51
|
Tovar-y-Romo LB, Tapia R. Cerebral neurons of transgenic ALS mice are vulnerable to glutamate release stimulation but not to increased extracellular glutamate due to transport blockade. Exp Neurol 2006; 199:281-90. [PMID: 16364298 DOI: 10.1016/j.expneurol.2005.11.005] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2005] [Revised: 10/21/2005] [Accepted: 11/01/2005] [Indexed: 11/16/2022]
Abstract
Mechanisms of motor neuron loss in amyotrophic lateral sclerosis (ALS) are unknown, but it has been postulated that excitotoxicity due to excessive glutamatergic neurotransmission by decreased efficiency of glutamate transport may be involved in both familial (FALS) and sporadic ALS. Using microdialysis in vivo, we tested the effects of the glutamate transport inhibitor L-trans-pyrrolidine-2,4-dicarboxylate (PDC) and of 4-aminopyridine (4-AP), which stimulates glutamate release from nerve endings, in the hippocampus and motor cortex of wild type (WT) and transgenic SOD1/G93A mice, an established model of FALS. Perfusion of 4-AP induced convulsions, expression of the inducible stress-marker heat-shock protein 70 (HSP70) and hippocampal neuronal loss. These effects were similar in both WT and G93A mice, and, in both groups, they were prevented by the previous systemic administration of the NMDA receptor antagonist MK-801. In contrast, perfusion of PDC resulted in a large and long-lasting (2 h) increase of extracellular glutamate, but no convulsions, neuronal damage or HSP70 expression were observed in either the WT or the G93A mice. Our results demonstrate that SOD1 G93A mutation does not enhance the vulnerability to endogenous glutamate-mediated excitotoxicity in brain, neither by blocking glutamate transport nor by stimulating its release. Therefore, these data do not support the possibility that glutamate transport deficiency may be an important factor of brain neuronal degeneration in familial ALS.
Collapse
Affiliation(s)
- Luis B Tovar-y-Romo
- Departamento de Neurociencias, Instituto de Fisiología Celular, Universidad Nacional Autónoma de México, AP 70-253, 04510-México, D. F., México
| | | |
Collapse
|
52
|
Peña F, Alavez-Pérez N. Epileptiform activity induced by pharmacologic reduction of M-current in the developing hippocampus in vitro. Epilepsia 2006; 47:47-54. [PMID: 16417531 DOI: 10.1111/j.1528-1167.2006.00369.x] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
PURPOSE Benign familial neonatal convulsions (BFNCs), an inheritable epilepsy that occurs in neonates but not in adults, is caused by hypofunctional mutations in genes codifying for the M-type K+ current. In an attempt to develop an in vitro model of this disease, we tested whether blocking M-current with linopirdine induces epileptiform activity in brain slices from animals of different ages. METHODS Horizontal hippocampus-entorhinal cortex slices were obtained from neonatal (1-2 weeks after birth) and adult (8-9 weeks after birth) rats. Extracellular field recordings of the CA1 region were performed. After recording control conditions, linopirdine was added to the bath, and field activity was recorded continuously for 3 h. 4-Aminopyridine, a drug commonly used to induce epileptiform activity in vitro, was used as a control for our experimental conditions. RESULTS Bath perfusion of linopirdine induced epileptiform activity only in slices from neonatal rats. Epileptiform activity consisted of interictal-like and ictal-like activity. In slices from adult rats, linopirdine induced erratic interictal-like activity. In contrast, 4-aminopyridine was able to induce epileptiform activity in slices from both neonatal and adult rats. CONCLUSIONS We demonstrated that blockade of M-current in vitro produces epileptiform activity with a developmental pattern similar to that observed in BNFCs. This could be an in vitro model that can be used to study the cellular mechanisms of epileptogenesis and the developmental features of BFNCs, as well as to develop some therapeutic strategies.
Collapse
Affiliation(s)
- Fernando Peña
- Departamento de Farmacobiología, Cinvestav-Coapa, México City, México.
| | | |
Collapse
|
53
|
Mora G, Tapia R. Effects of retigabine on the neurodegeneration and extracellular glutamate changes induced by 4-aminopyridine in rat hippocampus in vivo. Neurochem Res 2006; 30:1557-65. [PMID: 16362775 DOI: 10.1007/s11064-005-8834-8] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/23/2005] [Indexed: 01/21/2023]
Abstract
We have previously shown that microdialysis perfusion of the K+ channel blocker 4-aminopyridine (4-AP) in rat hippocampus induces convulsions and neurodegeneration, due to the stimulation of glutamate release from synaptic terminals. Retigabine is an opener of the KCNQ2/Q3-type K+ channel that possesses antiepileptic action and may be neuroprotective, and we have therefore studied its effect on the hyperexcitation, the neuronal damage and the changes in extracellular glutamate induced by 4-AP. Retigabine and 4-AP were co-administered by microdialysis in the hippocampus of anesthetized rats, with simultaneous recording of the EEG, and the extracellular concentration of glutamate was measured in the microdialysis fractions. In 70-80% of the rats tested retigabine reduced the 4-AP-induced stimulation of glutamate release and prevented the neuronal damage observed at 24 h in the CA1 hippocampal region. However, retigabine did not block the EEG epileptic discharges and their duration was reduced in only 20-25% of the tested animals. We conclude that the neuroprotective action of retigabine is probably due to the blockade of the 4-AP-induced stimulation of glutamate release. This inhibition, however, was not sufficient to block the epileptic activity.
