51
|
Gorter JA, Gonçalves Pereira PM, van Vliet EA, Aronica E, Lopes da Silva FH, Lucassen PJ. Neuronal cell death in a rat model for mesial temporal lobe epilepsy is induced by the initial status epilepticus and not by later repeated spontaneous seizures. Epilepsia 2003; 44:647-58. [PMID: 12752463 DOI: 10.1046/j.1528-1157.2003.53902.x] [Citation(s) in RCA: 116] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
PURPOSE To determine whether repeated seizures contribute to hippocampal sclerosis, we investigated whether cell loss in the (para) hippocampal region was related to the severity of chronic seizure activity in a rat model for temporal lobe epilepsy (TLE). METHODS Chronic epilepsy developed after status epilepticus (SE) that was electrically induced 3-5 months before. The presence of neuronal damage was assessed by using Fluoro-Jade and dUTP nick end-labeling (TUNEL) of brain sections counterstained with Nissl. RESULTS We found a negative correlation between the numbers of surviving hilar cells and the duration of the SE (r = -0.66; p < 0.01). In the chronic phase, we could discriminate between rats with occasional seizures (0.15 +/- 0.05 seizures per day) without progression and rats with progressive seizure activity (8.9 +/- 2.8 seizures/day). In both groups, the number of TUNEL-positive cells in parahippocampal regions was similar and higher than in controls. In the hippocampal formation, this was not significantly different from controls. Fluoro-Jade staining showed essentially the same pattern at 1 week and no positive neurons in chronic epileptic rats. CONCLUSIONS Cell death in this rat model is related to the initial SE rather than to the frequency of spontaneous seizures. These results emphasize that it is of crucial importance to stop the SE as soon as possible to prevent extended cell loss and further progression of the disease. They also suggest that neuroprotectants can be useful during the first week after SE, but will not be very useful in the chronic epileptic phase.
Collapse
Affiliation(s)
- Jan A Gorter
- Swammerdam Institute for Life Sciences, Section Neurobiology, University of Amsterdam, Kruislaan 320, 1098 SM Amsterdam, The Netherlands.
| | | | | | | | | | | |
Collapse
|
52
|
Pycroft JM, Hann A, Moxham BJ. Apoptosis in the connective tissues of the periodontal ligament and gingivae of rat incisor and molar teeth at various stages of development. Connect Tissue Res 2003; 43:265-79. [PMID: 12489169 DOI: 10.1080/03008200290000763] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
Apoptosis in the periodontal connective tissues was studied using the TUNEL technique, supported by electron microscopy. For 16 rats (aged 3, 8, or 104 weeks), nuclear fragmentation was assessed using the TUNEL technique (for 4 of the animals aged 8 weeks, incisor eruption was experimentally increased by trimming of teeth to the gingival margin--unimpeded eruption). A further 8 rats (aged 8 and 104 weeks) were employed for electron microscopy. For the incisor, prior to aging, and regardless of eruptive behavior (i.e., for both impeded and unimpeded incisors), there was little evidence of apoptosis in the periodontal ligament or gingival connective tissues. For the molar, apoptosis was also not usually detected when the teeth were erupting or in the mature, erupted state. In the aged animals, however, there was a marked increase in apoptosis (as assessed by the TUNEL technique) within the periodontal ligament and gingivae of both the molars and incisors (where eruption rates also increased). Nevertheless, electron microscopy indicated that significant numbers of apoptotic cells were only in the incisor periodontium. These findings are not consistent with the view that the periodontal fibroblasts provide a component of the force(s) responsible for eruption.
Collapse
Affiliation(s)
- J M Pycroft
- Cardiff School of Biosciences, Cardiff University, Biomedical Sciences Building, Museum Avenue, Cardiff, CF10 3US, Wales, United Kingdom
| | | | | |
Collapse
|
53
|
Niquet J, Baldwin RA, Allen SG, Fujikawa DG, Wasterlain CG. Hypoxic neuronal necrosis: protein synthesis-independent activation of a cell death program. Proc Natl Acad Sci U S A 2003; 100:2825-30. [PMID: 12606726 PMCID: PMC151425 DOI: 10.1073/pnas.0530113100] [Citation(s) in RCA: 70] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Hypoxic necrosis of dentate gyrus neurons in primary culture required the activation of an orderly cell death program independent of protein synthesis. Early mitochondrial swelling and loss of the mitochondrial membrane potential were accompanied by release of cytochrome c and followed by caspase-9-dependent activation of caspase-3. Caspase-3 and -9 inhibitors reduced neuronal necrosis. Calcium directly induced cytochrome c release from isolated mitochondria. Hypoxic neuronal necrosis may be an active process in which the direct effect of hypoxia on mitochondria may lead to the final common pathway of caspase-3-mediated neuronal death.
Collapse
Affiliation(s)
- Jerome Niquet
- Epilepsy Research, Research 151, Veterans Affairs Greater Los Angeles Healthcare System and Department of Neurology David Geffen School of Medicine at the University of California, Los Angeles, CA 90095, USA.
| | | | | | | | | |
Collapse
|
54
|
Mikati MA, Abi-Habib RJ, El Sabban ME, Dbaibo GS, Kurdi RM, Kobeissi M, Farhat F, Asaad W. Hippocampal programmed cell death after status epilepticus: evidence for NMDA-receptor and ceramide-mediated mechanisms. Epilepsia 2003; 44:282-91. [PMID: 12614382 DOI: 10.1046/j.1528-1157.2003.22502.x] [Citation(s) in RCA: 54] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
PURPOSE Status epilepticus (SE) can result in acute neuronal injury with subsequent long-term age-dependent behavioral and histologic sequelae. To investigate potential mechanisms that may underlie SE-related neuronal injury, we studied the occurrence of programmed cell death (PCD) in the hippocampus in the kainic acid (KA) model. METHODS In adult rats, KA-induced SE resulted in DNA fragmentation documented at 30 h after KA injection. Ceramide, a known mediator of PCD in multiple neural and nonneural tissues, increased at 2-3 h after KA intraperitoneal injection, and then decreased to control levels before increasing again from 12 to 30 h after injection. MK801 pretreatment prevented KA-induced increases in ceramide levels and DNA fragmentation, whether there was reduction in seizure severity or not (achieved with 5 mg/kg and 1 mg/kg of MK801, respectively). RESULTS Both ceramide increases and DNA fragmentation were observed after KA-induced SE in adult and in P35 rats. Ceramide did not increase after KA-induced SE in P7 pups, which also did not manifest any DNA fragmentation. Intrahippocampal injection of the active ceramide analogue C2-ceramide produced widespread DNA fragmentation, whereas the inactive ceramide analogue C2-dihydroceramide did not. CONCLUSIONS Our data support the hypotheses that (a) N-methyl-d-aspartate-receptor activation results in ceramide increases and in DNA fragmentation; (b) ceramide is a mediator of PCD after SE; and (c) there are age-related differences in PCD and in the ceramide response after SE. Differences in the ceramide response could, potentially, be responsible for observed age-related differences in the response to SE.
