53 is a relevant SUMO-1 target. Particularly, the C-terminal tail of p53 undergoes both sumoylation and acetylation. While the effects of sumoylation are still controversial, acetylation modifies p53 interaction with chromatin embedded promoters, and enforces p53 apoptotic activity. In this study, we show that the N-terminal region of SUMO-1 might functionally mimic this activity of the p53 C-terminal tail. We found that this SUMO-1 domain possesses similarity with the C-terminal acetylable p53 tail as well as with acetylable domains of other transcription factors. SUMO-1 is, indeed, acetylated when conjugated to its substrates and to p53. In the acetylable form SUMO-1 tunes the p53 response by modifying p53 transcriptional program, by promoting binding onto selected promoters and by favoring apoptosis. By contrast, when non-acetylable, SUMO-1 enforces cell-cycle arrest and p53 binding to a different sets of genes. These data demonstrate for the first time that SUMO-1, a post-translational modification is, in turn, modified by acetylation. Further, they imply that the pleiotropy of effects by which SUMO-1 influences various cellular outcomes and the activity of p53 depends upon its acetylation state.
Collapse
Affiliation(s)
- AMRITA CHEEMA
- Department of Oncology, Lombardi Comprehensive Cancer Center, Georgetown University, Washington, District of Columbia
| | - CHAD D. KNIGHTS
- Department of Oncology, Lombardi Comprehensive Cancer Center, Georgetown University, Washington, District of Columbia
| | - MAHADEV RAO
- Department of Oncology, Lombardi Comprehensive Cancer Center, Georgetown University, Washington, District of Columbia
| | - JASON CATANIA
- Department of Oncology, Lombardi Comprehensive Cancer Center, Georgetown University, Washington, District of Columbia
| | - RICARDO PEREZ
- Department of Oncology, Lombardi Comprehensive Cancer Center, Georgetown University, Washington, District of Columbia
| | - BRIGITTE SIMONS
- Product Application Laboratory, MDS Analytical Technologies, Toronto AB Sciex Demo Labs, Toronto, Ontario, Canada
| | - SIVANESAN DAKSHANAMURTHY
- Department of Oncology, Lombardi Comprehensive Cancer Center, Georgetown University, Washington, District of Columbia
| | - VAMSI K. KOLUKULA
- Department of Oncology, Lombardi Comprehensive Cancer Center, Georgetown University, Washington, District of Columbia
| | - MADDALENA TILLI
- Department of Oncology, Lombardi Comprehensive Cancer Center, Georgetown University, Washington, District of Columbia
| | - PRISCILLA A. FURTH
- Department of Oncology, Lombardi Comprehensive Cancer Center, Georgetown University, Washington, District of Columbia
| | - CHRISTOPHER ALBANESE
- Department of Oncology, Lombardi Comprehensive Cancer Center, Georgetown University, Washington, District of Columbia
| | - MARIA LAURA AVANTAGGIATI
- Department of Oncology, Lombardi Comprehensive Cancer Center, Georgetown University, Washington, District of Columbia
| |
Collapse
|
65
|
Cox B, Briscoe J, Ulloa F. SUMOylation by Pias1 regulates the activity of the Hedgehog dependent Gli transcription factors. PLoS One 2010; 5:e11996. [PMID: 20711444 PMCID: PMC2920307 DOI: 10.1371/journal.pone.0011996] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2010] [Accepted: 07/06/2010] [Indexed: 12/31/2022] Open
Abstract
BACKGROUND Hedgehog (Hh) signaling, a vital signaling pathway for the development and homeostasis of vertebrate tissues, is mediated by members of the Gli family of zinc finger transcription factors. Hh signaling increases the transcriptional activity of Gli proteins, at least in part, by inhibiting their proteolytic processing. Conversely, phosphorylation by cAMP-dependent protein kinase (PKA) inhibits Gli transcriptional activity by promoting their ubiquitination and proteolysis. Whether other post-translational modifications contribute to the regulation of Gli protein activity has been unclear. METHODOLOGY/PRINCIPAL FINDINGS Here we provide evidence that all three Gli proteins are targets of small ubiquitin-related modifier (SUMO)-1 conjugation. Expression of SUMO-1 or the SUMO E3 ligase, Pias1, increased Gli transcriptional activity in cultured cells. Moreover, PKA activity reduced Gli protein SUMOylation. Strikingly, in the embryonic neural tube, the forced expression of Pias1 increased Gli activity and induced the ectopic expression of the Gli dependent gene Nkx2.2. Conversely, a point mutant of Pias1, that lacks ligase activity, blocked the endogenous expression of Nkx2.2. CONCLUSIONS/SIGNIFICANCE Together, these findings provide evidence that Pias1-dependent SUMOylation influences Gli protein activity and thereby identifies SUMOylation as a post-translational mechanism that regulates the hedgehog signaling pathway.
Collapse
Affiliation(s)
- Barny Cox
- Developmental Neurobiology, Medical Research Council-National Institute for Medical Research, London, United Kingdom
| | - James Briscoe
- Developmental Neurobiology, Medical Research Council-National Institute for Medical Research, London, United Kingdom
| | - Fausto Ulloa
- Developmental Neurobiology, Medical Research Council-National Institute for Medical Research, London, United Kingdom
| |
Collapse
|
66
|
Modulation of CP2 family transcriptional activity by CRTR-1 and sumoylation. PLoS One 2010; 5:e11702. [PMID: 20661472 PMCID: PMC2908540 DOI: 10.1371/journal.pone.0011702] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2009] [Accepted: 06/22/2010] [Indexed: 12/13/2022] Open
Abstract
CRTR-1 is a member of the CP2 family of transcription factors. Unlike other members of the family which are widely expressed, CRTR-1 expression shows specific spatio-temporal regulation. Gene targeting demonstrates that CRTR-1 plays a central role in the maturation and function of the salivary glands and the kidney. CRTR-1 has also recently been identified as a component of the complex transcriptional network that maintains pluripotency in embryonic stem (ES) cells. CRTR-1 was previously shown to be a repressor of transcription. We examine the activity of CRTR-1 in ES and other cells and show that CRTR-1 is generally an activator of transcription and that it modulates the activity of other family members, CP2, NF2d9 and altNF2d9, in a cell specific manner. We also demonstrate that CRTR-1 activity is regulated by sumoylation at a single major site, residue K30. These findings imply that functional redundancy with other family members may mask important roles for CRTR-1 in other tissues, including the blastocyst stage embryo and embryonic stem cells.