Collapse
Affiliation(s)
- Gabriela Mora
- Departamento de Neurociencias, Instituto de Fisiología Celular, Universidad Nacional Autónoma de México, AP 70-253, 04510, México, D. F., México
| | | |
Collapse
|
54
|
Ayala GX, Tapia R. LateN-methyl-d-aspartate receptor blockade rescues hippocampal neurons from excitotoxic stress and death after 4-aminopyridine-induced epilepsy. Eur J Neurosci 2005; 22:3067-76. [PMID: 16367773 DOI: 10.1111/j.1460-9568.2005.04509.x] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The intrahippocampal perfusion of 4-aminopyridine (4-AP) in the rat produces immediate seizures and delayed neuronal death, due to the overactivation of N-methyl-D-aspartate (NMDA) receptors by endogenous glutamate released from nerve endings. With the same time course, 4-AP also induces the expression of the cell stress marker heat shock protein 70 (HSP70) in the contralateral non-damaged hippocampus. We have used this experimental model to study the mechanisms of the delayed neuronal stress and death. The NMDA receptor antagonist (+)-5-methyl-10,11-dihydro-5H-dibenzo(a,d)cyclohepten-5,10-imine maleate (MK-801), administered intraperitoneally 30 or 60 but not 120 min after 4-AP perfusion, when animals show intense electroencephalography epileptiform activity, prevented the delayed neurodegeneration whereas the seizures continued for about 3 h as in the control animals. With an identical time window, MK-801 treatment also modified the pattern of HSP70 expression; the protein was expressed in the protected perfused hippocampus but no longer in the undamaged contralateral hippocampus. The possible role of Ca2+ in the delayed cell death and HSP70 expression was also studied by coperfusing the intracellular Ca2+ chelator 1,2-bis(2-aminophenoxy)ethane-N,N,N',N'-tetra-acetic acid tetrakis(acetoxymethyl ester) with 4-AP. This treatment resulted in protective and HSP70 effects very similar to those of MK-801. These results suggest that the seizures are not linked to neurodegeneration and that NMDA receptors need to be continuously overactivated by endogenous glutamate for at least 60 min in order to induce delayed neuronal stress and death, which are dependent on Ca2+ entry through the NMDA receptor channel.
Collapse
Affiliation(s)
- Gabriela X Ayala
- Departamento de Neurociencias, Instituto de Fisiología Celular, Universidad Nacional Autónoma de México, AP 70-253, 04510-México, DF, México
| | | |
Collapse
|
55
|
Ogita K, Okuda H, Watanabe M, Nagashima R, Sugiyama C, Yoneda Y. In vivo treatment with the K+ channel blocker 4-aminopyridine protects against kainate-induced neuronal cell death through activation of NMDA receptors in murine hippocampus. Neuropharmacology 2005; 48:810-21. [PMID: 15829253 DOI: 10.1016/j.neuropharm.2004.12.018] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2004] [Revised: 12/04/2004] [Accepted: 12/21/2004] [Indexed: 11/21/2022]
Abstract
Activation of NMDA receptors has been shown to induce either neuronal cell death or neuroprotection against excitotoxicity in cultured neurons in vitro. To elucidate in vivo neuroprotective role of NMDA receptors, we investigated the effects of activation of NMDA receptors by endogenous glutamate on kainate-induced neuronal damage to the mouse hippocampus in vivo. The systemic administration of the K+ channel blocker 4-aminopyridine (4-AP, 5 mg/kg, i.p.) induced expression of c-Fos in the hippocampal neuronal cell layer, which expression was completely abolished by the noncompetitive NMDA receptor antagonist MK-801, thus indicating that the administration of 4-AP would activate NMDA receptors in the hippocampal neurons. The prior administration of 4-AP at 1 h to 1 day before significantly prevented kainate-induced pyramidal cell death in the hippocampus and expression of pyramidal cells immunoreactive with an antibody against single-stranded DNA. Further immunohistochemical study on deoxyribonuclease II revealed that the pretreatment with 4-AP led to complete abolition of deoxyribonuclease II expression induced by kainate in the CA1 and CA3 pyramidal cells. The neuroprotection mediated by 4-AP was blocked by MK-801 and by the adenosine A1 antagonist 8-cyclopenthyltheophylline. Taken together, in vivo activation of NMDA receptors is capable of protecting against kainate-induced neuronal damage through blockade of DNA fragmentation induced by deoxyribonuclease II in the murine hippocampus.
Collapse
Affiliation(s)
- Kiyokazu Ogita
- Department of Pharmacology, Setsunan University Faculty of Pharmaceutical Sciences, 45-1 Nagaotoge-cho, Hirakata, Osaka 573-0101, Japan.
| | | | | | | | | | | |
Collapse
|
56
|
Delorenzo RJ, Sun DA, Deshpande LS. Cellular mechanisms underlying acquired epilepsy: the calcium hypothesis of the induction and maintainance of epilepsy. Pharmacol Ther 2005; 105:229-66. [PMID: 15737406 PMCID: PMC2819430 DOI: 10.1016/j.pharmthera.2004.10.004] [Citation(s) in RCA: 203] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2004] [Accepted: 10/12/2004] [Indexed: 01/22/2023]
Abstract
Epilepsy is one of the most common neurological disorders. Although epilepsy can be idiopathic, it is estimated that up to 50% of all epilepsy cases are initiated by neurological insults and are called acquired epilepsy (AE). AE develops in 3 phases: (1) the injury (central nervous system [CNS] insult), (2) epileptogenesis (latency), and (3) the chronic epileptic (spontaneous recurrent seizure) phases. Status epilepticus (SE), stroke, and traumatic brain injury (TBI) are 3 major examples of common brain injuries that can lead to the development of AE. It is especially important to understand the molecular mechanisms that cause AE because it may lead to innovative strategies to prevent or cure this common condition. Recent studies have offered new insights into the cause of AE and indicate that injury-induced alterations in intracellular calcium concentration levels [Ca(2+)](i) and calcium homeostatic mechanisms play a role in the development and maintenance of AE. The injuries that cause AE are different, but they share a common molecular mechanism for producing brain damage-an increase in extracellular glutamate concentration that causes increased intracellular neuronal calcium, leading to neuronal injury and/or death. Neurons that survive the injury induced by glutamate and are exposed to increased [Ca(2+)](i) are the cellular substrates to develop epilepsy because dead cells do not seize. The neurons that survive injury sustain permanent long-term plasticity changes in [Ca(2+)](i) and calcium homeostatic mechanisms that are permanent and are a prominent feature of the epileptic phenotype. In the last several years, evidence has accumulated indicating that the prolonged alteration in neuronal calcium dynamics plays an important role in the induction and maintenance of the prolonged neuroplasticity changes underlying the epileptic phenotype. Understanding the role of calcium as a second messenger in the induction and maintenance of epilepsy may provide novel insights into therapeutic advances that will prevent and even cure AE.
