51
|
Yenkejeh RA, Sam MR, Esmaeillou M. Targeting survivin with prodigiosin isolated from cell wall of Serratia marcescens induces apoptosis in hepatocellular carcinoma cells. Hum Exp Toxicol 2016; 36:402-411. [PMID: 27334973 DOI: 10.1177/0960327116651122] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
BACKGROUND Abnormal activation of the Wnt/β-catenin signaling pathway increases survivin expression that is involved in hepatocarcinogenesis. Therefore, downregulation of survivin may provide an attractive strategy for treatment of hepatocellular carcinoma. In this regard, little is known about the anticancer effects of prodigiosin isolated from cell wall of Serratia marcescens on the survivin expression and induction of apoptosis in hepatocellular carcinoma cells. METHODS Human hepatocellular carcinoma (HepG2) cells were treated with 100-, 200-, 400-, and 600-nM prodigiosin after which morphology of cells, cell number, growth inhibition, survivin expression, caspase-3 activation, and apoptotic rate were evaluated by inverted microscope, hemocytometer, MTT assay, RT-PCR, fluorometric immunosorbent enzyme assay, and flow cytometric analysis, respectively. RESULTS Prodigiosin changed morphology of cells to apoptotic forms and disrupted cell connections. This compound significantly increased growth inhibition rate and decreased metabolic activity of HepG2 cells in a dose- and time-dependent manner. After 24-, 48-, and 72-h treatments with prodigiosin at concentrations ranging from 100 nM to 600 nM, growth inhibition rates were measured to be 1.5-10%, 24-47.5%, and 55.5-72.5%, respectively, compared to untreated cells. At the same conditions, metabolic activities were measured to be 91-83%, 74-53%, and 47-31% for indicated concentrations of prodigiosin, respectively, compared to untreated cells. We also found that treatment of HepG2 cells for 48 h decreased significantly cell number and survivin expression and increased caspase-3 activation in a dose-dependent manner. Specifically, treatment with 600-nM prodigiosin resulted in 77% decrease in cell number, 88.5% decrease in survivin messenger RNA level, and 330% increase in caspase-3 activation level compared to untreated cells. An increase in the number of apoptotic cells (late apoptosis) ranging from 36.9% to 97.4% was observed with increasing prodigiosin concentrations. CONCLUSION From our data, prodigiosin is an attractive compound that turns the profile of high-level survivin expression in hepatocellular carcinoma cells into that of normal cells and may provide a novel approach to the hepatocellular carcinoma-targeted therapy.
Collapse
Affiliation(s)
- R A Yenkejeh
- 1 Department of Cellular and Molecular Biotechnology, Institute of Biotechnology, Urmia University, Urmia, Islamic Republic of Iran
| | - M R Sam
- 1 Department of Cellular and Molecular Biotechnology, Institute of Biotechnology, Urmia University, Urmia, Islamic Republic of Iran.,2 Department of Histology and Embryology, Faculty of Science, Urmia University, Urmia, Islamic Republic of Iran
| | - M Esmaeillou
- 1 Department of Cellular and Molecular Biotechnology, Institute of Biotechnology, Urmia University, Urmia, Islamic Republic of Iran
| |
Collapse
|
52
|
Vogl TJ, Oppermann E, Qian J, Imlau U, Tran A, Hamidavi Y, Korkusuz H, Bechstein WO, Nour-Eldin NEAR, Gruber-Rouh T, Hammerstingl R, Naguib NNN. Transarterial chemoembolization of hepatocellular carcinoma in a rat model: the effect of additional injection of survivin siRNA to the treatment protocol. BMC Cancer 2016; 16:325. [PMID: 27215551 PMCID: PMC4878032 DOI: 10.1186/s12885-016-2357-3] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2015] [Accepted: 05/11/2016] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND Transarterial chemoembolization is one of the most widely accepted interventional treatment options for treatment of hepatocellular carcinoma. Still there is a lack of a standard protocol regarding the injected chemotherapeutics. Survivin is an inhibitor of Apoptosis protein that functions to inhibit apoptosis, promote proliferation, and enhance invasion. Survivin is selectively up-regulated in many human tumors. Small interfering RNA (siRNA) can trigger an RNA interference response in mammalian cells and induce strong inhibition of specific gene expression including Survivin. The aim of the study is to assess the effectiveness of the additional injection of Survivin siRNA to the routine protocol of Transarterial Chemoembolization (TACE) for the treatment of hepatocellular carcinoma in a rat model. METHODS The study was performed on 20 male ACI rats. On day 0 a solid Morris Hepatoma 3924A was subcapsullary implanted in the liver. On day 12 MRI measurement of the initial tumor volume (V1) was performed. TACE was performed on day 13. The rats were divided into 2 groups; Group (A, n = 10) in which 0.1 mg mitomycin, 0.1 ml lipiodol and 5.0 mg degradable starch microspheres were injected in addition 2.5 nmol survivin siRNA were injected. The same agents were injected in Group (B,=10) without Survivin siRNA. MRI was repeated on day 25 to assess the tumor volume (V2). The tumor growth ratio (V2/V1) was calculated. Western blot and immunohistochemical analysis were performed. RESULTS For group A the mean tumor growth ratio (V2/V1) was 1.1313 +/- 0.1381, and was 3.1911 +/- 0.1393 in group B. A statistically significant difference between both groups was observed regarding the inhibition of tumor growth (P < 0.0001) where Group A showed more inhibition compared to Group B. Similarly immunohistochemical analysis showed significantly lower (p < 0.002) VEGF staining in group A compared to group B. Western Blot analysis showed a similar difference in VEGF expression (P < 0.0001). CONCLUSION The additional injection of Survivin siRNA to the routine TACE protocol increased the inhibition of the hepatocellular carcinoma growth in a rat animal model compared to regular TACE protocol.
Collapse
Affiliation(s)
- Thomas J Vogl
- Institute for Diagnostic and Interventional Radiology, Johann Wolfgang Goethe-University, Theodor-Stern-Kai 7, Frankfurt, 60590, Germany.
| | - Elsie Oppermann
- Department of General Surgery, Johann Wolfgang Goethe-University, Frankfurt, Germany
| | - Jun Qian
- Institute for Diagnostic and Interventional Radiology, Johann Wolfgang Goethe-University, Theodor-Stern-Kai 7, Frankfurt, 60590, Germany
| | - Ulli Imlau
- Institute for Diagnostic and Interventional Radiology, Johann Wolfgang Goethe-University, Theodor-Stern-Kai 7, Frankfurt, 60590, Germany
| | - Andreas Tran
- Institute for Diagnostic and Interventional Radiology, Johann Wolfgang Goethe-University, Theodor-Stern-Kai 7, Frankfurt, 60590, Germany
| | - Yousef Hamidavi
- Institute for Diagnostic and Interventional Radiology, Johann Wolfgang Goethe-University, Theodor-Stern-Kai 7, Frankfurt, 60590, Germany
| | - Huedayi Korkusuz
- Institute for Diagnostic and Interventional Radiology, Johann Wolfgang Goethe-University, Theodor-Stern-Kai 7, Frankfurt, 60590, Germany
| | - Wolf Otto Bechstein
- Department of General Surgery, Johann Wolfgang Goethe-University, Frankfurt, Germany
| | - Nour-Eldin Abdel-Rehim Nour-Eldin
- Institute for Diagnostic and Interventional Radiology, Johann Wolfgang Goethe-University, Theodor-Stern-Kai 7, Frankfurt, 60590, Germany.,Department of Diagnostic and Interventional Radiology, Faculty of Medicine, Cairo University, Cairo, Egypt
| | - Tatjana Gruber-Rouh
- Institute for Diagnostic and Interventional Radiology, Johann Wolfgang Goethe-University, Theodor-Stern-Kai 7, Frankfurt, 60590, Germany
| | - Renate Hammerstingl
- Institute for Diagnostic and Interventional Radiology, Johann Wolfgang Goethe-University, Theodor-Stern-Kai 7, Frankfurt, 60590, Germany
| | - Nagy Naguib Naeem Naguib
- Institute for Diagnostic and Interventional Radiology, Johann Wolfgang Goethe-University, Theodor-Stern-Kai 7, Frankfurt, 60590, Germany.,Department of Diagnostic and Interventional Radiology, Faculty of Medicine, Alexandria University, Alexandria, Egypt
| |
Collapse
|
53
|
Abstract
Survivin, a member of the inhibitor of apoptosis (IAP) protein family that inhibits caspases and blocks cell death, is highly expressed in most cancers and is associated with a poor clinical outcome. Survivin has consistently been identified by molecular profiling analysis to be associated with high tumour grade cancers, different disease survival and recurrence. Polymorphisms in the survivin gene are emerging as powerful tools to study the biology of the disease and have the potential to be used in disease prognosis and diagnosis. The survivin gene polymorphisms have also been reported to influence tumour aggressiveness as well as survival of cancer patients. The differential expression of survivin in cancer cells compared to normal tissues and its role as a nodal protein in a number of cellular pathways make it a high target for different therapeutics. This review discusses the complex circuitry of survivin in human cancers and gene variants of survivin, and highlights novel therapy that targets this important protein.
Collapse
Affiliation(s)
| | | | - R D Mittal
- Department of Urology, Sanjay Gandhi Post Graduate Institute of Medical Sciences, Lucknow, India
| |
Collapse
|
54
|
Miletic AV, Jellusova J, Cato MH, Lee CR, Baracho GV, Conway EM, Rickert RC. Essential Role for Survivin in the Proliferative Expansion of Progenitor and Mature B Cells. THE JOURNAL OF IMMUNOLOGY 2016; 196:2195-204. [PMID: 26810226 DOI: 10.4049/jimmunol.1501690] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/30/2015] [Accepted: 12/21/2015] [Indexed: 12/15/2022]
Abstract
Survivin is a member of the inhibitor of apoptosis family of proteins and a biomarker of poor prognosis in aggressive B cell non-Hodgkin's lymphoma. In addition to its role in inhibition of apoptosis, survivin also regulates mitosis. In this article, we show that deletion of survivin during early B cell development results in a complete block at the cycling pre-B stage. In the periphery, B cell homeostasis is not affected, but survivin-deficient B cells are unable to mount humoral responses. Correspondingly, we show that survivin is required for cell division in response to mitogenic stimulation. Thus, survivin is essential for proliferation of B cell progenitors and activated mature B cells, but is dispensable for B cell survival. Moreover, a small-molecule inhibitor of survivin strongly impaired the growth of representative B lymphoma lines in vitro, supporting the validity of survivin as an attractive therapeutic target for high-grade B cell non-Hodgkin's lymphoma.
Collapse
Affiliation(s)
- Ana V Miletic
- Tumor Microenvironment and Cancer Immunology Program, National Cancer Institute-Designated Cancer Center, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA 92037; and
| | - Julia Jellusova
- Tumor Microenvironment and Cancer Immunology Program, National Cancer Institute-Designated Cancer Center, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA 92037; and
| | - Matthew H Cato
- Tumor Microenvironment and Cancer Immunology Program, National Cancer Institute-Designated Cancer Center, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA 92037; and
| | - Charlotte R Lee
- Tumor Microenvironment and Cancer Immunology Program, National Cancer Institute-Designated Cancer Center, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA 92037; and
| | - Gisele V Baracho
- Tumor Microenvironment and Cancer Immunology Program, National Cancer Institute-Designated Cancer Center, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA 92037; and
| | - Edward M Conway
- Center for Blood Research, Faculty of Medicine, University of British Columbia, Vancouver V6T 1Z3, British Columbia, Canada
| | - Robert C Rickert
- Tumor Microenvironment and Cancer Immunology Program, National Cancer Institute-Designated Cancer Center, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA 92037; and
| |
Collapse
|
55
|
Tan PS, Nakagawa S, Goossens N, Venkatesh A, Huang T, Ward SC, Sun X, Song WM, Koh A, Canasto-Chibuque C, Deshmukh M, Nair V, Mahajan M, Zhang B, Fiel MI, Kobayashi M, Kumada H, Hoshida Y. Clinicopathological indices to predict hepatocellular carcinoma molecular classification. Liver Int 2016; 36:108-18. [PMID: 26058462 PMCID: PMC4674393 DOI: 10.1111/liv.12889] [Citation(s) in RCA: 69] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/27/2015] [Accepted: 06/01/2015] [Indexed: 12/11/2022]
Abstract
BACKGROUND & AIMS Hepatocellular carcinoma (HCC) is the second most lethal cancer caused by lack of effective therapies. Although promising, HCC molecular classification, which enriches potential responders to specific therapies, has not yet been assessed in clinical trials of anti-HCC drugs. We aimed to overcome these challenges by developing clinicopathological surrogate indices of HCC molecular classification. METHODS Hepatocellular carcinoma classification defined in our previous transcriptome meta-analysis (S1, S2 and S3 subclasses) was implemented in an FDA-approved diagnostic platform (Elements assay, NanoString). Ninety-six HCC tumours (training set) were assayed to develop molecular subclass-predictive indices based on clinicopathological features, which were independently validated in 99 HCC tumours (validation set). Molecular deregulations associated with the histopathological features were determined by pathway analysis. Sample sizes for HCC clinical trials enriched with specific molecular subclasses were determined. RESULTS Hepatocellular carcinoma subclass-predictive indices were steatohepatitic (SH)-HCC variant and immune cell infiltrate for S1 subclass, macrotrabecular/compact pattern, lack of pseudoglandular pattern, and high serum alpha-foetoprotein (>400 ng/ml) for S2 subclass, and microtrabecular pattern, lack of SH-HCC and clear cell variants, and lower histological grade for S3 subclass. Macrotrabecular/compact pattern, a predictor of S2 subclass, was associated with the activation of therapeutically targetable oncogene YAP and stemness markers EPCAM/KRT19. BMP4 was associated with pseudoglandular pattern. Subclass-predictive indices-based patient enrichment reduced clinical trial sample sizes from 121, 184 and 53 to 30, 43 and 22 for S1, S2 and S3 subclass-targeting therapies respectively. CONCLUSIONS Hepatocellular carcinoma molecular subclasses can be enriched by clinicopathological indices tightly associated with deregulation of therapeutically targetable molecular pathways.
