51
|
Terashima J, Sampei S, Iidzuka M, Ohsakama A, Tachikawa C, Satoh J, Kudo K, Habano W, Ozawa S. VEGF expression is regulated by HIF-1α and ARNT in 3D KYSE-70, esophageal cancer cell spheroids. Cell Biol Int 2016; 40:1187-1194. [PMID: 27542820 DOI: 10.1002/cbin.10656] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2016] [Accepted: 08/14/2016] [Indexed: 12/24/2022]
Abstract
In 3D cultured cell systems, the cells form 3D spheroids that mimic cancer cell spheroids in vivo. Cancer cells form cell spheroids as they grow. The in vivo spheroids do not contain a vascular network; therefore, oxygen and nutrition supplies are insufficient. Specifically, the cells in the core region of the cluster are exposed to higher stress levels than the cells in the outer spheroid layer. As a result, the cells in the spheroid are exposed to low nutrition and hypoxia conditions. To overcome these shortages, angiogenesis is induced in cancer spheroids in vivo. Vascular endothelial growth factor (VEGF) is an important molecule involved in angiogenesis. VEGF is secreted by cancer cells in vivo in response to stress conditions such as hypoxia. VEGF expression in cancer cells is mediated by hypoxia-inducible factor 1α (HIF1α), which accumulates in cancer cells during hypoxia. In this report, we show that VEGF expression is regulated by HIF1α and that VEGF is secreted to the outside of the spheroid in vitro. Several investigators have reported that HIF1α forms a protein-protein complex with aryl hydrocarbon receptor translocator (ARNT). We report here that not only HIF1α but also ARNT regulates VEGF expression in 3D cancer spheroids. Our results suggest the utility of the in vitro 3D cancer spheroid model for investigating angiogenesis in cancerous tissues.
Collapse
Affiliation(s)
- Jun Terashima
- Pharmacodynamics and Molecular Genetics, School of Pharmacy, Iwate Medical University, 2-1-1 Nishitokuda, Yahaba-CHO, Siwa-Gun, Iwate, 028-3694, Japan.
| | - Satoko Sampei
- Pharmacodynamics and Molecular Genetics, School of Pharmacy, Iwate Medical University, 2-1-1 Nishitokuda, Yahaba-CHO, Siwa-Gun, Iwate, 028-3694, Japan
| | - Mei Iidzuka
- Pharmacodynamics and Molecular Genetics, School of Pharmacy, Iwate Medical University, 2-1-1 Nishitokuda, Yahaba-CHO, Siwa-Gun, Iwate, 028-3694, Japan
| | - Ayumi Ohsakama
- Pharmacodynamics and Molecular Genetics, School of Pharmacy, Iwate Medical University, 2-1-1 Nishitokuda, Yahaba-CHO, Siwa-Gun, Iwate, 028-3694, Japan
| | - Chie Tachikawa
- Pharmacodynamics and Molecular Genetics, School of Pharmacy, Iwate Medical University, 2-1-1 Nishitokuda, Yahaba-CHO, Siwa-Gun, Iwate, 028-3694, Japan.,Department of Pharmacy, Iwate Medical University Hospital, 19-1 Uchimaru, Morioka, Iwate, 020-8505, Japan
| | - Junya Satoh
- Department of Pharmacy, Iwate Medical University Hospital, 19-1 Uchimaru, Morioka, Iwate, 020-8505, Japan
| | - Kenzo Kudo
- Department of Pharmacy, Iwate Medical University Hospital, 19-1 Uchimaru, Morioka, Iwate, 020-8505, Japan
| | - Wataru Habano
- Pharmacodynamics and Molecular Genetics, School of Pharmacy, Iwate Medical University, 2-1-1 Nishitokuda, Yahaba-CHO, Siwa-Gun, Iwate, 028-3694, Japan
| | - Shogo Ozawa
- Pharmacodynamics and Molecular Genetics, School of Pharmacy, Iwate Medical University, 2-1-1 Nishitokuda, Yahaba-CHO, Siwa-Gun, Iwate, 028-3694, Japan
| |
Collapse
|
52
|
Thompson LP, Aguan K, Zhou H. Chronic Hypoxia Inhibits Contraction of Fetal Arteries by Increased Endothelium-Derived Nitric Oxide and Prostaglandin Synthesis. ACTA ACUST UNITED AC 2016; 11:511-20. [PMID: 15582495 DOI: 10.1016/j.jsgi.2004.05.008] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
OBJECTIVE Chronic hypoxia causes redistribution of fetal cardiac output by mechanisms poorly understood. We tested the hypothesis that chronic hypoxia alters vascular reactivity of arteries from near-term fetal guinea pigs. METHODS Pregnant guinea pigs (50 days, term = 65 days) were exposed to either normoxia (room air) or hypoxia (12% O2) for 14 days. Carotid artery ring segments from anesthetized fetuses were mounted onto myographs for measurement of force. Contractile responses to cumulative addition of prostaglandin F2alpha (PGF2alpha, 10(-9) M to 10(-5) M), U46619, a thromboxane mimetic (10(-12) M to 12(-6) M), and KCl (10 to 120 mM) were measured in the presence and absence of INDO (INDO, 10(-5) M) alone and INDO plus nitro-L-arginine (LNA, 10(-4) M), or INDO plus N6-iminoethyl-L-lysine (LNIL, 5 x 10(-5) M, a selective iNOS inhibitor), and measured in endothelium-intact and denuded arteries. Nitric oxide synthase (NOS) activity was measured in isolated arteries by 14C-L-arginine to 14C-L-citrulline conversion. RESULTS Hypoxia decreased contractile responses to both PGF2alpha and U46619 under control conditions. Maximal contraction to both agonists was increased in hypoxemic arteries after INDO alone and INDO + LNA compared to normoxic controls. Endothelium-denudation abolished the differences between the groups. KCl contraction was unaffected by hypoxia. LNIL potentiated maximal PGF(2alpha) contraction but was similar between groups. Hypoxia increased (P < .05) total and Ca(2+)-dependent NOS activities by 1.7- and 2.1-fold, respectively, but had no effect on Ca(2+)-independent activity. CONCLUSION Chronic hypoxia alters vascular reactivity of fetal carotid arteries by increasing the contribution of both vasodilator prostaglandins and nitric oxide and suggests that changes in local vascular mechanisms may be altered by chronic hypoxia.
Collapse
Affiliation(s)
- Loren P Thompson
- Department of Obstetrics, Gynecology and Reproductive Sciences, University of Maryland School of Medicine, Baltimore, Maryland 21201, USA.
| | | | | |
Collapse
|
53
|
Kida T, Flammer J, Oku H, Morishita S, Fukumoto M, Suzuki H, Konieczka K, Ikeda T. Suppressed endothelin-1 by anti-VEGF therapy is important for patients with BRVO-related macular edema to improve their vision. EPMA J 2016; 7:18. [PMID: 27559424 PMCID: PMC4995759 DOI: 10.1186/s13167-016-0066-2] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2016] [Accepted: 06/28/2016] [Indexed: 12/16/2022]
Abstract
Background Branch retinal vein occlusion (BRVO) commonly occurs at the arteriovenous crossing in the unilateral eye, and cardiovascular diseases can be risk factors of BRVO. However, the pathomechanism leading to BRVO is not yet clear. In addition to mechanical compression, the vein might locally constrict due to an altered biochemical environment, such as an increase in the concentration of endothelin-1 (ET-1). We evaluated changes in ET-1 following injection of intravitreal bevacizumab (IVB), which is the anti-vascular endothelial growth factor (VEGF) agent with the longest serum half-life, to determine the effect on BRVO-related macular edema. Methods Twenty consecutive patients with BRVO-related macular edema (10 males, 10 females; age range 56–83 years) who visited our hospital were included in this prospective study. Visual acuity (VA); central retinal thickness (CRT), determined by macular optical coherence tomography (OCT); and plasma ET-1 levels were obtained before IVB treatment and 1 month later. Results Patients had hypertension (80 %), dyslipidemia (50 %), diabetes mellitus (35 %), or collagen disease (5 %). Mean CRT was significantly decreased from 673.0 ± 327.8 to 388.2 ± 155.0 μm (P = 0.0007), and mean VA was significantly improved after IVB (P = 0.0239). Mean plasma ET-1 was significantly decreased from 1.272 ± 0.451 to 1.095 ± 0.316 pg/mL (P = 0.0238); however, the plasma ET-1 level was increased in all five patients who did not show improved VA after IVB. Conclusions In patients with BRVO-related macular edema, anti-VEGF therapy leads to an expected reduction in ET-1 levels; however, the ET-1 level was found to increase in some patients; this is clearly related to less improvement of VA after anti-VEGF therapy. Trial registration University hospital Medical Information Network (UMIN) Center UMIN000013236. Registered 10 October, 2012.
Collapse
Affiliation(s)
- Teruyo Kida
- Department of Ophthalmology, Osaka Medical College, 2-7 Daigaku-machi, Takatsuki, Osaka 569-8686 Japan
| | - Josef Flammer
- Department of Ophthalmology, University of Basel, Basel, Switzerland
| | - Hidehiro Oku
- Department of Ophthalmology, Osaka Medical College, 2-7 Daigaku-machi, Takatsuki, Osaka 569-8686 Japan
| | - Seita Morishita
- Department of Ophthalmology, Osaka Medical College, 2-7 Daigaku-machi, Takatsuki, Osaka 569-8686 Japan
| | - Masanori Fukumoto
- Department of Ophthalmology, Osaka Medical College, 2-7 Daigaku-machi, Takatsuki, Osaka 569-8686 Japan
| | - Hiroyuki Suzuki
- Department of Ophthalmology, Osaka Medical College, 2-7 Daigaku-machi, Takatsuki, Osaka 569-8686 Japan
| | | | - Tsunehiko Ikeda
- Department of Ophthalmology, Osaka Medical College, 2-7 Daigaku-machi, Takatsuki, Osaka 569-8686 Japan
| |
Collapse
|
54
|
Alves UD, Lopes AJ, Maioli MCP, Soares AR, de Melo PL, Mogami R. Changes seen on computed tomography of the chest in mildly symptomatic adult patients with sickle cell disease. Radiol Bras 2016; 49:214-219. [PMID: 27777473 PMCID: PMC5073386 DOI: 10.1590/0100-3984.2015.0111] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
OBJECTIVE To describe and quantify the main changes seen on computed tomography of the chest in mildly symptomatic adult patients with sickle cell disease, as well as to evaluate the radiologist accuracy in determining the type of hemoglobinopathy. MATERIALS AND METHODS A prospective study involving 44 adult patients with sickle cell disease who underwent inspiration and expiration computed tomography of the chest. The frequency of tomography findings and the extent of involvement are reported. We also calculated radiologist accuracy in determining the type of hemoglobinopathy by analyzing the pulmonary alterations and morphology of the spleen. RESULTS The changes found on computed tomography scans, in descending order of frequency, were as follows: fibrotic opacities (81.8%); mosaic attenuation (56.8%); architectural distortion (31.8%); cardiomegaly (25.0%); lobar volume reduction (18.2%); and increased caliber of peripheral pulmonary arteries (9.1%). For most of the findings, the involvement was considered mild, five or fewer lung segments being affected. The accuracy in determining the type of hemoglobinopathy (HbSS group versus not HbSS group) was 72.7%. CONCLUSION In adult patients with sickle cell disease, the main tomography findings reflect fibrotic changes. In addition, computed tomography can be helpful in differentiating among hemoglobinopathies.