Collapse
Affiliation(s)
- Robert J Delorenzo
- Department of Neurology, Virginia Commonwealth University, School of Medicine, Richmond, VA 23298-0599, USA.
| | | | | |
Collapse
|
57
|
Vizi S, Bagosi A, Krisztin-Péva B, Gulya K, Mihály A. Repeated 4-aminopyridine seizures reduce parvalbumin content in the medial mammillary nucleus of the rat brain. ACTA ACUST UNITED AC 2005; 131:110-8. [PMID: 15530659 DOI: 10.1016/j.molbrainres.2004.08.022] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/31/2004] [Indexed: 11/23/2022]
Abstract
Parvalbumin (Pv) containing fast spiking neurons play a crucial role in synchronizing the activity of excitatory neuronal circuits in the brain. Alterations of parvalbumin content in these neurons can affect their spike characteristics and, ultimately, may increase the susceptibility of neuronal circuits to epileptic seizures. In the present study, we examined whether repeated 4-aminopyridine (4-AP)-induced seizures modify the regional parvalbumin contents in the rat brain. 4-Aminopyridine was injected intraperitoneally in adult rats, controls received the solvent. Animals were sacrificed at 3 h after a single acute treatment, or following repeated, daily treatments of 12 days. In situ hybridization (ISH) indicated significantly decreased parvalbumin mRNA level in the medial mammillary nucleus (MM) at 12 days. Western blotting revealed 20.1% significant decrease of parvalbumin content in the medial mammillary area, while parvalbumin immunohistochemistry indicated no change of the number of immunoreactive cells in the medial mammillary nucleus. The results reveal the downregulation of the transcription of the parvalbumin gene and the decrease of parvalbumin synthesis in medial mammillary nucleus neurons in response to experimental seizures.
Collapse
Affiliation(s)
- Sándor Vizi
- Department of Zoology and Cell Biology, University of Szeged, Szeged, Hungary
| | | | | | | | | |
Collapse
|
58
|
Slézia A, Kékesi AK, Szikra T, Papp AM, Nagy K, Szente M, Maglóczky Z, Freund TF, Juhász G. Uridine release during aminopyridine-induced epilepsy. Neurobiol Dis 2004; 16:490-9. [PMID: 15262260 DOI: 10.1016/j.nbd.2004.02.011] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2002] [Revised: 01/23/2004] [Accepted: 02/25/2004] [Indexed: 12/01/2022] Open
Abstract
Uridine, like adenosine, is released under sustained depolarization and it can inhibit hippocampal neuronal activity, suggesting that uridine may be released during seizures and can be involved in epileptic mechanisms. In an in vivo microdialysis study, we measured the extracellular changes of nucleoside and amino acid levels and recorded cortical EEG during 3-aminopyridine-induced epilepsy. Applying silver impregnation and immunohistochemistry, we examined the degree of hippocampal cell loss. We found that extracellular concentration of uridine, adenosine, inosine, and glutamate increased significantly, while glutamine level decreased during seizures. The release of uridine correlated with seizure activity. Systemic and local uridine application was ineffective. The number of parvalbumin- and calretinin-containing interneurons of dorsal hippocampi decreased. We conclude that uridine is released during epileptic activity, and suggest that as a neuromodulator, uridine may contribute to epilepsy-related neuronal activity changes, but uridine analogues having slower turnover would be needed for further investigation of physiological role of uridine.
Collapse
Affiliation(s)
- A Slézia
- Research Group of Neurobiology of the Hungarian Academy of Sciences, Eötvös Loránd University, H-1117 Budapest, Hungary
| | | | | | | | | | | | | | | | | |
Collapse
|
59
|
Gu Y, Ge SY, Ruan DY. Effect of 4-aminopyridine on synaptic transmission in rat hippocampal slices. Brain Res 2004; 1006:225-32. [PMID: 15051526 DOI: 10.1016/j.brainres.2004.02.008] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/02/2004] [Indexed: 10/26/2022]
Abstract
Extracellular field excitatory postsynaptic potentials (fEPSPs) were recorded in area CA1 of rat hippocampal slices in vitro. The responses evoked by spontaneously released glutamate and GABA were recorded from area CA1 pyramidal neurons in rat hippocampal slices in whole-cell mode. The glutamate and GABA receptor-associated ligand-gated currents were obtained from dissociated single hippocampal pyramidal cells. The results showed that 4-aminopyridine (4-AP) had obvious effects on both presynaptic and postsynaptic events. Applications of 4-AP in micromolar concentration resulted in persistent enhancement of the initial slope of fEPSPs with the half-maximal enhancement concentration (EC(50)) of 46.7+/-2.68 microM. At the concentration of 200 microM, 4-AP increased the initial slopes of the total fEPSPs, NMDA- and AMPA-mediated fEPSPs components to 225.6+/-23.8%, 177.4+/-20.1% and 142.3+/-18.9%, respectively, but had no effect on the fiber volley. The half-maximal stimulus intensity to induce responses was reduced from 5.14+/-0.27 to 3.58+/-0.23 V. The frequencies of mEPSCs and mIPSCs were increased to 324.2+/-25.4% and 287.3+/-36.3% by 200 microM 4-AP. The amplitude histograms of mEPSCs and mIPSCs were fitted with Gaussian distributions. After 200 microM 4-AP application, the first and second peaks in Gaussian distributions of mEPSCs were shifted from 8.73+/-0.94 and 17.78+/-2.13pA to 10.48+/-0.82 and 21.14+/-2.45 pA, while those of mIPSCs were shifted from 13.65+/-0.96 and 25.51+/-2.95 pA to 11.21+/-1.04 and 23.08+/-2.37 pA. At 200 microM, 4-AP reduced paired-pulse facilitation and accelerated synaptic fatigue induced by stimulation at 10 Hz (for 1 s) and the ratio of fEPSPs(10)/fEPSPs(1) was decreased from 1.62+/-0.16 to 0.61+/-0.15. At 200 microM, 4-AP inhibited postsynaptic GABA currents induced by 5 microM GABA to 68.2+/-15.5%: by countering the effect of enhanced release of GABA from presynaptic terminals, this could depress the inhibitory pathway. Also at 200 microM, 4-AP increased NMDA currents to 155.3+/-17.8%, but had no significant effect on AMPA currents (94.2+/-15.6%). Our experimental results thus show that 4-AP-induced changes of synaptic transmission in area CA1 of rat hippocampus may be attributed to 4-AP's effects on both presynaptic terminals and postsynaptic receptors.