Collapse
Affiliation(s)
- Poh Seng Tan
- Division of Liver Diseases, Department of Medicine, Liver Cancer Program, Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, U.S,Division of Gastroenterology and Hepatology, University Medicine Cluster, National University Health System, Singapore
| | - Shigeki Nakagawa
- Division of Liver Diseases, Department of Medicine, Liver Cancer Program, Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, U.S
| | - Nicolas Goossens
- Division of Liver Diseases, Department of Medicine, Liver Cancer Program, Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, U.S,Division of Gastroenterology and Hepatology, Geneva University Hospital, Switzerland
| | - Anu Venkatesh
- Division of Liver Diseases, Department of Medicine, Liver Cancer Program, Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, U.S
| | - Tiangui Huang
- Department of Pathology, Icahn School of Medicine at Mount Sinai, New York, U.S
| | - Stephen C. Ward
- Department of Pathology, Icahn School of Medicine at Mount Sinai, New York, U.S
| | - Xiaochen Sun
- Division of Liver Diseases, Department of Medicine, Liver Cancer Program, Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, U.S
| | - Won-Min Song
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, U.S
| | - Anna Koh
- Division of Liver Diseases, Department of Medicine, Liver Cancer Program, Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, U.S
| | - Claudia Canasto-Chibuque
- Division of Liver Diseases, Department of Medicine, Liver Cancer Program, Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, U.S
| | - Manjeet Deshmukh
- Division of Liver Diseases, Department of Medicine, Liver Cancer Program, Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, U.S
| | - Venugopalan Nair
- Department of Neurology, Icahn School of Medicine at Mount Sinai, New York, U.S
| | - Milind Mahajan
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, U.S
| | - Bin Zhang
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, U.S
| | - Maria Isabel Fiel
- Division of Gastroenterology and Hepatology, Geneva University Hospital, Switzerland
| | | | | | - Yujin Hoshida
- Division of Liver Diseases, Department of Medicine, Liver Cancer Program, Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, U.S
| |
Collapse
|
56
|
Zhu J, Sun C, Wang L, Xu M, Zang Y, Zhou Y, Liu X, Tao W, Xue B, Shan Y, Yang D. Targeting survivin using a combination of miR‑494 and survivin shRNA has synergistic effects on the suppression of prostate cancer growth. Mol Med Rep 2015; 13:1602-10. [PMID: 26718651 PMCID: PMC4732832 DOI: 10.3892/mmr.2015.4739] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2015] [Accepted: 11/30/2015] [Indexed: 12/18/2022] Open
Abstract
Castration-resistant prostate cancer (CRPC) remains an obstacle in the current treatment provided for prostate cancer (PCa). Survivin, an apoptosis inhibitor, has been found to be involved in the progression of PCa, and is a promising candidate target for CRPC therapy. Micro (mi)RNAs are involved in the progression of PCa through the regulation of multiple genes. One of the objectives of the present study was to investigate the effect of miRNA (miR)‑494 on the expression of survivin, as well as on PCa growth. The present study also aimed to assess whether co-transfecting miR‑494 with survivin short hairpin (sh)RNA has synergistic effects on suppressing PCa proliferation or the expression of survivin. Gene Expression Omnibus datasets with clinical PCa miRNA expression profiles were utilized to analysis the expression of miR‑494 in Ca, compared with normal prostate samples. PC3 cells, a CRPC cell line, were transfected with either an miR‑494 expression adenovirus, a survivin shRNA adenovirus or the two together, to examine their effect on PCa growth and the expression of survivin in vitro and in vivo. miR‑494 was downregulated in PCa tissue samples and in the PC‑3 cell line. miR‑494 targeted survivin at the translational level in PCa. Overexpression of miR‑494 and silencing survivin RNA through the use of survivin shRNA inhibited the expression of survivin and attenuated PC‑3 cell growth in vitro and in vivo. Notably, co‑transfecting miR‑494 with survivin shRNA had synergistic effects on suppressing prostate cancer proliferation via further suppression of the expression of survivin. These results suggested that using multiple methods to inhibit the function of survivin may have improved efficacy for treating PCa.
Collapse
Affiliation(s)
- Jin Zhu
- Department of Urology, The Second Affiliated Hospital of Soochow University, Suzhou, Jiangsu 215004, P.R. China
| | - Chenwen Sun
- Department of Urology, The Second Affiliated Hospital of Soochow University, Suzhou, Jiangsu 215004, P.R. China
| | - Liping Wang
- Department of Urology, The Second Affiliated Hospital of Soochow University, Suzhou, Jiangsu 215004, P.R. China
| | - Ming Xu
- Department of Urology, The Second Affiliated Hospital of Soochow University, Suzhou, Jiangsu 215004, P.R. China
| | - Yachen Zang
- Department of Urology, The Second Affiliated Hospital of Soochow University, Suzhou, Jiangsu 215004, P.R. China
| | - Yibin Zhou
- Department of Urology, The Second Affiliated Hospital of Soochow University, Suzhou, Jiangsu 215004, P.R. China
| | - Xiaolong Liu
- Department of Urology, The Second Affiliated Hospital of Soochow University, Suzhou, Jiangsu 215004, P.R. China
| | - Wei Tao
- Department of Urology, The Second Affiliated Hospital of Soochow University, Suzhou, Jiangsu 215004, P.R. China
| | - Boxin Xue
- Department of Urology, The Second Affiliated Hospital of Soochow University, Suzhou, Jiangsu 215004, P.R. China
| | - Yuxi Shan
- Department of Urology, The Second Affiliated Hospital of Soochow University, Suzhou, Jiangsu 215004, P.R. China
| | - Dongrong Yang
- Department of Urology, The Second Affiliated Hospital of Soochow University, Suzhou, Jiangsu 215004, P.R. China
| |
Collapse
|
57
|
Inagaki Y, Shiraki K, Sugimoto K, Yada T, Tameda M, Ogura S, Yamamoto N, Takei Y, Ito M. Epigenetic regulation of proliferation and invasion in hepatocellular carcinoma cells by CBP/p300 histone acetyltransferase activity. Int J Oncol 2015; 48:533-40. [PMID: 26676548 DOI: 10.3892/ijo.2015.3288] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2015] [Accepted: 10/23/2015] [Indexed: 11/06/2022] Open
Abstract
Altered epigenetic control of gene expression plays a substantial role in tumor development and progression. Accumulating studies suggest that somatic mutations of CREB binding proteins (CBP)/p300 occur in some cancer cells. CBP/p300 possess histone acetyltransferase (HAT) activity, and are involved in many cellular processes. In this study, we investigated the expression and functional role of CBP/p300 in hepatocellular carcinoma (HCC) using the specific inhibitor C646 of CBP/p300 HAT activity. We examined its effect on several apoptosis-related proteins and invasion-related genes. The results showed that CBP/p300 were highly expressed in HCC tissues and that expression of p300, but not of CBP, was strongly correlated with the malignant character of HCC. C646 inhibited proliferation of HCC cell lines in a dose dependent manner. C646 significantly augmented TRAIL-induced apoptotic sensitivity, which was accompanied by reduced levels of survivin, in HepG2, HLE and SK-HEP1 cells. C646 significantly inhibited invasion of Huh7, HLE and SK-HEP1 cells. The level of matrix metallopeptidase 15 (MMP15) mRNA expression was significantly reduced, whereas the level of laminin alpha 3 (LAMA3) and secreted phosphoprotein 1 (SPP1) mRNA expression was significantly increased in Huh7 cells following exposure to C646. In conclusion, our results suggest that CBP/p300 HAT activity has an important role in malignant transformation, proliferation, apoptotic sensitivity and invasion in HCC. CBP/p300 could be a promising therapeutic target in HCC.
Collapse
Affiliation(s)
- Yuji Inagaki
- Department of Gastroenterology and Hepatology, Mie University Graduate School of Medicine, Tsu, Mie 514-8507, Japan
| | - Katsuya Shiraki
- Department of Gastroenterology and Hepatology, Mie University Graduate School of Medicine, Tsu, Mie 514-8507, Japan
| | - Kazushi Sugimoto
- Department of Gastroenterology and Hepatology, Mie University Graduate School of Medicine, Tsu, Mie 514-8507, Japan
| | - Takazumi Yada
- Department of Gastroenterology and Hepatology, Mie University Graduate School of Medicine, Tsu, Mie 514-8507, Japan
| | - Masahiko Tameda
- Department of Gastroenterology and Hepatology, Mie University Graduate School of Medicine, Tsu, Mie 514-8507, Japan
| | - Suguru Ogura
- Department of Gastroenterology and Hepatology, Mie University Graduate School of Medicine, Tsu, Mie 514-8507, Japan
| | - Norihiko Yamamoto
- Department of Gastroenterology and Hepatology, Mie University Graduate School of Medicine, Tsu, Mie 514-8507, Japan
| | - Yoshiyuki Takei
- Department of Gastroenterology and Hepatology, Mie University Graduate School of Medicine, Tsu, Mie 514-8507, Japan
| | - Masaaki Ito
- Department of Cardiology and Nephrology, Mie University Graduate School of Medicine, Tsu, Mie 514-8507, Japan
| |
Collapse
|
58
|
Wang B, Ma A, Zhang L, Jin WL, Qian Y, Xu G, Qiu B, Yang Z, Liu Y, Xia Q, Liu Y. POH1 deubiquitylates and stabilizes E2F1 to promote tumour formation. Nat Commun 2015; 6:8704. [PMID: 26510456 PMCID: PMC4846323 DOI: 10.1038/ncomms9704] [Citation(s) in RCA: 80] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2015] [Accepted: 09/23/2015] [Indexed: 12/29/2022] Open
Abstract
Hyperactivation of the transcriptional factor E2F1 occurs frequently in human cancers and contributes to malignant progression. E2F1 activity is regulated by proteolysis mediated by the ubiquitin–proteasome system. However, the deubiquitylase that controls E2F1 ubiquitylation and stability remains undefined. Here we demonstrate that the deubiquitylase POH1 stabilizes E2F1 protein through binding to and deubiquitylating E2F1. Conditional knockout of Poh1 alleles results in reduced E2F1 expression in primary mouse liver cells. The POH1-mediated regulation of E2F1 expression strengthens E2F1-downstream prosurvival signals, including upregulation of Survivin and FOXM1 protein levels, and efficiently facilitates tumour growth of liver cancer cells in nude mice. Importantly, human hepatocellular carcinomas (HCCs) recapitulate POH1 regulation of E2F1 expression, as nuclear abundance of POH1 is increased in HCCs and correlates with E2F1 overexpression and tumour growth. Thus, our study suggests that the hyperactivated POH1–E2F1 regulation may contribute to the development of liver cancer. The transcription factor E2F1 controls the expression of multiple genes and is frequently overactivated in cancer. Here, the authors show that E2F1 is deubiquitinated by POH1 and that this enhances the role of E2F1 in cell survival, and contributes to the pathogenesis of liver cancer.
Collapse
Affiliation(s)
- Boshi Wang
- State Key laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Renji Hospital, Shanghai Jiaotong University School of Medicine, Shanghai 200032, China
| | - Aihui Ma
- State Key laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Renji Hospital, Shanghai Jiaotong University School of Medicine, Shanghai 200032, China
| | - Li Zhang
- State Key laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Renji Hospital, Shanghai Jiaotong University School of Medicine, Shanghai 200032, China
| | - Wei-Lin Jin
- Institute of Nano Biomedicine and Engineering, Department of Instrument Science and Engineering, Key Laboratory for Thin Film and Microfabrication Technology of Ministry of Education, School of Electronic Information and Electronic Engineering, Shanghai Jiaotong University, Shanghai 200240, China
| | - Yu Qian
- State Key laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Renji Hospital, Shanghai Jiaotong University School of Medicine, Shanghai 200032, China
| | - Guiqin Xu
- State Key laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Renji Hospital, Shanghai Jiaotong University School of Medicine, Shanghai 200032, China
| | - Bijun Qiu
- Department of Liver Surgery, Renji Hospital, Shanghai Jiaotong University School of Medicine, Shanghai 200217, China
| | - Zhaojuan Yang
- State Key laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Renji Hospital, Shanghai Jiaotong University School of Medicine, Shanghai 200032, China
| | - Yun Liu
- State Key laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Renji Hospital, Shanghai Jiaotong University School of Medicine, Shanghai 200032, China
| | - Qiang Xia
- Department of Liver Surgery, Renji Hospital, Shanghai Jiaotong University School of Medicine, Shanghai 200217, China
| | - Yongzhong Liu
- State Key laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Renji Hospital, Shanghai Jiaotong University School of Medicine, Shanghai 200032, China
| |
Collapse
|
59
|
Jia X, Gao Y, Zhai D, Liu J, Wang Y, Jing LI, DU Z. Survivin is not a promising serological maker for the diagnosis of hepatocellular carcinoma. Oncol Lett 2015; 9:2347-2352. [PMID: 26137069 DOI: 10.3892/ol.2015.3050] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2014] [Accepted: 02/23/2015] [Indexed: 12/25/2022] Open
Abstract
Survivin expression in the serum of patients with hepatocellular carcinoma (HCC) and nonmalignant chronic liver diseases remain to be elucidated. The aims of the present study were to evaluate the diagnostic role of survivin in the serum of patients with HCC and identify which ELISA kit performed best in detecting the levels of serum survivin. In total, 80 patients were included in the present study, including 20 patients with HCC, 20 patients with liver cirrhosis, 20 patients with chronic hepatitis B virus infection and 20 healthy volunteers. The levels of survivin protein in the serum were detected using two different ELISA kits (R&D and Abnova). The positive ratios of serum survivin detected by the R&D ELISA kit in all the cases were 8.75% (7/80; median, 0 pg/ml; range, 0-39.8 pg/ml) and in HCC patients were 5% (1/20; median, 0 pg/ml; range, 0-39.8 pg/ml). For the same samples analyzed using the Abnova ELISA kit, the positive ratios of serum survivin in all the cases were 22.5% (18/80; median, 0 pg/ml; range, 0-553.5 pg/ml) and in HCC patients were 25% (5/20; median, 0 pg/ml; range, 0-93.5 pg/ml). The results obtained by the different ELISA kits demonstrated no statistically significant differences in the level of survivin between HCC patients and healthy controls. The correlation coefficient was 0.0064 (P=0.481) when analyzing the same serum samples with the different ELISA kits. In addition, the highest positive ratio of serum survivin was observed using the Abnova kit. A statistically significant difference in the results was observed between the R&D and Abnova kits. In general, the levels and positive ratios of serum survivin in the patients with HCC were significantly low. Furthermore, no difference was observed between HCC patients and controls in regard to the levels of serum survivin detected by the R&D and Abnova ELISA kits. In conclusion, survivin is unlikely to be a promising serological maker for the diagnosis of HCC.