Collapse
|
67
|
Yan D, Davis FJ, Sharrocks AD, Im HJ. Emerging roles of SUMO modification in arthritis. Gene 2010; 466:1-15. [PMID: 20627123 DOI: 10.1016/j.gene.2010.07.003] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2010] [Accepted: 07/07/2010] [Indexed: 12/31/2022]
Abstract
Dynamic modification involving small ubiquitin-like modifier (SUMO) has emerged as a new mechanism of protein regulation in mammalian biology. Sumoylation is an ATP-dependent, reversible post-translational modification which occurs under both basal and stressful cellular conditions. Sumoylation profoundly influences protein functions and pertinent biological processes. For example, sumoylation modulates multiple components in the NFkappaB pathway and exerts an anti-inflammatory effect. Likewise, sumoylation of peroxisome proliferator-activated receptor gamma (PPARgamma) augments its anti-inflammatory activity. Current evidence suggests a role of sumoylation for resistance to apoptosis in synovial fibroblasts. Dynamic SUMO regulation controls the biological outcomes initiated by various growth factors involved in cartilage homeostasis, including basic fibroblast growth factors (bFGF or FGF-2), transforming growth factor-beta (TGF-beta) and insulin-like growth factor-1 (IGF-1). The impact of these growth factors on cartilage are through sumoylation-dependent control of the transcription factors (e.g., Smad, Elk-1, HIF-1) that are key regulators of matrix components (e.g., aggrecan, collagen) or cartilage-degrading enzymes (e.g., MMPs, aggrecanases). Thus, SUMO modification appears to profoundly affect chondrocyte and synovial fibroblast biology, including cell survival, inflammatory responses, matrix metabolism and hypoxic responses. More recently, evidence suggests that, in addition to their nuclear roles, the SUMO pathways play crucial roles in mitochondrial activity, cellular senescence, and autophagy. With an increasing number of reports linking SUMO to human diseases like arthritis, it is probable that novel and equally important functions of the sumoylation pathway will be elucidated in the near future.
Collapse
Affiliation(s)
- Dongyao Yan
- Department of Biochemistry, Rush University Medical Center, USA
| | | | | | | |
Collapse
|
68
|
Rosonina E, Duncan SM, Manley JL. SUMO functions in constitutive transcription and during activation of inducible genes in yeast. Genes Dev 2010; 24:1242-52. [PMID: 20504900 DOI: 10.1101/gad.1917910] [Citation(s) in RCA: 73] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Transcription factors represent one of the largest groups of proteins regulated by SUMO (small ubiquitin-like modifier) modification, and their sumoylation is usually associated with transcriptional repression. To investigate whether sumoylation plays a general role in regulating transcription in yeast, we determined the occupancy of sumoylated proteins at a variety of genes by chromatin immunoprecipitation (ChIP) using an antibody that recognizes the yeast SUMO peptide. Surprisingly, we detected sumoylated proteins at all constitutively transcribed genes tested but not at repressed genes. Ubc9, the SUMO conjugation enzyme, was not present on these genes, but its inactivation reduced SUMO at the constitutive promoters and modestly decreased RNA polymerase II levels. In contrast, activation of the inducible GAL1, STL1, and ARG1 genes caused not only a striking accumulation of SUMO at all three promoter regions, but also recruitment of Ubc9, indicating that gene activation involves sumoylation of promoter-bound factors. However, Ubc9 inactivation, while reducing sumoylation at the induced promoters, paradoxically resulted in increased transcription. Providing an explanation for this, the reduced sumoylation impaired the cell's ability to appropriately shut off transcription of the induced ARG1 gene, indicating that SUMO can facilitate transcriptional silencing. Our findings thus establish unexpected roles for sumoylation in both constitutive and activated transcription, and provide a novel mechanism for regulating gene expression.
Collapse
Affiliation(s)
- Emanuel Rosonina
- Department of Biological Sciences, Columbia University, New York, New York 10027, USA
| | | | | |
Collapse
|
69
|
Abstract
The modification of proteins with SUMO (small ubiquitin-related modifier) plays an important role in determining their functional properties. Importantly though, SUMOylation is a highly dynamic process enabling transient responses to be elicited. This dynamism is controlled by two competing conjugating and deconjugating activities. The latter activity is mediated by the SENP [SUMO1/sentrin/SMT3 (suppressor of mif two 3 homologue 1)-specific peptidase] family of SUMO-specific proteases. The transcription factor Elk-1 [ETS (E twenty-six)-like 1] undergoes rapid de-SUMOylation following cellular stimulation with growth factors, and this contributes to its conversion from a SUMO-dependent repressor into a potent transcriptional activator. In the present study we demonstrate an important role for SENP1 in the de-SUMOylation of Elk-1, and therefore an integral role in determining the Elk-1-dependent transcriptional programme. Among the SENPs, Elk-1 preferentially forms a complex with SENP1. This preferential binding is reflected by the higher efficiency of SENP1 in promoting Elk-1 transactivation. Moreover, depletion of SENP1 causes a reciprocal effect and reduces the transactivation properties of Elk-1. Partial redundancy of function with SENP2 is revealed by combinatorial knockdown studies. Importantly, depletion of SENP1 also reduces the activation of the Elk-1 target gene c-FOS. Taken together, these results therefore reveal an important role for SENP1 in the regulation of Elk-1-mediated gene expression in response to mitogenic signalling cues.