Collapse
Affiliation(s)
- Yan Gu
- School of Life Science, University of Science and Technology of China, Hefei, Anhui 230027, PR China
| | | | | |
Collapse
|
60
|
Corona JC, Tapia R. AMPA receptor activation, but not the accumulation of endogenous extracellular glutamate, induces paralysis and motor neuron death in rat spinal cord in vivo. J Neurochem 2004; 89:988-97. [PMID: 15140197 DOI: 10.1111/j.1471-4159.2004.02383.x] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The mechanisms of motor neuron (MN) degeneration in amyotrophic lateral sclerosis (ALS) are unknown, but glutamate-mediated excitotoxicity may be involved. To examine directly this idea in vivo, we have used microdialysis in the rat lumbar spinal cord and showed that four- to fivefold increases in the concentration of endogenous extracellular glutamate during at least 1 h, by perfusion with the glutamate transport inhibitor L-2,4-trans-pyrrolidine-dicarboxylate, elicited no motor alterations or MN damage. Stimulation of glutamate release with 4-aminopyridine induced transitory ipsilateral hindlimb muscular twitches but no MN damage. In contrast, perfusion of alpha-amino-3-hydroxy-5-methyl-4-isoxazole propionate (AMPA) did not modify glutamate levels but produced intense muscular spasms, followed by ipsilateral permanent hindlimb paralysis and a remarkable loss of MNs. These effects of AMPA were prevented by co-perfusion with the AMPA receptor antagonist 2,3-dihydroxy-6-nitro-7-sulfamoyl-benzo(F)quinoxaline. Perfusion with NMDA or kainate produced no motor effects or MN damage. Thus, the elevation of endogenous extracellular glutamate in vivo due to blockade of its transport is innocuous for spinal MNs. Because this resistance is observed under the same experimental conditions in which MNs are highly vulnerable to AMPA, these results indicate that excitotoxicity due to this mechanism might not be an important factor in the pathogenesis of ALS.
Collapse
Affiliation(s)
- Juan Carlos Corona
- Departamento de Neurociencias, Instituto de Fisiología Celular, Universidad Nacional Autónoma de México, México, D. F., México
| | | |
Collapse
|
61
|
Ramírez-Munguía N, Vera G, Tapia R. Epilepsy, neurodegeneration, and extracellular glutamate in the hippocampus of awake and anesthetized rats treated with okadaic acid. Neurochem Res 2003; 28:1517-24. [PMID: 14570396 DOI: 10.1023/a:1025670308663] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
We have previously shown that the intrahippocampal microinjection of okadaic acid (OKA), a potent inhibitor of serine/threonine protein phosphatases, induces epileptic seizures, neuronal death, and the hyperphosphorylation of the NR2B subunit of the N-methyl-D-aspartate (NMDA) receptor. We administered OKA by reverse microdialysis in the hippocampus of awake and halothane-anesthetized rats, with simultaneous collection of microdialysis fractions and recording of the EEG activity, and subsequent histological analysis. OKA produced intense behavioral and persistent EEG seizure activity in the awake rats but not in the anesthetized animals, and did not significantly alter the extracellular concentration of glutamate and aspartate detected in the microdialysis fractions. One day after the experiment a remarkable neurodegeneration of CA1 hippocampal region was observed in both the awake and the anesthetized rats. We conclude that the OKA-induced epilepsy cannot be ascribed to increased extracellular glutamate, but to an increased sensitivity of NMDA receptor. We propose that halothane protected against the epilepsy because it blocks NMDA receptor overactivation, and that the neurodegeneration of CA1 region is independent of this overactivation and due probably to alterations of cytoskeletal proteins consequent to the OKA-induced hyperphosphorylation.
Collapse
Affiliation(s)
- Nadia Ramírez-Munguía
- Departamento de Neurociencias, Instituto de Fisiología Celular, Unversidad Nacional Autónoma de México, AP-70-253, 04510-México, DF, México
| | | | | |
Collapse
|
62
|
Ayala GX, Tapia R. Expression of heat shock protein 70 induced by 4-aminopyridine through glutamate-mediated excitotoxic stress in rat hippocampus in vivo. Neuropharmacology 2003; 45:649-60. [PMID: 12941378 DOI: 10.1016/s0028-3908(03)00230-2] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
The intrahippocampal administration of 4-aminopyridine (4-AP) induces epileptic seizures and neurodegeneration, due probably to stimulation of glutamate release from synaptic terminals. We have studied the time course of the neurodegenerative changes produced by 4-AP, perfused through microdialysis cannulas in rat hippocampus, and correlated them with the expression of the inducible heat shock protein 70 (HSP70), detected immunocytochemically. Electroencephalographic seizure activity appeared immediately after the beginning of 4-AP perfusion. The first signs of histological neuronal damage were observed in CA1 and CA3 subfields of the perfused hippocampus 3 h after treatment and progressed until reaching a maximal neuronal loss at 24 h. In 4-AP-treated rats HSP70 was expressed mainly in neurons of the contralateral hippocampus, with a time course and cellular distribution very similar to the neurodegeneration observed in the perfused hippocampus, but no neuronal damage was observed. The N-methyl-D-aspartate (NMDA) receptor antagonists MK-801 and (3-phosphonopropyl)-piperazine-2-carboxylic acid prevented the seizures, the neurodegeneration and the expression of HSP70. These data demonstrate that the 4-AP-induced release of endogenous glutamate overactivates NMDA receptors in the perfused hippocampus and that the resulting neuronal hyperexcitability propagates to the contralateral hippocampus, generating a glutamate-mediated neuronal stress sufficient to induce the expression of HSP70 but not to produce neurodegeneration. These findings provide a useful model for investigating the relationships between neuronal hyperexcitation, neurodegeneration and the role of HSP expression.