Collapse
Affiliation(s)
- Xiaobo Jia
- Third Central Clinical College, Tianjin Medical University, Tianjin 300170, P.R. China
| | - Yingtang Gao
- Key Laboratory of Artificial Cell, Institute of Hepatobiliary Disease, Tianjin Third Central Hospital, Tianjin Medical University, Tianjin 300170, P.R. China
| | - Daokuan Zhai
- Key Laboratory of Artificial Cell, Institute of Hepatobiliary Disease, Tianjin Third Central Hospital, Tianjin Medical University, Tianjin 300170, P.R. China
| | - Jiao Liu
- Key Laboratory of Artificial Cell, Institute of Hepatobiliary Disease, Tianjin Third Central Hospital, Tianjin Medical University, Tianjin 300170, P.R. China
| | - Yajie Wang
- Key Laboratory of Artificial Cell, Institute of Hepatobiliary Disease, Tianjin Third Central Hospital, Tianjin Medical University, Tianjin 300170, P.R. China
| | - L I Jing
- Key Laboratory of Artificial Cell, Institute of Hepatobiliary Disease, Tianjin Third Central Hospital, Tianjin Medical University, Tianjin 300170, P.R. China
| | - Zhi DU
- Key Laboratory of Artificial Cell, Institute of Hepatobiliary Disease, Tianjin Third Central Hospital, Tianjin Medical University, Tianjin 300170, P.R. China ; Department of Hepatobiliary Surgery, Tianjin Third Central Hospital, Tianjin Medical University, Tianjin 300170, P.R. China
| |
Collapse
|
60
|
The aryl hydrocarbon receptor-dependent disruption of contact inhibition in rat liver WB-F344 epithelial cells is linked with induction of survivin, but not with inhibition of apoptosis. Toxicology 2015; 333:37-44. [DOI: 10.1016/j.tox.2015.04.001] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2015] [Revised: 03/31/2015] [Accepted: 04/01/2015] [Indexed: 11/23/2022]
|
61
|
Abstract
Survivin is an anti-apoptotic protein belonging to the inhibitor of apoptosis protein (IAP) family. It is involved in the regulation of important physiological and pathological processes in cells and functions to inhibit cell apoptosis and promote cell proliferation. Normally and terminally differentiated tissues are nearly negative for survivin. In contrast, survivin is highly expressed in most human tumor tissues, including hepatocellular carcinoma (HCC). The abnormal overexpression of survivin is closely related to the malignant biological behaviors of tumors. During the development and progression of HCC, the high level of survivin expression promotes cancer cell proliferation, inhibits cancer cell apoptosis, induces tumor stromal angiogenesis, reduces the sensitivity of cancer cells to radiotherapy and chemotherapy, and ultimately affects the prognosis of patients with HCC. Survivin expression is regulated by a large number of factors. The latest discovery indicated that the transcription factor octamer-binding transcription factor 4 (OCT4) enhances the expression of survivin though cyclin D1 (CCND1), which, in part, accounts for tumor cell proliferation, recurrence and metastasis. Survivin plays key roles in HCC, which renders it an ideal target for the treatment of HCC. The present article reviews the research progress on the relationship between survivin and HCC and on the HCC treatment strategies targeting survivin.
Collapse
|
62
|
Zhang CL, Zeng T, Zhao XL, Xie KQ. Garlic Oil Suppressed Nitrosodiethylamine-Induced Hepatocarcinoma in Rats by Inhibiting PI3K-AKT-NF-κB Pathway. Int J Biol Sci 2015; 11:643-51. [PMID: 25999787 PMCID: PMC4440254 DOI: 10.7150/ijbs.10785] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2014] [Accepted: 03/03/2015] [Indexed: 01/24/2023] Open
Abstract
To explore the underlying mechanisms for the protective effects of garlic oil (GO) against nitrosodiethylamine (NDEA)-induced hepatocarcinoma, 60 male Wistar rats were randomized into 4 groups (n=15): control group, NDEA group, and two GO plus NDEA groups. The rats in GO plus NDEA groups were pretreated with GO (20 or 40 mg/kg) for 7 days. Then, all rats except those in control group were gavaged with NDEA for 20 weeks, and the rats in GO plus NDEA groups were continuously administered with GO. The results showed that GO co-treatment significantly suppressed the NDEA-induced increases of alpha fetal protein (AFP) level in serum, nuclear atypia in H&E staining, sirius red-positive areas and proliferating cell nuclear antigen (PCNA) expression. The molecular mechanisms exploration revealed that the protein levels of phosphatidylinositol 3 kinase (PI3K)-p85, PI3K-p110, total AKT, p-AKT (Ser473) and p-AKT (Thr308) in the liver of NDEA group rats were higher than those in control group rats. In addition, NDEA treatment induced IκB degradation and NF-κB p65 phosphorylation, and up-regulated the protein levels of downstream pro-inflammatory mediators. GO co-treatment significantly reversed all the above adverse effects induced by NDEA. These results suggested that the protective effects of GO against NDEA-induced hepatocarcinoma might be associated with the suppression of PI3K- AKT-NF-κB pathway.
Collapse
Affiliation(s)
- Cui-Li Zhang
- Institute of Toxicology, School of Public Health, Shandong University, 44 Wenhua West Road, Jinan 250012, Shandong, P.R. China
| | - Tao Zeng
- Institute of Toxicology, School of Public Health, Shandong University, 44 Wenhua West Road, Jinan 250012, Shandong, P.R. China
| | - Xiu-Lan Zhao
- Institute of Toxicology, School of Public Health, Shandong University, 44 Wenhua West Road, Jinan 250012, Shandong, P.R. China
| | - Ke-Qin Xie
- Institute of Toxicology, School of Public Health, Shandong University, 44 Wenhua West Road, Jinan 250012, Shandong, P.R. China
| |
Collapse
|
63
|
Hsin IL, Ou CC, Wu MF, Jan MS, Hsiao YM, Lin CH, Ko JL. GMI, an Immunomodulatory Protein from Ganoderma microsporum, Potentiates Cisplatin-Induced Apoptosis via Autophagy in Lung Cancer Cells. Mol Pharm 2015; 12:1534-43. [DOI: 10.1021/mp500840z] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Affiliation(s)
- I-Lun Hsin
- Institute
of Medicine, Chung Shan Medical University, Taichung 40203, Taiwan
| | - Chu-Chyn Ou
- School
of Nutrition, Chung Shan Medical University, Taichung 40201, Taiwan
| | - Ming-Fang Wu
- Institute
of Medicine, Chung Shan Medical University, Taichung 40203, Taiwan
- School
of Medicine, Chung Shan Medical University, Taichung 40201, Taiwan
- Department
of Medical Oncology and Chest Medicine, Chung Shan Medical University Hospital, Taichung 402, Taiwan
| | - Ming-Shiou Jan
- Institute
of Microbiology and Immunology, Chung Shan Medical University, Taichung 40201, Taiwan
- Division
of Allergy, Immunology, and Rheumatology, Chung Shan Medical University, Taichung 40201, Taiwan
| | - Yi-Min Hsiao
- Department
of Medical Laboratory Science and Biotechnology, Central Taiwan University of Science and Technology, Taichung 40601, Taiwan
| | - Ching-Hsiung Lin
- School
of Medicine, Chung Shan Medical University, Taichung 40201, Taiwan
- Division
of Chest Medicine, Department of Internal Medicine, Changhua Christian Hospital, Changhua 500, Taiwan
- Department
of Respiratory Care, College of Health Sciences, Chang Jung Christian University, Tainan 71101, Taiwan
| | - Jiunn-Liang Ko
- Institute
of Medicine, Chung Shan Medical University, Taichung 40203, Taiwan
- School
of Medicine, Chung Shan Medical University, Taichung 40201, Taiwan
- Department
of Medical Oncology and Chest Medicine, Chung Shan Medical University Hospital, Taichung 402, Taiwan
| |
Collapse
|
64
|
Detecting cancers through tumor-activatable minicircles that lead to a detectable blood biomarker. Proc Natl Acad Sci U S A 2015; 112:3068-73. [PMID: 25713388 DOI: 10.1073/pnas.1414156112] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Earlier detection of cancers can dramatically improve the efficacy of available treatment strategies. However, despite decades of effort on blood-based biomarker cancer detection, many promising endogenous biomarkers have failed clinically because of intractable problems such as highly variable background expression from nonmalignant tissues and tumor heterogeneity. In this work we present a tumor-detection strategy based on systemic administration of tumor-activatable minicircles that use the pan-tumor-specific Survivin promoter to drive expression of a secretable reporter that is detectable in the blood nearly exclusively in tumor-bearing subjects. After systemic administration we demonstrate a robust ability to differentiate mice bearing human melanoma metastases from tumor-free subjects for up to 2 wk simply by measuring blood reporter levels. Cumulative change in reporter levels also identified tumor-bearing subjects, and a receiver operator-characteristic curve analysis highlighted this test's performance with an area of 0.918 ± 0.084. Lung tumor burden additionally correlated (r(2) = 0.714; P < 0.05) with cumulative reporter levels, indicating that determination of disease extent was possible. Continued development of our system could improve tumor detectability dramatically because of the temporally controlled, high reporter expression in tumors and nearly zero background from healthy tissues. Our strategy's highly modular nature also allows it to be iteratively optimized over time to improve the test's sensitivity and specificity. We envision this system could be used first in patients at high risk for tumor recurrence, followed by screening high-risk populations before tumor diagnosis, and, if proven safe and effective, eventually may have potential as a powerful cancer-screening tool for the general population.
Collapse
|
65
|
Zhang JG, Shi Y, Hong DF, Song M, Huang D, Wang CY, Zhao G. MiR-148b suppresses cell proliferation and invasion in hepatocellular carcinoma by targeting WNT1/β-catenin pathway. Sci Rep 2015; 5:8087. [PMID: 25627001 PMCID: PMC4310092 DOI: 10.1038/srep08087] [Citation(s) in RCA: 91] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2014] [Accepted: 12/12/2014] [Indexed: 12/19/2022] Open
Abstract
Accumulating evidences indicate that microRNAs play a vital role in regulating tumor progression. However, the roles of miR-148b in hepatocellular carcinoma (HCC) are still largely unknown. In this study, our data showed that miR-148b was significantly downregulated in 40 pairs of human HCC tissues. Further, the deregulated miR-148b was significantly correlated with larger tumor size, more tumor number, metastasis and worse prognosis in HCC. Overexpression of miR-148b inhibited HCC HepG2 cells proliferation and tumorigenicity. Further, miR-148b induced cells apoptosis by activating caspase- 3 and caspase-9, and induced S phase arrest by regulating cyclinD1 and p21, and also inhibited cell invasion. Data from the dual-luciferase reporter gene assay showed that WNT1 was a direct target of miR-148b, and overexpressed WNT1 inversely correlated with miR-148b levels in HCC tissues. Silencing of WNT1 inhibited the growth of HCC cells, and also induced cells apoptosis and inhibited invasion, which is consistent with the effects of miR-148b overexpression. MiR-148b downregulated expression of WNT1, β-catenin and C-myc, while upregulated E-cadherin expression. We conclude that the frequently downregulated miR-148b can regulate WNT1/β-catenin signalling pathway and function as a tumor suppressor in HCC. These findings suggest that miR-148b may serve as a novel therapeutic target for HCC.
Collapse
Affiliation(s)
- Jun-gang Zhang
- 1] Pancreatic Disease Institute, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China [2] Hepatobiliary and Pancreatic Surgery, Zhejiang Provincial People's Hospital, Hangzhou, 310014, China
| | - Ying Shi
- Obstetrics and Gynecology, Zhejiang Provincial People's Hospital, Hangzhou, 310014, China
| | - De-fei Hong
- Hepatobiliary and Pancreatic Surgery, Zhejiang Provincial People's Hospital, Hangzhou, 310014, China
| | - Mengqi Song
- Hepatobiliary Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Dongsheng Huang
- Hepatobiliary and Pancreatic Surgery, Zhejiang Provincial People's Hospital, Hangzhou, 310014, China
| | - Chun-you Wang
- Pancreatic Disease Institute, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Gang Zhao
- Pancreatic Disease Institute, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| |
Collapse
|
66
|
Liu M, Jiang L, Guan XY. The genetic and epigenetic alterations in human hepatocellular carcinoma: a recent update. Protein Cell 2014; 5:673-91. [PMID: 24916440 PMCID: PMC4145080 DOI: 10.1007/s13238-014-0065-9] [Citation(s) in RCA: 130] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2014] [Accepted: 04/13/2014] [Indexed: 01/18/2023] Open
Abstract
Hepatocellular carcinoma (HCC) is one of the most frequent human malignancies worldwide with very poor prognosis. It is generally accepted that the progression of HCC is a long-term process with accumulation of multiple genetic and epigenetic alterations, which further lead to the activation of critical oncogenes or inactivation of tumor suppressor genes. HCC is characterized with multiple cancer hallmarks including their ability to proliferate, anti-apoptosis, invade, metastasis, as well as the emerging features such as stem cell properties and energy metabolic switch. The irreversible alterations at genetic level could be detected as early as in the pre-neoplastic stages and accumulate during cancer progression. Thus, they might account for the cancer initiating steps and further malignant transformation. In addition to genetic alterations, epigenetic alterations can affect the cancer transcriptome more extensively. Alterations in DNA methylation, histone modification, miRNAs, RNA editing, and lncRNAs might result in disrupted gene regulation networks and substantially contribute to HCC progression. In this review, the genetic and epigenetic alterations which significantly contribute to the malignant capabilities of HCC will be updated and summarized in detail. Further characterization of those critical molecular events might better elucidate the pathogenesis of HCC and provide novel therapeutic targets for treatment of this deadly disease.
Collapse
Affiliation(s)
- Ming Liu
- Department of Clinical Oncology, University of Hong Kong, Hong Kong, China
| | - Lingxi Jiang
- Department of Clinical Oncology, University of Hong Kong, Hong Kong, China
| | - Xin-Yuan Guan
- Department of Clinical Oncology, University of Hong Kong, Hong Kong, China
| |
Collapse
|
67
|
Matteucci C, Sorrentino R, Bellis L, Ettorre GM, Svicher V, Santoro R, Vennarecci G, Biasiolo A, Pontisso P, Scacciatelli D, Beneduce L, Sarrecchia C, Casalino P, Bernardini S, Pierimarchi P, Garaci E, Puoti C, Rasi G. Detection of high levels of Survivin-immunoglobulin M immune complex in sera from hepatitis C virus infected patients with cirrhosis. Hepatol Res 2014; 44:1008-1018. [PMID: 24102797 DOI: 10.1111/hepr.12239] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/05/2013] [Revised: 09/09/2013] [Accepted: 09/09/2013] [Indexed: 12/13/2022]
Abstract
AIM The identification and surveillance of patients with liver dysfunctions and the discovering of new disease biomarkers are needed in the clinical practice. The aim of this study was to investigate on Survivin-immunoglobulin (Ig)M immune complex (IC) as a potential biomarker of chronic liver diseases. METHODS Serum levels of Survivin-IgM were measured using an enzyme-linked immunoassay that had been standardized and validated in our laboratory in 262 individuals, including healthy subjects and patients with chronic viral hepatitis, cirrhosis and hepatocellular carcinoma (HCC). RESULTS Survivin-IgM IC was lower in healthy subjects (median, 99.39 AU/mL) than in patients with chronic viral hepatitis (median, 148.03 AU/mL; P = 0.002) or with cirrhosis (median, 371.00 AU/mL; P < 0.001). Among patients with cirrhosis, those with hepatitis C virus (HCV) infection showed the highest level of Survivin-IgM IC (median, 633.71 AU/mL; P < 0.001). The receiver-operator curve analysis revealed that Survivin-IgM accurately distinguishes HCV correlated cirrhosis from chronic viral hepatitis (area under the curve [AUC], 0.738; sensitivity, 74.5%; specificity, 70.7%). A multivariate logistic regression model, including Survivin-IgM IC, aspartate aminotransferase (AST) and AST/alanine aminotransferase (ALT) ratio increased the prediction accuracy for the identification of the cirrhotic HCV patients (AUC, 0.818; sensitivity, 87.2%; specificity, 65.9%). Conversely, Survivin-IgM IC significantly decreased in HCC patients (median, 165.72 AU/mL; P = 0.022). CONCLUSION Our results suggest that Survivin-IgM immune complex may be used as a potential biomarker for liver damage, particularly for the identification of the HCV-related cirrhotic population.