Collapse
|
70
|
Ryu J, Cho S, Park BC, Lee DH. Oxidative stress-enhanced SUMOylation and aggregation of ataxin-1: Implication of JNK pathway. Biochem Biophys Res Commun 2010; 393:280-5. [PMID: 20132795 DOI: 10.1016/j.bbrc.2010.01.122] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2010] [Accepted: 01/29/2010] [Indexed: 12/15/2022]
Abstract
Although the polyglutamine protein ataxin-1 is modified by SUMO at multiple sites, the functions of such modification or how it is regulated are still unknown. Here we report that SUMO-1 or Ubc9 over-expression stimulated the aggregation of ataxin-1 and that oxidative stress, such as hydrogen peroxide treatment, further enhanced SUMO conjugation and aggregation of ataxin-1. Accordingly, co-treatment with antioxidant N-acetyl-cysteine attenuated the effect of oxidative stress. Ataxin-1, which can activate c-Jun N-terminal kinase (JNK) pathway by itself, strongly associated with apoptosis signal-regulating kinase 1 (ASK1) while not interacting with JNK. Finally, treatment of JNK-specific inhibitor caused a reduction in the oxidant-enhanced SUMOylation and aggregation of ataxin-1. Together these results indicate that SUMO modification of ataxin-1 promotes the aggregation of ataxin-1 and that oxidative stress and JNK pathway play roles in this process.
Collapse
Affiliation(s)
- Joohyun Ryu
- Department of Biology, Kongju National University, Republic of Korea
| | | | | | | |
Collapse
|
71
|
Van Damme E, Laukens K, Dang TH, Van Ostade X. A manually curated network of the PML nuclear body interactome reveals an important role for PML-NBs in SUMOylation dynamics. Int J Biol Sci 2010; 6:51-67. [PMID: 20087442 PMCID: PMC2808052 DOI: 10.7150/ijbs.6.51] [Citation(s) in RCA: 158] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2009] [Accepted: 01/09/2010] [Indexed: 12/22/2022] Open
Abstract
Promyelocytic Leukaemia Protein nuclear bodies (PML-NBs) are dynamic nuclear protein aggregates. To gain insight in PML-NB function, reductionist and high throughput techniques have been employed to identify PML-NB proteins. Here we present a manually curated network of the PML-NB interactome based on extensive literature review including database information. By compiling 'the PML-ome', we highlighted the presence of interactors in the Small Ubiquitin Like Modifier (SUMO) conjugation pathway. Additionally, we show an enrichment of SUMOylatable proteins in the PML-NBs through an in-house prediction algorithm. Therefore, based on the PML network, we hypothesize that PML-NBs may function as a nuclear SUMOylation hotspot.
Collapse
Affiliation(s)
- Ellen Van Damme
- Laboratory of Protein Chemistry, Proteomics and Signal Transduction, Department of Biomedical Sciences, University of Antwerp (Campus Drie Eiken), Universiteitsplein 1 - Building T, Wilrijk, Belgium.
| | | | | | | |
Collapse
|
72
|
Brimble S, Wollaston-Hayden EE, Teo CF, Morris AC, Wells L. The Role of the O-GlcNAc Modification in Regulating Eukaryotic Gene Expression. ACTA ACUST UNITED AC 2010; 5:12-24. [PMID: 25484640 DOI: 10.2174/157436210790226465] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
O-linked β-N-acetylglucosamine (O-GlcNAc) modification of proteins has been shown to be involved in many different cellular processes, such as cell cycle control, nutrient sensing, signal transduction, stress response and transcriptional regulation. Cells have developed complex regulatory systems in order to regulate gene expression appropriately in response to environmental and intracellular cues. Control of eukaryotic gene transcription often involves post-translational modification of a multitude of proteins including transcription factors, basal transcription machinery, and chromatin remodeling complexes to modulate their functions in a variety of manners. In this review we describe the emerging functional roles for and techniques to detect and modulate the O-GlcNAc modification and illustrate that the O-GlcNAc modification is intricately involved in at least seven different general mechanisms for the control of gene transcription.
Collapse
Affiliation(s)
- Sandii Brimble
- Complex Carbohydrate Research Center, Department of Biochemistry and Molecular Biology, University of Georgia, Athens, GA, USA 30602
| | - Edith E Wollaston-Hayden
- Complex Carbohydrate Research Center, Department of Biochemistry and Molecular Biology, University of Georgia, Athens, GA, USA 30602
| | - Chin Fen Teo
- Complex Carbohydrate Research Center, Department of Biochemistry and Molecular Biology, University of Georgia, Athens, GA, USA 30602
| | - Andrew C Morris
- Complex Carbohydrate Research Center, Department of Biochemistry and Molecular Biology, University of Georgia, Athens, GA, USA 30602
| | - Lance Wells
- Complex Carbohydrate Research Center, Department of Biochemistry and Molecular Biology, University of Georgia, Athens, GA, USA 30602 ; Department of Chemistry, University of Georgia, Athens, GA, USA 30602
| |
Collapse
|
73
|
Charlot C, Dubois-Pot H, Serchov T, Tourrette Y, Wasylyk B. A review of post-translational modifications and subcellular localization of Ets transcription factors: possible connection with cancer and involvement in the hypoxic response. Methods Mol Biol 2010; 647:3-30. [PMID: 20694658 DOI: 10.1007/978-1-60761-738-9_1] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/29/2023]
Abstract
Post-translational modifications and subcellular localizations modulate transcription factors, generating a code that is deciphered into an activity. We describe our current understanding of these processes for Ets factors, which have recently been recognized for their importance in various biological processes. We present the global picture for the family, and then focus on particular aspects related to cancer and hypoxia. The analysis of Post-translational modification and cellular localization is only beginning to enter the age of "omic," high content, systems biology. Our snap-shots of particularly active fields point to the directions in which new techniques will be needed, in our search for a more complete description of regulatory pathways.