Collapse
Affiliation(s)
- Gabriela X Ayala
- Departamento de Neurociencias, Instituto de Fisiología Celular, Universidad Nacional Autónoma de México, AP 70-253, C.P. 04510 México D.F., Mexico
| | | |
Collapse
|
63
|
Kovács A, Mihály A, Komáromi A, Gyengési E, Szente M, Weiczner R, Krisztin-Péva B, Szabó G, Telegdy G. Seizure, neurotransmitter release, and gene expression are closely related in the striatum of 4-aminopyridine-treated rats. Epilepsy Res 2003; 55:117-29. [PMID: 12948621 DOI: 10.1016/s0920-1211(03)00113-x] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
The present experiments aimed to compare the length of seizure activity with the time-related increase of transmitter release and the induction of c-fos gene expression in the striatum of the rat. Anesthetized Wistar rats were intraperitoneally treated with 7 mg/kg 4-aminopyridine, and the transmitter levels in the striatum were measured by means of in vivo microdialysis, 30, 60, 90, 120, and 150 min following the treatment. Striatal and neocortical electric activity was monitored with depth and surface electrodes, respectively. The expression level of the c-fos gene was estimated by counting the striatal c-fos-immunostained cell nuclei at the time intervals of the microdialysis. 4-aminopyridine elicited high-frequency seizure discharges in the EEG and significantly increased glutamate, aspartate, GABA, serotonin, noradrenaline, and dopamine levels in the extracellular dialysates. The number of c-fos-stained cell nuclei in the striatum displayed a prolonged increase, showing significantly elevated numbers throughout the experiment. The increase of c-fos expression in time correlated best with the increase of glutamate release, which was also significantly elevated at every sampling time. The GABA release, culminating at 60 min after the seizure onset, correlated best with the cessation of the electrographic seizure. Aspartate, norepinephrine, serotonin, and dopamine displayed transient but significant elevations. We conclude that glutamate plays the essential role (most probably through ionotropic and metabotropic receptors) in the extracellular signaling, which eventually leads to intracellular cascades and c-fos gene expression in the striatum during convulsions.
Collapse
Affiliation(s)
- Annamária Kovács
- Department of Anatomy, Faculty of Medicine, University of Szeged, P.O. Box 427, H-6701 Szeged, Hungary
| | | | | | | | | | | | | | | | | |
Collapse
|
64
|
Salazar P, Tapia R, Rogawski MA. Effects of neurosteroids on epileptiform activity induced by picrotoxin and 4-aminopyridine in the rat hippocampal slice. Epilepsy Res 2003; 55:71-82. [PMID: 12948618 DOI: 10.1016/s0920-1211(03)00112-8] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
Abstract
The neurosteroids allopregnanolone (5alpha-pregnan-3alpha-ol-20-one; 5alpha,3alpha-P) and its 5beta-epimer pregnanolone (5beta,3alpha-P), and pregnenolone sulfate (PS) were examined for effects on spontaneous epileptiform discharges induced by 100 microM picrotoxin (PTX) and 55 microM 4-aminopyridine (4-AP) in the CA3 region of the rat hippocampal slice. At a concentration of 10 microM, 5alpha,3alpha-P partially reduced PTX-induced bursting and at 30 and 90 microM completely suppressed bursting. In contrast, 100 microM 5beta,3alpha-P failed to alter the discharge frequency. 5alpha,3alpha-P depressed 4-AP-induced bursting with similar potency as in the PTX model; 100 microM 5beta,3alpha-P was also partially effective. In the 4-AP model, 5alpha,3alpha-P inhibited both the more frequent predominantly positive-going potentials as well as the less frequent negative-going potentials that may be generated by synchronous GABAergic interneuron firing. PS enhanced the PTX bursting frequency and, in the 4-AP model, increased the frequency of negative potentials but did not alter the frequency of positive potentials. By itself, PS did not induce bursting. The effects of the steroids in the in vitro seizure models largely correspond with their activities on GABA(A) receptors; suppression of discharges may occur as a result of direct activation of these receptors rather than modulation of GABA-mediated synaptic responses. PTX and 4-AP-induced bursting in the hippocampal slice are useful models for directly assessing neurosteroid effects on seizure susceptibility under conditions that eliminate the factor of brain bioavailability.
Collapse
Affiliation(s)
- Patricia Salazar
- Epilepsy Research Section, National Institute of Neurological Disorders and Stroke, National Institutes of Health, 49 Convent Drive Room 5A75 MSC 4457, Bethesda, MD 20892-4457, USA
| | | | | |
Collapse
|
65
|
Chen HH, Lee YF. Neonatal toluene exposure selectively alters sensitivity to different chemoconvulsant drugs in juvenile rats. Pharmacol Biochem Behav 2002; 73:921-7. [PMID: 12213539 DOI: 10.1016/s0091-3057(02)00943-7] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Toluene is an abused solvent widely used in several commercial products. Recent evidence indicates that this solvent is a noncompetitive inhibitor of N-methyl-D-aspartate (NMDA) receptors and enhances gamma-aminobutyric acid(A) (GABA(A)) receptor-mediated synaptic currents. Since NMDA and GABA(A) receptors have been implicated in seizures, this study investigated whether toluene exposure during synaptogenesis period alters the NMDA and GABA(A) receptor-mediated seizure susceptibility in juvenile rats. Neonatal rats were administered toluene (1 g/kg ip) daily over postnatal days (PN) 4-9. Rats were administered NMDA (10 mg/ml), picrotoxin (2 mg/ml), pentylenetetrazol, (5 mg/ml) and 4-aminopyridine (4-AP; 2 mg/ml) via timed tail vein infusion on PN 34-36. Toluene exposure increased sensitivity to NMDA, picrotoxin and pentylenetetrazol, but did not affect 4-aminoyridine-induced seizures in both male and female rats. These results suggest that toluene may possess a risk to the developing brain by inducing a long-term alteration in the function of NMDA and GABA(A) receptors.