Collapse
Affiliation(s)
- Claudia Matteucci
- Department of Experimental Medicine and Surgery, University of Rome "Tor Vergata", Rome, Italy; Institute of Translational Pharmacology, CNR, Rome, Italy
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
68
|
Sorrentino G, Comel A, Mantovani F, Del Sal G. Regulation of mitochondrial apoptosis by Pin1 in cancer and neurodegeneration. Mitochondrion 2014; 19 Pt A:88-96. [PMID: 25132079 DOI: 10.1016/j.mito.2014.08.003] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2014] [Revised: 08/08/2014] [Accepted: 08/11/2014] [Indexed: 11/15/2022]
Abstract
Mitochondria are sensitive and efficient organelles that regulate essential biological processes including: energy metabolism, decoding and transduction of intracellular signals, and balance between cell death and survival. Of note, dysfunctions in mitochondrial physiology are a general hallmark of cancer cells, leading to transformation-related features such as altered cellular metabolism, survival under stress conditions and reduced apoptotic response to chemotherapy. Mitochondrial apoptosis is a finely regulated process that derives from activation of multiple signaling networks. A crucial biochemical requirement for transducing pro-apoptotic stimuli is represented by kinase-dependent phosphorylation cascades. In this context a pivotal role is played by the prolyl-isomerase Pin1, which translates Ser/Thr-Pro phosphorylation into conformational changes able to modify the activities of its substrates. In this review we will discuss the impact of Pin1 in regulating various aspects of apoptosis in different biological contexts with particular emphasis on cancer and neurodegenerative diseases.
Collapse
Affiliation(s)
- Giovanni Sorrentino
- Laboratorio Nazionale CIB Area Science Park, Trieste Italy; Dipartimento di Scienze della Vita Università degli Studi di Trieste- Trieste Italy
| | - Anna Comel
- Laboratorio Nazionale CIB Area Science Park, Trieste Italy; Dipartimento di Scienze della Vita Università degli Studi di Trieste- Trieste Italy
| | - Fiamma Mantovani
- Laboratorio Nazionale CIB Area Science Park, Trieste Italy; Dipartimento di Scienze della Vita Università degli Studi di Trieste- Trieste Italy
| | - Giannino Del Sal
- Laboratorio Nazionale CIB Area Science Park, Trieste Italy; Dipartimento di Scienze della Vita Università degli Studi di Trieste- Trieste Italy.
| |
Collapse
|
69
|
Or YYY, Chow AKM, Ng L, Fan ST, Yau TCC, Poon RTP, Pang RWC. Survivin depletion inhibits tumor growth and enhances chemosensitivity in hepatocellular carcinoma. Mol Med Rep 2014; 10:2025-30. [PMID: 25070628 DOI: 10.3892/mmr.2014.2413] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2013] [Accepted: 03/14/2014] [Indexed: 11/05/2022] Open
Abstract
Survivin is a member of the inhibitor of apoptosis family, which has been suggested to be crucial in the control of cell division and inhibition of apoptosis. Expression of this protein has been observed in transformed cell lines and human tumor tissues, including those from colorectal cancer, but not in terminally differentiated adult tissues. Survivin mRNA expression has frequently been detected in hepatocellular carcinoma (HCC) and its protein expression has been demonstrated to be highly correlated with proliferation index rather than apoptotic index. The present study aimed to analyze the effect of survivin on the tumorigenicity and chemosensitivity of HCC via the establishment of an HCC cell line (PLC/PRF/5) with the stable knockdown of the survivin gene (PLC‑k3). This cell line displayed significantly lower rates of survival and proliferation in assays of cell viability and proliferation, respectively, compared with those of the control cell line (PLC‑v). In addition, PLC‑k3 cells were more sensitive to cisplatin treatment, resulting in S phase arrest. These findings were further confirmed by an in vivo experiment. The data of the present study suggest that survivin is critical in promoting cell proliferation but not in inhibition of apoptosis, and enhances the chemosensitivity of HCC. Thus, the suppression of survivin expression in combination with cisplatin may contribute to the development of more effective treatments for HCC.
Collapse
Affiliation(s)
- Yvonne Y Y Or
- Department of Surgery, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, SAR, P.R. China
| | - Ariel K M Chow
- Department of Surgery, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, SAR, P.R. China
| | - Lui Ng
- Department of Surgery, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, SAR, P.R. China
| | - Sheung Tat Fan
- Department of Surgery, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, SAR, P.R. China
| | - Thomas C C Yau
- Department of Surgery, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, SAR, P.R. China
| | - Ronnie T P Poon
- Department of Surgery, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, SAR, P.R. China
| | - Roberta W C Pang
- Department of Surgery, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, SAR, P.R. China
| |
Collapse
|
70
|
Tarasewicz E, Hamdan R, Straehla J, Hardy A, Nunez O, Zelivianski S, Dokic D, Jeruss JS. CDK4 inhibition and doxorubicin mediate breast cancer cell apoptosis through Smad3 and survivin. Cancer Biol Ther 2014; 15:1301-11. [PMID: 25006666 DOI: 10.4161/cbt.29693] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Cyclin D1/CDK4 activity is upregulated in up to 50% of breast cancers and CDK4-mediated phosphorylation negatively regulates the TGFβ superfamily member Smad3. We sought to determine if CDK4 inhibition and doxorubicin chemotherapy could impact Smad3-mediated cell/colony growth and apoptosis in breast cancer cells. Parental and cyclin D1-overexpressing MCF7 cells were treated with CDK4 inhibitor, doxorubicin, or combination therapy and cell proliferation, apoptosis, colony formation, and expression of apoptotic proteins were evaluated using an MTS assay, TUNEL staining, 3D Matrigel assay, and apoptosis array/immunoblotting. Study cells were also transduced with WT Smad3 or a Smad3 construct resistant to CDK4 phosphorylation (5M) and colony formation and expression of apoptotic proteins were assessed. Treatment with CDK4 inhibitor/doxorubicin combination therapy, or transduction with 5M Smad3, resulted in a similar decrease in colony formation. Treating cyclin D overexpressing breast cancer cells with combination therapy also resulted in the greatest increase in apoptosis, resulted in decreased expression of anti-apoptotic proteins survivin and XIAP, and impacted subcellular localization of pro-apoptotic Smac/DIABLO. Additionally, transduction of 5M Smad3 and doxorubicin treatment resulted in the greatest change in apoptotic protein expression. Collectively, this work showed the impact of CDK4 inhibitor-mediated, Smad3-regulated tumor suppression, which was augmented in doxorubicin-treated cyclin D-overexpressing study cells.
Collapse
Affiliation(s)
- Elizabeth Tarasewicz
- Department of Surgery; Northwestern University Feinberg School of Medicine; Chicago, IL USA; Robert H. Lurie Comprehensive Cancer Center; Chicago, IL USA
| | - Randala Hamdan
- Department of Surgery; Northwestern University Feinberg School of Medicine; Chicago, IL USA; Robert H. Lurie Comprehensive Cancer Center; Chicago, IL USA
| | - Joelle Straehla
- Department of Surgery; Northwestern University Feinberg School of Medicine; Chicago, IL USA; Robert H. Lurie Comprehensive Cancer Center; Chicago, IL USA
| | - Ashley Hardy
- Department of Surgery; Northwestern University Feinberg School of Medicine; Chicago, IL USA; Robert H. Lurie Comprehensive Cancer Center; Chicago, IL USA
| | - Omar Nunez
- Department of Surgery; Northwestern University Feinberg School of Medicine; Chicago, IL USA; Robert H. Lurie Comprehensive Cancer Center; Chicago, IL USA
| | - Stanislav Zelivianski
- Department of Surgery; Northwestern University Feinberg School of Medicine; Chicago, IL USA; Robert H. Lurie Comprehensive Cancer Center; Chicago, IL USA
| | - Danijela Dokic
- Department of Surgery; Northwestern University Feinberg School of Medicine; Chicago, IL USA; Robert H. Lurie Comprehensive Cancer Center; Chicago, IL USA
| | - Jacqueline S Jeruss
- Department of Surgery; Northwestern University Feinberg School of Medicine; Chicago, IL USA; Robert H. Lurie Comprehensive Cancer Center; Chicago, IL USA
| |
Collapse
|
71
|
Liu M, Jiang L, Guan XY. The genetic and epigenetic alterations in human hepatocellular carcinoma: a recent update. Protein Cell 2014. [PMID: 24916440 DOI: 10.1007/s13238- 014-0065-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Hepatocellular carcinoma (HCC) is one of the most frequent human malignancies worldwide with very poor prognosis. It is generally accepted that the progression of HCC is a long-term process with accumulation of multiple genetic and epigenetic alterations, which further lead to the activation of critical oncogenes or inactivation of tumor suppressor genes. HCC is characterized with multiple cancer hallmarks including their ability to proliferate, anti-apoptosis, invade, metastasis, as well as the emerging features such as stem cell properties and energy metabolic switch. The irreversible alterations at genetic level could be detected as early as in the pre-neoplastic stages and accumulate during cancer progression. Thus, they might account for the cancer initiating steps and further malignant transformation. In addition to genetic alterations, epigenetic alterations can affect the cancer transcriptome more extensively. Alterations in DNA methylation, histone modification, miRNAs, RNA editing, and lncRNAs might result in disrupted gene regulation networks and substantially contribute to HCC progression. In this review, the genetic and epigenetic alterations which significantly contribute to the malignant capabilities of HCC will be updated and summarized in detail. Further characterization of those critical molecular events might better elucidate the pathogenesis of HCC and provide novel therapeutic targets for treatment of this deadly disease.
Collapse
Affiliation(s)
- Ming Liu
- Department of Clinical Oncology, University of Hong Kong, Hong Kong, China
| | | | | |
Collapse
|
72
|
Gopalan B, Narayanan K, Ke Z, Lu T, Zhang Y, Zhuo L. Therapeutic effect of a multi-targeted imidazolium compound in hepatocellular carcinoma. Biomaterials 2014; 35:7479-87. [PMID: 24912819 DOI: 10.1016/j.biomaterials.2014.05.022] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2014] [Accepted: 05/08/2014] [Indexed: 11/16/2022]
Abstract
Hepatocellular carcinoma (HCC) is one of the most commonly diagnosed lethal cancers in the world. We previously showed two imidazolium salts (IBN-1 and IBN-9) with a moderate efficacy for HCC. Here we report a more potent imidazolium compound IBN-65 (1-benzyl-2-phenyl-3-(4-isopropyl)-benzyl-imidazolium chloride) and the associated mechanisms of action in a mouse model of HCC. The IC50 of this compound in various liver cancer cell lines was around 5 μm. IBN-65 dose-dependently arrested cell cycle at G1 phase and was associated with the down-regulation of the cyclin-dependent kinase-4, -6, cyclin D1, and cyclin E. In addition, IBN-65 induced apoptosis by down-regulating Survivin, Bcl-2 and up-regulating Bax, leading to sequential activation of Caspase-3, Caspase-9 and the cleavage of poly(ADP-ribose) polymerase (PARP). Dysregulation of the epidermal growth factor receptor (EGFR) signaling network has been frequently reported in HCC. We found that IBN-65 displayed a profound inhibitory effect on the EGFR/Raf/MEK/ERK signaling at the phosphorylation level. In Huh7 or Hep3B cells, pretreatment with IBN-65 attenuated EGF-induced phosphorylation of both EGFR and the downstream p44/42 MAPK. A siRNA knockdown of EGFR also proved that IBN-65 induced apoptosis mostly through inhibiting downstream EGFR pathway signaling, much less at the receptor level. Infrequent administration of IBN-65 (i.p., 5 mg/kg once weekly for four weeks) to mice bearing the Huh7 cells significantly reduced the tumor volume by 65% without affecting the body weight. Critically, many of the anti-tumor signaling features observed in the HCC cell lines were recaptured in the xenografted tissues. Thus, the metal-free imidazolium compound IBN-65 could be a potential candidate towards therapeutic development for HCC.
Collapse
Affiliation(s)
- Began Gopalan
- Institute of Bioengineering and Nanotechnology, 31 Biopolis Way, The Nanos, #04-01, Biopolis, Singapore 138669, Singapore
| | - Karthikeyan Narayanan
- Institute of Bioengineering and Nanotechnology, 31 Biopolis Way, The Nanos, #04-01, Biopolis, Singapore 138669, Singapore
| | - Zhiyuan Ke
- Institute of Bioengineering and Nanotechnology, 31 Biopolis Way, The Nanos, #04-01, Biopolis, Singapore 138669, Singapore
| | - Ting Lu
- Institute of Bioengineering and Nanotechnology, 31 Biopolis Way, The Nanos, #04-01, Biopolis, Singapore 138669, Singapore
| | - Yugen Zhang
- Institute of Bioengineering and Nanotechnology, 31 Biopolis Way, The Nanos, #04-01, Biopolis, Singapore 138669, Singapore
| | - Lang Zhuo
- Institute of Bioengineering and Nanotechnology, 31 Biopolis Way, The Nanos, #04-01, Biopolis, Singapore 138669, Singapore; Research and Development Center for Innovative Pharmaceuticals, Guangxi Botanic Garden of Medicinal Plants, Chinese Academy of Medical Sciences, 189 Changgang Road, Nanning, Guangxi 530023, China.
| |
Collapse
|
73
|
Ye L, Yao XD, Wan FN, Qu YY, Liu ZY, Shen XX, Li S, Liu XJ, Yue F, Wang N, Dai B, Ye DW. MS4A8B promotes cell proliferation in prostate cancer. Prostate 2014; 74:911-22. [PMID: 24789009 DOI: 10.1002/pros.22802] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/24/2013] [Accepted: 02/18/2014] [Indexed: 01/12/2023]
Abstract
BACKGROUND Prostate cancer cells must maintain or achieve the further ability of proliferation during the progression. The molecular mechanisms, however, remain poorly understood. We identified a novel oncogene, termed membrane-spanning 4-domains, subfamily A, member 8B (MS4A8B), over-expressed in prostate cancer. METHODS We firstly detected MS4A8B mRNA in 13 types of paired human normal and cancer tissues by real-time polymerase chain reaction (RT-PCR). In 140 clinically localized prostate cancer samples from radical prostatectomy, immunohistochemical staining was performed to study MS4A8B and PCNA protein level as an index of proliferative activity, TUNEL staining as an index of apoptosis. As MS4A8B RNAi and cDNA transfection technologies were used, the effect of MS4A8B on cellular vitality was determined in vitro and in vivo. RESULTS MS4A8B mRNA was over-expressed specifically in prostate cancer. Positive ratios of MS4A8B protein expression were 1.94%, 5.92%, and 62.8% in benign, HPIN and prostate cancer, respectively. Moreover, MS4A8B was positively associated with Gleason score, the proliferation index. In vitro, MS4A8B knockdown resulted in G1 -S cell cycle arrest and descended vitality, MS4A8B over-expression with accelerated S phase entry, elevated vitality in prostate cancer cells. Moreover, it was also found that expression of MS4A8B led to changes of Cyclin D1 , Cyclin E1 and PCNA. LNCaP cells transfected with sh-MS4A8B lentivirus particles grew more slowly when subcutaneously injected into the flanks of nude mice. CONCLUSIONS We conclude that the expression of MS4A8B expression promotes cell proliferation and plays an important role in carcinogenesis and progression of prostate cancer.