Collapse
Affiliation(s)
- Mohamad A Mikati
- Adult and Pediatric Epilepsy Program, Department of Pediatrics, Faculty of Medicine, American University of Beirut, Beirut, Lebanon.
| | | | | | | | | | | | | | | |
Collapse
|
55
|
Fujikawa DG, Ke X, Trinidad RB, Shinmei SS, Wu A. Caspase-3 is not activated in seizure-induced neuronal necrosis with internucleosomal DNA cleavage. J Neurochem 2002; 83:229-40. [PMID: 12358747 DOI: 10.1046/j.1471-4159.2002.01152.x] [Citation(s) in RCA: 40] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
A caspase-3-activated DNase produces internucleosomal DNA cleavage (DNA laddering). We determined whether caspase-3 is activated by lithium-pilocarpine-induced status epilepticus in six brain regions with necrosis-induced DNA laddering. The thymuses of adult rats given methamphetamine or normal saline were used as controls for apoptosis. Some 6-8 h after methamphetamine treatment, thymocytes showed apoptosis by electron-microscopic examination, positive terminal deoxynucleotidyl transferase dUTP nick-end labeling (TUNEL), DNA laddering, cleavage of caspase-3 into its active p17 subunit, active caspase-3 immunoreactivity, and a 25-fold increase in caspase-3-like activity. Six hours after SE, necrotic neurons by electron-microscopic examination in hippocampus, amygdala and piriform, entorhinal and frontal cortices showed no TUNEL and no DNA laddering. Twenty-four hours after seizures, most necrotic neurons were negative for TUNEL, some were positive, but all regions showed DNA laddering. However, 6 and 24 h after seizures, active caspase-3 immunoreactivity was negative, caspase-3-like activity did not increase, and western blot analysis failed to show the p17 subunit. In addition, 24 h after seizures,microdialytic perfusion of carbobenzoxy-valyl-alanyl-aspartyl (O-methylester) fluoromethylketone was not neuroprotective. Thus, caspase-3 is not activated in brain regions with seizure-induced neuronal necrosis with DNA laddering. Either caspase-activated DNase is activated by another enzyme, or a caspase-independent DNase is responsible for the DNA cleavage.
Collapse
Affiliation(s)
- Denson G Fujikawa
- Experimental Neurology Laboratory (151B4), Department of Veterans Affairs, Greater Los Angeles Healthcare System, 16111 Plummer Street, Sepulveda, CA 91343, USA.
| | | | | | | | | |
Collapse
|
56
|
Sankar R, Shin D, Liu H, Wasterlain C, Mazarati A. Epileptogenesis during development: injury, circuit recruitment, and plasticity. Epilepsia 2002; 43 Suppl 5:47-53. [PMID: 12121295 DOI: 10.1046/j.1528-1157.43.s.5.11.x] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
PURPOSE To use animal models of variable seizure induction in rats at different developmental stages to determine contributing factors for spontaneous seizures resulting from status epilepticus (SE) early in life. METHODS Two models of SE with distinct modes of seizure induction, lithium-pilocarpine (LiPC) and perforant path stimulation (PPS), were used at different ages. Multiple methods of determining neurodegeneration during an acute period and plastic changes in those monitored during the chronic phase were used. RESULTS Different modes of seizure induction lead to varying types and extents of damage, dependent on the age of the animals at the time of insult. LiPC resulted in injury to animals as young as 2 weeks and became widespread in animals 3 weeks old, whereas widespread damage after PPS was not seen until P35. Rats at an age with widespread damage in response to seizures also showed extensive immediate-early gene activation and often developed spontaneous seizures and features of hippocampal plasticity seen in the epileptic brain. CONCLUSIONS SE early in life results in multiple consequences to the developing brain. These changes, coexisting in the nonepileptic brain, can overlap in a maladaptive combination to result in the diseased state of epilepsy. The consequence of early seizures in immature animals is a function of both the developmental stage and the method of seizure induction.
Collapse
Affiliation(s)
- Raman Sankar
- Department of Pediatrics, 22-474 MDCC, UCLA School of Medicine, Los Angeles, CA 90095, USA.
| | | | | | | | | |
Collapse
|
57
|
Pitkänen A, Nissinen J, Nairismägi J, Lukasiuk K, Gröhn OHJ, Miettinen R, Kauppinen R. Progression of neuronal damage after status epilepticus and during spontaneous seizures in a rat model of temporal lobe epilepsy. PROGRESS IN BRAIN RESEARCH 2002; 135:67-83. [PMID: 12143371 DOI: 10.1016/s0079-6123(02)35008-8] [Citation(s) in RCA: 160] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/04/2022]
Abstract
The present study was designed to address the question of whether recurrent spontaneous seizures cause progressive neuronal damage in the brain. Epileptogenesis was triggered by status epilepticus (SE) induced by electrically stimulating the amygdala in rat. Spontaneous seizures were continuously monitored by video-EEG for up to 6 months. The progression of damage in individual rats was assessed with serial magnetic resonance imaging (MRI) by quantifying the markers of neuronal damage (T2, T1 rho, and Dav) in the amygdala and hippocampus. The data indicate that SE induces structural alterations in the amygdala and the septal hippocampus that progressively increased for approximately 3 weeks after SE. T2, T1 rho, and Dav did not normalize during the 50 days of follow-up after SE, suggesting ongoing neuronal death due to spontaneous seizures. Consistent with these observations, Fluoro-Jade B-stained preparations revealed damaged neurons in the hippocampus of spontaneously seizing animals that were sacrificed up to 62 days after SE. The presence of Fluoro-Jade B-positive neurons did not, however, correlate with the number of spontaneous seizures, but rather with the time interval from SE to perfusion. Further, there were no Fluoro-Jade B-positive neurons in frequently seizing rats that were perfused for histology 6 months after SE. Also, the number of lifetime seizures did not correlate with the severity of neuronal loss in the hilus of the dentate gyrus assessed by stereologic cell counting. The methodology used in the present experiments did not demonstrate a clear association between the number or occurrence of spontaneous seizures and the severity of hilar cell death. The ongoing hippocampal damage in these epileptic animals detected even 2 month after SE was associated with epileptogenic insult, that is, SE rather than spontaneous seizures.