Collapse
Affiliation(s)
- Hwei-Hsien Chen
- Institute of Pharmacology and Toxicology, Tzu Chi University, 701, Section 3, Chung-Yang Road, Hualien 970, Taiwan, ROC.
| | | |
Collapse
|
66
|
Hennou S, Khalilov I, Diabira D, Ben-Ari Y, Gozlan H. Early sequential formation of functional GABA(A) and glutamatergic synapses on CA1 interneurons of the rat foetal hippocampus. Eur J Neurosci 2002; 16:197-208. [PMID: 12169102 DOI: 10.1046/j.1460-9568.2002.02073.x] [Citation(s) in RCA: 114] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
During postnatal development of CA1 pyramidal neurons, GABAergic synapses are excitatory and established prior to glutamatergic synapses. As interneurons are generated before pyramidal cells, we have tested the hypothesis that the GABAergic interneuronal network is operative before glutamate pyramidal neurons and provides the initial patterns of activity. We patch-clamp recorded interneurons in foetal (69 neurons) and neonatal P0 (162 neurons) hippocampal slices and performed a morphofunctional analysis of biocytin-filled neurons. At P0, three types of interneurons were found: (i) non-innervated "silent" interneurons (5%) with no spontaneous or evoked synaptic currents; (ii) G interneurons (17%) with GABA(A) synapses only; and (iii) GG interneurons with GABA and glutamatergic synapses (78%). Relying on the neuronal capacitance, cell body size and arborization of dendrites and axons, the three types of interneurons correspond to three stages of development with non-innervated neurons and interneurons with GABA(A) and glutamatergic synapses being, respectively, the least and the most developed. Recordings from both pyramidal neurons and interneurons in foetuses (E18-20) revealed that the majority of interneurons (65%) had functional synapses whereas nearly 90% of pyramidal neurons were quiescent. Therefore, interneurons follow the same GABA-glutamate sequence of synapse formation but earlier than the principal cells. Interneurons are the source and the target of the first synapses formed in the hippocampus and are thus in a position to modulate the development of the hippocampus in the foetal stage.
Collapse
Affiliation(s)
- Sonia Hennou
- INMED-INSERM Unité 29, Université de la Méditerranée, 163, route de Luminy, BP 13, 13273 Marseille cedex 9, France
| | | | | | | | | |
Collapse
|
67
|
Chen HH, Chan MH. Developmental lead exposure differentially alters the susceptibility to chemoconvulsants in rats. Toxicology 2002; 173:249-57. [PMID: 11960677 DOI: 10.1016/s0300-483x(02)00032-x] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
Sprague-Dawley rats were exposed to lead (Pb) acetate (0.2% w/v) in drinking water from postnatal day (PN) 1 through PN 25 followed by discontinuing Pb exposure for 25 days. The convulsion signs produced by the i.v. infusion of convulsants were observed at PN 25 and PN 50. Pb exposure significantly decreased pentylenetetrazol (PTZ)-, picrotoxin (PIC)-, and strychnine (STRY)-induced, but increased N-methyl-D-aspartate (NMDA) and 4-aminopyridine (4-AP)-induced convulsion thresholds at PN 25. After rehabilitation, the Pb-induced changes in PTZ-, NMDA- and 4-AP- induced convulsions persisted till PN 50. In contrast, the thresholds for PIC- and STRY-induced convulsions were reversed to an increase at PN 50. Blood Pb concentrations were 46.9 +/- 6.8 and 11.4 +/- 1.1 microg/dl at PN 25 and PN 50, respectively. The results demonstrate that developmental Pb exposure does not result in a global and persistent lowering of threshold in response to convulsive stimuli and the Pb-induced changes may be due to a selective modulation of inhibitory and excitatory neurotransmission depending on age and Pb concentration in blood.
Collapse
Affiliation(s)
- Hwei Hsien Chen
- Institute of Toxicology, Tzu Chi University, 701 Section 3, Chung-Yang Road, 970, Hualien, Taiwan.
| | | |
Collapse
|
68
|
Peña F, Bargas J, Tapia R. Paired pulse facilitation is turned into paired pulse depression in hippocampal slices after epilepsy induced by 4-aminopyridine in vivo. Neuropharmacology 2002; 42:807-12. [PMID: 12015207 DOI: 10.1016/s0028-3908(02)00024-2] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Modifications in synaptic plasticity seem to play a key role in the origin and persistence of epilepsy. 4-Aminopyridine (4-AP) induces intense and long lasting epileptic seizures and neurodegeneration when applied into the hippocampus in vivo, effects that seem to be mediated by overactivation of glutamate receptors due to the enhancement of glutamate release from nerve endings. We have studied presynaptic modifications of CA1 responses, using the paired pulse paradigm, in hippocampal slices obtained from 4-AP-treated rats killed during epileptic activity (ex vivo). The paired pulse facilitation (PPF) observed in control slices with interstimulus intervals of 10-30 ms was changed into paired pulse depression (PPD) after 100 microM 4-AP added in vitro. A strikingly similar change was observed in the ex vivo slices even though 4-AP was no longer present in the tissue. We conclude that the facilitation of glutamate release induced by 4-AP becomes chronic after a transient exposure to the drug. This suggests that the facilitated neurotransmitter release induced by 4-AP triggers a more permanent plastic change that may be responsible for the persistence of epilepsy.
Collapse
Affiliation(s)
- F Peña
- Departamento de Neurociencias, Instituto de Fisiología Celular, Universidad Nacional Autónoma de México, AP 70-253, 04510 Mexico, DF, Mexico
| | | | | |
Collapse
|
69
|
Tutka P, Młynarczyk M, Zółkowska D, Kleinrok Z, Wielosz M, Czuczwar SJ. Nitric oxide and convulsions in 4-aminopyridine-treated mice. Eur J Pharmacol 2002; 437:47-53. [PMID: 11864638 DOI: 10.1016/s0014-2999(01)01600-4] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
We studied whether N(G)-nitro-L-arginine (NNA), an inhibitor of nitric oxide (NO) synthase as well as L-arginine and molsidomine, two agents elevating NO, influenced convulsions caused by 4-aminopyridine, a K+ channel blocker in mice. NNA, in a dose known to decrease level of NO (40 mg x kg(-1)), enhanced the seizure susceptibility to intraperitoneal (i.p.) and intracerebroventricular (i.c.v.) 4-aminopyridine. L-arginine (500 mg x kg(-1)) and molsidomine (20 mg x kg(-1)) alone did not influence 4-aminopyridine-induced seizure activity. Surprisingly, the proconvulsant effect of NNA upon clonic and tonic seizures was potentiated by molsidomine (20 mg x kg(-1)). No influence of L-arginine on the proconvulsant effect of NNA was found. Taking into account the proconvulsant effect of NNA, an involvement of NO-mediated events in the mechanism of convulsive activity of 4-aminopyridine might be postulated. However, the ineffectiveness of L-arginine and molsidomine to suppress the convulsive activity of 4-aminopyridine as well as a paradoxical potentiation of the proconvulsant effect of NNA by molsidomine seem to exclude the impact of NO pathway on 4-aminopyridine-induced convulsions in mice. Our data suggest that the proconvulsant effect of NNA in this seizure model is caused by other, not related to NO, mechanisms.