Collapse
MESH Headings
- Aged
- Aged, 80 and over
- Animals
- Apoptosis/physiology
- Cell Cycle Checkpoints/physiology
- Cell Growth Processes/physiology
- Cell Line, Tumor
- Flow Cytometry
- Humans
- Immunohistochemistry
- In Situ Nick-End Labeling
- Kallikreins/metabolism
- Male
- Membrane Proteins/genetics
- Membrane Proteins/metabolism
- Mice
- Mice, Nude
- Neoplasms, Hormone-Dependent/genetics
- Neoplasms, Hormone-Dependent/metabolism
- Neoplasms, Hormone-Dependent/pathology
- Prostate-Specific Antigen/metabolism
- Prostatic Neoplasms/genetics
- Prostatic Neoplasms/metabolism
- Prostatic Neoplasms/pathology
- RNA, Neoplasm/chemistry
- RNA, Neoplasm/genetics
- RNA, Neoplasm/metabolism
- Real-Time Polymerase Chain Reaction
- Statistics, Nonparametric
Collapse
Affiliation(s)
- Lin Ye
- Department of Urology, Fudan University Shanghai Cancer Center, Shanghai, 200032, China; Department of Urology, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, 200072, China; Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
74
|
Kim SA, Hong R. Significance of intracellular localization of survivin in cervical squamous cell lesions: Correlation with disease progression. Oncol Lett 2014; 7:1589-1593. [PMID: 24765182 PMCID: PMC3997728 DOI: 10.3892/ol.2014.1948] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2013] [Accepted: 01/30/2014] [Indexed: 11/15/2022] Open
Abstract
Survivin is a member of the inhibitor of apoptosis protein family. Under normal circumstances, survivin is expressed in embryonic and fetal tissues, but is completely downregulated in normal adult tissues. Notably, this protein has been found to be prominently expressed in a variety of human malignant tumors. The present study was designed to evaluate the possible role of survivin in the tumorigenesis of cervical intraepithelial neoplasia and invasive squamous cell carcinoma (SCC) of the uterine cervix. In addition, it was investigated whether the nuclear or cytoplasmic expression of survivin is associated with tumor progression. In total, 71 samples of cervical squamous tissue were obtained, including 15 normal squamous epithelia, 25 high-grade squamous intraepithelial lesions (HSILs) and 31 SCCs, from cone biopsy and hysterectomy specimens and stained for survivin expression by immunohistochemistry. The intensity of survivin expression tended to increase with tumor progression (60.0% of normal mucosa, 76.0% of HSIL and 80.6% of SCC samples demonstrated high intensity survivin expression), but this correlation was not found to be statistically significant. However, a statistically significant difference was identified in the intracellular localization of survivin among the normal mucosa, HSIL and SCC samples (P<0.001). In total, 72% (18/25) of HSIL and 54.8% (17/31) of SCC cases expressed cytoplasmic staining in contrast to the nuclear staining of the normal mucosa. In addition, 64% (16/25) of HSIL and 42% (13/31) of SCC cases showed coexpression in the nucleus and cytoplasm. An inverse correlation was identified between the decrement of nuclear survivin expression and tumor progression, but was not statistically significant (P=0.08). These results indicated that analysis of the intracellular expression of survivin (particularly cytoplasmic expression) is a marker for predicting disease progression in the uterine cervix.
Collapse
Affiliation(s)
- Soo-Ah Kim
- Department of Obstetrics and Gynecology, College of Medicine, Chosun University, Gwangju 501-759, Republic of Korea
| | - Ran Hong
- Department of Pathology, College of Medicine, Chosun University, Gwangju 501-759, Republic of Korea
| |
Collapse
|
75
|
Rauch A, Hennig D, Schäfer C, Wirth M, Marx C, Heinzel T, Schneider G, Krämer OH. Survivin and YM155: how faithful is the liaison? Biochim Biophys Acta Rev Cancer 2014; 1845:202-20. [PMID: 24440709 DOI: 10.1016/j.bbcan.2014.01.003] [Citation(s) in RCA: 78] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2013] [Revised: 01/01/2014] [Accepted: 01/04/2014] [Indexed: 02/07/2023]
Abstract
Survivin belongs to the family of apoptosis inhibitors (IAPs), which antagonizes the induction of cell death. Dysregulated expression of IAPs is frequently observed in cancers, and the high levels of survivin in tumors compared to normal adult tissues make it an attractive target for pharmacological interventions. The small imidazolium-based compound YM155 has recently been reported to block the expression of survivin via inhibition of the survivin promoter. Recent data, however, question that this is the sole and main effect of this drug, which is already being tested in ongoing clinical studies. Here, we critically review the current data on YM155 and other new experimental agents supposed to antagonize survivin. We summarize how cells from various tumor entities and with differential expression of the tumor suppressor p53 respond to this agent in vitro and as murine xenografts. Additionally, we recapitulate clinical trials conducted with YM155. Our article further considers the potency of YM155 in combination with other anti-cancer agents and epigenetic modulators. We also assess state-of-the-art data on the sometimes very promiscuous molecular mechanisms affected by YM155 in cancer cells.
Collapse
Affiliation(s)
- Anke Rauch
- Center for Molecular Biomedicine, Institute for Biochemistry and Biophysics, Department of Biochemistry, Friedrich Schiller University of Jena, Hans-Knöll-Straße 2, 07745 Jena, Germany
| | - Dorle Hennig
- Center for Molecular Biomedicine, Institute for Biochemistry and Biophysics, Department of Biochemistry, Friedrich Schiller University of Jena, Hans-Knöll-Straße 2, 07745 Jena, Germany
| | - Claudia Schäfer
- Center for Molecular Biomedicine, Institute for Biochemistry and Biophysics, Department of Biochemistry, Friedrich Schiller University of Jena, Hans-Knöll-Straße 2, 07745 Jena, Germany
| | - Matthias Wirth
- II Department of Internal Medicine, Technical University of Munich, Munich, Germany
| | - Christian Marx
- Center for Molecular Biomedicine, Institute for Biochemistry and Biophysics, Department of Biochemistry, Friedrich Schiller University of Jena, Hans-Knöll-Straße 2, 07745 Jena, Germany
| | - Thorsten Heinzel
- Center for Molecular Biomedicine, Institute for Biochemistry and Biophysics, Department of Biochemistry, Friedrich Schiller University of Jena, Hans-Knöll-Straße 2, 07745 Jena, Germany
| | - Günter Schneider
- II Department of Internal Medicine, Technical University of Munich, Munich, Germany
| | - Oliver H Krämer
- Department of Toxicology, University Medical Center, Obere Zahlbacher Str. 67, 55131 Mainz, Germany.
| |
Collapse
|
76
|
Marcq I, Nyga R, Cartier F, Amrathlal RS, Ossart C, Ouled-Haddou H, Ghamlouch H, Galmiche A, Chatelain D, Lamotte L, Debuysscher V, Fuentes V, Nguyen-Khac E, Regimbeau JM, Marolleau JP, Latour S, Bouhlal H. Identification of SLAMF3 (CD229) as an inhibitor of hepatocellular carcinoma cell proliferation and tumour progression. PLoS One 2013; 8:e82918. [PMID: 24376606 PMCID: PMC3869749 DOI: 10.1371/journal.pone.0082918] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2013] [Accepted: 10/29/2013] [Indexed: 01/26/2023] Open
Abstract
Although hepatocellular carcinoma (HCC) is one of the most common malignancies and constitutes the third leading cause of cancer-related deaths, the underlying molecular mechanisms are not fully understood. In the present study, we demonstrate for the first time that hepatocytes express signalling lymphocytic activation molecule family member 3 (SLAMF3/CD229) but not other SLAMF members. We provide evidence to show that SLAMF3 is involved in the control of hepatocyte proliferation and in hepatocellular carcinogenesis. SLAMF3 expression is significantly lower in primary human HCC samples and HCC cell lines than in human healthy primary hepatocytes. In HCC cell lines, the restoration of high levels of SLAMF3 expression inhibited cell proliferation and migration and enhanced apoptosis. Furthermore, SLAMF3 expression was associated with inhibition of HCC xenograft progression in the nude mouse model. The restoration of SLAMF3 expression levels also decreased the phosphorylation of MAPK ERK1/2, JNK and mTOR. In samples from resected HCC patients, SLAMF3 expression levels were significantly lower in tumorous tissues than in peritumoral tissues. Our results identify SLAMF3 as a specific marker of normal hepatocytes and provide evidence for its potential role in the control of proliferation of HCC cells.
Collapse
Affiliation(s)
- Ingrid Marcq
- INSERM UMR925 and EA 4666 UFR de Médecine, CAP-Santé (FED 4231), Université de Picardie Jules Verne, Amiens, France
| | - Rémy Nyga
- INSERM UMR925 and EA 4666 UFR de Médecine, CAP-Santé (FED 4231), Université de Picardie Jules Verne, Amiens, France
| | - Flora Cartier
- INSERM UMR925 and EA 4666 UFR de Médecine, CAP-Santé (FED 4231), Université de Picardie Jules Verne, Amiens, France
- INSERM U1053, Laboratoire de Physiologie du Cancer du Foie, Université Bordeaux Segalen, 146, rue Léo Saignat, Bordeaux, France
| | - Rabbind Singh Amrathlal
- INSERM UMR925 and EA 4666 UFR de Médecine, CAP-Santé (FED 4231), Université de Picardie Jules Verne, Amiens, France
| | - Christèle Ossart
- Service d’hématologie Clinique et de thérapie cellulaire Centre Hospitalier Universitaire sud, Amiens, France
| | - Hakim Ouled-Haddou
- INSERM UMR925 and EA 4666 UFR de Médecine, CAP-Santé (FED 4231), Université de Picardie Jules Verne, Amiens, France
| | - Hussein Ghamlouch
- INSERM UMR925 and EA 4666 UFR de Médecine, CAP-Santé (FED 4231), Université de Picardie Jules Verne, Amiens, France
| | - Antoine Galmiche
- Service de Biochimie, Centre Hospitalier Universitaire sud, Amiens, France
| | - Denis Chatelain
- Service d’Anatomie Pathologique, Centre Hospitalier Universitaire sud, Amiens, France
| | - Luciane Lamotte
- INSERM UMR925 and EA 4666 UFR de Médecine, CAP-Santé (FED 4231), Université de Picardie Jules Verne, Amiens, France
| | - Véronique Debuysscher
- INSERM UMR925 and EA 4666 UFR de Médecine, CAP-Santé (FED 4231), Université de Picardie Jules Verne, Amiens, France
| | - Vincent Fuentes
- INSERM UMR925 and EA 4666 UFR de Médecine, CAP-Santé (FED 4231), Université de Picardie Jules Verne, Amiens, France
- Service d’Immunologie, Centre Hospitalier Universitaire sud, Amiens, France
| | - Eric Nguyen-Khac
- Service Hepato-Gastroenterologie, Centre Hospitalier Universitaire sud, Amiens, France
| | - Jean-Marc Regimbeau
- Service de chirurgie digestive Centre Hospitalier Universitaire sud, Amiens, France
| | - Jean-Pierre Marolleau
- INSERM UMR925 and EA 4666 UFR de Médecine, CAP-Santé (FED 4231), Université de Picardie Jules Verne, Amiens, France
- Service d’hématologie Clinique et de thérapie cellulaire Centre Hospitalier Universitaire sud, Amiens, France
| | - Sylvain Latour
- IRNEM U768, Hôpital Necker enfants maladies, Paris, France
| | - Hicham Bouhlal
- INSERM UMR925 and EA 4666 UFR de Médecine, CAP-Santé (FED 4231), Université de Picardie Jules Verne, Amiens, France
- Service d’hématologie Clinique et de thérapie cellulaire Centre Hospitalier Universitaire sud, Amiens, France
- * E-mail:
| |
Collapse
|
77
|
Hsu FN, Chen MC, Lin KC, Peng YT, Li PC, Lin E, Chiang MC, Hsieh JT, Lin H. Cyclin-dependent kinase 5 modulates STAT3 and androgen receptor activation through phosphorylation of Ser⁷²⁷ on STAT3 in prostate cancer cells. Am J Physiol Endocrinol Metab 2013; 305:E975-86. [PMID: 23941877 DOI: 10.1152/ajpendo.00615.2012] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Cyclin-dependent kinase 5 (Cdk5) is known to regulate prostate cancer metastasis. Our previous results indicated that Cdk5 activates androgen receptor (AR) and supports prostate cancer growth. We also found that STAT3 is a target of Cdk5 in promoting thyroid cancer cell growth, whereas STAT3 may play a role as a regulator to AR activation under cytokine control. In this study, we investigated the regulation of Cdk5 and its activator p35 on STAT3/AR signaling in prostate cancer cells. Our results show that Cdk5 biochemically interacts with STAT3 and that this interaction depends on Cdk5 activation in prostate cancer cells. The phosphorylation of STAT3 at Ser⁷²⁷ (p-Ser⁷²⁷-STAT3) is regulated by Cdk5 in cells and xenograft tumors. The mutant of STAT3 S727A reduces its interaction with Cdk5. We further show that the nuclear distribution of p-Ser⁷²⁷-STAT3 and the expression of STAT3-regulated genes (junB, c-fos, c-myc, and survivin) are regulated by Cdk5 activation. STAT3 mutant does not further decrease cell proliferation upon Cdk5 inhibition, which implies that the role of STAT3 regulated by Cdk5 correlates to cell proliferation control. Interestingly, Cdk5 may regulate the interaction between STAT3 and AR through phosphorylation of Ser⁷²⁷-STAT3 and therefore upregulate AR protein stability and transactivation. Correspondingly, clinical evidence shows that the level of p-Ser⁷²⁷-STAT3 is significantly correlated with Gleason score and the levels of upstream regulators (Cdk5 and p35) as well as downstream protein (AR). In conclusion, this study demonstrates that Cdk5 regulates STAT3 activation through Ser⁷²⁷ phosphorylation and further promotes AR activation by protein-protein interaction in prostate cancer cells.