Collapse
Affiliation(s)
- Céline Charlot
- Department of Cancer Biology, Institute de Genetique et de Biologie, Moleculaire et Cellulaire, Lille, France
| | | | | | | | | |
Collapse
|
74
|
Lee HY, Johnson KD, Fujiwara T, Boyer ME, Kim SI, Bresnick EH. Controlling hematopoiesis through sumoylation-dependent regulation of a GATA factor. Mol Cell 2009; 36:984-995. [PMID: 20064464 PMCID: PMC2807411 DOI: 10.1016/j.molcel.2009.11.005] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2009] [Revised: 06/20/2009] [Accepted: 09/25/2009] [Indexed: 12/26/2022]
Abstract
GATA factors establish transcriptional networks that control fundamental developmental processes. Whereas the regulator of hematopoiesis GATA-1 is subject to multiple posttranslational modifications, how these modifications influence GATA-1 function at endogenous loci is unknown. We demonstrate that sumoylation of GATA-1 K137 promotes transcriptional activation only at target genes requiring the coregulator Friend of GATA-1 (FOG-1). A mutation of GATA-1 V205G that disrupts FOG-1 binding and K137 mutations yielded similar phenotypes, although sumoylation was FOG-1 independent, and FOG-1 binding did not require sumoylation. Both mutations dysregulated GATA-1 chromatin occupancy at select sites, FOG-1-dependent gene expression, and were rescued by tethering SUMO-1. While FOG-1- and SUMO-1-dependent genes migrated away from the nuclear periphery upon erythroid maturation, FOG-1- and SUMO-1-independent genes persisted at the periphery. These results illustrate a mechanism that controls trans-acting factor function in a locus-specific manner, and differentially regulated members of the target gene ensemble reside in distinct subnuclear compartments.
Collapse
Affiliation(s)
- Hsiang-Ying Lee
- Department of Pharmacology, University of Wisconsin School of Medicine and Public Health, 1300 University Avenue, 385 Medical Sciences Center, Madison, WI 53706
| | - Kirby D. Johnson
- Department of Pharmacology, University of Wisconsin School of Medicine and Public Health, 1300 University Avenue, 385 Medical Sciences Center, Madison, WI 53706
| | - Tohru Fujiwara
- Department of Pharmacology, University of Wisconsin School of Medicine and Public Health, 1300 University Avenue, 385 Medical Sciences Center, Madison, WI 53706
| | - Meghan E. Boyer
- Department of Pharmacology, University of Wisconsin School of Medicine and Public Health, 1300 University Avenue, 385 Medical Sciences Center, Madison, WI 53706
| | - Shin-Il Kim
- Department of Pharmacology, University of Wisconsin School of Medicine and Public Health, 1300 University Avenue, 385 Medical Sciences Center, Madison, WI 53706
| | - Emery H. Bresnick
- Department of Pharmacology, University of Wisconsin School of Medicine and Public Health, 1300 University Avenue, 385 Medical Sciences Center, Madison, WI 53706
| |
Collapse
|
75
|
Leitao B, Jones MC, Fusi L, Higham J, Lee Y, Takano M, Goto T, Christian M, Lam EWF, Brosens JJ. Silencing of the JNK pathway maintains progesterone receptor activity in decidualizing human endometrial stromal cells exposed to oxidative stress signals. FASEB J 2009; 24:1541-51. [PMID: 20026682 PMCID: PMC2857868 DOI: 10.1096/fj.09-149153] [Citation(s) in RCA: 69] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Survival of the conceptus is dependent on continuous progesterone signaling in the maternal decidua but how this is achieved under conditions of oxidative stress that characterize early pregnancy is unknown. Using primary cultures, we show that modest levels of reactive oxygen species (ROS) increase sumoylation in human endometrial stromal cells (HESCs), leading to enhanced modification and transcriptional inhibition of the progesterone receptor (PR). The ability of ROS to induce a sustained hypersumoylation response, or interfere with PR activity, was lost upon differentiation of HESCs into decidual cells. Hypersumoylation in response to modest levels of ROS requires activation of the JNK pathway. Although ROS-dependent JNK signaling is disabled on decidualization, the cells continue to mount a transcriptional response, albeit distinct from that observed in undifferentiated HESCs. We further show that attenuated JNK signaling in decidual cells is a direct consequence of altered expression of key pathway modulators, including induction of MAP kinase phosphatase 1 (MKP1). Overexpression of MKP1 dampens JNK signaling, prevents hypersumoylation, and maintains PR activity in undifferentiated HESCs exposed to ROS. Thus, JNK silencing uncouples ROS signaling from the SUMO conjugation pathway and maintains progesterone responses and cellular homeostasis in decidual cells under oxidative stress conditions imposed by pregnancy.—Leitao, B., Jones, M. C., Fusi, L., Higham, J., Lee, Y. Takano, M., Goto, T., Christian, M., Lam, E. W.-F., Brosens, J. J. Silencing of the Jnk pathway maintains progesterone receptor activity in decidualizing human endometrial stromal cells exposed to oxidative stress signals.
