51
|
Abstract
PURPOSE OF REVIEW Colorectal cancer (CRC) is one of the most common cancers and the fourth leading cause of cancer-related deaths worldwide. Diet has a significant impact on the risk of developing CRC, but though processed meat is a known positive contributor, the effects of other dietary components are largely mixed. This review focuses on dietary patterns to describe the complexity of dietary diversity and overall food consumption and to examine the relationship between dietary patterns and risk of CRC. RECENT FINDINGS After searching human studies published in 2017-2018, we selected and evaluated 30 articles, including meta-analyses, cohort studies, and prospective studies. These studies suggest that the prudent or Mediterranean dietary pattern significantly decreases the risk of CRC compared to the Western dietary pattern; a lower dietary inflammatory index or a higher dietary quality index associates with a lower risk of CRC; closely following all aspects of the World Cancer Research Fund/American Institute for Cancer Research cancer prevention guidelines and recommendations correlates with a reduced risk of CRC. SUMMARY The risk of developing CRC can be reduced by adopting a healthier lifestyle. More studies of the impact of diet on clinical outcomes of CRC are needed.
Collapse
|
52
|
Ogino S, Nowak JA, Hamada T, Milner DA, Nishihara R. Insights into Pathogenic Interactions Among Environment, Host, and Tumor at the Crossroads of Molecular Pathology and Epidemiology. ANNUAL REVIEW OF PATHOLOGY 2019; 14:83-103. [PMID: 30125150 PMCID: PMC6345592 DOI: 10.1146/annurev-pathmechdis-012418-012818] [Citation(s) in RCA: 168] [Impact Index Per Article: 28.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Evidence indicates that diet, nutrition, lifestyle, the environment, the microbiome, and other exogenous factors have pathogenic roles and also influence the genome, epigenome, transcriptome, proteome, and metabolome of tumor and nonneoplastic cells, including immune cells. With the need for big-data research, pathology must transform to integrate data science fields, including epidemiology, biostatistics, and bioinformatics. The research framework of molecular pathological epidemiology (MPE) demonstrates the strengths of such an interdisciplinary integration, having been used to study breast, lung, prostate, and colorectal cancers. The MPE research paradigm not only can provide novel insights into interactions among environment, tumor, and host but also opens new research frontiers. New developments-such as computational digital pathology, systems biology, artificial intelligence, and in vivo pathology technologies-will further transform pathology and MPE. Although it is necessary to address the rarity of transdisciplinary education and training programs, MPE provides an exemplary model of integrative scientific approaches and contributes to advancements in precision medicine, therapy, and prevention.
Collapse
Affiliation(s)
- Shuji Ogino
- Program in MPE Molecular Pathological Epidemiology, Department of Pathology, Brigham and Women's Hospital, and Harvard Medical School, Boston, Massachusetts 02215, USA; , ,
- Department of Oncologic Pathology, Dana-Farber Cancer Institute, and Harvard Medical School, Boston, Massachusetts 02215, USA;
- Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, Massachusetts 02115, USA
- Broad Institute of Massachusetts Institute of Technology and Harvard, Cambridge, Massachusetts 02142, USA
| | - Jonathan A Nowak
- Program in MPE Molecular Pathological Epidemiology, Department of Pathology, Brigham and Women's Hospital, and Harvard Medical School, Boston, Massachusetts 02215, USA; , ,
| | - Tsuyoshi Hamada
- Department of Oncologic Pathology, Dana-Farber Cancer Institute, and Harvard Medical School, Boston, Massachusetts 02215, USA;
| | - Danny A Milner
- American Society for Clinical Pathology, Chicago, Illinois 60603, USA;