Collapse
Affiliation(s)
- Ursula David Alves
- MD, Radiologist at the Hospital Universitário Pedro Ernesto (HUPE), Student in the Graduate Program in Medical Sciences at the Universidade do Estado do Rio de Janeiro (UERJ), Rio de Janeiro, RJ, Brazil
| | - Agnaldo José Lopes
- PhD, Adjunct Professor of Pulmonology at the Universidade do Estado do Rio de Janeiro (UERJ), Rio de Janeiro, RJ, Brazil
| | - Maria Christina Paixão Maioli
- PhD, Adjunct Professor of Hematology at the Universidade do Estado do Rio de Janeiro (UERJ), Rio de Janeiro, RJ, Brazil
| | - Andrea Ribeiro Soares
- PhD, Adjunct Professor of Hematology at the Universidade do Estado do Rio de Janeiro (UERJ), Rio de Janeiro, RJ, Brazil
| | - Pedro Lopes de Melo
- PhD, Associate Professor, Head of the Biomedical Instrumentation Laboratory, Head of the Laboratory for Clinical and Experimental Research in Vascular Biology, Universidade do Estado do Rio de Janeiro (UERJ), Rio de Janeiro, RJ, Brazil
| | - Roberto Mogami
- PhD, Adjunct Professor of Radiology at the Universidade do Estado do Rio de Janeiro (UERJ), Head of the Radiology Department of the Hospital Universitário Pedro Ernesto (HUPE), Rio de Janeiro, RJ, Brazil
| |
Collapse
|
55
|
Imran TF, Ghazipura M, Liu S, Hossain T, Ashtyani H, Kim B, Michael Gaziano J, Djoussé L. Effect of continuous positive airway pressure treatment on pulmonary artery pressure in patients with isolated obstructive sleep apnea: a meta-analysis. Heart Fail Rev 2016; 21:591-8. [DOI: 10.1007/s10741-016-9548-5] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
|
56
|
Fang L, Fang M, Jiang S, Chen H. Optimization of parameters of Yi Zhi Chan Tuina manipulation promotes peripheral circulation. J TRADIT CHIN MED 2015; 35:558-63. [PMID: 26591686 DOI: 10.1016/s0254-6272(15)30139-4] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
OBJECTIVE To explore the most effective parameters of Yi Zhi Chan Tuina manipulation for improving peripheral blood circulation. METHODS A total of 45 volunteers were recruited from Pudong district in Shanghai, China, from October to December 2010, and randomly divided into nine groups using computer-generated random numbers. Participants received Yi Zhi Chan Tuina manipulation on Chengjin (BL 56) acupoint; each group received a particular combination of manipulation force and treatment time. We used a two-factor, three-level factorial design to examine the effects of force and treatment time on changes in popliteal artery average volume flow, pulsatility index, and vessel diameter to determine the optimal parameter group. Outcomes were assessed at baseline and after Tuina manipulation by interviewers blind to treatment group status. RESULTS After manipulation, two of the nine groups showed an increase in popliteal artery volume flow. An inter-participants effect test showed that for main effect of time, F = 0.331, P = 0.720; for main effect of force, F = 2.934, P = 0.066; and for the force-time interaction effect, F = 1.072, P = 0.385, indicating no interaction between force and time. However, a pairwise comparison of the three levels of time showed that a treatment time of 10 min was significantly more effective than that of 2 min (P = 0.024). A pairwise comparison of light force, medium force, and heavy force showed a statistically significant effect for medium force (P = 0.035). CONCLUSION Yi Zhi Chan Tuina manipulation with vertical force of 9.31 N for 10 min is most effective in improving peripheral circulation.
Collapse
|
57
|
Mottaghitalab F, Hosseinkhani H, Shokrgozar MA, Mao C, Yang M, Farokhi M. Silk as a potential candidate for bone tissue engineering. J Control Release 2015; 215:112-28. [DOI: 10.1016/j.jconrel.2015.07.031] [Citation(s) in RCA: 110] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2015] [Revised: 07/28/2015] [Accepted: 07/29/2015] [Indexed: 02/07/2023]
|
58
|
Guang M, Yao Y, Zhang L, Huang B, Ma L, Xiang L, Jin J, Gong P. The effects of nerve growth factor on endothelial cells seeded on different titanium surfaces. Int J Oral Maxillofac Surg 2015; 44:1506-13. [PMID: 26338076 DOI: 10.1016/j.ijom.2015.06.016] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2014] [Revised: 06/16/2015] [Accepted: 06/17/2015] [Indexed: 02/05/2023]
Abstract
Angiogenesis is critical for peri-implant bone regeneration and osseointegration. Endothelial cells (ECs) play an important role in angiogenesis during the early stage of bone formation. Nerve growth factor (NGF) is also reported to function as an angiogenic growth factor. The effects of NGF on ECs seeded on titanium surfaces are unclear. This study was done to investigate the influence of NGF on peri-implant angiogenesis in vitro and in vivo. We used two different titanium surfaces. ECs seeded on these surfaces were treated with indicated concentrations of NGF or vascular endothelial growth factor (VEGF). Proliferation, differentiation, morphological features, and amounts attached were assessed. Chicken embryo chorioallantoic membrane (CAM) was adopted to evaluate the effect of NGF in vivo. The results showed that NGF could promote EC proliferation on both titanium surfaces (F1d=2.083, P=0.156; F3d=30.857, P=0.0002; F5d=4.440, P=0.041; F7d=11.065, P=0.001). NGF and the SLA surface upregulated mRNA of NGF, TrkA, and p75 expression (FNGF=11.941, P=0.003; FTrkA=28.514, P=0.004; Fp75=7.725, P=0.01). In vivo, the supernatants of the NGF-treated group could promote neovascularization in CAM (F=17.662, P=0.009). This study demonstrated that NGF could enhance EC proliferation, gene expression on different titanium surfaces, and neovascularization in CAM. This provides novel information in relation to the promotion of early dental implant osseointegration.
Collapse
Affiliation(s)
- M Guang
- State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, PR China; Dental Implant Centre, West China Hospital of Stomatology, Sichuan University, Chengdu, PR China
| | - Y Yao
- State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, PR China; Dental Implant Centre, West China Hospital of Stomatology, Sichuan University, Chengdu, PR China
| | - L Zhang
- State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, PR China; Dental Implant Centre, West China Hospital of Stomatology, Sichuan University, Chengdu, PR China
| | - B Huang
- State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, PR China; Dental Implant Centre, West China Hospital of Stomatology, Sichuan University, Chengdu, PR China
| | - L Ma
- State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, PR China; Dental Implant Centre, West China Hospital of Stomatology, Sichuan University, Chengdu, PR China
| | - L Xiang
- State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, PR China; Dental Implant Centre, West China Hospital of Stomatology, Sichuan University, Chengdu, PR China
| | - J Jin
- State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, PR China; Dental Implant Centre, West China Hospital of Stomatology, Sichuan University, Chengdu, PR China
| | - P Gong
- Dental Implant Centre, West China Hospital of Stomatology, Sichuan University, Chengdu, PR China.
| |
Collapse
|
59
|
Piola M, Prandi F, Fiore GB, Agrifoglio M, Polvani G, Pesce M, Soncini M. Human Saphenous Vein Response to Trans-wall Oxygen Gradients in a Novel Ex Vivo Conditioning Platform. Ann Biomed Eng 2015; 44:1449-61. [PMID: 26319011 DOI: 10.1007/s10439-015-1434-0] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2015] [Accepted: 08/18/2015] [Indexed: 11/30/2022]
Abstract
Autologous saphenous veins are commonly used for the coronary artery bypass grafting even if they are liable to progressive patency reduction, known as 'vein graft disease'. Although several cellular and molecular causes for vein graft disease have been identified using in vivo models, the metabolic cues induced by sudden interruption of vasa vasorum blood supply have remained unexplored. In the present manuscript, we describe the design of an ex vivo culture system allowing the generation of an oxygen gradient between the luminal and the adventitial sides of the vein. This system featured a separation between the inner and the outer vessel culture circuits, and integrated a purpose-developed de-oxygenator module enabling the trans-wall oxygen distribution (high oxygen level at luminal side and low oxygen level at the adventitial side) existing in arterialized veins. Compared with standard cultures the bypass-specific conditions determined a significant increase in the proliferation of cells around adventitial vasa vasorum and an elevation in the length density of small and large caliber vasa vasorum. These results suggest, for the first time, a cause-effect relationship between the vein adventitial hypoxia and a neo-vascularization process, a factor known to predispose the arterialized vein conduits to restenosis.
Collapse
Affiliation(s)
- Marco Piola
- Dipartimento di Elettronica, Informazione e Bioingegneria, Politecnico di Milano, P.zza Leonardo da Vinci 32, 20133, Milan, Italy.
| | - Francesca Prandi
- Unità di Ingegneria Tissutale, Centro Cardiologico Monzino-IRCCS, Via Parea 4, 20138, Milan, Italy
| | - Gianfranco Beniamino Fiore
- Dipartimento di Elettronica, Informazione e Bioingegneria, Politecnico di Milano, P.zza Leonardo da Vinci 32, 20133, Milan, Italy
| | - Marco Agrifoglio
- Dipartimento di Scienze Cliniche e di Comunità, Università di Milano, Via Parea 4, 20138, Milan, Italy
| | - Gianluca Polvani
- Dipartimento di Scienze Cliniche e di Comunità, Università di Milano, Via Parea 4, 20138, Milan, Italy
| | - Maurizio Pesce
- Unità di Ingegneria Tissutale, Centro Cardiologico Monzino-IRCCS, Via Parea 4, 20138, Milan, Italy
| | - Monica Soncini
- Dipartimento di Elettronica, Informazione e Bioingegneria, Politecnico di Milano, P.zza Leonardo da Vinci 32, 20133, Milan, Italy
| |
Collapse
|
60
|
Salvadori M, Rosso G, Bertoni E. Update on ischemia-reperfusion injury in kidney transplantation: Pathogenesis and treatment. World J Transplant 2015; 5:52-67. [PMID: 26131407 PMCID: PMC4478600 DOI: 10.5500/wjt.v5.i2.52] [Citation(s) in RCA: 259] [Impact Index Per Article: 25.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/27/2014] [Revised: 01/16/2015] [Accepted: 04/27/2015] [Indexed: 02/05/2023] Open
Abstract
Ischemia/reperfusion injury is an unavoidable relevant consequence after kidney transplantation and influences short term as well as long-term graft outcome. Clinically ischemia/reperfusion injury is associated with delayed graft function, graft rejection, chronic rejection and chronic graft dysfunction. Ischemia/reperfusion affects many regulatory systems at the cellular level as well as in the renal tissue that result in a distinct inflammatory reaction of the kidney graft. Underlying factors of ischemia reperfusion include energy metabolism, cellular changes of the mitochondria and cellular membranes, initiation of different forms of cell death-like apoptosis and necrosis together with a recently discovered mixed form termed necroptosis. Chemokines and cytokines together with other factors promote the inflammatory response leading to activation of the innate immune system as well as the adaptive immune system. If the inflammatory reaction continues within the graft tissue, a progressive interstitial fibrosis develops that impacts long-term graft outcome. It is of particular importance in kidney transplantation to understand the underlying mechanisms and effects of ischemia/reperfusion on the graft as this knowledge also opens strategies to prevent or treat ischemia/reperfusion injury after transplantation in order to improve graft outcome.