Collapse
Affiliation(s)
- Beatriz Leitao
- Institute of Reproductive and Developmental Biology, Imperial College London, Hammersmith Campus, Du Cane Rd., London W12 0NN
| | | | | | | | | | | | | | | | | | | |
Collapse
|
76
|
Xylourgidis N, Fornerod M. Acting out of character: regulatory roles of nuclear pore complex proteins. Dev Cell 2009; 17:617-25. [PMID: 19922867 DOI: 10.1016/j.devcel.2009.10.015] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Nuclear pore complexes (NPCs) mediate all selective bidirectional transport between the nucleus and the cytoplasm. Additional functions for NPCs and their constituent proteins (nucleoporins) are emerging, some independent of classical transport. Specifically, enzymatic activities at the NPC regulate nucleocytoplasmic transport and use the NPC as a regulatory scaffold. Also, nucleoporins may regulate gene expression by contacting chromatin. Discriminating between effects on transport, scaffolding, and gene expression is a major challenge in understanding the role of the NPC in signaling and development.
Collapse
Affiliation(s)
- Nikos Xylourgidis
- Division of Gene Regulation, Netherlands Cancer Institute, Plesmanlaan 121, 1066CX Amsterdam, The Netherlands
| | | |
Collapse
|
77
|
Miura K, Hasegawa PM. Sumoylation and abscisic acid signaling. PLANT SIGNALING & BEHAVIOR 2009; 4:1176-8. [PMID: 20514240 PMCID: PMC2819450 DOI: 10.4161/psb.4.12.10044] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/10/2009] [Revised: 09/10/2009] [Accepted: 09/10/2009] [Indexed: 05/20/2023]
Abstract
The conjugation of small ubiquitin-related modifier (SUMO) to substrates (sumoylation) is one of posttranslational modification systems in eukaryotes. Sumoylation plays an important role in the regulation of environmental stress response, biotic stress response, and flowering control in plants. Covalent SUMO conjugation requires an E1/E2/E3 enzyme, and SUMO E3 ligase SIZ1 is essential for these regulations. This addendum summarizes our recent study in which it has been established that in Arabidopsis, SUMO E3 ligase SIZ1 negatively controls abscisic acid (ABA) signaling through the sumoylation of ABI5. The conjugation of SUMO to ABI5 represses its activity and also prevents ABI5 from undergoing degradation.
Collapse
Affiliation(s)
- Kenji Miura
- Graduate School of Life and Environmental Sciences, University of Tsukuba, Tsukuba, Japan.
| | | |
Collapse
|
78
|
SoxE factors as multifunctional neural crest regulatory factors. Int J Biochem Cell Biol 2009; 42:441-4. [PMID: 19931641 DOI: 10.1016/j.biocel.2009.11.014] [Citation(s) in RCA: 80] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2009] [Revised: 10/31/2009] [Accepted: 11/02/2009] [Indexed: 11/23/2022]
Abstract
Neural crest cells are the primary innovation that led to evolution of the vertebrates, and transcription factors of the SoxE family (Sox8, Sox9 and Sox10) are among the central players regulating the development of these cells. In all vertebrates examined to date, one or more SoxE proteins are required for the formation of neural crest cells, the maintenance of their multipotency, and their survival. Later, SoxE proteins drive the formation of multiple neural crest derivatives including chondrocytes, melanocytes, and cells of the peripheral nervous system, particularly Schwann cells/peripheral glia. Given their multiple diverse roles in the development of the neural crest, it is important to understand how the activity of SoxE factors is controlled such that they direct the correct developmental outcome. While combinatorial control with other regulatory factors is clearly one mechanism for generating such functional versatility, modulation of SoxE activity, both by SoxD family factors and by post-translational modification, also appears to be important. Elucidating the mechanisms that control SoxE function is essential to understand the evolutionary origin of the vertebrates, as well as a host of SoxE-linked syndromes and diseases, and may prove crucial for developing stem cell based therapies that target SoxE-regulated cell types.
Collapse
|
79
|
Abstract
Activation of estrogen receptor alpha (ERalpha) results in both induction and repression of gene transcription; while mechanistic details of estrogen induction are well described, details of repression remain largely unknown. We characterized several ERalpha-repressed targets and examined in detail the mechanism for estrogen repression of Reprimo (RPRM), a cell cycle inhibitor. Estrogen repression of RPRM is rapid and robust and requires a tripartite interaction between ERalpha, histone deacetylase 7 (HDAC7), and FoxA1. HDAC7 is the critical HDAC needed for repression of RPRM; it can bind to ERalpha and represses ERalpha's transcriptional activity--this repression does not require HDAC7's deacetylase activity. We further show that the chromatin pioneer factor FoxA1, well known for its role in estrogen induction of genes, is recruited to the RPRM promoter, is necessary for repression of RPRM, and interacts with HDAC7. Like other FoxA1 recruitment sites, the RPRM promoter is characterized by H3K4me1/me2. Estrogen treatment causes decreases in H3K4me1/me2 and release of RNA polymerase II (Pol II) from the RPRM proximal promoter. Overall, these data implicate a novel role for HDAC7 and FoxA1 in estrogen repression of RPRM, a mechanism which could potentially be generalized to many more estrogen-repressed genes and hence be important in both normal physiology and pathological processes.