| | - Reiko Nishihara
- Program in MPE Molecular Pathological Epidemiology, Department of Pathology, Brigham and Women's Hospital, and Harvard Medical School, Boston, Massachusetts 02215, USA; , ,
- Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, Massachusetts 02115, USA
- Broad Institute of Massachusetts Institute of Technology and Harvard, Cambridge, Massachusetts 02142, USA
- Department of Nutrition, Harvard T.H. Chan School of Public Health, Boston, Massachusetts 02115, USA
| |
Collapse
|
53
|
Tian W, Du Y, Ma Y, Zhang B, Gu L, Zhou J, Deng D. miR663a‑TTC22V1 axis inhibits colon cancer metastasis. Oncol Rep 2019; 41:1718-1728. [PMID: 30664167 PMCID: PMC6365692 DOI: 10.3892/or.2019.6969] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2018] [Accepted: 01/10/2019] [Indexed: 12/12/2022] Open
Abstract
An increasing number of studies have demonstrated that microRNAs (miRs) may act as oncogenes or anti‑oncogenes in various types of cancer, including colon cancer (CC). However, the clinical and biological significance of miR663a in the prognosis of CC and its underlying molecular mechanisms remain unknown. Using the reverse transcription‑quantitative polymerase chain reaction on CC and surgical margin tissue samples from 172 patients with CC, it was identified that miR663a was significantly downregulated in CC (P<0.001), particularly in metastatic CC (P=0.044). miR663a overexpression inhibited the proliferation and migration/invasion of CC cells in vitro, and also tumor growth and metastasis of CC cells in vivo. Additionally, miR663a target genes were analyzed. Inverse changes in tetratricopeptide repeat domain 22 variant 1 (TTC22V1) in response to alterations in miR663a expression were observed. miR663a decreased the reporter activity of the wild‑type TTC22V1‑3' untranslated region (UTR), but did not decrease that of a 3'UTR mutant. miR663a completely abolished cell migration/invasion induced by TTC22V1 containing the wild‑type 3'UTR sequence, but not that induced by TTC22V1 containing the 3'UTR mutant. An inverse correlation between miR663a and TTC22 mRNA levels was observed in CC tissues. These results suggest that TTC22V1 mRNA is a crucial miR663a target that directly promotes cell migration/invasion. TTC22, which, to the best of our knowledge, has rarely been investigated, is located in the nuclei of epithelial cells in colon stem cell niches at crypt bases, and is significantly downregulated in CC, particularly in non‑metastatic CC. High TTC22V1 expression is a significant poor survival factor for patients with CC. Collectively, the results of the present study suggested that TTC22V1 may be a metastasis‑associated gene and that the miR663a‑TTC22V1 axis inhibited CC metastasis.
Collapse
Affiliation(s)
- Wei Tian
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Division of Etiology, Peking University Cancer Hospital and Institute, Beijing 100142, P.R. China
| | - Yantao Du
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Division of Etiology, Peking University Cancer Hospital and Institute, Beijing 100142, P.R. China
| | - Yuwan Ma
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Division of Etiology, Peking University Cancer Hospital and Institute, Beijing 100142, P.R. China
| | - Baozhen Zhang
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Division of Etiology, Peking University Cancer Hospital and Institute, Beijing 100142, P.R. China
| | - Liankun Gu
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Division of Etiology, Peking University Cancer Hospital and Institute, Beijing 100142, P.R. China
| | - Jing Zhou
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Division of Etiology, Peking University Cancer Hospital and Institute, Beijing 100142, P.R. China
| | - Dajun Deng
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Division of Etiology, Peking University Cancer Hospital and Institute, Beijing 100142, P.R. China