Collapse
|
61
|
Shah DA, Khalil RA. Bioactive factors in uteroplacental and systemic circulation link placental ischemia to generalized vascular dysfunction in hypertensive pregnancy and preeclampsia. Biochem Pharmacol 2015; 95:211-26. [PMID: 25916268 DOI: 10.1016/j.bcp.2015.04.012] [Citation(s) in RCA: 127] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2015] [Accepted: 04/17/2015] [Indexed: 12/29/2022]
Abstract
Preeclampsia is a pregnancy-associated disorder characterized by hypertension, and could lead to maternal and fetal morbidity and mortality; however, the pathophysiological mechanisms involved are unclear. Predisposing demographic, genetic and environmental risk factors could cause localized abnormalities in uteroplacental cytoactive factors such as integrins, matrix metalloproteinases, cytokines and major histocompatibility complex molecules leading to decreased vascular remodeling, uteroplacental vasoconstriction, trophoblast cells apoptosis, and abnormal development of the placenta. Defective placentation and decreased trophoblast invasion of the myometrium cause reduction in uteroplacental perfusion pressure (RUPP) and placental ischemia/hypoxia, an important event in preeclampsia. RUPP could stimulate the release of circulating bioactive factors such as the anti-angiogenic factors soluble fms-like tyrosine kinase-1 and soluble endoglin that cause imbalance with the pro-angiogenic factors vascular endothelial growth factor and placental growth factor, or cause the release of inflammatory cytokines, reactive oxygen species, hypoxia-induced factor-1 and AT1 angiotensin receptor agonistic autoantibodies. The circulating bioactive factors target endothelial cells causing generalized endotheliosis, endothelial dysfunction, decreased vasodilators such as nitric oxide and prostacyclin and increased vasoconstrictors such as endothelin-1 and thromboxane A2, leading to increased vasoconstriction. The bioactive factors also stimulate the mechanisms of VSM contraction including Ca(2+), protein kinase C, and Rho-kinase and induce extracellular matrix remodeling leading to further vasoconstriction and hypertension. While therapeutic options are currently limited, understanding the underlying mechanisms could help design new interventions for management of preeclampsia.
Collapse
Affiliation(s)
- Dania A Shah
- Vascular Surgery Research Laboratory, Division of Vascular and Endovascular Surgery, Brigham and Women's Hospital, and Harvard Medical School, Boston, MA 02115, USA
| | - Raouf A Khalil
- Vascular Surgery Research Laboratory, Division of Vascular and Endovascular Surgery, Brigham and Women's Hospital, and Harvard Medical School, Boston, MA 02115, USA.
| |
Collapse
|
62
|
Abstract
Ischemia reperfusion injury occurs in the kidney when blood supply is interrupted in clinical settings such as kidney transplantation or nephron sparing surgery for renal tumors. These lesions lead to acute kidney injury (AKI) a detrimental situation associated with impaired short-term allograft function (delayed graft function or primary non function) but also long-term transplant survival through the onset of chronic allograft nephropathy. The present review details the cellular and molecular consequences of ischemia reperfusion in a native kidney as well as in a kidney graft after cold ischemia time, giving a comprehensive description of biological pathways involved during the phase of ischemia and during the reperfusion period where the rapid return to normoxia leads to a large burst of reactive oxygen species along with a dramatic reduction in antioxidant defenses. This work also focuses on the distinct susceptibilities of kidney cells to ischemia (endothelial vs epithelial) and the outcome of acute kidney injury.
Collapse
|
63
|
Posttranscriptional adaptations of the vascular endothelium to hypoxia. Curr Opin Hematol 2015; 22:243-51. [PMID: 25767954 DOI: 10.1097/moh.0000000000000139] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
PURPOSE OF REVIEW Remarkable new advances have been made in the field of posttranscriptional gene regulation over recent years. These include the revelation of noncoding RNAs, such as microRNAs, antisense transcripts and their interactions with RNA-binding proteins (RBPs) in the context of both health and disease settings, such as hypoxia. In particular, these discoveries bear much relevance to the field of vascular biology, which historically has focused upon transcriptional processes. Thus, the contributions of these posttranscriptional gene regulatory mechanisms to vascular and endothelial biology represent a newer concept that warrants discussion. RECENT FINDINGS Recent studies have revealed two emerging themes that are critical to endothelial/vascular biology and function. First is the functional integration between the microRNA pathway and the cellular hypoxic response, which, in addition to specific microRNAs, involves key components of the microRNA biogenesis machinery. A key concept here is the regulation of a master transcriptional programme through posttranscriptional mechanisms. The second major theme involves the dynamic interactions between RBPs, microRNAs and antisense RNAs. The condition-dependent collaborations and competitions between these different classes of posttranscriptional regulators reveal a critical layer of control for gene expression. SUMMARY Taken together, these findings bear significant diagnostic and therapeutic implications for vascular disease.
Collapse
|
64
|
Cap A, Hunt BJ. The pathogenesis of traumatic coagulopathy. Anaesthesia 2015; 70 Suppl 1:96-101, e32-4. [PMID: 25440402 DOI: 10.1111/anae.12914] [Citation(s) in RCA: 87] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/19/2014] [Indexed: 12/14/2022]
Abstract
Over the last 10 years, the management of major haemorrhage in trauma patients has changed radically. This is mainly due to the recognition that many patients who are bleeding when they come in to the emergency department have an established coagulopathy before the haemodilution effects of fluid resuscitation. This has led to the use of new terminology: acute traumatic coagulopathy, acute coagulopathy of trauma shock or trauma-induced coagulopathy. The recognition of acute traumatic coagulopathy is important, because we now understand that its presence is a prognostic indicator, as it is associated with poor clinical outcome. This has driven a change in clinical management, so that the previous approach of maintaining an adequate circulating volume and oxygen carrying capacity before, as a secondary event, dealing with coagulopathy, has changed to haemostatic resuscitation as early as possible. While there is as yet no universally accepted assay or definition, many experts use prolongation of the prothrombin time to indicate that there is, indeed, a coagulopathy. Hypoxia, acidosis and hypothermia and hormonal, immunological and cytokine production, alongside consumption and blood loss, and the dilutional effects of resuscitation may occur to varying extents depending on the type of tissue damaged, the type and extent of injury, predisposing to, or amplifying, activation of coagulation, platelets, fibrinolysis. These are discussed in detail within the article.
Collapse
Affiliation(s)
- A Cap
- Uniformed Services University, Blood Research Program, US Army Institute of Surgical Research, Sam Houston, Texas, USA
| | | |
Collapse
|
65
|
El Meguid KRA, Mahmoud HB, Mohammad MM. Predictors for Dilated Aorta in Repaired and Unrepaired Tetralogy of Fallot. WORLD JOURNAL OF CARDIOVASCULAR DISEASES 2015; 05:233-253. [DOI: 10.4236/wjcd.2015.58027] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/02/2023]
|
66
|
|
67
|
Pugliese SC, Poth JM, Fini MA, Olschewski A, El Kasmi KC, Stenmark KR. The role of inflammation in hypoxic pulmonary hypertension: from cellular mechanisms to clinical phenotypes. Am J Physiol Lung Cell Mol Physiol 2014; 308:L229-52. [PMID: 25416383 DOI: 10.1152/ajplung.00238.2014] [Citation(s) in RCA: 157] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Hypoxic pulmonary hypertension (PH) comprises a heterogeneous group of diseases sharing the common feature of chronic hypoxia-induced pulmonary vascular remodeling. The disease is usually characterized by mild to moderate pulmonary vascular remodeling that is largely thought to be reversible compared with the progressive irreversible disease seen in World Health Organization (WHO) group I disease. However, in these patients, the presence of PH significantly worsens morbidity and mortality. In addition, a small subset of patients with hypoxic PH develop "out-of-proportion" severe pulmonary hypertension characterized by pulmonary vascular remodeling that is irreversible and similar to that in WHO group I disease. In all cases of hypoxia-related vascular remodeling and PH, inflammation, particularly persistent inflammation, is thought to play a role. This review focuses on the effects of hypoxia on pulmonary vascular cells and the signaling pathways involved in the initiation and perpetuation of vascular inflammation, especially as they relate to vascular remodeling and transition to chronic irreversible PH. We hypothesize that the combination of hypoxia and local tissue factors/cytokines ("second hit") antagonizes tissue homeostatic cellular interactions between mesenchymal cells (fibroblasts and/or smooth muscle cells) and macrophages and arrests these cells in an epigenetically locked and permanently activated proremodeling and proinflammatory phenotype. This aberrant cellular cross-talk between mesenchymal cells and macrophages promotes transition to chronic nonresolving inflammation and vascular remodeling, perpetuating PH. A better understanding of these signaling pathways may lead to the development of specific therapeutic targets, as none are currently available for WHO group III disease.