Collapse
|
80
|
Ma KW, Au SWN, Waye MMY. Over-expression of SUMO-1 induces the up-regulation of heterogeneous nuclear ribonucleoprotein A2/B1 isoform B1 (hnRNP A2/B1 isoform B1) and uracil DNA glycosylase (UDG) in hepG2 cells. Cell Biochem Funct 2009; 27:228-37. [PMID: 19384898 DOI: 10.1002/cbf.1562] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
Sumoylation is one of the post-translational modifications that governs many cellular activities, including subcellular localization targeting, protein-protein interaction, and transcriptional activity regulation. SUMO E3 ligases are responsible for substrate specificity determination in which PIAS is the largest E3 family that consists of five members in human; they are PIAS1, PIAS3, PIASx alpha, PIASx beta, and PIASy. Several studies showed that all these PIAS genes are highly expressed in testis but only a few reports have discussed their expression pattern in other tissues. Though liver is a multifunctional organ and one would expect to find regulation of cellular functions by sumoylation, the identified sumoylation substrates are scarce and few of them correlate with liver cancer. In this report, we have found that PIASx alpha, PIASx beta, and PIASy are highly expressed in liver as well as testis by tissue distribution studies. We thus aimed to identify any SUMO-1 related proteins in liver cancer cells by two-dimensional gel electrophoresis and mass spectrometry. Two up-regulated proteins, heterogeneous nuclear ribonucleoprotein A2/B1 isoform B1 (hnRNP A2/B1 isoform B1) and uracil DNA glycosylase (UDG), have been identified in the EGFP-SUMO-1 over-expressing HepG2 cells. The up-regulation is suggested to be mediated via changes at the translational level or protection from degradation by western blotting and RT-PCR.
Collapse
Affiliation(s)
- Kit Wan Ma
- The Croucher Laboratory for Human Genomics, MMW Bldg., the Chinese University of Hong Kong, Shatin, NT, Hong Kong, SAR, China
| | | | | |
Collapse
|
81
|
SUMO association with repressor complexes, emerging routes for transcriptional control. BIOCHIMICA ET BIOPHYSICA ACTA-GENE REGULATORY MECHANISMS 2009; 1789:451-9. [DOI: 10.1016/j.bbagrm.2009.07.001] [Citation(s) in RCA: 119] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/30/2009] [Revised: 07/06/2009] [Accepted: 07/10/2009] [Indexed: 11/20/2022]
|
82
|
van den Burg HA, Takken FLW. Does chromatin remodeling mark systemic acquired resistance? TRENDS IN PLANT SCIENCE 2009; 14:286-94. [PMID: 19369112 DOI: 10.1016/j.tplants.2009.02.003] [Citation(s) in RCA: 61] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/19/2008] [Revised: 02/23/2009] [Accepted: 02/25/2009] [Indexed: 05/07/2023]
Abstract
The recognition of plant pathogens activates local defense responses and triggers a long-lasting systemic acquired resistance (SAR) response. Activation of SAR requires the hormone salicylic acid (SA), which induces SA-responsive gene expression. Recent data link changes in gene expression to chromatin remodeling, such as histone modifications and histone replacement. Here, we propose a model in which recruitment of chromatin-modifying complexes to SA-responsive loci controls their basal and SA-induced expression. Basal repression of these loci requires the post-translational modifier SUMO (SMALL UBIQUITIN-LIKE MODIFIER). This is of particular relevance because SUMO conjugation has been shown to control the activity, assembly and disassembly of chromatin-modifying complexes to transcription complexes. Chromatin remodeling could be instrumental for priming of SA-responsive loci to enable their enhanced reactivation upon subsequent pathogen attack.
Collapse
Affiliation(s)
- Harrold A van den Burg
- Laboratory of Phytopathology, Wageningen University, Binnenhaven 5, 6709 PD Wageningen, The Netherlands
| | | |
Collapse
|
83
|
Venancio TM, Balaji S, Iyer LM, Aravind L. Reconstructing the ubiquitin network: cross-talk with other systems and identification of novel functions. Genome Biol 2009; 10:R33. [PMID: 19331687 PMCID: PMC2691004 DOI: 10.1186/gb-2009-10-3-r33] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2008] [Revised: 02/11/2009] [Accepted: 03/30/2009] [Indexed: 12/31/2022] Open
Abstract
A computational model of the yeast Ubiquitin system highlights interesting biological features including functional interactions between components and interplay with other regulatory mechanisms. Background The ubiquitin system (Ub-system) can be defined as the ensemble of components including Ub/ubiquitin-like proteins, their conjugation and deconjugation apparatus, binding partners and the proteasomal system. While several studies have concentrated on structure-function relationships and evolution of individual components of the Ub-system, a study of the system as a whole is largely lacking. Results Using numerous genome-scale datasets, we assemble for the first time a comprehensive reconstruction of the budding yeast Ub-system, revealing static and dynamic properties. We devised two novel representations, the rank plot to understand the functional diversification of different components and the clique-specific point-wise mutual-information network to identify significant interactions in the Ub-system. Conclusions Using these representations, evidence is provided for the functional diversification of components such as SUMO-dependent Ub-ligases. We also identify novel components of SCF (Skp1-cullin-F-box)-dependent complexes, receptors in the ERAD (endoplasmic reticulum associated degradation) system and a key role for Sus1 in coordinating multiple Ub-related processes in chromatin dynamics. We present evidence for a major impact of the Ub-system on large parts of the proteome via its interaction with the transcription regulatory network. Furthermore, the dynamics of the Ub-network suggests that Ub and SUMO modifications might function cooperatively with transcription control in regulating cell-cycle-stage-specific complexes and in reinforcing periodicities in gene expression. Combined with evolutionary information, the structure of this network helps in understanding the lineage-specific expansion of SCF complexes with a potential role in pathogen response and the origin of the ERAD and ESCRT systems.