| |
Collapse
|
54
|
Hamada T, Nowak JA, Masugi Y, Drew DA, Song M, Cao Y, Kosumi K, Mima K, Twombly TS, Liu L, Shi Y, da Silva A, Gu M, Li W, Nosho K, Keum N, Giannakis M, Meyerhardt JA, Wu K, Wang M, Chan AT, Giovannucci EL, Fuchs CS, Nishihara R, Zhang X, Ogino S. Smoking and Risk of Colorectal Cancer Sub-Classified by Tumor-Infiltrating T Cells. J Natl Cancer Inst 2019; 111:42-51. [PMID: 30312431 PMCID: PMC6335108 DOI: 10.1093/jnci/djy137] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2017] [Accepted: 07/10/2018] [Indexed: 02/06/2023] Open
Abstract
Background Evidence indicates not only carcinogenic effect of cigarette smoking but also its immunosuppressive effect. We hypothesized that the association of smoking with colorectal cancer risk might be stronger for tumors with lower anti-tumor adaptive immune response. Methods During follow-up of 134 981 participants (3 490 851 person-years) in the Nurses' Health Study and Health Professionals Follow-up Study, we documented 729 rectal and colon cancer cases with available data on T-cell densities in tumor microenvironment. Using the duplication-method Cox regression model, we examined a differential association of smoking status with risk of colorectal carcinoma subclassified by densities of CD3+ cells, CD8+ cells, CD45RO (PTPRC)+ cells, or FOXP3+ cells. All statistical tests were two-sided. Results The association of smoking status with colorectal cancer risk differed by CD3+ cell density (Pheterogeneity = .007). Compared with never smokers, multivariable-adjusted hazard ratios for CD3+ cell-low colorectal cancer were 1.38 (95% confidence interval = 1.09 to 1.75) in former smokers and 1.59 (95% confidence interval = 1.14 to 2.23) in current smokers (Ptrend = .002, across smoking status categories). In contrast, smoking status was not associated with CD3+ cell-high cancer risk (Ptrend = .52). This differential association appeared consistent in strata of microsatellite instability, CpG island methylator phenotype, or BRAF mutation status. There was no statistically significant differential association according to densities of CD8+ cells, CD45RO+ cells, or FOXP3+ cells (Pheterogeneity > .04, with adjusted α of 0.01). Conclusions Colorectal cancer risk increased by smoking was stronger for tumors with lower T-lymphocyte response, suggesting an interplay of smoking and immunity in colorectal carcinogenesis.
Collapse
Affiliation(s)
| | - Jonathan A Nowak
- Department of Medical Oncology, Dana-Farber Cancer Institute and Harvard Medical School, Boston, MA
- Program in Molecular Pathological Epidemiology, Department of Pathology
| | | | - David A Drew
- Clinical and Translational Epidemiology Unit, and Division of Gastroenterology, Massachusetts General Hospital and Harvard Medical School, Boston, MA
| | - Mingyang Song
- Clinical and Translational Epidemiology Unit, and Division of Gastroenterology, Massachusetts General Hospital and Harvard Medical School, Boston, MA
- Department of Nutrition
| | - Yin Cao
- Clinical and Translational Epidemiology Unit, and Division of Gastroenterology, Massachusetts General Hospital and Harvard Medical School, Boston, MA
- Department of Nutrition
- Division of Public Health Sciences, Department of Surgery, Washington University School of Medicine, St. Louis, MO
| | | | - Kosuke Mima
- Department of Medical Oncology, Dana-Farber Cancer Institute and Harvard Medical School, Boston, MA
| | | | - Li Liu
- Department of Oncologic Pathology
- Department of Nutrition
- Division of Public Health Sciences, Department of Surgery, Washington University School of Medicine, St. Louis, MO
- Department of Epidemiology and Biostatistics, and the Ministry of Education Key Lab of Environment and Health, School of Public Health, Huazhong University of Science and Technology, Hubei, P.R. China
| | - Yan Shi
- Department of Oncologic Pathology