Collapse
Affiliation(s)
- Fu-Ning Hsu
- Department of Life Sciences, National Chung Hsing University, Taichung, Taiwan
| | | | | | | | | | | | | | | | | |
Collapse
|
78
|
Nogueira-Ferreira R, Vitorino R, Ferreira-Pinto MJ, Ferreira R, Henriques-Coelho T. Exploring the role of post-translational modifications on protein-protein interactions with survivin. Arch Biochem Biophys 2013; 538:64-70. [PMID: 23938875 DOI: 10.1016/j.abb.2013.07.027] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2013] [Revised: 07/17/2013] [Accepted: 07/25/2013] [Indexed: 12/31/2022]
Abstract
Survivin is a member of the inhibitor of apoptosis protein (IAP) family with crucial roles in apoptosis and cell cycle regulation. Post-translational modifications (PTMs) have a ubiquitous role in the regulation of a diverse range of proteins' cellular functions and survivin is not an exception. Phosphorylation, acetylation and ubiquitination seem to regulate survivin anti-apoptotic and mitotic roles and also its nuclear localization. In the present review we explore the role of PTMs on protein-protein interactions focused on survivin to provide new insights into the functions and cell localization of this IAP in pathophysiological conditions, which might help the envisioning of novel targeted therapies for diseases characterized by impaired survivin activity. Protein-protein interaction analysis was performed with bioinformatics tools based on published data aiming to give an integrated perspective of this IAP's role in the cell.
Collapse
Affiliation(s)
- Rita Nogueira-Ferreira
- QOPNA, Department of Chemistry, University of Aveiro, Aveiro, Portugal; Department of Physiology and Cardiothoracic Surgery, Faculty of Medicine, University of Porto, Porto, Portugal
| | | | | | | | | |
Collapse
|
79
|
Wu C, Gong F, Pang P, Shen M, Zhu K, Cheng D, Liu Z, Shan H. An RGD-modified MRI-visible polymeric vector for targeted siRNA delivery to hepatocellular carcinoma in nude mice. PLoS One 2013; 8:e66416. [PMID: 23922634 PMCID: PMC3676333 DOI: 10.1371/journal.pone.0066416] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2013] [Accepted: 05/05/2013] [Indexed: 12/21/2022] Open
Abstract
RNA interference (RNAi) has significant therapeutic promise for the genetic treatment of hepatocellular carcinoma (HCC). Targeted vectors are able to deliver small interfering RNA (siRNA) into HCC cells with high transfection efficiency and stability. The tripeptide arginine glycine aspartic acid (RGD)-modified non-viral vector, polyethylene glycol-grafted polyethylenimine functionalized with superparamagnetic iron oxide nanoparticles (RGD-PEG-g-PEI-SPION), was constructed as a magnetic resonance imaging (MRI)-visible nanocarrier for the delivery of Survivin siRNA targeting the human HCC cell line Bel-7402. The biophysical characterization of the RGD-PEG-g-PEI-SPION was performed. The RGD-modified complexes exhibited a higher transfection efficiency in transferring Survivin siRNA into Bel-7402 cells compared with a non-targeted delivery system, which resulted in more significant gene suppression at both the Survivin mRNA and protein expression levels. Then, the level of caspase-3 activation was significantly elevated, and a remarkable level of tumor cell apoptosis was induced. As a result, the tumor growth in the nude mice Bel-7402 hepatoma model was significantly inhibited. The targeting ability of the RGD-PEG-g-PEI-SPION was successfully imaged by MRI scans performed in vitro and in vivo. Our results strongly indicated that the RGD-PEG-g-PEI-SPION can potentially be used as a targeted non-viral vector for altering gene expression in the treatment of hepatocellular carcinoma and for detecting the tumor in vivo as an effective MRI probe.
Collapse
Affiliation(s)
- Chun Wu
- Molecular Imaging Lab, Department of Radiology, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
- Interventional Radiology Institute, Sun Yat-sen University, Guangzhou, China
| | - Faming Gong
- PCFM Lab of Ministry of Education, School of Chemistry and Chemical Engineering, Sun Yat-sen University, Guangzhou, China
| | - Pengfei Pang
- Molecular Imaging Lab, Department of Radiology, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
- Interventional Radiology Institute, Sun Yat-sen University, Guangzhou, China
| | - Min Shen
- Molecular Imaging Lab, Department of Radiology, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
- Interventional Radiology Institute, Sun Yat-sen University, Guangzhou, China
| | - Kangshun Zhu
- Molecular Imaging Lab, Department of Radiology, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
- Interventional Radiology Institute, Sun Yat-sen University, Guangzhou, China
| | - Du Cheng
- PCFM Lab of Ministry of Education, School of Chemistry and Chemical Engineering, Sun Yat-sen University, Guangzhou, China
| | - Zhihao Liu
- Molecular Digestive Lab, Department of Gastroenterology, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Hong Shan
- Molecular Imaging Lab, Department of Radiology, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
- Interventional Radiology Institute, Sun Yat-sen University, Guangzhou, China
- * E-mail:
| |
Collapse
|
80
|
Resnier P, Montier T, Mathieu V, Benoit JP, Passirani C. A review of the current status of siRNA nanomedicines in the treatment of cancer. Biomaterials 2013; 34:6429-43. [PMID: 23727262 DOI: 10.1016/j.biomaterials.2013.04.060] [Citation(s) in RCA: 162] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2013] [Accepted: 04/27/2013] [Indexed: 12/11/2022]
Abstract
RNA interference currently offers new opportunities for gene therapy by the specific extinction of targeted gene(s) in cancer diseases. However, the main challenge for nucleic acid delivery still remains its efficacy through intravenous administration. Over the last decade, many delivery systems have been developed and optimized to encapsulate siRNA and to specifically promote their delivery into tumor cells and improve their pharmacokinetics for anti-cancer purposes. This review aims to sum up the potential targets in numerous pathways and the properties of recently optimized siRNA synthetic nanomedicines with their preclinical applications and efficacy. Future perspectives in cancer treatment are discussed including promising concomitant treatment with chemotherapies or other siRNA. The outcomes in human clinical trials are also presented.
Collapse
|
81
|
Wang T, Gu J, Yuan J, Tao R, Li Y, Li S. Inferring pathway crosstalk networks using gene set co-expression signatures. MOLECULAR BIOSYSTEMS 2013; 9:1822-8. [PMID: 23591523 DOI: 10.1039/c3mb25506a] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Constructing molecular interaction networks in cells is important for understanding the underlying mechanisms of biological processes. Except for single gene analysis, several gene set-based methods have been proposed to infer pathway crosstalk by analyzing large-scale gene expression data. But most of them take all pathway genes as a whole to infer the crosstalk. Biological evidence suggests that the pathway crosstalk usually occurs between some subsets rather than the whole sets of pathway genes. In this study, we propose a novel method, sGSCA (signature-based gene set co-expression analysis) which can use the co-expression correlations between subsets of pathway genes to infer the pathway crosstalk networks. The method applies sparse canonical correlation analysis (sCCA) to measure the pathway level co-expression and simultaneously obtain the subsets or signature genes that contribute to the co-expression of pathways. On simulated datasets, sGSCA can efficiently detect pathway crosstalk and the corresponding highly correlated signature genes. We applied sGSCA to two cancer gene expression datasets (one for hepatocellular cancer and the other for lung cancer). In the inferred networks, we found several important pathway crosstalks related to the cancers. The identified signature genes also show high enrichment for the cancer related genes. sGSCA can infer pathway crosstalk networks using large-scale gene expression data, and should be a useful tool for systematically studying the molecular mechanisms of complex diseases on both pathway and gene levels at the same time.
Collapse
Affiliation(s)
- Ting Wang
- Bioinformatics Division/Center for Synthetic and Systems Biology, Tsinghua National Laboratory for Information Science and Technology (TNLIST), Department of Automation, Tsinghua University, Beijing, 100084, China.
| | | | | | | | | | | |
Collapse
|
82
|
Tang H, Wu Y, Wu H, Wu Y, Wu H, Wang W. Functional analysis of a survivin-like gene in Bombyx mori. Cytotechnology 2013; 66:181-91. [PMID: 23529562 DOI: 10.1007/s10616-013-9551-9] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2012] [Accepted: 02/25/2013] [Indexed: 10/27/2022] Open
Abstract
The survivin (svv) gene is a newly discovered member of the inhibitors of apoptosis gene family. In recent years, svv has been confirmed to have an anti-apoptosis function and to play a critical role in cell division. We identified a survivin-like gene in the silkworm, Bombyx mori (Bm-svv). In this study, to gain insight into its function, a baculovirus expression system was used to express the Bm-svv gene in insect cell lines. The recombinant viruses were then used as a vector to transform insect cells, and cell activity was determined using the Cell Counting Kit-8 (CCK-8), which is usually employed for detecting mammalian cell number. The results indicated that the Bm-svv gene plays a role in the cell growth arrest or apoptosis induced by viruses. Furthermore, the CCK-8 kit is effective in determining the activity of insect cells.
Collapse
Affiliation(s)
- Hui Tang
- Institute of Life Sciences, Jiangsu University, 301 Xuefu Rd, Zhenjiang, 212013, China,
| | | | | | | | | | | |
Collapse
|
83
|
Li H, Gong J, Jiang X, Shao H. Arsenic trioxide treatment of rabbit liver VX-2 carcinoma via hepatic arterial cannulation-induced apoptosis and decreased levels of survivin in the tumor tissue. Croat Med J 2013; 54:12-6. [PMID: 23444241 PMCID: PMC3583389 DOI: 10.3325/cmj.2013.54.12] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2012] [Accepted: 02/04/2013] [Indexed: 11/05/2022] Open
Abstract
AIM To investigate the role of tumor apoptosis-inhibitory protein survivin in arsenic trioxide-induced apoptosis in VX-2 carcinoma in the rabbit liver by means of transcatheter arterial chemoembolization. METHODS Sixteen rabbits with 32 implanted hepatic VX-2 tumors were randomly divided into two groups. The experimental group received 2 mg of arsenic trioxide and 1 mL of ultra-fluid lipiodol co-injected via hepatic arterial cannulation and the control group received only 1 mL of lipiodol. Animals were sacrificed 3 weeks after trans-catheterial arterial chemoembolization. Tumor tissue and tumor-peripheral tissue were collected for analysis. Terminal deoxynucleotidyl transferase-mediated dUTP nick-end-labeling staining was used to assess tumor cells apoptosis. Immunohistochemistry was used to assess the presence of survivin protein. Reverse transcription polymerase chain reaction was used to determine the expression of survivin gene. RESULTS The number of apoptotic cells significantly increased in the tumor tissue (5.20 ± 0.60%) compared to tumor-peripheral tissue (1.29 ± 0.42%) of the arsenic trioxide-treated group. Survivin expression levels in the tumor tissue were significantly reduced in arsenic trioxide-treated group (7.68 ± 0.65) compared to the control group (35.30 ± 4.63). CONCLUSION Transcatheter arterial chemoembolization with arsenic trioxide induced apoptosis of VX-2 carcinoma, in which tumor apoptosis-inhibitory protein survivin may have played a role.
Collapse
Affiliation(s)
- Hong Li
- Department of Radiology, First Affiliated Hospital of China Medical University, 155 Nanjing St, Shenyang 110001, China.
| | | | | | | |
Collapse
|
84
|
Cheng CW, Chow AKM, Pang R, Fok EWS, Kwong YL, Tse E. PIN1 inhibits apoptosis in hepatocellular carcinoma through modulation of the antiapoptotic function of survivin. THE AMERICAN JOURNAL OF PATHOLOGY 2013; 182:765-75. [PMID: 23333752 DOI: 10.1016/j.ajpath.2012.11.034] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/06/2012] [Revised: 10/29/2012] [Accepted: 11/16/2012] [Indexed: 12/18/2022]
Abstract
PIN1, a peptidyl-prolyl-isomerase, binds a specific motif comprising a phosphorylated serine or threonine preceding a proline (p-Ser/Thr-Pro) residue in proteins. Through cis-trans isomerization, it induces conformational changes and modulates functions of many proteins that are involved in cell cycle progression, cell proliferation, and oncogenesis. PIN1 is overexpressed in hepatocellular carcinomas (HCC) and contributes to hepatocarcinogenesis. We investigated the role of PIN1 and the significance of its interaction with the inhibitor of apoptosis protein survivin in evading apoptosis in HCC cells. Using cell line and xenograft models, we determined that PIN1 overexpression inhibits apoptosis through suppression of caspase-3 and caspase-9 activity. In addition, down-regulation of survivin in PIN1-overexpressing cells attenuated the antiapoptotic effect induced by PIN1, suggesting that the inhibition of apoptosis is mediated through PIN1-survivin interaction. Coimmunoprecipitation assays showed that PIN1 interacted with survivin via the phosphorylated Thr34-Pro35 motif and enhanced binding among survivin phosphorylated at Thr34, hepatitis B X-interacting protein (HBXIP), and pro-caspase-9. Taken together, these results suggest that the inhibition of apoptosis by PIN1 in HCC cells is mediated through modulation of the antiapoptotic function of survivin by increasing its binding to pro-caspase-9 via HBXIP. Such functional interaction between PIN1 and survivin may therefore play an important role in hepatocarcinogenesis and chemoresistance.
Collapse
Affiliation(s)
- Chi-Wai Cheng
- Division of Haematology and Medical Oncology, Department of Medicine, University of Hong Kong, Queen Mary Hospital, Hong Kong, China
| | | | | | | | | | | |
Collapse
|
85
|
LIU WENSONG, ZHU FENG, JIANG YONG, SUN DONGLIN, YANG BO, YAN HAIJIAO. siRNA targeting survivin inhibits the growth and enhances the chemosensitivity of hepatocellular carcinoma cells. Oncol Rep 2012; 29:1183-8. [DOI: 10.3892/or.2012.2196] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2012] [Accepted: 11/16/2012] [Indexed: 01/15/2023] Open
|
86
|
Zhang H, Xu F, Xie T, Jin H, Shi L. β-elemene induces glioma cell apoptosis by downregulating survivin and its interaction with hepatitis B X-interacting protein. Oncol Rep 2012; 28:2083-2090. [PMID: 22965456 DOI: 10.3892/or.2012.2022] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2012] [Accepted: 08/17/2012] [Indexed: 11/06/2022] Open
Abstract
β-elemene, extracted from the ginger plant, possesses antitumor activity against a broad range of cancers clinically. However, the mechanism underlying β-elemene-induced cytotoxicity remains incompletely understood. Here, we show that β-elemene promoted apoptotic cell death in human glioma cells, downregulated survivin gene expression, and induced caspase-9, -3 and -7 activities. Induction of apoptosis was associated with inhibition of survivin gene expression, and restoration of survivin levels remarkably attenuated β-elemene-induced glioma cell death. Moreover, we found that the interaction between surviving and HBXIP, a critical regulator of caspase-9 activity, was impaired by β-elemene treatment. The results, therefore, reveal a caspase-mediated apoptotic pathway induced by β-elemene in human glioma cells, which is associated with downregulation of survivin itself and the interaction between survivin and HBXP.