Collapse
Affiliation(s)
- Thiago M Venancio
- National Center for Biotechnology Information, National Library of Medicine, NIH, Bethesda, MD 20894, USA.
| | | | | | | |
Collapse
|
84
|
Transcriptional ERRgamma2-mediated activation is regulated by sentrin-specific proteases. Biochem J 2009; 419:167-76. [PMID: 19067653 DOI: 10.1042/bj20081556] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
Modification with SUMOs (small ubiquitin-related modifiers) has emerged as an important means of regulating the activity of transcription factors, often by repressing their activity. The ERRgamma [oestrogen receptor-related receptor gamma; ERR3 or NR3B3 (nuclear receptor subfamily 3, group B, gene3)] is a constitutively active orphan nuclear receptor. A PDSM, (phosphorylation-dependent sumoylation motif) is located in the close vicinity of the N-terminally located ERRgamma2-specific AF-1 (activation function-1). Its function can be replaced by an NDSM (negatively charged amino acid-dependent sumoylation motif). A mutational analysis reveals that ERRgamma2 activity is modulated through sumoylation of a lysine residue at position 40, which in turn is regulated by phosphorylation. Phosphorylation at the +5 position relative to the sumoylation target is directly visualized by a high-resolution EMSA (electrophoretic mobility-shift assay). Sumoylation represses the activity of ERRgamma both with and without forced expression of the PGC-1beta (peroxisome-proliferator-activated receptor gamma co-activator-1beta). Fusion proteins of a heterologous DNA-binding domain with the ERRgamma2 N-terminus demonstrate the function of the PDSM as the RF-1 (repression function-1) for the neighbouring AF-1. De-repression is achieved by co-expression of sentrin/SENP (sentrin-specific protease) family members. Together, our results demonstrate reversible phosphorylation-dependent sumoylation as a means to regulate the activity of an orphan nuclear receptor.
Collapse
|
85
|
Extracellular signal-regulated kinase mitogen-activated protein kinase signaling initiates a dynamic interplay between sumoylation and ubiquitination to regulate the activity of the transcriptional activator PEA3. Mol Cell Biol 2009; 29:3204-18. [PMID: 19307308 DOI: 10.1128/mcb.01128-08] [Citation(s) in RCA: 59] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
Many transcription factors are controlled through SUMO modification, and in the majority of cases this modification results in enhancements in their repressive properties. In some instances, SUMO modification and its associated repressive activities can be reversed by the action of intracellular signaling pathways, leading to enhanced transcriptional capacities of transcription factors. Here we have investigated sumoylation of the ETS domain transcription factor PEA3 and its interplay with the extracellular signal-regulated kinase (ERK) mitogen-activated protein (MAP) kinase signaling pathway. PEA3 is modified by SUMO in vitro and in vivo on multiple sites in its N-terminal region. Activation of the ERK MAP kinase pathway promotes sumoylation of PEA3. Importantly, sumoylation of PEA3 is required for maximal activation of target gene promoters, including MMP-1 and COX-2. Molecularly, sumoylation is selectively required for synergistic activation of target gene expression with the coactivator CBP. Moreover, sumoylation of PEA3 is required for ubiquitination of PEA3 and promotes its degradation, suggesting that SUMO-mediated recycling of PEA3 plays a role in PEA3-mediated promoter activation. Thus, in contrast to the majority of other transcription factors studied, sumoylation of PEA3 plays a positive role in PEA3-mediated transcriptional activation and the ERK MAP kinase pathway cooperates with rather than antagonizes this process.
Collapse
|
86
|
Abstract
In the developing retina the nuclear hormone receptor Nr2e3 has dual roles, promoting expression of rod-specific genes and repressing expression of cone specific genes. In a recent issue of Neuron, Onishi et al. show that PIAS3-mediated SUMOylation of Nr2e3 plays an essential role in the specification of rod photoreceptors by converting Nr2e3 to a potent repressor of cone gene expression.
Collapse
|
87
|
Onishi A, Peng GH, Hsu C, Alexis U, Chen S, Blackshaw S. Pias3-dependent SUMOylation directs rod photoreceptor development. Neuron 2009; 61:234-46. [PMID: 19186166 PMCID: PMC2701228 DOI: 10.1016/j.neuron.2008.12.006] [Citation(s) in RCA: 96] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2008] [Revised: 09/16/2008] [Accepted: 12/03/2008] [Indexed: 11/21/2022]
Abstract
Specification of retinal rod photoreceptors is determined by several different transcription factors that activate expression of rod-specific genes and repress expression of cone photoreceptor-specific genes. The mechanism by which this dual regulation occurs is unclear. We have found that Pias3, a transcriptional coregulator and E3 SUMO ligase that is selectively expressed in developing photoreceptors, promotes the differentiation of rod photoreceptors while preventing rods from adopting cone photoreceptor-like characteristics. Pias3 binds the photoreceptor-specific transcription factors Crx and Nr2e3 and is specifically targeted to the promoters of photoreceptor-specific genes. Pias3 SUMOylates Nr2e3, converting it into a potent repressor of cone-specific gene expression. Rod- and cone-specific promoters are bound by hyperSUMOylated proteins in rod photoreceptors, and blocking SUMOylation in photoreceptors results in cells with morphological and molecular features of cones and an absence of rod-specific markers. Our data thus identify Pias3-mediated SUMOylation of photoreceptor-specific transcription factors as a key mechanism of rod specification.