Collapse
Affiliation(s)
- Asla Pitkänen
- Epilepsy Research Laboratory, A.I. Virtanen Institute for Molecular Sciences, University of Kuopio, Department of Neurology, Kuopio University Hospital, Kuopio, Finland.
| | | | | | | | | | | | | |
Collapse
|
58
|
Bengzon J, Mohapel P, Ekdahl CT, Lindvall O. Neuronal apoptosis after brief and prolonged seizures. PROGRESS IN BRAIN RESEARCH 2002; 135:111-9. [PMID: 12143333 DOI: 10.1016/s0079-6123(02)35011-8] [Citation(s) in RCA: 108] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Evidence has accumulated that apoptotic cell death contributes to brain damage following experimental seizures. A substantial number of degenerating neurons within limbic regions display morphological features of apoptosis following prolonged seizures evoked by systemic or local injections of kainic acid, systemic injections of pilocarpine and sustained stimulation of the perforant path. Although longer periods of seizures consistently result in brain damage, it has previously not been clear whether brief single or intermittent seizures lead to cell death. However, recent results indicate that also single seizures lead to apoptotic neuronal death. A brief, non-convulsive seizure evoked by kindling stimulation was found to produce apoptotic neurons bilaterally in the rat dentate gyrus. The mechanism triggering and mediating apoptotic degeneration is at present being studied. Alterations in the expression and activity of cell-death regulatory proteins such as members of the Bcl-2 family and the cysteinyl aspartate-specific proteinase (caspase) family occur in regions vulnerable to cell degeneration, suggesting an involvement of these factors in mediating apoptosis following seizures. Findings of decreased apoptotic cell death following administration of caspase inhibitors prior to and following experimentally induced status epilepticus, further suggest a role for caspases in seizure-evoked neuronal degeneration. Intermediate forms of cell death with both necrotic and apoptotic features have been found after seizures and investigation into the detailed mechanisms of the different forms of cell degeneration is needed before attempts to specific prevention can be made.
Collapse
Affiliation(s)
- Johan Bengzon
- Department of Neurosurgery, University Hospital, S-221 85 Lund, Sweden.
| | | | | | | |
Collapse
|
59
|
Wu A, Fujikawa DG. Effects of AMPA-receptor and voltage-sensitive sodium channel blockade on high potassium-induced glutamate release and neuronal death in vivo. Brain Res 2002; 946:119-29. [PMID: 12133601 DOI: 10.1016/s0006-8993(02)02869-x] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
High extracellular potassium induces spreading depression-like depolarizations and elevations of extracellular glutamate. Both occur in the penumbra of a focal ischemic infarct, and may be responsible for the spread of cell death from the infarct core to the penumbra. We have modeled this situation with microdialysis of an isotonic high-potassium solution into the normal rat amygdala for 70 min. This elevates extracellular glutamate up to 8-fold or more and produces irreversibly damaged, acidophilic neurons. NMDA-receptor blockade protects neurons and reduces the elevation of extracellular glutamate. Here we investigated the effects of sodium channel blockade with the voltage-sensitive sodium channel blocker tetrodotoxin and the AMPA receptor antagonist 2,3-dihydroxy-6-nitro-1,2,3,4-tetrahydrobenzo(f)quinoxaline-7-sulfonamide disodium (NBQX disodium) on high potassium-induced neuronal death and extracellular glutamate elevations. The acidophilic neurons produced are necrotic by ultrastructural examination. Tetrodotoxin, at dialysate concentrations of 33, 330 and 3300 microM (only a small fraction is extracted by tissue), markedly reduced the elevations of glutamate in rat amygdala at nearly all time points during high-potassium perfusion, but it reduced tissue edema only at the highest concentration, and it was neuroprotective only if dialyzed prior to high-potassium microdialysis (at 330 microM concentration). Although both 250 microM (6.2% is extracted by tissue) and 500 microM NBQX reduced elevations of glutamate, neither was neuroprotective, and neuropil edema was not reduced by either concentration. Our results suggest that in vivo, sodium influx through voltage-sensitive sodium channels but not through ligand-gated AMPA receptor channels contributes to high potassium-induced neuronal necrosis.
Collapse
Affiliation(s)
- Aiguo Wu
- Experimental Neurology Laboratory, VA Greater Los Angeles Healthcare System, Sepulveda Ambulatory Care Center and Nursing Home Care Unit, Sepulveda, CA 91343, USA
| | | |
Collapse
|
60
|
Fujikawa DG. Apoptosis: ignoring morphology and focusing on biochemical mechanisms will not eliminate confusion. Trends Pharmacol Sci 2002; 23:309-10; author reply 310. [PMID: 12119149 DOI: 10.1016/s0165-6147(02)02042-4] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
61
|
Brisman JL, Rees Cosgrove G, Cole AJ. Phosphorylation of P42/P44 MAP kinase and DNA fragmentation in the rat perforant pathway stimulation model of limbic epilepsy. Brain Res 2002; 933:50-9. [PMID: 11929635 DOI: 10.1016/s0006-8993(02)02304-1] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
The intracellular signaling pathways associated with neuronal injury after perforant pathway stimulation of the rodent hippocampus have not been examined. To determine whether activation of the p42/p44 (Erk1/2) MAP kinase (MAPK) phosphorylation cascade is linked to neuronal injury after perforant pathway stimulation (PPS), we stained for phosphorylated Erk1/2 (P-Erk1/2) and for DNA fragmentation, a marker of cell death after PPS. Eighteen Sprague-Dawley rats underwent PPS for 6 (n=6), 12 (n=6), or 24 (n=6) h and were sacrificed either immediately (n=9) or 48 h (n=9) after stimulation. Sham-operated non-stimulated control animals (n=2) and control animals receiving low frequency stimulation only (n=4) were also examined. Brain sections were stained for DNA fragmentation and P-Erk1/2. DNA fragmentation was evident only in granule cells and CA3 pyramidal cells of the stimulated side 48 h after 24 h of PPS. PPS resulted in robust phosphorylation of Erk1/2 that displayed a stereotyped timecourse, appearing first in hilar neurons on the ipsilateral side and later in hilar neurons, granule cells, hippocampal pyramidal and non-neuronal cell populations on both the stimulated and contralateral sides. Both Erk1/2 phosphorylation and DNA fragmentation show definite and reproducible staining patterns after PPS that vary based on duration of stimulation. Populations displaying Erk1/2 activation appeared to differ from those showing DNA fragmentation and neuronal injury.