Collapse
Affiliation(s)
- Hang Zhang
- Department of Basic Medical Science, Hangzhou Normal University, Hangzhou, Zhejiang, PR China
| | | | | | | | | |
Collapse
|
87
|
Lu XL, Zeng J, Chen YL, He PM, Wen MX, Ren MD, Hu YN, Lu GF, He SΧ. Sinomenine hydrochloride inhibits human hepatocellular carcinoma cell growth in vitro and in vivo: involvement of cell cycle arrest and apoptosis induction. Int J Oncol 2012; 42:229-38. [PMID: 23165705 DOI: 10.3892/ijo.2012.1704] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2012] [Accepted: 09/20/2012] [Indexed: 02/07/2023] Open
Abstract
Hepatocellular carcinoma (HCC) is one of the most common malignancies worldwide. However, therapies against HCC to date have not been completely effective. Sinomenine hydrochloride (SH), an anti‑arthritis drug applied in clinical practice, has been reported to have in vitro anti‑neoplastic activity in various cancer cells. Whether SH inhibits HCC remains unknown. For this purpose, in this study, MTT assay was used to determine cell growth. Flow cytometry, Hoechst staining, DNA fragmentation, western blot analysis, immunohistochemisty and TUNEL staining were performed to investigate the mechanisms involved. The in vivo activity of SH was determined using a mouse xenograft model. SH inhibited the growth of various types of human HCC cells in vitro. We found that SH promoted cell cycle arrest in the G1 phase and sub‑G1 formation, associated with the increased p21/WAF1/Cip1 expression. Additionally, SH induced caspase‑dependent apoptosis, which involved the disruption of mitochondrial membrane potential, the increased release of cytochrome c and Omi/HtrA2 from the mitochondria into the cytoplasm, the downregulation of Bcl‑2 and the upregulation of Bax, the activation of a caspase cascade (caspase‑8, -10, -9 and -3) and PARP, as well as the decreased expression of survivin. The SH‑suppressed growth of human HCC xenografts in vivo occurred due to the decrease in proliferation and the induction of apoptosis, implicating the activation of caspase‑3, the upregulation of p21 and the downregulation of survivin. These findings suggest that SH exhibits anticancer efficacy in vitro and in vivo involving cell cycle and caspase‑dependent apoptosis and may serve as a potential drug candidate against HCC.
Collapse
Affiliation(s)
- Xin-Lan Lu
- Department of Gastroenterology, The First Affiliated Hospital, Xi'an Jiaotong University, Xi'an, Shaanxi, People's Republic of China
| | | | | | | | | | | | | | | | | |
Collapse
|
88
|
Subramaniam A, Shanmugam MK, Perumal E, Li F, Nachiyappan A, Dai X, Swamy SN, Ahn KS, Kumar AP, Tan BKH, Hui KM, Sethi G. Potential role of signal transducer and activator of transcription (STAT)3 signaling pathway in inflammation, survival, proliferation and invasion of hepatocellular carcinoma. Biochim Biophys Acta Rev Cancer 2012; 1835:46-60. [PMID: 23103770 DOI: 10.1016/j.bbcan.2012.10.002] [Citation(s) in RCA: 150] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2012] [Revised: 10/18/2012] [Accepted: 10/21/2012] [Indexed: 12/14/2022]
Abstract
Hepatocellular carcinoma (HCC) is one of the most lethal malignancies, and is also the fourth most common cancer worldwide with around 700,000 new cases each year. Currently, first line chemotherapeutic drugs used for HCC include fluorouracil, cisplatin, doxorubicin, paclitaxel and mitomycin, but most of these are non-selective cytotoxic molecules with significant side effects. Sorafenib is the only approved targeted therapy by the U.S. Food and Drug Administration for HCC treatment, but patients suffer from various kinds of adverse effects, including hypertension. The signal-transducer-and-activator-of-transcription 3 (STAT3) protein, one of the members of STATs transcription factor family, has been implicated in signal transduction by different cytokines, growth factors and oncogenes. In normal cells, STAT3 activation is tightly controlled to prevent dysregulated gene transcription, whereas constitutively activated STAT3 plays an important role in tumorigenesis through the upregulation of genes involved in anti-apoptosis, proliferation and angiogenesis. Thus, pharmacologically safe and effective agents that can block STAT3 activation have the potential both for the prevention and treatment of HCC. In the present review, we discuss the possible role of STAT3 signaling cascade and its interacting partners in the initiation of HCC and also analyze the role of various STAT3 regulated genes in HCC progression, inflammation, survival, invasion and angiogenesis.
Collapse
Affiliation(s)
- Aruljothi Subramaniam
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117597
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
89
|
Nojiri K, Sugimoto K, Shiraki K, Tameda M, Inagaki Y, Ogura S, Kasai C, Kusagawa S, Yoneda M, Yamamoto N, Takei Y, Nobori T, Ito M. Sorafenib and TRAIL have synergistic effect on hepatocellular carcinoma. Int J Oncol 2012; 42:101-8. [PMID: 23123700 DOI: 10.3892/ijo.2012.1676] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2012] [Accepted: 08/21/2012] [Indexed: 02/06/2023] Open
Abstract
A multi-kinase inhibitor, sorafenib, was recently approved and is currently recommended for the treatment of advanced hepatocellular carcinoma (HCC). However, HCC treatment outcomes are still poor and necessitate improvement. Therefore, we investigated the influence of sorafenib in combination with each of cytotoxic chemotherapy agents, hypoxia or tumor necrosis factor (TNF)-related apoptosis‑inducing ligand (TRAIL), on cytotoxicity to determine which is the better adjuvant. Additive cytotoxicity of sorafenib to chemotherapy agents, hypoxia and TRAIL, to HCC cells was assessed using cell viability assay. Intracellular levels of anti-apoptotic proteins were determined using western blot analysis. Activation of Wnt/β-catenin signaling was assessed using a luciferase reporter gene assay. Sorafenib significantly and synergistically enhanced the cytotoxicity of TRAIL to HCC cells and 4',6-diamidino-2-phenylindole (DAPI) staining showed increased apoptosis among cells treated with sorafenib and TRAIL. This augmentation in cytotoxicity was derived from sorafenib-mediated downregulation of anti-apoptotic proteins. However, sorafenib did not enhance the cytotoxicity of chemotherapy agents (cisplatin, 5-FU or doxorubicin) or hypoxic treatment to HCC. Moreover, hypoxic treatment induced Wnt/β-catenin signaling activation. Our data showed that in combination TRAIL and sorafenib had a synergistic cytokilling effect on HCC cells and that this effect derived from sorafenib-mediated downregulation of anti-apoptotic proteins.
Collapse
Affiliation(s)
- Keiichiro Nojiri
- First Department of Internal Medicine, Mie University School of Medicine, Tsu, Japan
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
90
|
Ke PY, Chen SSL. Hepatitis C virus and cellular stress response: implications to molecular pathogenesis of liver diseases. Viruses 2012. [PMID: 23202463 PMCID: PMC3497051 DOI: 10.3390/v4102251] [Citation(s) in RCA: 61] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Infection with hepatitis C virus (HCV) is a leading risk factor for chronic liver disease progression, including steatosis, cirrhosis, and hepatocellular carcinoma. With approximately 3% of the human population infected worldwide, HCV infection remains a global public health challenge. The efficacy of current therapy is still limited in many patients infected with HCV, thus a greater understanding of pathogenesis in HCV infection is desperately needed. Emerging lines of evidence indicate that HCV triggers a wide range of cellular stress responses, including cell cycle arrest, apoptosis, endoplasmic reticulum (ER) stress/unfolded protein response (UPR), and autophagy. Also, recent studies suggest that these HCV-induced cellular responses may contribute to chronic liver diseases by modulating cell proliferation, altering lipid metabolism, and potentiating oncogenic pathways. However, the molecular mechanism underlying HCV infection in the pathogenesis of chronic liver diseases still remains to be determined. Here, we review the known stress response activation in HCV infection in vitro and in vivo, and also explore the possible relationship of a variety of cellular responses with the pathogenicity of HCV-associated diseases. Comprehensive knowledge of HCV-mediated disease progression shall shed new insights into the discovery of novel therapeutic targets and the development of new intervention strategy.
Collapse
Affiliation(s)
- Po-Yuan Ke
- Department of Biochemistry and Molecular Biology, College of Medicine, Chang Gung University, Taoyuan 33371, Taiwan, Republic of China; (P.-Y.K.)
- Institute of Biomedical Sciences, Academia Sinica, Taipei 11529, Taiwan, Republic of China
| | - Steve S.-L. Chen
- Institute of Biomedical Sciences, Academia Sinica, Taipei 11529, Taiwan, Republic of China
- Author to whom correspondence should be addressed; (S.-L.C.); Tel.: +886-2-2652-3933, Fax: +886-2-2652-3073
| |
Collapse
|
91
|
Finkelstein SE, Fishman M, Conley AP, Gabrilovich D, Antonia S, Chiappori A. Cellular immunotherapy for soft tissue sarcomas. Immunotherapy 2012; 4:283-90. [PMID: 22401634 DOI: 10.2217/imt.12.3] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Soft tissue sarcomas are rare neoplasms, with approximately 9000 new cases in the USA every year. Unfortunately, during the past two decades, there has been little progress in the treatment of metastatic soft tissue sarcomas beyond the standard approaches of surgery, chemotherapy and radiation. Immunotherapy is a modality complementary to conventional therapy. It is appealing because functional antitumor activity could affect both local-regional and systemic disease, and act over a prolonged period of time. In this report, we review immunotherapeutic investigative strategies that are being developed, including several tumor vaccine, antigen vaccine and dendritic cell vaccine strategies.
Collapse
|
92
|
Hui MKC, Lai KKY, Chan KW, Luk JM, Lee NP, Chung Y, Cheung LCM, Srivastava G, Tsao SW, Tang JC, Law S. Clinical correlation of nuclear survivin in esophageal squamous cell carcinoma. Med Oncol 2012; 29:3009-16. [PMID: 22528514 PMCID: PMC3505527 DOI: 10.1007/s12032-012-0225-9] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2012] [Accepted: 03/19/2012] [Indexed: 12/20/2022]
Abstract
To examine the correlation of survivin (both total and nuclear survivin) with clinicopathological parameters of esophageal squamous cell carcinoma (ESCC) patients. Tumors and non-tumor tissues near the proximal resection margins were resected from ESCC patients undergone esophagectomy. Quantitative polymerase chain reaction (qPCR) was performed to detect survivin mRNA expression level in the 10 paired tumor and adjacent non-tumor tissues. To confirm with the clinical situation, survivin mRNA and protein expression were measured by qPCR and immunoblot, respectively, in 5 ESCC cell lines and a non-neoplastic esophageal epithelial cell line. Immunohistochemistry was employed to reveal the cellular localization of survivin in tumor tissues isolated from the 64 ESCC patients undergone surgery alone. Up-regulation of survivin mRNA and protein was found in 5 ESCC lines (HKESC-1, HKESC-2, HKESC-3, HKESC-4, and SLMT-1) when compared to a non-neoplastic esophageal epithelial cell line NE-1. In particular, HKESC-3, HKESC-4, and SLMT-1 cells demonstrated ~50-fold increase in survivin mRNA. High level of survivin mRNA in tumor tissues when compared to non-tumor tissues was found in 70 % (7 of 10) of clinical cases. The increase in expression ranged from ~twofold to ~16-fold. Immunohistochemistry results showed that survivin was found at the cell nuclei in all specimens examined. Nuclear expression of survivin was inversely associated with the likelihood of developing nodal metastasis (p = 0.021) and significantly associated with early-stage ESCC (p = 0.039). Nuclear survivin could serve as a marker for indicating disease status in ESCC patients.
Collapse
Affiliation(s)
- Marco K. C. Hui
- Department of Surgery, Queen Mary Hospital, The University of Hong Kong, Pokfulam, Hong Kong, China
| | - Kenneth K. Y. Lai
- Department of Surgery, Queen Mary Hospital, The University of Hong Kong, Pokfulam, Hong Kong, China
| | - Kwok Wah Chan
- Department of Pathology, The University of Hong Kong, Hong Kong, China
| | - John M. Luk
- Department of Oncology, Roche R&D Center, pRED China, Shanghai, China
| | - Nikki P. Lee
- Department of Surgery, Queen Mary Hospital, The University of Hong Kong, Pokfulam, Hong Kong, China
| | - Yvonne Chung
- Department of Surgery, Queen Mary Hospital, The University of Hong Kong, Pokfulam, Hong Kong, China
| | - Leo C. M. Cheung
- Department of Surgery, Queen Mary Hospital, The University of Hong Kong, Pokfulam, Hong Kong, China
| | - Gopesh Srivastava
- Department of Pathology, The University of Hong Kong, Hong Kong, China
| | - Sai Wah Tsao
- Department of Anatomy, The University of Hong Kong, Hong Kong, China
| | - Johnny C. Tang
- Department of Applied Biology and Chemical Technology, Hong Kong Polytechnic University, Hong Kong, China
| | - Simon Law
- Department of Surgery, Queen Mary Hospital, The University of Hong Kong, Pokfulam, Hong Kong, China
| |
Collapse
|
93
|
A New Player in the Development of TRAIL Based Therapies for Hepatocarcinoma Treatment: ATM Kinase. Cancers (Basel) 2012; 4:354-78. [PMID: 24213315 PMCID: PMC3712690 DOI: 10.3390/cancers4020354] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2012] [Revised: 03/15/2012] [Accepted: 03/26/2012] [Indexed: 02/06/2023] Open
Abstract
Hepatocellular carcinoma (HCC) is one of the most common cancers worldwide. HCCs are genetically and phenotypically heterogeneous tumors characterized by very poor prognosis, mainly due to the lack, at present, of effective therapeutic options, as these tumors are rarely suitable for radiotherapy and often resistant to chemotherapy protocols. In the last years, agonists targeting the Tumor Necrosis Factor Related Apoptosis Inducing Ligand (TRAIL) death receptor, has been investigated as a valuable promise for cancer therapy, based on their selectivity for malignant cells and low toxicity for healthy cells. However, many cancer models display resistance to death receptor induced apoptosis, pointing to the requirement for the development of combined therapeutic approaches aimed to selectively sensitize cancer cells to TRAIL. Recently, we identified ATM kinase as a novel modulator of the ability of chemotherapeutic agents to enhance TRAIL sensitivity. Here, we review the biological determinants of HCC responsiveness to TRAIL and provide an exhaustive and updated analysis of the molecular mechanisms exploited for combined therapy in this context. The role of ATM kinase as potential novel predictive biomarker for combined therapeutic approaches based on TRAIL and chemotherapeutic drugs will be closely discussed.