Collapse
Affiliation(s)
- Akishi Onishi
- Department of Neuroscience, Johns Hopkins University School of Medicine, BRB 329, 733 N. Broadway Avenue, Baltimore, MD 21287
| | - Guang-Hua Peng
- Department of Ophthalmology and Visual Sciences, Washington University School of Medicine, St. Louis, MO, 63110
| | - Chengda Hsu
- Department of Ophthalmology and Visual Sciences, Washington University School of Medicine, St. Louis, MO, 63110
| | - Uel Alexis
- Department of Neuroscience, Johns Hopkins University School of Medicine, BRB 329, 733 N. Broadway Avenue, Baltimore, MD 21287
| | - Shiming Chen
- Department of Ophthalmology and Visual Sciences, Washington University School of Medicine, St. Louis, MO, 63110
- Department of Developmental Biology, Washington University School of Medicine, St. Louis, MO, 63110
| | - Seth Blackshaw
- Department of Neuroscience, Johns Hopkins University School of Medicine, BRB 329, 733 N. Broadway Avenue, Baltimore, MD 21287
| |
Collapse
|
88
|
Gopalakrishnan S, Emburgh BOV, Robertson KD. DNA methylation in development and human disease. Mutat Res 2008; 647:30-8. [PMID: 18778722 PMCID: PMC2647981 DOI: 10.1016/j.mrfmmm.2008.08.006] [Citation(s) in RCA: 184] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2008] [Revised: 07/31/2008] [Accepted: 08/07/2008] [Indexed: 12/20/2022]
Abstract
DNA methylation is a heritable and stable epigenetic mark associated with transcriptional repression. Changes in the patterns and levels of global and regional DNA methylation regulate development and contribute directly to disease states such as cancer. Recent findings provide intriguing insights into the epigenetic crosstalk between DNA methylation, histone modifications, and small interfering RNAs in the control of cell development and carcinogenesis. In this review, we summarize the recent studies in DNA methylation primarily focusing on the interplay between different epigenetic modifications and their potential role in gene silencing in development and disease. Although the molecular mechanisms involved in the epigenetic crosstalk are not fully understood, unraveling their precise regulation is important not only for understanding the underpinnings of cellular development and cancer, but also for the design of clinically relevant and efficient therapeutics using stem cells and anticancer drugs that target tumor initiating cells.
Collapse
Affiliation(s)
- Suhasni Gopalakrishnan
- Department of Biochemistry & Molecular Biology, UF-Shands Cancer Center Program in Cancer Genetics, Epigenetics and Tumor Virology, University of Florida College of Medicine, Gainesville, FL 32610
| | - Beth O. Van Emburgh
- Department of Biochemistry & Molecular Biology, UF-Shands Cancer Center Program in Cancer Genetics, Epigenetics and Tumor Virology, University of Florida College of Medicine, Gainesville, FL 32610
| | - Keith D Robertson
- Department of Biochemistry & Molecular Biology, UF-Shands Cancer Center Program in Cancer Genetics, Epigenetics and Tumor Virology, University of Florida College of Medicine, Gainesville, FL 32610
| |
Collapse
|
89
|
Abstract
The switch from Epstein-Barr virus (EBV) latent infection to lytic replication is governed by two transcriptional regulators, Zta and Rta. We previously reported that the EBV protein encoded by the LF2 gene binds to Rta and can inhibit Rta activity in reporter gene assays. We now report that LF2 associates with Rta in the context of EBV-infected cells induced for lytic replication. LF2 inhibition of Rta occurs in both epithelial and B cells, and this downregulation is promoter specific: LF2 decreases Rta activation of the BALF2, BMLF1, and BMRF1 promoters by 60 to 90% but does not significantly decrease Rta activation of its own promoter (Rp). LF2 decreases Rta activation by at least two mechanisms: decreased DNA binding and interference with transcriptional activation by the Rta acidic activation domain. Coexpression of LF2 also specifically induces modification of Rta by the small ubiquitin-like modifiers SUMO2 and SUMO3. We further demonstrate that LF2 overexpression blocks lytic activation in EBV-infected cells induced with Rta or Zta. Our results demonstrate that LF2, a gene deleted from the EBV reference strain B95-8, encodes a potent inhibitor of EBV replication, and they suggest that future studies of EBV replication need to account for the potential effects of LF2 on Rta activity.
Collapse
|
90
|
Liu B, Shuai K. Regulation of the sumoylation system in gene expression. Curr Opin Cell Biol 2008; 20:288-93. [PMID: 18468876 PMCID: PMC2495007 DOI: 10.1016/j.ceb.2008.03.014] [Citation(s) in RCA: 52] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2008] [Accepted: 03/20/2008] [Indexed: 11/17/2022]
Abstract
Protein sumoylation has emerged as an important regulatory mechanism for the transcriptional machinery. Sumoylation is a highly dynamic process that is regulated in response to cellular stimuli or pathogenic challenges. Altered activity of the small ubiquitin-like modifier (SUMO) conjugation system is associated with human cancers and inflammation. Thus, understanding the regulation of protein sumoylation is important for the design of SUMO-based therapeutic strategies for the treatment of human diseases. Recent studies indicate that the sumoylation system can be regulated through multiple mechanisms, including the regulation of the expression of various components of the sumoylation pathway, and the modulation of the activity of SUMO enzymes. In addition, extracellular stimuli can signal the nucleus to trigger the rapid promoter recruitment of SUMO E3 ligases, resulting in the immediate repression of transcription. Finally, the sumoylation system can also be regulated through crosstalk with other post-translational modifications, including phosphorylation, ubiquitination, and acetylation.
Collapse
Affiliation(s)
- Bin Liu
- Division of Hematology-Oncology, Department of Medicine, University of California Los Angeles, Los Angeles, California 90095
| | - Ke Shuai
- Division of Hematology-Oncology, Department of Medicine, University of California Los Angeles, Los Angeles, California 90095
- Department of Biological Chemistry, University of California Los Angeles, Los Angeles, California 90095
| |
Collapse
|