Collapse
Affiliation(s)
- Steven C Pugliese
- Developmental Lung Biology, Cardiovascular Pulmonary Research Laboratories, Division of Pulmonary Sciences and Critical Care Medicine, Division of Pediatrics-Critical Care, Departments of Medicine and Pediatrics, University of Colorado, Anschutz Medical Campus, Aurora, Colorado;
| | - Jens M Poth
- Developmental Lung Biology, Cardiovascular Pulmonary Research Laboratories, Division of Pulmonary Sciences and Critical Care Medicine, Division of Pediatrics-Critical Care, Departments of Medicine and Pediatrics, University of Colorado, Anschutz Medical Campus, Aurora, Colorado
| | - Mehdi A Fini
- Developmental Lung Biology, Cardiovascular Pulmonary Research Laboratories, Division of Pulmonary Sciences and Critical Care Medicine, Division of Pediatrics-Critical Care, Departments of Medicine and Pediatrics, University of Colorado, Anschutz Medical Campus, Aurora, Colorado
| | - Andrea Olschewski
- Ludwig Boltzmann Institute for Lung Vascular Research, Graz, Austria; and
| | - Karim C El Kasmi
- Department of Pediatrics, Division of Gastroenterology, Hepatology, and Nutrition, University of Colorado Denver, School of Medicine, Anschutz Medical Campus, Aurora, Colorado
| | - Kurt R Stenmark
- Developmental Lung Biology, Cardiovascular Pulmonary Research Laboratories, Division of Pulmonary Sciences and Critical Care Medicine, Division of Pediatrics-Critical Care, Departments of Medicine and Pediatrics, University of Colorado, Anschutz Medical Campus, Aurora, Colorado
| |
Collapse
|
68
|
Röhrborn D, Eckel J, Sell H. Shedding of dipeptidyl peptidase 4 is mediated by metalloproteases and up-regulated by hypoxia in human adipocytes and smooth muscle cells. FEBS Lett 2014; 588:3870-7. [PMID: 25217834 DOI: 10.1016/j.febslet.2014.08.029] [Citation(s) in RCA: 106] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2014] [Revised: 08/13/2014] [Accepted: 08/27/2014] [Indexed: 12/12/2022]
Abstract
Dipeptidyl peptidase 4 is an important drug target for diabetes and a novel adipokine. However, it is unknown how soluble DPP4 (sDPP4) is cleaved from the cell membrane and released into the circulation. We show here that MMP1, MMP2 and MMP14 are involved in DPP4 shedding from human vascular smooth muscle cells (SMC) and MMP9 from adipocytes. Hypoxia increased DPP4 shedding from SMC which is associated with increased mRNA expression of MMP1. Our data suggest that constitutive as well as hypoxia-induced DPP4 shedding occurs due to a complex interplay between different MMPs in cell type-specific manner.
Collapse
Affiliation(s)
- Diana Röhrborn
- Paul-Langerhans-Group for Integrative Physiology, German Diabetes Center, Düsseldorf, Germany
| | - Jürgen Eckel
- Paul-Langerhans-Group for Integrative Physiology, German Diabetes Center, Düsseldorf, Germany; German Center for Diabetes Research (DZD e.V.), Düsseldorf, Germany
| | - Henrike Sell
- Paul-Langerhans-Group for Integrative Physiology, German Diabetes Center, Düsseldorf, Germany.
| |
Collapse
|
69
|
Olufsen M, Cangialosi MV, Arukwe A. Modulation of membrane lipid composition and homeostasis in salmon hepatocytes exposed to hypoxia and perfluorooctane sulfonamide, given singly or in combination. PLoS One 2014; 9:e102485. [PMID: 25047721 PMCID: PMC4105415 DOI: 10.1371/journal.pone.0102485] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2014] [Accepted: 06/18/2014] [Indexed: 12/19/2022] Open
Abstract
The relative importance of environmental hypoxia due to global climate change on organismal ability to adapt to chemical insult and/or mechanisms of these responses is not well understood. Therefore, we have studied the effects of combined exposure to perfluorooctane sulfonamide (PFOSA) and chemically induced hypoxia on membrane lipid profile and homeostasis. Primary salmon hepatocytes were exposed to PFOSA at 0, 25 and 50 µM singly or in combination with either cobalt chloride (CoCl2: 0 and 150 µM) or deferroxamine (DFO: 0 and 100 µM) for 24 and 48 h. CoCl2 and DFO were used to induce cellular hypoxia because these two chemicals have been commonly used in animal experiments for this purpose and have been shown to increase hypoxia-inducible factor 1-alpha (HIF-1α) and vascular endothelial growth factor (VEGF) levels. Fatty acid (FA) profiles were determined by GC-MS, while gene expression patterns were determined by quantitative PCR. Hypoxic condition was confirmed with time-related increases of HIF-1α mRNA levels in CoCl2 and DFO exposed cells. In general, significant alterations of genes involved in lipid homeostasis were predominantly observed after 48 h exposure. Gene expression analysis showed that biological responses related to peroxisome proliferation (peroxisome proliferator-activated receptors (PPARs) and acyl coenzyme A (ACOX)) and FA desaturation (Δ5- and Δ6-desaturases: FAD5 and FAD6, respectively) and elongation (FAE) were elevated slightly by single exposure (i.e. either PFOSA, CoCl2 or DFO exposure alone), and these responses were potentiated in combined exposure conditions. Principal component analysis (PCA) showed a clustering of peroxisome proliferation responses at transcript levels and FA desaturation against membrane FAs levels whose changes were explained by PFOSA and chemically induced hypoxia exposures. Overall, our data show that most of the observed responses were stronger in combined stressor exposure conditions, compared to individual stressor exposure. In general, our data show that hypoxia may, singly or in combination with PFOSA produce deleterious health, physiological and developmental consequences through the alteration of membrane lipid profile in organisms.
Collapse
Affiliation(s)
- Marianne Olufsen
- Department of Biology, Norwegian University of Science and Technology (NTNU), Trondheim, Norway
| | - Maria V. Cangialosi
- Department of Food and Environmental Science “Prof. G. Stagno d’Alcontres”, University of Messina, Messina, Italy
| | - Augustine Arukwe
- Department of Biology, Norwegian University of Science and Technology (NTNU), Trondheim, Norway
| |
Collapse
|
70
|
Role of angiogenesis in bone repair. Arch Biochem Biophys 2014; 561:109-17. [PMID: 25034215 DOI: 10.1016/j.abb.2014.07.006] [Citation(s) in RCA: 264] [Impact Index Per Article: 24.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2014] [Revised: 07/01/2014] [Accepted: 07/08/2014] [Indexed: 12/25/2022]
Abstract
Bone vasculature plays a vital role in bone development, remodeling and homeostasis. New blood vessel formation is crucial during both primary bone development as well as fracture repair in adults. Both bone repair and bone remodeling involve the activation and complex interaction between angiogenic and osteogenic pathways. Interestingly studies have demonstrated that angiogenesis precedes the onset of osteogenesis. Indeed reduced or inadequate blood flow has been linked to impaired fracture healing and old age related low bone mass disorders such as osteoporosis. Similarly the slow penetration of host blood vessels in large engineered bone tissue grafts has been cited as one of the major hurdle still impeding current bone construction engineering strategies. This article reviews the current knowledge elaborating the importance of vascularization during bone healing and remodeling, and the current therapeutic strategies being adapted to promote and improve angiogenesis.
Collapse
|
71
|
LIU XI, DENG FEN, YU ZHEN, XIE YUNLAN, HU CHANGLIN, CHEN LIFEN. Inhibition of endothelin A receptor protects brain microvascular endothelial cells against hypoxia-induced injury. Int J Mol Med 2014; 34:313-20. [DOI: 10.3892/ijmm.2014.1744] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2013] [Accepted: 04/09/2014] [Indexed: 11/06/2022] Open
|
72
|
Chen RH, Wong SJ, Wong WH, Cheung YF. Arterial mechanics at rest and during exercise in adolescents and young adults after arterial switch operation for complete transposition of the great arteries. Am J Cardiol 2014; 113:713-8. [PMID: 24360774 DOI: 10.1016/j.amjcard.2013.10.050] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/02/2013] [Revised: 10/23/2013] [Accepted: 10/23/2013] [Indexed: 11/16/2022]
Abstract
We sought to determine the arterial mechanics at rest and during exercise in adolescents and young adults with complete transposition of the great arteries after arterial switch operation and their relations with neoaortic complications. Thirty patients (22 men) aged 16.2 ± 2.1 years and 22 controls (15 men) were studied. Central and peripheral arterial pulse wave velocities, carotid and radial augmentation indices, and central systolic blood pressure (cSBP) were determined by oscillometry and applanation tonometry, whereas arterial dimensions were measured by 2-dimensional echocardiography. Arterial strain, distensibility, and stiffness were determined at rest and during supine bicycle exercise testing. At rest, patients had significantly higher heart-carotid pulse wave velocity, carotid and radial augmentation indices, and cSBP than controls. At rest and during submaximal exercise, patients had significantly lower aortic strain and distensibility, greater aortic and carotid stiffness, and higher SBP than controls. Dilated aortic sinus found in 23 (76.7%) patients was associated with lower aortic distensibility, greater aortic stiffness, and higher cSBP at rest and lower aortic distensibility and strain at submaximal exercise. Significant aortic regurgitation found in 20% (6 of 30) of patients was associated with significantly higher neoaortic z scores. Multivariate analysis identified aortic stiffness at rest (β = 0.46, p = 0.003) and age at operation (β = 0.44, p = 0.004) as significant determinants of aortic sinus z scores. In conclusion, altered mechanics of the central arteries are present at rest and during exercise in adolescents and young adults after arterial switch operation. These findings may have important implications on progression of neoaortic root dilation, exercise recommendations, and medical therapy.
Collapse
Affiliation(s)
- Robin H Chen
- Department of Pediatrics and Adolescent Medicine, Queen Mary Hospital, The University of Hong Kong, Hong Kong, China
| | - Sophia J Wong
- Department of Pediatrics and Adolescent Medicine, Queen Mary Hospital, The University of Hong Kong, Hong Kong, China
| | - Wilfred H Wong
- Department of Pediatrics and Adolescent Medicine, Queen Mary Hospital, The University of Hong Kong, Hong Kong, China
| | - Yiu-Fai Cheung
- Department of Pediatrics and Adolescent Medicine, Queen Mary Hospital, The University of Hong Kong, Hong Kong, China.
| |
Collapse
|
73
|
Cyanidin-3-O-glucoside modulates intracellular redox status and prevents HIF-1 stabilization in endothelial cells in vitro exposed to chronic hypoxia. Toxicol Lett 2014; 226:206-13. [PMID: 24518827 DOI: 10.1016/j.toxlet.2014.01.048] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2013] [Revised: 01/30/2014] [Accepted: 01/31/2014] [Indexed: 12/30/2022]
Abstract
The term hypoxia refers to conditions characterized by a relative restriction of oxygen supply. It is usually associated to a paradoxical overproduction of reactive oxygen species (ROS) and to the activation of several transcription factors, including HIF-1α, which in turn trigger angiogenic and apoptotic response. In this study we have investigated the mechanisms by which the anthocyanin cyanidin-3-O-glucoside (C3G) modulates hypoxia induced response in human endothelial cells (HUVECs). In fact, hypoxia induces an increase of ROS generation in HUVECs paralleled by a loss of antioxidant cellular capacity. According to the observed increase of HO-1 mRNA expression, pretreatment of C3G to HUVEC reduces the entity of oxidative stress thanks to the activation of cellular antioxidant response. C3G also attenuates HIF-1α protein accumulation conditions supporting the hypothesis of a major role of oxidative stress in the presence of low oxygen. Furthermore, the increased expression of angiogenesis and apoptosis markers (MMP-2 and caspase-3) due to HIF-1α activation by hypoxia is reduced in C3G pretreated cells. Overall, our data suggest that the modulation of intracellular redox status induced by C3G may be an important protective mechanism against endothelial damage in hypoxic conditions.