Collapse
Affiliation(s)
- Piotr Tutka
- Department of Pharmacology and Toxicology, Medical University of Lublin, Jaczewskiego 8, PL-20-090, Lublin, Poland.
| | | | | | | | | | | |
Collapse
|
70
|
Salazar P, Tapia R. Seizures induced by intracerebral administration of pyridoxal-5'-phosphate: effect of GABAergic drugs and glutamate receptor antagonists. Neuropharmacology 2001; 41:546-53. [PMID: 11587709 DOI: 10.1016/s0028-3908(01)00110-1] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Pyridoxal-5'-phosphate (PLP), the cofactor of glutamate decarboxylase, paradoxically induces convulsions when injected intracranially in adult mammals. We have tested the effect of some GABAergic and antiglutamatergic drugs on the behavioral and electroencephalographic (EEG) seizures produced by intracerebroventricular (i.c.v.) microinjection of 1 micromol PLP in the rat. PLP induced barrel turning, running fits and tonic-clonic convulsions, which started 5-10 min after recovery from the anesthesia (halothane), peaked at 20 min and disappeared at about 50 min. These symptoms were accompanied by frequent high amplitude EEG spike burst discharges. Pyridoxal, pyridoxamine-5'-phosphate or deoxypyridoxine were ineffective. The i.c.v. microinjection of the GABAergic compounds muscimol, isoguvacine, aminooxyacetic acid or GABA itself, significantly protected against PLP effects. In contrast, the NMDA receptor antagonists MK-801 and the non-NMDA receptor antagonist NBQX, failed to protect and induced motor alterations and mortality. We conclude that a temporary decrease of the GABA(A) receptor function is involved in the convulsant effect of PLP. This decrease might be due to the formation of a Schiff base between the carbonyl group of PLP and the epsilon-amino group of a functionally crucial lysine residue located in one extracellular loop of the GABA(A) receptor.
Collapse
Affiliation(s)
- P Salazar
- Departamento de Neurociencias, Instituto de Fisiología Celular, Universidad Nacional Autónoma de México, AP 70-253, 04510, Mexico, DF, Mexico.
| | | |
Collapse
|
71
|
Peña F, Tapia R. Seizures and neurodegeneration induced by 4-aminopyridine in rat hippocampus in vivo: role of glutamate- and GABA-mediated neurotransmission and of ion channels. Neuroscience 2001; 101:547-61. [PMID: 11113304 DOI: 10.1016/s0306-4522(00)00400-0] [Citation(s) in RCA: 152] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Infusion of the K(+) channel blocker 4-aminopyridine in the hippocampus induces the release of glutamate, as well as seizures and neurodegeneration. Since an imbalance between excitation and inhibition, as well as alterations of ion channels, may be involved in these effects of 4-aminopyridine, we have studied whether they are modified by drugs that block glutamatergic transmission or ion channels, or drugs that potentiate GABA-mediated transmission. The drugs were administered to anesthetized rats subjected to intrahippocampal infusion of 4-aminopyridine through microdialysis probes, with simultaneous collection of dialysis perfusates and recording of the electroencephalogram, and subsequent histological analysis. Ionotropic glutamate receptor antagonists clearly diminished the intensity of seizures and prevented the neuronal damage, but did not alter substantially the enhancement of extracellular glutamate induced by 4-aminopyridine. None of the drugs facilitating GABA-mediated transmission, including uptake blockers, GABA-transaminase inhibitors and agonists of the A-type receptor, was able to reduce the glutamate release, seizures or neuronal damage produced by 4-aminopyridine. In contrast, nipecotate, which notably increased extracellular levels of the amino acid, potentiated the intensity of seizures and the neurodegeneration. GABA(A) receptor antagonists partially reduced the extracellular accumulation of glutamate induced by 4-aminopyridine, but did not exert any protective action. Tetrodotoxin largely prevented the increase of extracellular glutamate, the electroencephalographic epileptic discharges and the neuronal death in the CA1 and CA3 hippocampal regions. Valproate and carbamazepine, also Na(+) channel blockers that possess general anticonvulsant action, failed to modify the three effects of 4-aminopyridine studied. The N-type Ca(2+) channel blocker omega-conotoxin, the K(+) channel opener diazoxide, and the non-specific ion channel blocker riluzole diminished the enhancement of extracellular glutamate and slightly protected against the neurodegeneration. However, the two former compounds did not antagonize the 4-aminopyridine-induced epileptiform discharges, and riluzole instead markedly increased the intensity and duration of the disharges. Moreover, at the highest dose tested (8mg/kg, i.p.), riluzole caused a 75% mortality of the rats. We conclude that 4-aminopyridine stimulates the release of glutamate from nerve endings and that the resultant augmented extracellular glutamate is directly related to the neurodegeneration and is involved in the generation of epileptiform discharges through the concomitant overactivation of glutamate receptors. Under these conditions, a facilitated GABA-mediated transmission may paradoxically boost neuronal hyperexcitation. Riluzole, a drug used to treat amyotrophic lateral sclerosis, seems to be toxic when combined with neuronal hyperexcitation.