Collapse
|
94
|
He G, Lei W, Wang S, Xiao R, Guo K, Xia Y, Zhou X, Zhang K, Liu X, Wang Y. Overexpression of tumor suppressor TSLC1 by a survivin-regulated oncolytic adenovirus significantly inhibits hepatocellular carcinoma growth. J Cancer Res Clin Oncol 2012; 138:657-70. [PMID: 22237452 DOI: 10.1007/s00432-011-1138-2] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2011] [Accepted: 12/20/2011] [Indexed: 12/16/2022]
Abstract
PURPOSE Hepatocellular carcinoma (HCC) is one of the most common malignant tumors worldwide. Oncolytic viruses represent a promising therapeutic agent or vehicle to human cancers due to their ability of selectively lysing cancer cells but not in normal cells. TSLC1, a novel tumor suppressor gene, was loss in many human cancers including HCC, not in normal cells. The current study is focused on the antitumor effect of TSLC1-armed survivin-regulated oncolytic adenovirus for HCC and to explore their molecular mechanism. METHODS The expression of tumor suppressor TSLC1 and survivin was detected by quantitative PCR. The recombinant virus Ad.SP-E1A-E1B((Δ55))-TSLC1 (brief name as SD55-TSLC1) was constructed by inserting TSLC1 gene into the dual-regulated oncolytic adenovirus vector Ad.SP-E1A-E1B((Δ55)). Then, we performed the antitumor experiments of SD55-TSLC1 in vitro and in nude mice xenografted with Huh7 liver cancer. RESULTS The expression of TSLC1 was lower in HCC cells than in normal cells, which implied TSLC1 is a tumor suppressor of liver cancer. Survivin expression is higher in detected HCC cells than in normal cells. The SD55-TSLC1 exhibited an excellent antitumor effect on HCC cell growth in vitro but does no or little damage to normal liver cells. Animal experiment further confirmed that SD55-TSLC1 achieved significant inhibition of Huh7 liver cancer xenografted growth. Furthermore, the mechanism of antitumor efficacy by SD55-TSLC1 was elucidated to be due to the activation of caspase apoptotic pathway including the inducement of caspase-3, caspase-8, and poly (ADP-ribose) polymerase cleavage. This is the first report of TSLC1 by oncolytic adenovirus with an excellent antitumor effect to liver cancer growth. CONCLUSION These data suggest that an oncolytic adenovirus expressing TSLC1 is effective and support that SD55-TSLC1 may be a potent antitumoral agent for future clinical trials of liver cancer.
Collapse
MESH Headings
- Adenoviridae/genetics
- Adenoviridae/physiology
- Adenovirus E1A Proteins/genetics
- Animals
- Apoptosis/genetics
- Blotting, Western
- Caspases/metabolism
- Cell Adhesion Molecule-1
- Cell Adhesion Molecules/genetics
- Cell Adhesion Molecules/metabolism
- Cell Line, Tumor
- Female
- Gene Expression Regulation, Neoplastic
- Genetic Vectors/genetics
- HEK293 Cells
- Host-Pathogen Interactions/genetics
- Humans
- Immunoglobulins/genetics
- Immunoglobulins/metabolism
- Inhibitor of Apoptosis Proteins/genetics
- Inhibitor of Apoptosis Proteins/metabolism
- Liver Neoplasms, Experimental/genetics
- Liver Neoplasms, Experimental/therapy
- Liver Neoplasms, Experimental/virology
- Mice
- Mice, Inbred BALB C
- Mice, Nude
- Microscopy, Electron, Transmission
- Oncolytic Virotherapy/methods
- Oncolytic Viruses/genetics
- Oncolytic Viruses/physiology
- Reverse Transcriptase Polymerase Chain Reaction
- Survivin
- Tumor Suppressor Proteins/genetics
- Tumor Suppressor Proteins/metabolism
- Viral Proteins/genetics
- Xenograft Model Antitumor Assays
Collapse
Affiliation(s)
- Guoqing He
- Xinyuan Institute of Medicine and Biotechnology, School of Life Sciences, Zhejiang Sci-Tech University, No. 2 Road Xiasha District, Hangzhou 310018, China
| | | | | | | | | | | | | | | | | | | |
Collapse
|
95
|
Expression of Yes-associated protein modulates Survivin expression in primary liver malignancies. Hum Pathol 2012; 43:1376-85. [PMID: 22436626 DOI: 10.1016/j.humpath.2011.12.001] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/10/2011] [Revised: 12/01/2011] [Accepted: 12/02/2011] [Indexed: 12/13/2022]
Abstract
Hepatocellular carcinoma and intrahepatic cholangiocarcinoma account for 95% of primary liver cancer. For each of these malignancies, the outcome is dismal; incidence is rapidly increasing, and mechanistic understanding is limited. We observed abnormal proliferation of both biliary epithelium and hepatocytes in mice after genetic manipulation of Yes-associated protein, a transcription coactivator. Here, we comprehensively documented Yes-associated protein expression in the human liver and primary liver cancers. We showed that nuclear Yes-associated protein expression is significantly increased in human intrahepatic cholangiocarcinoma and hepatocellular carcinoma. We found that increased Yes-associated protein levels in hepatocellular carcinoma are due to multiple mechanisms including gene amplification and transcriptional and posttranscriptional regulation. Survivin, a member of the inhibitors-of-apoptosis protein family, has been reported as an independent prognostic factor for poor survival in both hepatocellular carcinoma and intrahepatic cholangiocarcinoma. We found that nuclear Yes-associated protein expression correlates significantly with nuclear Survivin expression for both intrahepatic cholangiocarcinoma and hepatocellular carcinoma. Furthermore, using mice engineered to conditionally overexpress Yes-associated protein in the liver, we found that Survivin messenger RNA expression depends upon Yes-associated protein levels. Our findings suggested that Yes-associated protein contributes to primary liver tumorigenesis and likely mediates its oncogenic effects through modulating Survivin expression.
Collapse
|
96
|
Fernando J, Sancho P, Fernández-Rodriguez CM, Lledó JL, Caja L, Campbell JS, Fausto N, Fabregat I. Sorafenib sensitizes hepatocellular carcinoma cells to physiological apoptotic stimuli. J Cell Physiol 2012; 227:1319-25. [PMID: 21604268 DOI: 10.1002/jcp.22843] [Citation(s) in RCA: 60] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Sorafenib increases survival rate of patients with advanced hepatocellular carcinoma (HCC). The mechanism underlying this effect is not completely understood. In this work we have analyzed the effects of sorafenib on autocrine proliferation and survival of different human HCC cell lines. Our results indicate that sorafenib in vitro counteracts autocrine growth of different tumor cells (Hep3B, HepG2, PLC-PRF-5, SK-Hep1). Arrest in S/G2/M cell cycle phases were observed coincident with cyclin D1 down-regulation. However, sorafenib's main anti-tumor activity seems to occur through cell death induction which correlated with caspase activation, increase in the percentage of hypodiploid cells, activation of BAX and BAK and cytochrome c release from mitochondria to cytosol. In addition, we observed a rise in mRNA and protein levels of the pro-apoptotic "BH3-domain only" PUMA and BIM, as well as decreased protein levels of the anti-apoptotic MCL1 and survivin. PUMA targeting knock-down, by using specific siRNAs, inhibited sorafenib-induced apoptotic features. Moreover, we obtained evidence suggesting that sorafenib also sensitizes HCC cells to the apoptotic activity of transforming growth factor-β (TGF-β) through the intrinsic pathway and to tumor necrosis factor-α (TNF) through the extrinsic pathway. Interestingly, sensitization to sorafenib-induced apoptosis is characteristic of liver tumor cells, since untransformed hepatocytes did not respond to sorafenib inducing apoptosis, either alone or in combination with TGF-β or TNF. Indeed, sorafenib effectiveness in delaying HCC late progression might be partly related to a selectively sensitization of HCC cells to apoptosis by disrupting autocrine signals that protect them from adverse conditions and pro-apoptotic physiological cytokines.
Collapse
Affiliation(s)
- Joan Fernando
- Biological Clues of the Invasive and Metastatic Phenotype Group, Bellvitge Biomedical Research Institute (IDIBELL), L'Hospitalet de Llobregat, Barcelona, Spain
| | | | | | | | | | | | | | | |
Collapse
|
97
|
MicroRNA-203 leads to G1 phase cell cycle arrest in laryngeal carcinoma cells by directly targeting survivin. FEBS Lett 2012; 586:804-9. [DOI: 10.1016/j.febslet.2012.01.050] [Citation(s) in RCA: 67] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2011] [Revised: 01/22/2012] [Accepted: 01/23/2012] [Indexed: 02/03/2023]
|
98
|
Hung CS, Lin SF, Liu HH, Kuo LJ, Li LT, Su HY, Liew PL, Lin FY, Wei PL, Liu DZ, Chang YJ. Survivin-mediated therapeutic efficacy of gemcitabine through glucose-regulated protein 78 in hepatocellular carcinoma. Ann Surg Oncol 2012; 19:2744-52. [PMID: 22258814 DOI: 10.1245/s10434-011-2188-z] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2011] [Indexed: 12/17/2022]
Abstract
BACKGROUND Survivin is an antiapoptotic molecule that is widely expressed in cancers, including hepatocellular carcinoma (HCC). Survivin has become a general therapeutic target for cancers because of its selective overexpression in a majority of tumors. However, little is known regarding the effect of survivin expression in combination with gemcitabine on HCC. METHODS We generated survivin knockdown cells (survivin-KD) via a short interfering RNA (siRNA) technique. The antiproliferation effects of gemcitabine were determined by MTT (3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide) assay, TUNEL (terminal deoxynucleotidyl transferase dUTP nick-end labeling) assay, and cell cycle evaluation. RESULTS According to the MTT assay, we found that survivin-KD cells were more sensitive than parental cells and scrambled control cells to gemcitabine treatment. The apoptotic cell population increased in survivin-KD cells that were treated with gemcitabine in comparison to scrambled control cells, as observed by the cell cycle distribution and TUNEL assays. We found that survivin knockdown resulted in a reduction of glucose-regulated protein 78 (GRP78), which may be responsible for the observed increased survivin-KD cell sensitivity to gemcitabine. CONCLUSIONS We conclude that survivin knockdown may contribute to a therapeutic effect of gemcitabine through GRP78 on HCC cells.
Collapse
Affiliation(s)
- Chin-Sheng Hung
- Graduate Institute of Clinical Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
99
|
Li Y, Wang J, Jiang F, Lin W, Meng W. Association of polymorphisms in survivin gene with the risk of hepatocellular carcinoma in Chinese han population: a case control study. BMC MEDICAL GENETICS 2012; 13:1. [PMID: 22214342 PMCID: PMC3264525 DOI: 10.1186/1471-2350-13-1] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/09/2010] [Accepted: 01/03/2012] [Indexed: 12/13/2022]
Abstract
BACKGROUND Survivin, one of the strongest apoptosis inhibitors, plays a critical role in the development and progression of hepatocellular carcinoma (HCC). By comparison, relatively little is known about the effect of survivin gene polymorphisms on HCC susceptibility. Our study aimed to investigate the association of survivin gene polymorphisms with the risk of HCC in Chinese han population. METHODS A case-control study was conducted in Chinese han population consisting of 178 HCC cases and 196 cancer-free controls. Information on demographic data and related risk factors was collected for all subjects. Polymorphisms of the survivin gene, including three loci of rs8073069, rs9904341 and rs1042489, were selected and genotyped by a polymerase chain reaction- restriction fragment length polymorphism (PCR-RFLP) technique. Association analysis of genotypes/alleles and haplotypes from these loci with the risk of HCC was conducted under different genetic models. RESULTS Using univariate analysis of rs8073069, rs9904341 and rs1042489 under different genetic models, no statistically significant difference was found in genotype or allele distribution of HCC cases relative to the controls (P > 0.05). Linkage disequilibrium (LD) analysis showed that these loci were in LD. Multivariate logistic regression indicated that with no G-C-T haplotype as reference, the haplotype of G-C-T from these loci was associated with a lower risk for HCC under the recessive model (OR = 0.46, 95% confidence interval (CI): 0.24~0.90, P = 0.023). Both HBsAg+ and the medical history of viral hepatitis type B were risk factors for HCC. However, no statistically significant haplotype-environment interaction existed. CONCLUSIONS No association between rs8073069, rs9904341 or rs1042489 in survivin gene and the risk of HCC is found in Chinese han population, but rs8073069G-rs9904341C- rs1042489T is perhaps a protective haplotype for HCC.
Collapse
Affiliation(s)
- Yuhua Li
- Department of Epidemiology, School of Public Health, Fudan University; Key Laboratory of Public Health Security, Ministry of Education, Shanghai, 200032, China
| | | | | | | | | |
Collapse
|
100
|
Baykara M, Akkus M, Yildiz R, Gonul II, Dursun A, Coskun U, Benekli M, Sevinc A, Dane F, Buyukberber S. Survivin expression and its potential clinical significance in gastrointestinal stromal sarcoma. Int Immunopharmacol 2011; 11:2227-31. [PMID: 22020290 DOI: 10.1016/j.intimp.2011.10.005] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2011] [Revised: 10/02/2011] [Accepted: 10/03/2011] [Indexed: 11/29/2022]
Abstract
This study was designed to determine the level of survivin expression and its clinical significance as a prognostic factor in gastrointestinal stromal sarcoma (GIST). Twenty patients (12 males and 8 females) ranging in age from 25 to 72, with a median age of 53 were evaluated. Failure of TKI treatment was higher in the survivin-positive group (p=0.06). The rate of metastasis was significantly higher in the survivin positive group vs. the negative group (80% vs. 30%, p=0.18). The median overall survival (OS) time was 114 (range 29-199)months, and the median disease-free survival (DFS) time was 88 (range 40-135) months. The median progression-free survival (PFS) time was 40 (range 24-55) months. Further, a comparison of patients with survivin positive versus negative tumors, revealed no significant difference for OS, DFS, and PFS (p=0.45, p=0.19, p=0.55, respectively), number of mitoses in 50 HPF (p=0.14), and tumor size (p=0.94). In conclusion, survivin was highly expressed in GISTs, although we found no correlation between survivin expression and PFS, DFS and OS, survivin may be a predictive marker in GISTs for disease progression. We believe that additional studies are warranted to determine the clinical significance of survivin expression as a prognostic or predictive marker in patients with GIST.
Collapse
Affiliation(s)
- Meltem Baykara
- Gazi University Medical Faculty, Department Of Medical Oncology, Ankara, Turkey
| | | | | | | | | | | | | | | | | | | |
Collapse
|