Collapse
|
74
|
Chan KH, Wilcox I. Obstructive sleep apnea: novel trigger and potential therapeutic target for cardiac arrhythmias. Expert Rev Cardiovasc Ther 2014; 8:981-94. [DOI: 10.1586/erc.10.80] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
75
|
Ji RC. Hypoxia and lymphangiogenesis in tumor microenvironment and metastasis. Cancer Lett 2013; 346:6-16. [PMID: 24333723 DOI: 10.1016/j.canlet.2013.12.001] [Citation(s) in RCA: 117] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2013] [Revised: 11/28/2013] [Accepted: 12/04/2013] [Indexed: 12/29/2022]
Abstract
Hypoxia and lymphangiogenesis are closely related processes that play a pivotal role in tumor invasion and metastasis. Intratumoral hypoxia is exacerbated as a result of oxygen consumption by rapidly proliferating tumor cells, insufficient blood supply and poor lymph drainage. Hypoxia induces functional responses in lymphatic endothelial cells (LECs), including cell proliferation and migration. Multiple factors (e.g., ET-1, AP-1, C/EBP-δ, EGR-1, NF-κB, and MIF) are involved in the events of hypoxia-induced lymphangiogenesis. Among them, HIF-1α is known to be the master regulator of cellular oxygen homeostasis, mediating transcriptional activation of lymphangiogenesis via regulation of signaling cascades like VEGF-A/-C/-D, TGF-β and Prox-1 in experimental and human tumors. Although the underlying molecular mechanisms remain incompletely elucidated, the investigation of lymphangiogenesis in hypoxic conditions may provide insight into potential therapeutic targets for lymphatic metastasis.
Collapse
Affiliation(s)
- Rui-Cheng Ji
- Department of Human Anatomy, Oita University Faculty of Medicine, Oita, Japan.
| |
Collapse
|
76
|
Garat CV, Crossno JT, Sullivan TM, Reusch JEB, Klemm DJ. Inhibition of phosphatidylinositol 3-kinase/Akt signaling attenuates hypoxia-induced pulmonary artery remodeling and suppresses CREB depletion in arterial smooth muscle cells. J Cardiovasc Pharmacol 2013; 62:539-48. [PMID: 24084215 PMCID: PMC4143163 DOI: 10.1097/fjc.0000000000000014] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Hypoxia-induced pulmonary hypertension is characterized by progressive remodeling of the pulmonary artery (PA) system and loss of the transcription factor, cAMP response element binding protein (CREB) in PA smooth muscle cells (SMCs). Previous in vitro studies suggested that platelet-derived growth factor, a mitogen produced in the hypoxic arterial wall, elicits loss of CREB in medial SMCs via the PI3K/Akt pathway. These events trigger switching of SMCs from a quiescent, contractile phenotype to a proliferative, migratory, dedifferentiated, and synthetic phenotype, which contributes to PA thickening. Here, we investigated whether inhibition of PI3K or Akt could attenuate arterial remodeling in the lung and prevent CREB loss in PA medial SMCs in rats subjected to chronic hypoxia. Inhibition of either enzyme-blunted hypoxia-induced PA remodeling and SMC CREB depletion and diminished SMC proliferation and collagen deposition. Inhibition of Akt, but not PI3K, suppressed muscularization of distal arterioles and blunted right ventricular hypertrophy. Interestingly, mean PA pressure was elevated equally by hypoxia in untreated and inhibitor-treated groups but was normalized acutely by the Rho kinase inhibitor, Fasudil. We conclude that PI3K and Akt inhibitors can attenuate hypoxia-induced PA remodeling and SMC CREB depletion but fail to block the development of pulmonary hypertension because of their inability to repress Rho kinase-mediated vasoconstriction.
Collapse
MESH Headings
- Animals
- Arterioles/drug effects
- Arterioles/metabolism
- Arterioles/pathology
- Cell Proliferation/drug effects
- Cyclic AMP Response Element-Binding Protein/agonists
- Cyclic AMP Response Element-Binding Protein/metabolism
- Enzyme Inhibitors/therapeutic use
- Extracellular Matrix/drug effects
- Extracellular Matrix/metabolism
- Extracellular Matrix/pathology
- Hypertension, Pulmonary/etiology
- Hypertension, Pulmonary/prevention & control
- Hypertrophy, Right Ventricular/etiology
- Hypertrophy, Right Ventricular/prevention & control
- Hypoxia/physiopathology
- Male
- Muscle, Smooth, Vascular/drug effects
- Muscle, Smooth, Vascular/metabolism
- Muscle, Smooth, Vascular/pathology
- Phosphatidylinositol 3-Kinase/metabolism
- Phosphoinositide-3 Kinase Inhibitors
- Protein Kinase Inhibitors/pharmacology
- Protein Kinase Inhibitors/therapeutic use
- Protein Stability/drug effects
- Proto-Oncogene Proteins c-akt/antagonists & inhibitors
- Proto-Oncogene Proteins c-akt/metabolism
- Pulmonary Artery/drug effects
- Pulmonary Artery/metabolism
- Pulmonary Artery/pathology
- Pulmonary Circulation/drug effects
- Rats
- Rats, Inbred WKY
- Signal Transduction/drug effects
- Vasodilator Agents/pharmacology
- Vasodilator Agents/therapeutic use
- rho-Associated Kinases/antagonists & inhibitors
- rho-Associated Kinases/metabolism
Collapse
Affiliation(s)
- Chrystelle V. Garat
- Cardiovascular Pulmonary Research Laboratory, University of Colorado Anschutz Medical Campus, Aurora, CO
- Divisions of Pulmonary Science and Critical Care Medicine, University of Colorado Anschutz Medical campus, Aurora, CO
| | - Joseph T. Crossno
- Cardiovascular Pulmonary Research Laboratory, University of Colorado Anschutz Medical Campus, Aurora, CO
- Divisions of Pulmonary Science and Critical Care Medicine, University of Colorado Anschutz Medical campus, Aurora, CO
| | - Timothy M. Sullivan
- Cardiovascular Pulmonary Research Laboratory, University of Colorado Anschutz Medical Campus, Aurora, CO
| | - Jane E. B. Reusch
- Cardiovascular Pulmonary Research Laboratory, University of Colorado Anschutz Medical Campus, Aurora, CO
- Divisions of Endocrinology, University of Colorado Anschutz Medical campus, Aurora, CO
- Research and Endocrine Services, Veterans Affairs Medical Center, Denver, CO
| | - Dwight J. Klemm
- Cardiovascular Pulmonary Research Laboratory, University of Colorado Anschutz Medical Campus, Aurora, CO
- Divisions of Pulmonary Science and Critical Care Medicine, University of Colorado Anschutz Medical campus, Aurora, CO
| |
Collapse
|
77
|
Zhao L, Wu Y, Tan L, Xu Z, Wang J, Zhao Z, Li X, Li Y, Yang P, Tang T. Coculture With Endothelial Cells Enhances Osteogenic Differentiation of Periodontal Ligament Stem Cells via Cyclooxygenase-2/Prostaglandin E2/Vascular Endothelial Growth Factor Signaling Under Hypoxia. J Periodontol 2013; 84:1847-57. [DOI: 10.1902/jop.2013.120548] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
|
78
|
Shimizu Y, Nakazato M, Sekita T, Kadota K, Yamasaki H, Takamura N, Aoyagi K, Maeda T. Association between hemoglobin levels and arterial stiffness for general Japanese population in relation to body mass index status: The Nagasaki Islands study. Geriatr Gerontol Int 2013; 14:811-8. [DOI: 10.1111/ggi.12171] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/03/2013] [Indexed: 02/06/2023]
Affiliation(s)
- Yuji Shimizu
- Department of Community Medicine; Nagasaki University Graduate School of Biomedical Sciences; Nagasaki Japan
- Department of Island and Community Medicine; Nagasaki University Graduate School of Biomedical Sciences; Nagasaki Japan
| | - Mio Nakazato
- Department of Island and Community Medicine; Nagasaki University Graduate School of Biomedical Sciences; Nagasaki Japan
| | - Takaharu Sekita
- Department of Island and Community Medicine; Nagasaki University Graduate School of Biomedical Sciences; Nagasaki Japan
| | - Koichiro Kadota
- Department of Community Medicine; Nagasaki University Graduate School of Biomedical Sciences; Nagasaki Japan
| | - Hironori Yamasaki
- Center for Health and Community Medicine; Nagasaki University Graduate School of Biomedical Sciences; Nagasaki Japan
| | - Noboru Takamura
- Department of Global Health, Medicine and Welfare; Nagasaki University Graduate School of Biomedical Sciences; Nagasaki Japan
| | - Kiyoshi Aoyagi
- Department of Public Health; Nagasaki University Graduate School of Biomedical Sciences; Nagasaki Japan
| | - Takahiro Maeda
- Department of Community Medicine; Nagasaki University Graduate School of Biomedical Sciences; Nagasaki Japan
- Department of Island and Community Medicine; Nagasaki University Graduate School of Biomedical Sciences; Nagasaki Japan
| |
Collapse
|
79
|
Regulation of vascular function on posttranscriptional level. THROMBOSIS 2013; 2013:948765. [PMID: 24288605 PMCID: PMC3833109 DOI: 10.1155/2013/948765] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 07/09/2013] [Accepted: 09/17/2013] [Indexed: 11/17/2022]
Abstract
Posttranscriptional control of gene expression is crucial for regulating plurality of proteins and functional plasticity of the proteome under (patho)physiologic conditions. Alternative splicing as well as micro (mi)RNA-mediated mechanisms play an important role for the regulation of protein expression on posttranscriptional level. Both alternative splicing and miRNAs were shown to influence cardiovascular functions, such as endothelial thrombogenicity and the vascular tone, by regulating the expression of several vascular proteins and their isoforms, such as Tissue Factor (TF) or the endothelial nitric oxide synthase (eNOS). This review will summarize and discuss the latest findings on the (patho)physiologic role of alternative splicing processes as well as of miRNAs on modulation of vascular functions, such as coagulation, thrombosis, and regulation of the vascular tone.
Collapse
|
80
|
Khurana P, Sugadev R, Jain J, Singh SB. HypoxiaDB: a database of hypoxia-regulated proteins. Database (Oxford) 2013; 2013:bat074. [PMID: 24178989 PMCID: PMC3813937 DOI: 10.1093/database/bat074] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2013] [Revised: 08/04/2013] [Accepted: 09/27/2013] [Indexed: 01/29/2023]
Abstract
There has been intense interest in the cellular response to hypoxia, and a large number of differentially expressed proteins have been identified through various high-throughput experiments. These valuable data are scattered, and there have been no systematic attempts to document the various proteins regulated by hypoxia. Compilation, curation and annotation of these data are important in deciphering their role in hypoxia and hypoxia-related disorders. Therefore, we have compiled HypoxiaDB, a database of hypoxia-regulated proteins. It is a comprehensive, manually-curated, non-redundant catalog of proteins whose expressions are shown experimentally to be altered at different levels and durations of hypoxia. The database currently contains 72 000 manually curated entries taken on 3500 proteins extracted from 73 peer-reviewed publications selected from PubMed. HypoxiaDB is distinctive from other generalized databases: (i) it compiles tissue-specific protein expression changes under different levels and duration of hypoxia. Also, it provides manually curated literature references to support the inclusion of the protein in the database and establish its association with hypoxia. (ii) For each protein, HypoxiaDB integrates data on gene ontology, KEGG (Kyoto Encyclopedia of Genes and Genomes) pathway, protein-protein interactions, protein family (Pfam), OMIM (Online Mendelian Inheritance in Man), PDB (Protein Data Bank) structures and homology to other sequenced genomes. (iii) It also provides pre-compiled information on hypoxia-proteins, which otherwise requires tedious computational analysis. This includes information like chromosomal location, identifiers like Entrez, HGNC, Unigene, Uniprot, Ensembl, Vega, GI numbers and Genbank accession numbers associated with the protein. These are further cross-linked to respective public databases augmenting HypoxiaDB to the external repositories. (iv) In addition, HypoxiaDB provides an online sequence-similarity search tool for users to compare their protein sequences with HypoxiaDB protein database. We hope that HypoxiaDB will enrich our knowledge about hypoxia-related biology and eventually will lead to the development of novel hypothesis and advancements in diagnostic and therapeutic activities. HypoxiaDB is freely accessible for academic and non-profit users via http://www.hypoxiadb.com.