Collapse
Affiliation(s)
- Jonathan L Brisman
- Epilepsy Research Laboratory, Neurosurgical Service, Massachusetts General Hospital, Boston, MA, USA
| | | | | |
Collapse
|
62
|
Roch C, Leroy C, Nehlig A, Namer IJ. Magnetic resonance imaging in the study of the lithium-pilocarpine model of temporal lobe epilepsy in adult rats. Epilepsia 2002; 43:325-35. [PMID: 11952761 DOI: 10.1046/j.1528-1157.2002.11301.x] [Citation(s) in RCA: 154] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
PURPOSE In temporal lobe epilepsy, it remains to be clarified whether hippocampal sclerosis is the cause or the consequence of epilepsy. We studied the temporal evolution of the lesions in the lithium-pilocarpine model of epilepsy in the rat with magnetic resonance imaging (MRI) to determine the progressive morphologic changes occurring before the appearance of chronic epilepsy. METHODS MRI was performed on an MR scanner operating at 4.7 T. We followed the evolution of lesions using T(2)- and T(1)-weighted sequences before and after the injection of gadolinium from 2 h to 9 weeks. RESULTS At 2 h after status epilepticus (SE), a blood-brain barrier breakdown could be observed only in the thalamus; it had disappeared by 6 h. At 24 h after SE, edema was present in the amygdala and the piriform and entorhinal cortices together with extensive neuronal loss; it disappeared progressively over a 5-day period. During the chronic phase, a cortical signal reappeared in all animals; this signal corresponded to gliosis, which appeared on glial fibrillary acidic protein (GFAP) immunohistochemically stained sections as hypertrophic astrocytes with thickened processes. In the hippocampus, the correlation between histopathology and T(2)-weighted signal underscored the progressive constitution of atrophy and sclerosis, starting 2 days after SE. CONCLUSIONS These data show the reactivity of the cortex that characterizes the initial step leading to the development of epilepsy and the late gliosis that could result from the spontaneous seizures. Moreover, it appears that hippocampal sclerosis progressively worsened and could be both the cause and the consequence of epileptic activity.
Collapse
Affiliation(s)
- Catherine Roch
- Institut de Physique Biologique (UMR 7004 ULP/CNRS/IFR37), Faculté de Médecine, 4 rue Kirschleger, 67085 Strasbourg Cedex, France.
| | | | | | | |
Collapse
|
63
|
Tan Z, Sankar R, Tu W, Shin D, Liu H, Wasterlain CG, Schreiber SS. Immunohistochemical study of p53-associated proteins in rat brain following lithium-pilocarpine status epilepticus. Brain Res 2002; 929:129-38. [PMID: 11852039 DOI: 10.1016/s0006-8993(01)03360-1] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
Activation of the p53-stress response pathway has been implicated in excitotoxic neuronal cell death. Recent studies have demonstrated an age-dependent induction of both p53 mRNA and protein in the rat brain following lithium-pilocarpine-mediated status epilepticus (LPSE). We investigated whether other proteins that have been shown to participate in the p53 cascade are induced by LPSE. We used immunohistochemistry to examine the expression of Mdm2, Bax, CD95/Fas/APO-1, ATM, Ref-1 and ubiquitin. A significant increase in nuclear Mdm2 immunoreactivity, which colocalized with p53, was observed in cells within hippocampal pyramidal cell layers, dentate gyrus, piriform cortex, amygdala and thalamus. Dual immunofluorescence microscopy revealed a reduction in free ubiquitin expression in cells with p53 and Mdm2 accumulation. Increased immunoreactivity for CD95/Fas/APO-1 and Bax was also detected in the same p53-positive cells. Moreover, expression of Ref-1 and ATM, which are involved in the response to oxidative stress-induced DNA damage and regulation of p53 function, were increased. Colocalization of Ref-1 and p53 suggests that Ref-1 might activate p53 function in LPSE-induced neurodegeneration. In contrast, ATM immunoreactivity was predominantly cytoplasmic suggesting that ATM may not directly modulate p53 activity in injured neurons. These results extend our previous observations with regard to activation and stabilization of p53 in injured central nervous system neurons. The data indicate that p53 induction following LPSE may activate downstream pro-apoptotic genes leading to neurodegeneration.
Collapse
Affiliation(s)
- Zhiqun Tan
- Department of Neurology, USC Keck School of Medicine, Los Angeles, CA 90033, USA
| | | | | | | | | | | | | |
Collapse
|
64
|
Cock HR, Tong X, Hargreaves IP, Heales SJR, Clark JB, Patsalos PN, Thom M, Groves M, Schapira AHV, Shorvon SD, Walker MC. Mitochondrial dysfunction associated with neuronal death following status epilepticus in rat. Epilepsy Res 2002; 48:157-68. [PMID: 11904234 DOI: 10.1016/s0920-1211(01)00334-5] [Citation(s) in RCA: 73] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Status epilepticus (SE) in humans and animal models results in significant cerebral damage and an increased risk of subsequent seizures, associated with a characteristic pattern of neuronal loss particularly affecting the hippocampus. Seizure related cell death is considered to be excitotoxic, but studies have been limited, concentrating on terminal events rather than initial mechanisms. We have studied the biochemical events in the first few days following SE. Self-sustaining limbic SE was induced in adult rats using perforant path stimulation, and animals were allowed to recover. Biochemical studies were performed at 16, 44 h and 8 days following SE, using spectrophotometric enzyme assays and HPLC on regional brain homogenates compared with those from sham-operated controls. Haematoxylin and eosin histology was also undertaken at each time point. Brain aconitase and alpha-ketoglutarate dehydrogenase (alphaKDH) activity were both significantly (P<0.05) reduced by approximately 20% in the first 16-44 h following status, but had returned to normal by 8 days. These enzymes are part of the tri-carboxylic acid (Krebbs) cycle in the mitochondrial matrix, and are known to be sensitive to free radical, especially peroxynitrite damage. There was a similar decrease in reduced glutathione levels. Histological studies confirmed evidence of acute neuronal damage up to 44 h, and neuronal loss by 8 days. This is the first in vivo demonstration of this pattern of mitochondrial dysfunction and loss of brain glutathione following SE. The pattern of abnormalities is consistent with reversible mechanisms being involved in excitotoxic cell damage. This, together with the timing of changes, suggests new avenues for therapeutic intervention.