- Department of Medical Oncology, Chinese PLA General Hospital, Beijing, P.R. China
| | | | - Mancang Gu
- Department of Oncologic Pathology
- College of Pharmacy, Zhejiang Chinese Medical University, Zhejiang, P.R. China
| | | | - Katsuhiko Nosho
- Department of Gastroenterology, Rheumatology, and Clinical Immunology, Sapporo Medical University School of Medicine, Sapporo, Japan
| | - NaNa Keum
- Department of Nutrition
- Department of Food Science and Biotechnology, Dongguk University, Goyang, the Republic of Korea
| | - Marios Giannakis
- Department of Medical Oncology, Dana-Farber Cancer Institute and Harvard Medical School, Boston, MA
- Department of Medicine, and Channing Division of Network Medicine
- Broad Institute of MIT and Harvard, Cambridge, MA
| | | | - Kana Wu
- Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA
- Department of Nutrition
- Department of Epidemiology
| | - Molin Wang
- Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA
- Department of Epidemiology
- Department of Biostatistics, Harvard T.H. Chan School of Public Health, Boston, MA
| | - Andrew T Chan
- Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA
- Clinical and Translational Epidemiology Unit, and Division of Gastroenterology, Massachusetts General Hospital and Harvard Medical School, Boston, MA
| | - Edward L Giovannucci
- Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA
- Department of Nutrition
- Department of Epidemiology
| | - Charles S Fuchs
- Yale Cancer Center, New Haven, CT
- Department of Medicine, Yale School of Medicine, New Haven, CT
- Smilow Cancer Hospital, New Haven, CT
| | - Reiko Nishihara
- Department of Oncologic Pathology
- Program in Molecular Pathological Epidemiology, Department of Pathology
- Department of Nutrition
- Department of Epidemiology
- Department of Biostatistics, Harvard T.H. Chan School of Public Health, Boston, MA
| | - Xuehong Zhang
- Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA
| | - Shuji Ogino
- Department of Oncologic Pathology
- Program in Molecular Pathological Epidemiology, Department of Pathology
- Department of Epidemiology
- Broad Institute of MIT and Harvard, Cambridge, MA
| |
Collapse
|
55
|
Tokunaga R, Naseem M, Lo JH, Battaglin F, Soni S, Puccini A, Berger MD, Zhang W, Baba H, Lenz HJ. B cell and B cell-related pathways for novel cancer treatments. Cancer Treat Rev 2018; 73:10-19. [PMID: 30551036 DOI: 10.1016/j.ctrv.2018.12.001] [Citation(s) in RCA: 160] [Impact Index Per Article: 22.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2018] [Revised: 11/30/2018] [Accepted: 12/01/2018] [Indexed: 01/10/2023]
Abstract
B cells are recognized as the main effector cells of humoral immunity which suppress tumor progression by secreting immunoglobulins, promoting T cell response, and killing cancer cells directly. Given these properties, their anti-tumor immune response in the tumor micro-environment (TME) is of great interest. Although T cell-related immune responses have become a therapeutic target with the introduction of immune checkpoint inhibitors, not all patients benefit from these treatments. B cell and B cell-related pathways (CCL19, -21/CCR7 axis and CXCL13/CXCR5 axis) play key roles in activating immune response through humoral immunity and local immune activation via tertiary lymphoid structure (TLS) formation. However they have some protumorigenic works in the TME. Thus, a better understanding of B cell and B cell-related pathways is necessary to develop effective cancer control. In this review, we summarize recent evidences regarding the roles of B cell and B cell-related pathways in the TME and immune response and discuss their potential roles for novel cancer treatment strategies.
Collapse
Affiliation(s)
- Ryuma Tokunaga
- Division of Medical Oncology, Norris Comprehensive Cancer Center, Keck School of Medicine, University of Southern California, 1441 Eastlake Avenue, Los Angeles, CA 90033, United States.