Collapse
Affiliation(s)
- Pankaj Khurana
- Bioinformatics Group, Defence Institute of Physiology and Allied Sciences (DIPAS), Defence R&D Organization, Lucknow Road, Timarpur, New Delhi-110054, India
| | - Ragumani Sugadev
- Bioinformatics Group, Defence Institute of Physiology and Allied Sciences (DIPAS), Defence R&D Organization, Lucknow Road, Timarpur, New Delhi-110054, India
| | - Jaspreet Jain
- Bioinformatics Group, Defence Institute of Physiology and Allied Sciences (DIPAS), Defence R&D Organization, Lucknow Road, Timarpur, New Delhi-110054, India
| | - Shashi Bala Singh
- Bioinformatics Group, Defence Institute of Physiology and Allied Sciences (DIPAS), Defence R&D Organization, Lucknow Road, Timarpur, New Delhi-110054, India
| |
Collapse
|
81
|
Tajsic T, Morrell NW. Smooth muscle cell hypertrophy, proliferation, migration and apoptosis in pulmonary hypertension. Compr Physiol 2013; 1:295-317. [PMID: 23737174 DOI: 10.1002/cphy.c100026] [Citation(s) in RCA: 57] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Pulmonary hypertension is a multifactorial disease characterized by sustained elevation of pulmonary vascular resistance (PVR) and pulmonary arterial pressure (PAP). Central to the pathobiology of this disease is the process of vascular remodelling. This process involves structural and functional changes to the normal architecture of the walls of pulmonary arteries (PAs) that lead to increased muscularization of the muscular PAs, muscularization of the peripheral, previously nonmuscular, arteries of the respiratory acinus, formation of neointima, and formation of plexiform lesions. Underlying or contributing to the development of these lesions is hypertrophy, proliferation, migration, and resistance to apoptosis of medial cells and this article is concerned with the cellular and molecular mechanisms of these processes. In the first part of the article we focus on the concept of smooth muscle cell phenotype and the difficulties surrounding the identification and characterization of the cell/cells involved in the remodelling of the vessel media and we review the general mechanisms of cell hypertrophy, proliferation, migration and apoptosis. Then, in the larger part of the article, we review the factors identified thus far to be involved in PH intiation and/or progression and review and discuss their effects on pulmonary artery smooth muscle cells (PASMCs) the predominant cells in the tunica media of PAs.
Collapse
Affiliation(s)
- Tamara Tajsic
- Department of Medicine, University of Cambridge School of Clinical Medicine, Cambridge, United Kingdom
| | | |
Collapse
|
82
|
Yun JH, Lee HM, Lee EH, Park JW, Cho CH. Hypoxia reduces endothelial Ang1-induced Tie2 activity in a Tie1-dependent manner. Biochem Biophys Res Commun 2013; 436:691-7. [DOI: 10.1016/j.bbrc.2013.06.018] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2013] [Accepted: 06/06/2013] [Indexed: 10/26/2022]
|
83
|
Rosato E, Barbano B, Gigante A, Aversa A, Cianci R, Molinaro I, Quarta S, Pisarri S, Afeltra A, Salsano F. Erectile Dysfunction, Endothelium Dysfunction, and Microvascular Damage in Patients with Systemic Sclerosis. J Sex Med 2013; 10:1380-8. [DOI: 10.1111/jsm.12110] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
|
84
|
Mojiri A, Nakhaii-Nejad M, Phan WL, Kulak S, Radziwon-Balicka A, Jurasz P, Michelakis E, Jahroudi N. Hypoxia results in upregulation and de novo activation of von Willebrand factor expression in lung endothelial cells. Arterioscler Thromb Vasc Biol 2013; 33:1329-38. [PMID: 23580145 DOI: 10.1161/atvbaha.113.301359] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
OBJECTIVE Increased von Willebrand factor (VWF) levels in lungs are associated with diseases such as pulmonary hypertension. The objective of our study was to determine the mechanism of increased VWF levels in conditions, such as hypoxia, which contribute to pulmonary hypertension. APPROACH AND RESULTS We have previously reported generation of transgenic mice that express LacZ transgene under the regulation of lung- and brain-specific transcriptional regulatory elements of the VWF gene. Hypoxia exposure of these transgenic mice resulted in increased VWF and LacZ mRNA levels as well as redistribution of their expression from primarily larger vessels in the lungs to microvessels. Exposure of cultured lung microvascular endothelial cells to hypoxia demonstrated that VWF upregulation was accompanied by increased platelet binding. Transcription upregulation was mediated through inhibition of the repressor nuclear factor-IB association with the VWF promoter, and increased nuclear translocation of the transcription factor YY1 and association with its cognate binding site on the VWF gene. Knockdown of YY1 expression abolished the hypoxia-induced upregulation and reduced basal level of VWF. CONCLUSIONS These analyses demonstrate that hypoxia induces a phenotypic shift, accompanied by modulation of nuclear factor-IB and YY1 activities, in microvascular endothelial cells of the lungs to support VWF promoter activation.
Collapse
Affiliation(s)
- Anahita Mojiri
- Departments of Medicine, University of Alberta, Edmonton, Alberta, Canada
| | | | | | | | | | | | | | | |
Collapse
|
85
|
Active stabilization of human endothelial nitric oxide synthase mRNA by hnRNP E1 protects against antisense RNA and microRNAs. Mol Cell Biol 2013; 33:2029-46. [PMID: 23478261 DOI: 10.1128/mcb.01257-12] [Citation(s) in RCA: 51] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Human endothelial nitric oxide synthase (eNOS) mRNA is highly stable in endothelial cells (ECs). Posttranscriptional regulation of eNOS mRNA stability is an important component of eNOS regulation, especially under hypoxic conditions. Here, we show that the human eNOS 3' untranslated region (3' UTR) contains multiple, evolutionarily conserved pyrimidine (C and CU)-rich sequence elements that are both necessary and sufficient for mRNA stabilization. Importantly, RNA immunoprecipitations and RNA electrophoretic mobility shift assays (EMSAs) revealed the formation of heterogeneous nuclear ribonucleoprotein E1 (hnRNP E1)-containing RNP complexes at these 3'-UTR elements. Knockdown of hnRNP E1 decreased eNOS mRNA half-life, mRNA levels, and protein expression. Significantly, these stabilizing RNP complexes protect eNOS mRNA from the inhibitory effects of its antisense transcript sONE and 3'-UTR-targeting small interfering RNAs (siRNAs), as well as microRNAs, specifically, hsa-miR-765, which targets eNOS mRNA stability determinants. Hypoxia disrupts hnRNP E1/eNOS 3'-UTR interactions via increased Akt-mediated serine phosphorylation (including serine 43) and increased nuclear localization of hnRNP E1. These mechanisms account, at least in part, for the decrease in eNOS mRNA stability under hypoxic conditions. Thus, the stabilization of human eNOS mRNA by hnRNP E1-containing RNP complexes serves as a key protective mechanism against the posttranscriptional inhibitory effects of antisense RNA and microRNAs under basal conditions but is disrupted under hypoxic conditions.
Collapse
|
86
|
Impaired endothelium-dependent vasodilator response in patients with pulmonary fibrosis. Respir Med 2013; 107:269-75. [DOI: 10.1016/j.rmed.2012.10.005] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/05/2012] [Revised: 08/20/2012] [Accepted: 10/10/2012] [Indexed: 01/24/2023]
|
87
|
Nykänen AI, Tuuminen R, Lemström KB. Donor simvastatin treatment and cardiac allograft ischemia/reperfusion injury. Trends Cardiovasc Med 2013; 23:85-90. [PMID: 23295079 DOI: 10.1016/j.tcm.2012.09.005] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/30/2012] [Revised: 06/30/2012] [Accepted: 07/02/2012] [Indexed: 01/14/2023]
Abstract
Ischemia/reperfusion injury of a transplanted heart may result in serious early and late adverse effects such as primary graft dysfunction, increased allograft immunogenicity, and initiation of fibroproliferative cascades that compromise the survival of the recipient. Microvascular dysfunction has a central role in ischemia/reperfusion injury through increased vascular permeability, leukocyte adhesion and extravasation, thrombosis, vasoconstriction, and the no-reflow phenomenon. Here we review the involvement of microvascular endothelial cells and their surrounding pericytes in ischemia/reperfusion injury, and the pleiotropic, cholesterol-independent effects of statins on microvascular dysfunction. In addition, we delineate how the rapid vasculoprotective effects of statins could be used to protect cardiac allografts against ischemia/reperfusion injury by administering statins to the organ donor before graft removal and transplantation.
Collapse
Affiliation(s)
- Antti I Nykänen
- Transplantation Laboratory, Haartman Institute, P.O. Box 21 (Haartmaninkatu 3), FI-00014, University of Helsinki, Finland.
| | | | | |
Collapse
|
88
|
Tawa M, Shimosato T, Geddawy A, Imamura T, Okamura T. Influence of Hypoxia on Endothelium-Derived NO-Mediated Relaxation in Rat Carotid, Mesenteric and Iliac Arteries. Pharmacology 2013; 91:322-30. [DOI: 10.1159/000351706] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2013] [Accepted: 03/19/2013] [Indexed: 11/19/2022]
|
89
|
Zhao L, Wu Y, Xu Z, Wang H, Zhao Z, Li Y, Yang P, Wei X. Involvement of COX-2/PGE2 signalling in hypoxia-induced angiogenic response in endothelial cells. J Cell Mol Med 2012; 16:1840-55. [PMID: 22050691 PMCID: PMC3822696 DOI: 10.1111/j.1582-4934.2011.01479.x] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
To evaluate the impact of hypoxia on the angiogenic capability of endothelial cells (ECs), and further investigate whether the cyclooxygenase-2 (COX-2)/prostaglandin E(2) (PGE(2)) signalling is involved in the angiogenic response of ECs to hypoxia. We explored the impact of various periods (1, 3, 6, 12, 24 hrs) of hypoxia (2% O(2)) on human umbilical vein endothelial cells (HUVECs) in vitro. We observed cell viability, migration, tube formation, analysed COX-2, vascular endothelial growth factor (VEGF), AQP1 mRNA transcription, protein expression and measured PGE(2), VEGF protein concentration in cell supernatants. Then we treated HUVECs with COX-2 selective inhibitor NS398, EP1/2 combined antagonist AH6809 and exogenous PGE(2) to investigate the role of COX-2/PGE(2) signalling in the angiogenic response of ECs to hypoxia. The results demonstrated that short-term hypoxic treatment enhanced HUVECs proliferation, migration, tube formation, significantly up-regulated COX-2, VEGF, AQP1 mRNA level, protein expression and promoted PGE(2) , VEGF release. The pharmacological inhibition study revealed that exposure of HUVEC to NS398 and AH6809 under hypoxia impaired the biological responses of ECs to hypoxia. Exogenous PGE(2) augments the effects of hypoxia on HUVECs, and partially reversed the inhibitory effects of NS398 on HUVECs proliferation and angiogenic capability. Short-term hypoxic treatment enhanced angiogenic capability of ECs, and COX-2/PGE(2) signalling may play a critical role in the biological response of ECs to hypoxia.