Collapse
Affiliation(s)
- Hannah R Cock
- Department of Clinical and Experimental Epilepsy, Institute of Neurology, University College London, Queen Square, WC1N 3BG, London, UK.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
65
|
Bozzi Y, Borrelli E. Dopamine D2 receptor signaling controls neuronal cell death induced by muscarinic and glutamatergic drugs. Mol Cell Neurosci 2002; 19:263-71. [PMID: 11860278 DOI: 10.1006/mcne.2001.1064] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Dopamine (DA), through D1/D2 receptor-mediated signaling, plays a major role in the control of epileptic seizures arising in the limbic system. Excitotoxicity leading to neuronal cell death in the affected areas is a major consequence of seizures at the cellular level. In this respect, little is known about the role of DA receptors in the occurrence of epilepsy-induced neuronal cell death. Here we analyze the occurrence of seizures and neurotoxicity in D2R -/- mice treated with the cholinergic agonist pilocarpine. We compared these results with those previously obtained with kainic acid (KA), a potent glutamate agonist. Importantly, D2R -/- mice develop seizures at doses of both drugs that are not epileptogenic for WT littermates and show greater neurotoxicity. However, pilocarpine-induced seizures result in a more widespread neuronal death in both WT and D2R -/- brains in comparison to KA. Thus, the absence of D2R lowers the threshold for seizures induced by both glutamate and acetylcholine. Moreover, the dopaminergic control of epilepsy-induced neurodegeneration seems to be mediated by distinct interactions of D2R signaling with these two neurotransmitters.
Collapse
MESH Headings
- Acetylcholine/metabolism
- Animals
- Behavior, Animal/drug effects
- Behavior, Animal/physiology
- Cell Death/drug effects
- Cell Death/genetics
- Dose-Response Relationship, Drug
- Epilepsy/chemically induced
- Epilepsy/genetics
- Epilepsy/metabolism
- Excitatory Amino Acid Agonists/pharmacology
- Female
- Genotype
- Glutamic Acid/metabolism
- Kainic Acid/pharmacology
- Limbic System/drug effects
- Limbic System/metabolism
- Limbic System/physiopathology
- Male
- Mice
- Mice, Knockout
- Molecular Sequence Data
- Muscarinic Agonists/pharmacology
- Nerve Degeneration/chemically induced
- Nerve Degeneration/genetics
- Nerve Degeneration/metabolism
- Pilocarpine/pharmacology
- RNA, Messenger/metabolism
- Receptors, Dopamine D2/deficiency
- Receptors, Dopamine D2/genetics
- Receptors, Muscarinic/drug effects
- Receptors, Muscarinic/genetics
- Receptors, Muscarinic/metabolism
- Signal Transduction/drug effects
- Signal Transduction/physiology
- Synaptic Transmission/drug effects
- Synaptic Transmission/physiology
Collapse
Affiliation(s)
- Yuri Bozzi
- Institut de Génétique et de Biologie Moléculaire et Cellulaire, CNRS/INSERM/ULP, Illkirch, C. U. de Strasbourg, France
| | | |
Collapse
|
66
|
Ananth C, Thameem Dheen S, Gopalakrishnakone P, Kaur C. Domoic acid-induced neuronal damage in the rat hippocampus: changes in apoptosis related genes (bcl-2, bax, caspase-3) and microglial response. J Neurosci Res 2001; 66:177-90. [PMID: 11592113 DOI: 10.1002/jnr.1210] [Citation(s) in RCA: 67] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
Domoic acid (DA), a potent neurotoxin, administered intravenously (0.75 mg/kg body weight) in adult rats evoked seizures accompanied by nerve cell damage in the present study. Neuronal degeneration and microglial reaction in the hippocampus were investigated, and the temporal profile of bcl-2, bax, and caspase-3 genes in cell death or survival was assessed following the administration of DA. Nissl staining showed darkly stained degenerating neurons in the hippocampus following the administration of DA at 1-21 days, the degeneration being most severe at 5 days. Ultrastructural study in CA1 and CA3 regions of hippocampus revealed two types of neuronal degeneration, cells that exhibited swollen morphology and shrunken electron-dense cells. Immunoreactivity of Bcl-2 and Bax was increased considerably at 16 hr and 24 hr in the neurons of the hippocampus following DA administration. No significant change was observed in the immunoreactivity of caspase-3 in the controls and DA-treated rats at any time interval. Microglial cells in the hippocampus showed intense immunoreaction with the antibodies OX-42 and OX-6 at 1-21 days after DA administration, indicating the up-regulation of complement type 3 receptors and major histocompatibility complex type II antigens for increased phagocytic activity and antigen presentation, respectively. Terminal deoxynucleotidyl-transferase-mediated dUTP nick end labeling (TUNEL) showed occasional positive neurons in the CA1 and CA3 regions at 5 days after DA administration, with no positive cells in the controls. RT-PCR analysis revealed that bcl-2 and bax mRNA transcripts in the hippocampus were significantly increased at 16 hr and gradually decreased at 24 hr following the administration of DA. Although bax and bcl-2 mRNA expression is rapidly induced at early stages, in situ hybridization analysis revealed complete loss of bcl-2, bax, and caspase-3 mRNA at 24 hr after DA administration in the region of neuronal degeneration in the hippocampus. These results indicate that the pattern of neuronal degeneration observed during DA-induced excitotoxic damage is mostly necrotic.
Collapse
Affiliation(s)
- C Ananth
- Department of Anatomy, Faculty of Medicine, National University of Singapore, 4 Medical Drive, Singapore-117597
| | | | | | | |
Collapse
|
67
|
Ekdahl CT, Mohapel P, Elmér E, Lindvall O. Caspase inhibitors increase short-term survival of progenitor-cell progeny in the adult rat dentate gyrus following status epilepticus. Eur J Neurosci 2001; 14:937-45. [PMID: 11595032 DOI: 10.1046/j.0953-816x.2001.01713.x] [Citation(s) in RCA: 91] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
The dentate gyrus (DG) is one of the few regions in the brain that continues to produce new neurons throughout adulthood. Seizures not only increase neurogenesis, but also lead to death of DG neurons. We investigated the relationship between cell death and neurogenesis following seizures in the DG of adult rats by blocking caspases, which are key components of apoptotic cell death. Multiple intracerebroventricular infusions of caspase inhibitors (pancaspase inhibitor zVADfmk, and caspase 3 and 9 inhibitor) prior to, just after, 1 day after, and 1 week following 2 h of lithium-pilocarpine-induced status epilepticus reduced the number of terminal deoxynucleotidyl transferase-mediated fluorescein-dUTP nick-end labelled (TUNEL) cells and increased the number of bromodeoxyuridine (BrdU) -stained proliferated cells in the subgranular zone at 1 week. The caspase inhibitor-treated group did not differ from control at 2 days or 5 weeks following the epileptic insult. Our findings suggest that caspases modulate seizure-induced neurogenesis in the DG, probably by regulating apoptosis of newly born neurons, and that this action can be suppressed transiently by caspase inhibitors. Furthermore, although previous studies have indicated that increased neuronal death can trigger neurogenesis, we show here that reduction in apoptotic death may be associated with increased neurogenesis.