| | - Madiha Naseem
- Division of Medical Oncology, Norris Comprehensive Cancer Center, Keck School of Medicine, University of Southern California, 1441 Eastlake Avenue, Los Angeles, CA 90033, United States
| | - Jae Ho Lo
- Division of Medical Oncology, Norris Comprehensive Cancer Center, Keck School of Medicine, University of Southern California, 1441 Eastlake Avenue, Los Angeles, CA 90033, United States
| | - Francesca Battaglin
- Division of Medical Oncology, Norris Comprehensive Cancer Center, Keck School of Medicine, University of Southern California, 1441 Eastlake Avenue, Los Angeles, CA 90033, United States
| | - Shivani Soni
- Division of Medical Oncology, Norris Comprehensive Cancer Center, Keck School of Medicine, University of Southern California, 1441 Eastlake Avenue, Los Angeles, CA 90033, United States
| | - Alberto Puccini
- Division of Medical Oncology, Norris Comprehensive Cancer Center, Keck School of Medicine, University of Southern California, 1441 Eastlake Avenue, Los Angeles, CA 90033, United States
| | - Martin D Berger
- Division of Medical Oncology, Norris Comprehensive Cancer Center, Keck School of Medicine, University of Southern California, 1441 Eastlake Avenue, Los Angeles, CA 90033, United States
| | - Wu Zhang
- Division of Medical Oncology, Norris Comprehensive Cancer Center, Keck School of Medicine, University of Southern California, 1441 Eastlake Avenue, Los Angeles, CA 90033, United States
| | - Hideo Baba
- Department of Gastroenterological Surgery, Graduate School of Medical Sciences, Kumamoto University, 1-1-1 Honjo, Kumamoto 8608556, Japan
| | - Heinz-Josef Lenz
- Division of Medical Oncology, Norris Comprehensive Cancer Center, Keck School of Medicine, University of Southern California, 1441 Eastlake Avenue, Los Angeles, CA 90033, United States
| |
Collapse
|
56
|
Hall MJ, Morris AM, Sun W. Precision Medicine Versus Population Medicine in Colon Cancer: From Prospects of Prevention, Adjuvant Chemotherapy, and Surveillance. Am Soc Clin Oncol Educ Book 2018; 38:220-230. [PMID: 30231337 DOI: 10.1200/edbk_200961] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
With the advances of technologic revolution that provides new insights into human biology, genetics and cancer, as well as advantages of big data which amasses large amounts of information for us to approach cancer treatment and prevention, we are facing challenges of organically combining data from studies based on general population and information from individual testing and setting out precisional recommendations in cancer diagnosis, prevention, and treatment. We are obligated to accelerate the adaptation of new scientific discoveries into effective treatments and prevention for cancer. In this review, we introduce our opinions on bringing knowledge of precision and population medicine together to guide our clinical practice from the prospects of colorectal cancer prevention, stage III colon cancer adjuvant therapy, and postsurgery surveillance.
Collapse
Affiliation(s)
- Michael J Hall
- From the Fox Chase Cancer Center, Philadelphia, PA; Stanford University, Stanford, CA; University of Kansas, Kansas City, KS
| | - Arden M Morris
- From the Fox Chase Cancer Center, Philadelphia, PA; Stanford University, Stanford, CA; University of Kansas, Kansas City, KS
| | - Weijing Sun
- From the Fox Chase Cancer Center, Philadelphia, PA; Stanford University, Stanford, CA; University of Kansas, Kansas City, KS
| |
Collapse
|
57
|
Soares PV, Kannen V, Jordão Junior AA, Garcia SB. Coffee, but Neither Decaffeinated Coffee nor Caffeine, Elicits Chemoprotection Against a Direct Carcinogen in the Colon of Wistar Rats. Nutr Cancer 2018; 71:615-623. [PMID: 30362831 DOI: 10.1080/01635581.2018.1506489] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Colorectal cancer (CRC) is the third most frequent malignancy worldwide. Coffee is the second most consumed drink in the globe and suggested to decrease the CRC risk. Here, we explored whether coffee, decaffeinated coffee, or caffeine impact on the development of colorectal carcinogenesis induced by the direct carcinogen N-methyl-N-nitro-N-nitrosoguanidine (MNNG) in rats. To this end, sixty-four young male Wistar rats were divided into eight groups of eight animals each. We analyzed the frequency of dysplastic crypts and expression of metallothionein as a biomarker of the cancer risk, as well the expression of phosphorylated H2A histone family/member X (γH2AX) for DNA damage and cyclooxygenase-2 (COX-2) for inflammatory response. We also studied the oxidative stress profile in hepatic and colonic frozen samples (malondialdehyde [MDA], glutathione [GSH], and α-tocopherol). We found that coffee but neither decaffeinated coffee nor caffeine decreased the development of dysplastic crypts in MNNG-exposed rats. All treatments reduced DNA damage intensity in colonocytes. Only decaffeinated coffee increased the numbers of metallothionein positive crypts in comparison with coffee-treated rats. Coffee and caffeine inhibited COX-2 expression in the colon. Both decaffeinated coffee and caffeine decreased hepatic α-tocopherol levels. We suggest that coffee may have other compounds that elicit greater chemoprotective effects than caffeine reducing the CRC risk.