Collapse
Affiliation(s)
- Lixing Zhao
- State Key Laboratory of Oral Diseases, Department of Orthodontics, West China College of Stomatology, Sichuan University, Chengdu, China
| | | | | | | | | | | | | | | |
Collapse
|
90
|
Gundemir S, Colak G, Feola J, Blouin R, Johnson GVW. Transglutaminase 2 facilitates or ameliorates HIF signaling and ischemic cell death depending on its conformation and localization. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2012; 1833:1-10. [PMID: 23085038 DOI: 10.1016/j.bbamcr.2012.10.011] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/11/2012] [Revised: 10/09/2012] [Accepted: 10/10/2012] [Indexed: 12/26/2022]
Abstract
Transglutaminase 2 (TG2) is a widely expressed and multifunctional protein that modulates cell death/survival processes. We have previously shown that TG2 binds to hypoxia inducible factor 1β (HIF1β) and decreases the upregulation of HIF responsive genes; however, the relationship between these observations was not investigated. In this study, we investigated whether endogenous TG2 is sufficient to suppress HIF activity and whether the interaction between TG2 and HIF1β is required for this suppression. shRNA-mediated silencing of TG2 significantly enhanced HIF activation in response to hypoxia. In addition, nuclear localization of TG2 is required for its suppressive effect on HIF activity, with TG2 being recruited to HIF responsive promoters in hypoxic conditions. These observations suggest that TG2 directly regulates hypoxic transcriptional machinery; however, its interaction with HIF1β was not required for this regulation. We also examined whether TG2's effect on cell death/survival processes in ischemia is due to its effects on HIF signaling. Our results indicate that TG2 mediated HIF suppression can be separated from TG2's effect on cell survival in hypoxic/hypoglycemic conditions. Lastly, here we show that nuclear TG2 in the closed conformation and non-nuclear TG2 in the open conformation have opposing effects on hypoxic/hypoglycemic cell death, which could explain previous controversial results. Overall, our results further clarify the role of TG2 in mediating the cellular response to ischemia and suggest that manipulating the conformation of TG2 might be of pharmacological interest as a therapeutic strategy for the treatment of ischemia-related pathologies.
Collapse
Affiliation(s)
- Soner Gundemir
- Department of Anesthesiology, University of Rochester, Rochester, NY, USA
| | | | | | | | | |
Collapse
|
91
|
Curry NS, Davenport RA, Hunt BJ, Stanworth SJ. Transfusion strategies for traumatic coagulopathy. Blood Rev 2012; 26:223-32. [DOI: 10.1016/j.blre.2012.06.004] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
|
92
|
Miyashita R, Chen L, Oshiro H, Uchino H, Shibasaki F. Int6 silencing causes induction of angiogenic factors in neuronal cells via accumulation of hypoxia-inducible factor 2α and decreases brain damage in rats. Neurosci Lett 2012; 528:83-8. [PMID: 22960363 DOI: 10.1016/j.neulet.2012.08.033] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2012] [Revised: 08/10/2012] [Accepted: 08/19/2012] [Indexed: 11/17/2022]
Abstract
We have previously shown that when siRNA against Int6 (siRNA-Int6) was used, hypoxia-inducible factor 2α (HIF2α) activity was stabilized even under normoxic conditions, and the expression of several angiogenic factors was increased. In neuronal tissues, the mechanism underlying angiogenesis remains largely unknown. In the current study, we investigate the role of the tumor suppressor Int6/eIF3e in the regulation of the expression of angiogenic factors in neuronal cells. In addition, we test whether siRNA-Int6 reduces cold-induced brain damage in rats. We used human neuroblastoma SHSY5Y cells transfected with either siRNA-Int6, or a negative control siRNA. Real-time PCR and supersensitive multiplex assay were used to detect gene and protein expression of several angiogenic factors after transfection. For the animal studies, Wistar rats were subjected to brain damage by cold injury, and 50 μg siRNA-Int6, 100 μg siRNA-Int6, or negative control was administrated. At day 7 post-treatment, brain sections were stained and image analysis system was used to determine the damaged area. Our experiments using SHSY5Y cells revealed a significant effect of siRNA-Int6 on the expression of HIF2α but not HIF1α, both at 8 and 24h after transfection. The siRNA-Int6 led to significant up-regulation of angiogenic factors, including vascular endothelial growth factor and platelet-derived growth factor-B, both at the mRNA and protein levels. Furthermore, our animal studies revealed significantly reduced area of cold-induced damage in rats receiving siRNA-Int6, compared to negative controls. Our findings indicate that Int6 act as a hypoxia-independent master switch of angiogenesis in neuronal cells, and that inhibition of Int6 by siRNA may be an effective therapeutic strategy in treating ischemic diseases such as brain ischemia and injury.
Collapse
Affiliation(s)
- Ryoichi Miyashita
- Department of Anesthesiology, Tokyo Medical University, Tokyo, Japan
| | | | | | | | | |
Collapse
|
93
|
Pathophysiology of diabetic erectile dysfunction: potential contribution of vasa nervorum and advanced glycation endproducts. Int J Impot Res 2012; 25:1-6. [PMID: 22914567 DOI: 10.1038/ijir.2012.30] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Erectile dysfunction (ED) due to diabetes mellitus remains difficult to treat medically despite advances in pharmacotherapeutic approaches in the field. This unmet need has resulted in a recent re-focus on the pathophysiology, in order to understand the cellular and molecular mechanisms leading to ED in diabetes. Diabetes-induced ED is often resistant to PDE5 inhibitor treatment, thus there is a need to discover targets that may lead to novel approaches for a successful treatment. The aim of this brief review is to update the reader in some of the latest development on that front, with a particular focus on the role of impaired neuronal blood flow and the formation of advanced glycation endproducts.
Collapse
|
94
|
Elsharawy MA, Moghazy KM, Shawarby MA. Atherosclerosis in sickle cell disease - a review. Int J Angiol 2012; 18:62-6. [PMID: 22477494 DOI: 10.1055/s-0031-1278326] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Acute, vaso-occlusive crises are the most common and earliest clinical manifestations of sickle cell disease. Recent thoughts about development of atherosclerosis as a result of this disease are presented. Current insights into the pathogenesis of atherosclerosis in sickle cell disease are reviewed, in particular the role of endothelial dysfunction, homocysteine and platelets. Common and uncommon sites of atherosclerosis are described. Radiological assessment and potential therapeutic agents to slow the progression of atherosclerosis are discussed. Finally, treatment of atherosclerosis in certain sites is evaluated and reviewed.
Collapse
|
95
|
Ho JJD, Metcalf JL, Yan MS, Turgeon PJ, Wang JJ, Chalsev M, Petruzziello-Pellegrini TN, Tsui AKY, He JZ, Dhamko H, Man HSJ, Robb GB, Teh BT, Ohh M, Marsden PA. Functional importance of Dicer protein in the adaptive cellular response to hypoxia. J Biol Chem 2012; 287:29003-20. [PMID: 22745131 PMCID: PMC3436557 DOI: 10.1074/jbc.m112.373365] [Citation(s) in RCA: 117] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2012] [Revised: 06/19/2012] [Indexed: 01/06/2023] Open
Abstract
The processes by which cells sense and respond to ambient oxygen concentration are fundamental to cell survival and function, and they commonly target gene regulatory events. To date, however, little is known about the link between the microRNA pathway and hypoxia signaling. Here, we show in vitro and in vivo that chronic hypoxia impairs Dicer (DICER1) expression and activity, resulting in global consequences on microRNA biogenesis. We show that von Hippel-Lindau-dependent down-regulation of Dicer is key to the expression and function of hypoxia-inducible factor α (HIF-α) subunits. Specifically, we show that EPAS1/HIF-2α is regulated by the Dicer-dependent microRNA miR-185, which is down-regulated by hypoxia. Full expression of hypoxia-responsive/HIF target genes in chronic hypoxia (e.g. VEGFA, FLT1/VEGFR1, KDR/VEGFR2, BNIP3L, and SLC2A1/GLUT1), the function of which is to regulate various adaptive responses to compromised oxygen availability, is also dependent on hypoxia-mediated down-regulation of Dicer function and changes in post-transcriptional gene regulation. Therefore, functional deficiency of Dicer in chronic hypoxia is relevant to both HIF-α isoforms and hypoxia-responsive/HIF target genes, especially in the vascular endothelium. These findings have relevance to emerging therapies given that we show that the efficacy of RNA interference under chronic hypoxia, but not normal oxygen availability, is Dicer-dependent. Collectively, these findings show that the down-regulation of Dicer under chronic hypoxia is an adaptive mechanism that serves to maintain the cellular hypoxic response through HIF-α- and microRNA-dependent mechanisms, thereby providing an essential mechanistic insight into the oxygen-dependent microRNA regulatory pathway.