Collapse
Affiliation(s)
- C T Ekdahl
- Section of Restorative Neurology, Wallenberg Neuroscience Center, BMC A11, SE-221 84 Lund, Sweden
| | | | | | | |
Collapse
|
68
|
Lowenstein DH. Structural reorganization of hippocampal networks caused by seizure activity. INTERNATIONAL REVIEW OF NEUROBIOLOGY 2001; 45:209-36. [PMID: 11130900 DOI: 10.1016/s0074-7742(01)45012-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/18/2023]
Affiliation(s)
- D H Lowenstein
- Harvard Medical School and Department of Neurology, Beth Israel Deaconess Medical Center, Boston, Massachusetts, USA
| |
Collapse
|
69
|
Biagini G, Avoli M, Marcinkiewicz J, Marcinkiewicz M. Brain-derived neurotrophic factor superinduction parallels anti-epileptic--neuroprotective treatment in the pilocarpine epilepsy model. J Neurochem 2001; 76:1814-22. [PMID: 11259499 DOI: 10.1046/j.1471-4159.2001.00163.x] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Antiepileptic drugs provide neuroprotection in several animal models of brain damage, including those induced by status epilepticus (SE). The mechanisms involved in this action are unknown, but neurotrophic factors such as brain-derived neurotrophic factor (BDNF) may play a role. In this study we investigated the changes in BDNF levels in rats in which SE had been induced by pilocarpine injection (400 mg/kg i.p.) and continued for several hours (unprotected group). In other animals (protected groups), SE was suppressed after 30 min by intraperitoneal injection of either diazepam (10 mg/kg) + pentobarbital (30 mg/kg) or paraldehyde (0.3 mg/kg). In diazepam + pentobarbital-treated rats the hippocampal damage caused by SE was significantly lower (p < 0.05) than in unprotected animals. In addition, 2 and 24 h after pilocarpine injection, the levels of BDNF mRNA were moderately increased in the unprotected group, but 'superinduced' in protected animals, especially in the neocortex and hippocampus. A time-dependent increase in BDNF immunoreactivity was also found by western blot analysis in rats treated with diazepam + pentobarbital. In contrast, a decrease of BDNF immunoreactivity occurred in the unprotected group. In conclusion, these results show that neuroprotection induced by anti-epileptic drugs in pilocarpine-treated rats is accompanied by strong potentiation of BDNF synthesis in brain regions involved in SE.
Collapse
Affiliation(s)
- G Biagini
- Department of Biomedical Sciences, Section of Physiology, University of Modena and Reggio Emilia, Modena, Italy.
| | | | | | | |
Collapse
|
70
|
Fujikawa DG, Shinmei SS, Cai B. Seizure-induced neuronal necrosis: implications for programmed cell death mechanisms. Epilepsia 2000; 41 Suppl 6:S9-13. [PMID: 10999512 DOI: 10.1111/j.1528-1157.2000.tb01549.x] [Citation(s) in RCA: 81] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
Abstract
PURPOSE To determine definitively the morphology of neuronal death from lithium-pilocarpine (LPC)-and kainic acid (KA)-induced status epilepticus (SE), and to correlate this with markers of DNA fragmentation that have been associated with cellular apoptosis. Endogenous glutamate release is probably responsible for neuronal death in both seizure models, because neuronal death in both is N-methyl-D-aspartate receptor-mediated. METHODS SE was induced for 3 hours in adult male Wistar rats with either LPC or KA, and 24 or 72 hours later the rats were killed. One group of rats had brain sections, stained with hematoxylin and eosin and the terminal deoxynucleotidyl transferase dUTP nick-end labeling (TUNEL) technique, examined by light microscopy and by electron microscopy. A separate group of rats had DNA extracted from the same brain regions examined by electron microscopy in the first group. The extracted DNA was electrophoresed on an agarose gel with ethidium bromide and was examined for the presence or absence of internucleosomal DNA cleavage (DNA "laddering"). RESULTS Twenty-four and 72 hours after 3 hours of LPC- or KA-induced SE, neuronal death in the hippocampus, amygdala, and piriform, entorhinal, and frontal cortices was morphologically necrotic, in spite of DNA laddering in these regions 24 and 72 hours after SE and positive TUNEL staining in some of the regions 72 hours after SE. Ultrastructurally, necrotic neurons were dark and shrunken, with cytoplasmic vacuoles and pyknotic nuclei with small, irregular, dispersed chromatin clumps. CONCLUSIONS Our results, together with those of other reports, suggest that programmed cell death-promoting mechanisms are activated by SE in neurons that become necrotic rather than apoptotic and point to the possibility that such mechanisms may contribute to SE-induced neuronal necrosis.
Collapse
Affiliation(s)
- D G Fujikawa
- Neurology Department, Sepulveda Ambulatory Care Center, VA Greater Los Angeles Healthcare System, California 91343, USA.
| | | | | |
Collapse
|
71
|
Fujikawa DG. Confusion between neuronal apoptosis and activation of programmed cell death mechanisms in acute necrotic insults. Trends Neurosci 2000; 23:410-1. [PMID: 10941188 DOI: 10.1016/s0166-2236(00)01601-5] [Citation(s) in RCA: 47] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
72
|
Fujikawa DG, Shinmei SS, Cai B. Kainic acid-induced seizures produce necrotic, not apoptotic, neurons with internucleosomal DNA cleavage: implications for programmed cell death mechanisms. Neuroscience 2000; 98:41-53. [PMID: 10858610 DOI: 10.1016/s0306-4522(00)00085-3] [Citation(s) in RCA: 161] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Prolonged seizures (status epilepticus) induced by kainic acid activate programmed cell death mechanisms, and it is believed that kainic acid-induced status epilepticus induces neuronal apoptosis. In order to test this hypothesis, adult rats were subjected to 3-h kainic acid-induced seizures, with 24- or 72-h recovery periods. Neuronal death was assessed by light microscopy with the Hematoxylin and Eosin stain and with in situ terminal deoxynucleotidyl transferase dUTP nick-end labeling (TUNEL stain), by electron microscopy, and by agarose gel electrophoresis of DNA extracted from five vulnerable brain regions. Spontaneous and MK-801-induced apoptotic neurons from retrosplenial cortex of neonatal rats, evaluated by light and electron microscopy, were used as positive controls for apoptosis. Surprisingly, the large chromatin clumps of apoptotic neurons were TUNEL negative, whereas the cytoplasm showed light-to-moderate TUNEL staining, consistent with a lack of identifiable nuclear membranes ultrastructurally, and with intermingling of nuclear and cytoplasmic contents. Ultrastructurally, the acidophilic neurons produced by kainic acid-induced status epilepticus, identified with Hematoxylin and Eosin stain, were dark, shrunken and necrotic, with pyknotic nuclei containing small, dispersed chromatin clumps, and with cytoplasmic vacuoles, some of which were swollen, disrupted mitochondria. No apoptotic cells were seen. Acidophilic neurons were found in up to 20 of 23 brain regions examined and comprised 10-25% of the total number of neurons examined. A subset of these neurons (<10% of the total number of neurons in five of 23 regions) had TUNEL-positive nuclei 72h but not 24h after status epilepticus. Internucleosomal DNA cleavage (DNA "laddering") occurred in the four most damaged brain regions examined by electron microscopy 24h after SE and the three most damaged regions 72h after status epilepticus. Our results demonstrate that kainic acid-induced status epilepticus produces neuronal necrosis and not apoptosis in adult rats. The necrotic neurons show nuclear pyknosis, chromatin condensation and DNA laddering. Programmed cell death mechanisms activated by kainic acid-induced status epilepticus occur in neurons which become necrotic and could contribute to necrotic, as well as apoptotic, neuronal death.