Collapse
Affiliation(s)
| | - Vinicius Kannen
- b Department of Toxicology, Bromatology, and Clinical Analysis , University of Sao Paulo , Ribeirao Preto , Brazil
| | | | | |
Collapse
|
58
|
Loss of Stat6 affects chromatin condensation in intestinal epithelial cells causing diverse outcome in murine models of inflammation-associated and sporadic colon carcinogenesis. Oncogene 2018; 38:1787-1801. [PMID: 30353167 PMCID: PMC6756235 DOI: 10.1038/s41388-018-0551-2] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2018] [Revised: 08/16/2018] [Accepted: 09/28/2018] [Indexed: 12/19/2022]
Abstract
While great advances have been achieved regarding the genetic basis of colorectal cancer, the complex role of cell–cell communication and cytokine-induced signaling during its pathogenesis remains less understood. Signal transducer and activator of transcription 6 (Stat6) is the main transcription factor of interleukin-4 (IL-4) signaling and its participation in the development of various tumor types has been already reported. Here we aimed to examine the contribution of Stat6 in intestinal epithelial cells (IEC) in mouse models of intestinal carcinogenesis. Wild-type (WT), Stat6 knockout (Stat6−/−), and intestinal epithelial cell-specific IL-4Rα knockout (Il-4rαΔIEC) mice were subjected to colitis-associated (AOM/DSS) and colitis-independent (sporadic) carcinogenesis. IEC proliferation, apoptosis and RNA expression were evaluated by immunohistochemical, immunoblot, and RT-PCR analysis. We found that Stat6−/− mice developed more tumors in the colitis-associated carcinogenesis model. This was accompanied by a more pronounced inflammatory response during colitis and an elevated Stat3-dependent proliferation of IEC. Increased sensitivity to DSS-induced colitis was caused by elevated cell death in response to the initial carcinogen exposure as Stat6 deficiency led to increased chromatin compaction affecting DNA damage response in IEC upon treatment with alkylating agents independently of IL-4Rα engagement. Thus, loss of Stat6 caused more severe colitis and increased tumor load, however loss-of-initiated Stat6−/− IEC prevented tumor formation in the absence of overt inflammation. Our data unravel unexpected IL-4-independent functions of Stat6 in chromatin compaction in intestinal epithelial cells ultimately providing both tumor suppressive as well as tumor promoting effects in different models of intestinal tumorigenesis.