Collapse
Affiliation(s)
- F Peña
- Departamento de Neurociencias, Instituto de Fisiología Celular, Universidad Nacional Autónoma de México, AP 70-253, 04510, D.F., Mexico City, Mexico
| | | |
Collapse
|
72
|
Richards DA, Morrone LA, Bagetta G, Bowery NG. Effects of alpha-dendrotoxin and dendrotoxin K on extracellular excitatory amino acids and on electroencephalograph spectral power in the hippocampus of anaesthetised rats. Neurosci Lett 2000; 293:183-6. [PMID: 11036191 DOI: 10.1016/s0304-3940(00)01530-5] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
Dendrotoxins, important pharmacological tools for studying K(+) channels, are potently convulsant in the central nervous system and evidence suggests that different members of the dendrotoxin family may act at pre- or post-synaptic sites. Using a combination of intrahippocampal infusion, microdialysis and electroencephalograph (EEG) recording, we have compared the effects of alpha-dendrotoxin and dendrotoxin K on extracellular levels of excitatory amino acids in anaesthetised rats. Our findings show that although infusion of 35 pmol of both peptides was associated with elevated extracellular aspartate and glutamate, these increased levels were more sustained with dendrotoxin K. Furthermore, there was EEG evidence of an associated transient functional change consistent with an action on pre-synaptic K(+) channels. In contrast, infusion of alpha-dendrotoxin produced only a brief effect on amino acid levels and no evidence of a functional consequence.
Collapse
Affiliation(s)
- D A Richards
- Department of Pharmacology, Division of Neuroscience, School of Medicine, University of Birmingham, Edgbaston, B15 2TT, Birmingham, UK.
| | | | | | | |
Collapse
|
73
|
Medina-Ceja L, Morales-Villagrán A, Tapia R. Action of 4-aminopyridine on extracellular amino acids in hippocampus and entorhinal cortex: a dual microdialysis and electroencehalographic study in awake rats. Brain Res Bull 2000; 53:255-62. [PMID: 11113578 DOI: 10.1016/s0361-9230(00)00336-1] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
In order to study the role of amino acids in the hippocampus and the entorhinal cortex during the convulsive process induced by 4-aminopyridine (4-AP), we have used a device allowing the simultaneous microdialysis and the recording of their electrical activity of both regions in freely moving rats. We found that infusion of 4-AP into the entorhinal cortex resulted in a large increase in extracellular glutamate and glutamine and small increases in glycine and taurine levels. Likewise, infusion of 4-AP into the hippocampus resulted in a major increase in glutamate, as well as slight increases in taurine and glycine. In both infused regions the peak concentration of extracellular glutamate was observed 15 min after 4-AP administration. No significant changes were found in the non-infused hippocampus or entorhinal cortex of the same rats. Simultaneous electroencephalographic recordings showed intense epileptiform activity starting during 4-AP infusion and lasting for the rest of the experiment (1 h) in both the entorhinal cortex and the hippocampus. The discharges were characterized by poly-spikes and spike-wave complexes that propagated almost immediately to the other region studied. These findings suggest that increased glutamatergic synaptic function in the circuit that connects both regions is involved in the epileptic seizures induced by 4-AP.
Collapse
Affiliation(s)
- L Medina-Ceja
- Departamento de Biología Celular y Molecular, CUCBA, Universidad de Guadalajara, Guadalajara, Jal, Mexico
| | | | | |
Collapse
|
74
|
Sierra-Paredes G, Galán-Valiente J, Vazquez-Illanes MD, Aguilar-Veiga E, Sierra-Marcuño G. Effect of ionotropic glutamate receptors antagonists on the modifications in extracellular glutamate and aspartate levels during picrotoxin seizures: a microdialysis study in freely moving rats. Neurochem Int 2000; 37:377-86. [PMID: 10825578 DOI: 10.1016/s0197-0186(00)00038-3] [Citation(s) in RCA: 22] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Our previous studies have shown a local decrease in glutamate and aspartate levels during seizures, induced by picrotoxin microdialysis in the hippocampus of chronic freely moving rats. In this paper, we study the effect of continuous hippocampal microperfusion of the NMDA, AMPA and kainate glutamate receptor inhibitors 5-methyl-10,11-dihydro-5H-dibenzo[a,d]cyclohepten-5, 10-imine (MK-801); 6,7-dinitroquinoxaline-2,3-dione (DNQX), and 1-(4-aminophenyl)-4-methyl-7,8-methylenedioxy-5H-2,3-benzodiazepine hydrochloride (GYKI 52466). We also examine the action of L(-)-threo-3-hydroxyaspartic acid (THA), a glutamate and aspartate reuptake blocker, on the modification of extracellular glutamate and aspartate levels induced by picrotoxin, using the microdialysis method in freely moving rats. We found that changes in extracellular hippocampal concentrations in both amino acids are prevented by NMDA, AMPA and kainate receptor inhibitors. Seizures elicited under DNQX also induce a transient increase in aspartate extracellular levels coincident with seizure time. L(-)-threo-3-hydroxyaspartic acid increased the basal extracellular concentrations of both amino acids, but did not prevent the seizure-related decrease. Our results suggest that glutamate, the major neurotransmitter at the synaptic level, may also play an important role in non-synaptic transmission during seizures.
Collapse
Affiliation(s)
- G Sierra-Paredes
- Neuroscience Division, Department of Biochemistry and Molecular Biology, School of Medicine, University of Santiago, San Francisco 1, 15705, Santiago de Compostela, Spain.
| | | | | | | | | |
Collapse
|
75
|
Morales-Villagrán A, López-Pérez S, Medina-Ceja L, Tapia R. Cortical catecholamine changes and seizures induced by 4-aminopyridine in awake rats, studied with a dual microdialysis-electrical recording technique. Neurosci Lett 1999; 275:133-6. [PMID: 10568517 DOI: 10.1016/s0304-3940(99)00759-4] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
We describe a rotatory electrical device that permits the simultaneous microdialysis and electroencephalographic (EEG) recording, by means of bipolar electrodes attached to the microdialysis probe, in two brain regions of awake rats. Using this device, we have found that the microdialysis infusion of 4-aminopyridine (4-AP) in the motor cerebral cortex produces intense behavioral convulsions and EEG seizures in both the infused and the contralateral cortex. This convulsant action is accompanied by a remarkable increase of extracellular dopamine (about 15-fold), norepinephrine (2.4-fold) and vanillylmandelic acid (1.8-fold) concentration in the infused cortex. Delayed increases of these amines were observed also in the contralateral cortex. The results suggest that 4-AP induces the release of catecholamines either through a direct effect on nerve endings or as a consequence of seizures.
Collapse
Affiliation(s)
- A Morales-Villagrán
- Departamento de Biología Celular y Molecular, CUCBA., Universidad de Guadalajara, Jal., Mexico
| | | | | | | |
Collapse
|