Collapse
Affiliation(s)
- D G Fujikawa
- Experimental Neurology Laboratory, VA Greater Los Angeles Healthcare System, Sepulveda Ambulatory Care Center and Nursing Home Care Unit, Sepulveda CA 91343, USA.
| | | | | |
Collapse
|
73
|
Covolan L, Smith RL, Mello LE. Ultrastructural identification of dentate granule cell death from pilocarpine-induced seizures. Epilepsy Res 2000; 41:9-21. [PMID: 10924864 DOI: 10.1016/s0920-1211(00)00122-4] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Cell loss in the hippocampal formation is a common event in patients with temporal lobe epilepsy. The belief that dentate granule neurons are relatively resistant to excitotoxic injury has recently been challenged both, in epileptic patients and in animal models of temporal lobe epilepsy. The nature of dentate granule cell damage in epilepsy has been reported as either apoptotic, necrotic or both. The lack of a consensus on this topic stems from use of different animal models and different experimental techniques for characterizing the apoptotic/necrotic process. Using electron microscopy for defining the, nature of cell loss and one of the main animal models of status epilepticus (SE) we have focussed on the nature of the degenerative process in dentate granule cells. Ultrastructural morphological changes of these cells were evaluated 2.5-48 h after pilocarpine-induced status epilepticus. A variety of morphologies ranging from apoptosis to necrosis, could be seen at 2.5 h after SE onset and continued at least over the following 48 h. Some cells displayed coalescence of chromatin against nuclear membranes. In such cases however, chromatin did not have well-defined edges (as it should, if it were apoptosis). Condensation of cytoplasm. present in both processes was also frequently found. Neither obvious apoptotic budding-off of cytoplasm nor typical membrane-bound apoptotic bodies were found. Our results indicate that in the dentate granule cell layer pilocarpine-induced SE promotes a degenerative process in which apoptotic and necrotic features overlap.
Collapse
Affiliation(s)
- L Covolan
- Department of Physiology, UNIFESP, São Paulo, SP, Brazil
| | | | | |
Collapse
|
74
|
Fujikawa DG, Itabashi HH, Wu A, Shinmei SS. Status epilepticus-induced neuronal loss in humans without systemic complications or epilepsy. Epilepsia 2000; 41:981-91. [PMID: 10961625 DOI: 10.1111/j.1528-1157.2000.tb00283.x] [Citation(s) in RCA: 126] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
PURPOSE To determine the regional distribution of neuronal damage caused strictly by status epilepticus (SE) without systemic complications, underlying brain pathology, or a history of preexisting epilepsy. METHODS The medical records and electroencephalograms (EEGs) of three deceased patients who developed SE in the hospital were reviewed. Their brains were formalin-fixed, and 17 brain regions were selected, embedded in paraffin, and sectioned. Alternate sections were stained with either hematoxylin and eosin and cresyl violet to determine the extent of neuronal loss and gliosis or glial fibrillary astrocytic protein to confirm the extent of astrocytic proliferation. RESULTS The three patients died 11 to 27 days after the onset of focal motor SE; none had hypotension, hypoxemia, hypoglycemia, or significant hyperthermia. Two patients had no prior seizures and no underlying brain pathology. The third patient, who had leptomeningeal carcinomatosis, had one seizure 2 months before the onset of SE. The duration of SE was 8.8 hours to 3 days. EEGs showed unilateral temporal lobe sharp-wave discharges in one patient and independent temporal lobe sharp-wave discharges bilaterally in the other two patients. In addition to widespread neuronal loss and reactive gliosis in the hippocampus, amygdala, dorsomedial thalamic nucleus, and Purkinje cell layer of the cerebellum, we report for the first time periamygdaloid (piriform) and entorhinal cortical damage occurring acutely after SE in humans. CONCLUSIONS In the absence of systemic complications or preexisting epilepsy, SE produces neuronal loss in a distribution similar to that from domoic acid-induced SE in humans and from kainic acid- and pilocarpine-induced SE in rats.
Collapse
Affiliation(s)
- D G Fujikawa
- Neurology Department, VA Greater Los Angeles Healthcare System, Sepulveda Ambulatory Care Center, California 91343, USA.
| | | | | | | |
Collapse
|
75
|
Anderson AJ, Stoltzner S, Lai F, Su J, Nixon RA. Morphological and biochemical assessment of DNA damage and apoptosis in Down syndrome and Alzheimer disease, and effect of postmortem tissue archival on TUNEL. Neurobiol Aging 2000; 21:511-24. [PMID: 10924764 DOI: 10.1016/s0197-4580(00)00126-3] [Citation(s) in RCA: 57] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
We have previously shown that Alzheimer disease (AD) brain exhibits terminal deoxynucleotidyl transferase dUTP nick end-labeling (TUNEL) for DNA damage and morphological evidence for apoptosis. Down syndrome (DS) is a neurodegenerative disorder that exhibits significant neuropathological parallels with AD. In accordance with these parallels and the need to clarify the mechanism of cell death in DS and AD, we investigated two principal issues in the present study. First, we investigated the hypothesis that TUNEL labeling for DNA damage and morphological evidence for apoptosis is also present in the DS brain. All DS cases employed had a neuropathological diagnosis of AD. Analysis of these cases showed that DS brain exhibits a significant increase in the number of TUNEL-labeled nuclei relative to controls matched for age, Postmortem Delay, and Archival Length, and that a subset of TUNEL-positive nuclei exhibits apoptotic morphologies. We also report that Archival Length in 10% formalin can significantly affect TUNEL labeling in postmortem human brain, and therefore, that Archival Length must be controlled for as a variable in this type of study. Second, we investigated whether biochemical evidence for the mechanism of cell death in DS and AD could be detected. To address this question we employed pulsed-field gel electrophoresis (PFGE) as a sensitive method to evaluate DNA integrity. Although apoptotic oligonucleosomal laddering has not previously been observed in AD, PFGE of DNA from control, DS and AD brain in the present study revealed evidence of high molecular weight DNA fragmentation indicative of apoptosis. This represents biochemical support for an apoptotic mechanism of cell death in DS and AD.