Collapse
|
59
|
Liu L, Tabung FK, Zhang X, Nowak JA, Qian ZR, Hamada T, Nevo D, Bullman S, Mima K, Kosumi K, da Silva A, Song M, Cao Y, Twombly TS, Shi Y, Liu H, Gu M, Koh H, Li W, Du C, Chen Y, Li C, Li W, Mehta RS, Wu K, Wang M, Kostic AD, Giannakis M, Garrett WS, Hutthenhower C, Chan AT, Fuchs CS, Nishihara R, Ogino S, Giovannucci EL. Diets That Promote Colon Inflammation Associate With Risk of Colorectal Carcinomas That Contain Fusobacterium nucleatum. Clin Gastroenterol Hepatol 2018; 16:1622-1631.e3. [PMID: 29702299 PMCID: PMC6151288 DOI: 10.1016/j.cgh.2018.04.030] [Citation(s) in RCA: 86] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/20/2017] [Revised: 02/28/2018] [Accepted: 04/15/2018] [Indexed: 02/07/2023]
Abstract
BACKGROUND & AIMS Specific nutritional components are likely to induce intestinal inflammation, which is characterized by increased levels of interleukin 6 (IL6), C-reactive protein (CRP), and tumor necrosis factor-receptor superfamily member 1B (TNFRSF1B) in the circulation and promotes colorectal carcinogenesis. The inflammatory effects of a diet can be estimated based on an empiric dietary inflammatory pattern (EDIP) score, calculated based on intake of 18 foods associated with plasma levels of IL6, CRP, and TNFRSF1B. An inflammatory environment in the colon (based on increased levels of IL6, CRP, and TNFRSF1B in peripheral blood) contributes to impairment of the mucosal barrier and altered immune cell responses, affecting the composition of the intestinal microbiota. Colonization by Fusobacterium nucleatum has been associated with the presence and features of colorectal adenocarcinoma. We investigated the association between diets that promote inflammation (based on EDIP score) and colorectal cancer subtypes classified by level of F nucleatum in the tumor microenvironment. METHODS We calculated EDIP scores based on answers to food frequency questionnaires collected from participants in the Nurses' Health Study (through June 1, 2012) and the Health Professionals Follow-up Study (through January 31, 2012). Participants in both cohorts reported diagnoses of rectal or colon cancer in biennial questionnaires; deaths from unreported colorectal cancer cases were identified through the National Death Index and next of kin. Colorectal tumor tissues were collected from hospitals where the patients underwent tumor resection and F nucleatum DNA was quantified by a polymerase chain reaction assay. We used multivariable duplication-method Cox proportional hazard regression to assess the associations of EDIP scores with risks of colorectal cancer subclassified by F nucleatum status. RESULTS During 28 years of follow-up evaluation of 124,433 participants, we documented 951 incident cases of colorectal carcinoma with tissue F nucleatum data. Higher EDIP scores were associated with increased risk of F nucleatum-positive colorectal tumors (Ptrend = .03); for subjects in the highest vs lowest EDIP score tertiles, the hazard ratio for F nucleatum-positive colorectal tumors was 1.63 (95% CI, 1.03-2.58). EDIP scores did not associate with F nucleatum-negative tumors (Ptrend = .44). High EDIP scores associated with proximal F nucleatum-positive colorectal tumors but not with proximal F nucleatum-negative colorectal tumors (Pheterogeneity = .003). CONCLUSIONS Diets that may promote intestinal inflammation, based on EDIP score, are associated with increased risk of F nucleatum-positive colorectal carcinomas, but not carcinomas that do not contain these bacteria. These findings indicate that diet-induced intestinal inflammation alters the gut microbiome to contribute to colorectal carcinogenesis; nutritional interventions might be used in precision medicine and cancer prevention.
Collapse
Affiliation(s)
- Li Liu
- Department of Oncologic Pathology, Dana-Farber Cancer Institute and Harvard Medical School, Boston, MA, USA,Department of Nutrition, Harvard T.H. Chan School of Public Health, Boston, MA, USA,Department of Epidemiology and Biostatistics, and the Ministry of Education Key Lab of Environment and Health, School of Public Health, Huazhong University of Science and Technology, Wuhan, P.R. China
| | - Fred K. Tabung
- Department of Nutrition, Harvard T.H. Chan School of Public Health, Boston, MA, USA,Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, MA, USA