Collapse
Affiliation(s)
- J. J. David Ho
- From the Departments of Medical Biophysics and
- Keenan Research Centre in the Li Ka Shing Knowledge Institute, St. Michael's Hospital, Department of Medicine, University of Toronto, Toronto, Ontario M5B 1W8, Canada
| | | | - Matthew S. Yan
- From the Departments of Medical Biophysics and
- Keenan Research Centre in the Li Ka Shing Knowledge Institute, St. Michael's Hospital, Department of Medicine, University of Toronto, Toronto, Ontario M5B 1W8, Canada
| | - Paul J. Turgeon
- Laboratory Medicine and Pathobiology and
- Keenan Research Centre in the Li Ka Shing Knowledge Institute, St. Michael's Hospital, Department of Medicine, University of Toronto, Toronto, Ontario M5B 1W8, Canada
| | - Jenny Jing Wang
- Laboratory Medicine and Pathobiology and
- Keenan Research Centre in the Li Ka Shing Knowledge Institute, St. Michael's Hospital, Department of Medicine, University of Toronto, Toronto, Ontario M5B 1W8, Canada
| | - Maria Chalsev
- Keenan Research Centre in the Li Ka Shing Knowledge Institute, St. Michael's Hospital, Department of Medicine, University of Toronto, Toronto, Ontario M5B 1W8, Canada
| | - Tania N. Petruzziello-Pellegrini
- Laboratory Medicine and Pathobiology and
- Keenan Research Centre in the Li Ka Shing Knowledge Institute, St. Michael's Hospital, Department of Medicine, University of Toronto, Toronto, Ontario M5B 1W8, Canada
| | - Albert K. Y. Tsui
- Keenan Research Centre in the Li Ka Shing Knowledge Institute, St. Michael's Hospital, Department of Medicine, University of Toronto, Toronto, Ontario M5B 1W8, Canada
| | - Jeff Z. He
- Laboratory Medicine and Pathobiology and
| | - Helena Dhamko
- Keenan Research Centre in the Li Ka Shing Knowledge Institute, St. Michael's Hospital, Department of Medicine, University of Toronto, Toronto, Ontario M5B 1W8, Canada
| | - H. S. Jeffrey Man
- Keenan Research Centre in the Li Ka Shing Knowledge Institute, St. Michael's Hospital, Department of Medicine, University of Toronto, Toronto, Ontario M5B 1W8, Canada
| | - G. Brett Robb
- Division of RNA Biology, New England Biolabs, Ipswich, Massachusetts 01938-2723, and
| | - Bin T. Teh
- Van Andel Research Institute, Grand Rapids, Michigan 49503
| | | | - Philip A. Marsden
- From the Departments of Medical Biophysics and
- Laboratory Medicine and Pathobiology and
- Keenan Research Centre in the Li Ka Shing Knowledge Institute, St. Michael's Hospital, Department of Medicine, University of Toronto, Toronto, Ontario M5B 1W8, Canada
| |
Collapse
|
96
|
Antiangiogenic therapy for glioma. JOURNAL OF SIGNAL TRANSDUCTION 2012; 2012:483040. [PMID: 22830012 PMCID: PMC3399341 DOI: 10.1155/2012/483040] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 01/09/2012] [Revised: 04/27/2012] [Accepted: 05/02/2012] [Indexed: 01/18/2023]
Abstract
Currently, antiangiogenic agents are routinely used for the treatment of patients with glioma. However, despite advances in pharmacological and surgical therapy, glioma remains an incurable disease. Indeed, the formation of an abnormal tumor vasculature and the invasion of glioma cells along neuronal tracts are proposed to comprise the major factors that are attributed to the therapeutic resistance of these tumors. The development of curative therapeutic modalities for the treatment of glioma requires further investigation of the molecular mechanisms regulating angiogenesis and invasion. In this review, we discuss the molecular characteristics of angiogenesis and invasion in human malignant glioma, we present several available drugs that are used or can potentially be utilized for the inhibition of angiogenesis in glioma, and we focus our attention on the key mediators of the molecular mechanisms underlying the resistance of glioma to antiangiogenic therapy.
Collapse
|
97
|
Stoyanova E, Trudel M, Felfly H, Lemsaddek W, Garcia D, Cloutier G. Vascular endothelial dysfunction in β-thalassemia occurs despite increased eNOS expression and preserved vascular smooth muscle cell reactivity to NO. PLoS One 2012; 7:e38089. [PMID: 22723848 PMCID: PMC3378557 DOI: 10.1371/journal.pone.0038089] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2012] [Accepted: 04/30/2012] [Indexed: 02/07/2023] Open
Abstract
Aims The hereditary β-thalassemia major condition requires regular lifelong blood transfusions. Transfusion-related iron overloading has been associated with the onset of cardiovascular complications, including cardiac dysfunction and vascular anomalies. By using an untransfused murine model of β-thalassemia major, we tested the hypothesis that vascular endothelial dysfunction, alterations of arterial structure and of its mechanical properties would occur despite the absence of treatments. Methods and Results Vascular function and structure were evaluated ex vivo. Compared to the controls, endothelium-dependent vasodilation with acetylcholine was blunted in mesenteric resistance arteries of β-thalassemic mice while the endothelium-independent vasodilator (sodium nitroprusside) produced comparable vessel dilation, indicating endothelial cell impairment with preserved smooth muscle cell reactivity to nitric oxide (NO). While these findings suggest a decrease in NO bioavailability, Western blotting showed heightened expression of aortic endothelial NO synthase (eNOS) in β-thalassemia. Vascular remodeling of the common carotid arteries revealed increased medial elastin content. Under isobaric conditions, the carotid arteries of β-thalassemic mice exhibited decreased wall stress and softening due to structural changes of the vessel wall. Conclusions A complex vasculopathy was identified in untransfused β-thalassemic mice characterized by altered carotid artery structure and endothelial dysfunction of resistance arterioles, likely attributable to reduced NO bioavailability despite enhanced vascular eNOS expression.
Collapse
Affiliation(s)
- Ekatherina Stoyanova
- Laboratory of Biorheology and Medical Ultrasonics, University of Montreal Hospital Research Center, Montreal, Quebec, Canada
- Molecular Genetics and Development, Clinical Research Institute of Montreal, Montreal, Quebec, Canada
| | - Marie Trudel
- Molecular Genetics and Development, Clinical Research Institute of Montreal, Montreal, Quebec, Canada
| | - Hady Felfly
- Molecular Genetics and Development, Clinical Research Institute of Montreal, Montreal, Quebec, Canada
| | - Wafaa Lemsaddek
- Molecular Genetics and Development, Clinical Research Institute of Montreal, Montreal, Quebec, Canada
| | - Damien Garcia
- Laboratory of Biorheology and Medical Ultrasonics, University of Montreal Hospital Research Center, Montreal, Quebec, Canada
| | - Guy Cloutier
- Laboratory of Biorheology and Medical Ultrasonics, University of Montreal Hospital Research Center, Montreal, Quebec, Canada
- Department of Radiology, Radio-Oncology and Nuclear Medicine; and Institute of Biomedical Engineering, University of Montreal, Montreal, Quebec, Canada
- * E-mail:
| |
Collapse
|
98
|
Evans CE, Branco-Price C, Johnson RS. HIF-mediated endothelial response during cancer progression. Int J Hematol 2012; 95:471-7. [DOI: 10.1007/s12185-012-1072-3] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2012] [Revised: 03/30/2012] [Accepted: 04/02/2012] [Indexed: 01/11/2023]
|
99
|
Jeong JH, Jeong YJ, Cho HJ, Shin JM, Kang JH, Park KK, Park YY, Chung IK, Chang HW, Magae J. Ascochlorin inhibits growth factor-induced HIF-1α activation and tumor-angiogenesis through the suppression of EGFR/ERK/p70S6K signaling pathway in human cervical carcinoma cells. J Cell Biochem 2012; 113:1302-1313. [PMID: 22109717 DOI: 10.1002/jcb.24001] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
Ascochlorin, a non-toxic prenylphenol compound derived from the fungus Ascochyta viciae, has been shown recently to have anti-cancer effects on various human cancer cells. However, the precise molecular mechanism of this anti-cancer activity remains to be elucidated. Here, we investigated the effects of ascochlorin on hypoxia-inducible factor-1α (HIF-1α) and vascular endothelial growth factor (VEGF) expression in human epidermoid cervical carcinoma CaSki cells. Ascochlorin inhibited epidermal growth factor (EGF)-induced HIF-1α and VEGF expression through multiple potential mechanisms. First, ascochlorin selectively inhibited HIF-1α expression in response to EGF stimulation, but not in response to hypoxia (1% O(2)) or treatment with a transition metal (CoCl(2)). Second, ascochlorin inhibited EGF-induced ERK-1/2 activation but not AKT activation, both of which play essential roles in EGF-induced HIF-1α protein synthesis. Targeted inhibition of epidermal growth factor receptor (EGFR) expression using an EGFR-specific small interfering RNA (siRNA) diminished HIF-1α expression, which suggested that ascochlorin inhibits HIF-1α expression through suppression of EGFR activation. Finally, we showed that ascochlorin functionally abrogates in vivo tumor angiogenesis induced by EGF in a Matrigel plug assay. Our data suggest that ascochlorin inhibits EGF-mediated induction of HIF-1α expression in CaSki cells, providing a potentially new avenue of development of anti-cancer drugs that target tumor angiogenesis.
Collapse
Affiliation(s)
- Ji-Hak Jeong
- Research Institute of Biomedical Engineering and Department of Medicine, Catholic University of Daegu School of Medicine, Daegu 705-718, Korea
| | | | | | | | | | | | | | | | | | | |
Collapse
|
100
|
Yoshida D, Noha M, Watanabe K, Sugisaki Y, Teramoto A. Novel approach to analysis of in vitro tumor angiogenesis with a variable-pressure scanning electron microscope: suppression by matrix metalloproteinase inhibitor SI-27. Brain Tumor Pathol 2012; 18:89-100. [PMID: 11908879 DOI: 10.1007/bf02479421] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Abstract
Degradation of basement membrane by metalloproteinases (MMP) is a critical step in tumor angiogenesis. To evaluate in vitro angiogenesis, several models have been employed, including bovine cornea, fenestrated rat brain, Matrigel, and others. These models did not provide quantitative analysis of capillary formation. The current study aimed for a novel approach to in vitro assay of angiogenesis with a "wet scanning electron microscope (SEM)" to investigate suppression of tumor angiogenesis by the MMP inhibitor, SI-27. The effects of noncytotoxic concentrations of SI-27 (1-100 microM) were determined on nonmitogenic vascular endothelial growth factor (VEGF) (10 ng/ml)-mediated cell motility and in vitro angiogenesis of human umbilical vein endothelial cells (HUVECs). Activities of MMP and tissue inhibitor of metalloproteinase (TIMP) were determined by enzyme-linked immunosorbent assay (ELISA). Subsequently, the inhibitory effect of SI-27 was examined on in vitro angiogenesis stimulated by supernatants of human glioma cell lines (U87MG, U251MG, or U373MG). In vitro angiogenesis was quantitatively analyzed with a variable-pressure SEM. Cell motility and in vitro angiogenesis by HUVECs were significantly increased by VEGF along with elevated MMP-1 and -2 activity, whereas SI-27 significantly suppressed VEGF-mediated in vitro angiogenesis and inactivated both MMP-1 and MMP-2, but not inhibited cell motility. The angiogenesis promoted by glioma supernatants showed a significant reduction in the presence of SI-27. SI-27, a novel MMP inhibitor, inhibited tumor angiogenesis in vitro. It can be anticipated to prevent tumor growth through its angiosuppressive effect. Quantitative analysis with a variable-pressure SEM is a novel approach to in vitro angiogenesis assay.
Collapse
Affiliation(s)
- D Yoshida
- Department of Neurosurgery, Nippon Medical School, Tokyo, Japan.
| | | | | | | | | |
Collapse
|