Collapse
Affiliation(s)
- A J Anderson
- Institute for Brain Aging and Dementia, University of California, Irvine, 1113 Gillespie NRF, Irvine, CA 92697-4540, USA.
| | | | | | | | | |
Collapse
|
76
|
D'Amato E, Kokaia Z, Nanobashvili A, Reeben M, Lehesjoki AE, Saarma M, Lindvall O. Seizures induce widespread upregulation of cystatin B, the gene mutated in progressive myoclonus epilepsy, in rat forebrain neurons. Eur J Neurosci 2000; 12:1687-95. [PMID: 10792446 DOI: 10.1046/j.1460-9568.2000.00058.x] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Loss of function mutations in the gene encoding the cysteine protease inhibitor, cystatin B (CSTB), are responsible for the primary defect in human progressive myoclonus epilepsy (EPM1). CSTB inhibits the cathepsins B, H, L and S by tight reversible binding, but little is known regarding its localization and physiological function in the brain and the relation between the depletion of the CSTB protein and the clinical symptoms in EPM1. We have analysed the expression of mRNA and protein for CSTB in the adult rat brain using in situ hybridization and immunocytochemistry. In the control brains, the CSTB gene was differentially expressed with the highest levels in the hippocampal formation and reticular thalamic nucleus, and moderate levels in amygdala, thalamus, hypothalamus and cortical areas. Detectable levels of CSTB were found in virtually all forebrain neurons but not in glial cells. Following 40 rapidly recurring seizures evoked by hippocampal kindling stimulations, CSTB mRNA expression showed marked bilateral increases in the dentate granule cell layer, CA1 and CA4 pyramidal layers, amygdala, and piriform and parietal cortices. Maximum levels were detected at 6 or 24 h, and expression had reached control values at 1 week post-seizures. The changes of mRNA expression were accompanied by transient elevations (at 6-24 h) of CSTB protein in the same brain areas. These findings demonstrate that seizure activity leads to rapid and widespread increases of the synthesis of CSTB in forebrain neurons. We propose that the upregulation of CSTB following seizures may counteract apoptosis by binding cysteine proteases.
Collapse
Affiliation(s)
- E D'Amato
- Department of Medical Genetics, University of Helsinki, FIN-00014 Helsinki, Finland
| | | | | | | | | | | | | |
Collapse
|
77
|
De Bruin VM, Marinho MM, De Sousa FC, Viana GS. Behavioral and neurochemical alterations after lithium-pilocarpine administration in young and adult rats: a comparative study. Pharmacol Biochem Behav 2000; 65:547-51. [PMID: 10683497 DOI: 10.1016/s0091-3057(99)00247-6] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Pilocarpine and lithium-pilocarpine can induce seizures and brain damage in adult rats. However, manifestation of cerebral lesions seems to be an age-related phenomenon suggesting that maturational states of neurocircuitry may be involved. We have studied behavior changes, cerebral histopathology, and muscarinic and dopaminergic receptors density in rodents subjected to lithium-pilocarpine treatment. Wistar rats, at two different ages (21 days and 2 months), were treated with pilocarpine (15 mg/kg, SC), lithium (3 mEq/kg, IP), atropine (50 mg/kg, IP) and the combination of lithium to pilocarpine. Histopathologic studies showed that younger animals were more resistant to the development of cerebral changes and there was a preferential involvement of the striatum (Wilcoxon p = 0.02) as opposed to more generalized areas in adult animals such as hippocampus and neocortex. Lithium treatment induced an upregulation of muscarinic receptors at both ages, and this effect was reversed in younger animals after pilocarpine administration. Lithium also induced an upregulation of dopaminergic receptors in the striatum at both ages (p < 0.05), and this effect was not reversed after pilocarpine administration. Our data confirm that young animals show less brain damage after lithium-pilocarpine, and main alterations in dopaminergic receptors density occur in young and older animals after treatment with lithium and lithium combined to a low dose of pilocarpine.
Collapse
Affiliation(s)
- V M De Bruin
- Department of Clinical Medicine, Federal University of Ceará, Fortaleza, Brazil
| | | | | | | |
Collapse
|
78
|
Liu H, Cao Y, Basbaum AI, Mazarati AM, Sankar R, Wasterlain CG. Resistance to excitotoxin-induced seizures and neuronal death in mice lacking the preprotachykinin A gene. Proc Natl Acad Sci U S A 1999; 96:12096-101. [PMID: 10518582 PMCID: PMC18418 DOI: 10.1073/pnas.96.21.12096] [Citation(s) in RCA: 102] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Epileptic seizures are associated with increases in hippocampal excitability, but the mechanisms that render the hippocampus hyperexcitable chronically (in epilepsy) or acutely (in status epilepticus) are poorly understood. Recent evidence suggests that substance P (SP), a peptide that has been implicated in cardiovascular function, inflammatory responses, and nociception, also contributes to hippocampal excitability and status epilepticus, in part by enhancing glutamate release. Here we report that mice with disruption of the preprotachykinin A gene, which encodes SP and neurokinin A, are resistant to kainate excitoxicity. The mice show a reduction in the duration and severity of seizures induced by kainate or pentylenetetrazole, and both necrosis and apoptosis of hippocampal neurons are prevented. Although kainate induced the expression of bax and caspase 3 in the hippocampus of wild-type mice, these critical intracellular mediators of cell death pathways were not altered by kainate injection in the mutant mice. These results indicate that the reduction of seizure activity and the neuroprotection observed in preprotachykinin A null mice are caused by the extinction of a SP/neurokinin A-mediated signaling pathway that is activated by seizures. They suggest that these neurokinins are critical to the control of hippocampal excitability, hippocampal seizures, and hippocampal vulnerability.
Collapse
Affiliation(s)
- H Liu
- Epilepsy Research Laboratory, Veterans Administration Medical Center, Sepulveda, CA 91343, USA.
| | | | | | | | | | | |
Collapse
|