| | - Xuehong Zhang
- Channing Division of Network Medicine, Brigham and Women’s Hospital and Harvard Medical School, Boston, MA, USA
| | - Jonathan A. Nowak
- Department of Pathology, Brigham and Women’s Hospital and Harvard Medical School, Boston, MA, USA
| | - Zhi Rong Qian
- The 7th Affiliated Hospital of Sun Yat-sen University, Sun Yat-sen University, Shenzhen, P.R. China
| | - Tsuyoshi Hamada
- Department of Oncologic Pathology, Dana-Farber Cancer Institute and Harvard Medical School, Boston, MA, USA
| | - Daniel Nevo
- Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, MA, USA,Department of Biostatistics, Harvard T.H. Chan School of Public Health, Boston, MA, USA
| | - Susan Bullman
- Department of Medical Oncology, Dana-Farber Cancer Institute and Harvard Medical School, Boston, MA, USA
| | - Kosuke Mima
- Department of Oncologic Pathology, Dana-Farber Cancer Institute and Harvard Medical School, Boston, MA, USA
| | - Keisuke Kosumi
- Department of Oncologic Pathology, Dana-Farber Cancer Institute and Harvard Medical School, Boston, MA, USA
| | - Annacarolina da Silva
- Department of Oncologic Pathology, Dana-Farber Cancer Institute and Harvard Medical School, Boston, MA, USA
| | - Mingyang Song
- Department of Nutrition, Harvard T.H. Chan School of Public Health, Boston, MA, USA,Clinical and Translational Epidemiology Unit, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA,Division of Gastroenterology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| | - Yin Cao
- Division of Public Health Sciences, Department of Surgery, Washington University School of Medicine, St. Louis, MO, USA
| | - Tyler S. Twombly
- Department of Oncologic Pathology, Dana-Farber Cancer Institute and Harvard Medical School, Boston, MA, USA
| | - Yan Shi
- Department of Oncologic Pathology, Dana-Farber Cancer Institute and Harvard Medical School, Boston, MA, USA,Medical Oncology Department 2, Chinese PLA General Hospital, Beijing, P.R. China
| | - Hongli Liu
- Department of Oncologic Pathology, Dana-Farber Cancer Institute and Harvard Medical School, Boston, MA, USA,Cancer Center, Wuhan Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, P.R. China
| | - Mancang Gu
- Department of Oncologic Pathology, Dana-Farber Cancer Institute and Harvard Medical School, Boston, MA, USA,College of Pharmacy, Zhejiang Chinese Medical University, Hangzhou, P.R. China
| | - Hideo Koh
- Department of Oncologic Pathology, Dana-Farber Cancer Institute and Harvard Medical School, Boston, MA, USA
| | - Wanwan Li
- Department of Oncologic Pathology, Dana-Farber Cancer Institute and Harvard Medical School, Boston, MA, USA
| | - Chunxia Du
- Department of Oncologic Pathology, Dana-Farber Cancer Institute and Harvard Medical School, Boston, MA, USA
| | - Yang Chen
- Department of Oncologic Pathology, Dana-Farber Cancer Institute and Harvard Medical School, Boston, MA, USA
| | - Chenxi Li
- Department of Oncologic Pathology, Dana-Farber Cancer Institute and Harvard Medical School, Boston, MA, USA,Oncology Department, The First Affiliated Hospital of Chinese PLA General Hospital, Beijing, P.R. China
| | - Wenbin Li
- Department of Oncologic Pathology, Dana-Farber Cancer Institute and Harvard Medical School, Boston, MA, USA
| | - Raaj S. Mehta
- Clinical and Translational Epidemiology Unit, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA,Division of Gastroenterology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| | - Kana Wu
- Department of Nutrition, Harvard T.H. Chan School of Public Health, Boston, MA, USA
| | - Molin Wang
- Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, MA, USA,Channing Division of Network Medicine, Brigham and Women’s Hospital and Harvard Medical School, Boston, MA, USA,Department of Biostatistics, Harvard T.H. Chan School of Public Health, Boston, MA, USA
| | - Aleksander D. Kostic
- Section on Pathophysiology and Molecular Pharmacology, Joslin Diabetes Center, Boston, MA, USA,Section on Islet Cell and Regenerative Biology, Joslin Diabetes Center, Boston, MA, USA,Department of Microbiology and Immunobiology, Harvard Medical School, Boston, MA, USA
| | - Marios Giannakis
- Department of Medical Oncology, Dana-Farber Cancer Institute and Harvard Medical School, Boston, MA, USA,Department of Medicine, Brigham and Women’s Hospital and Harvard Medical School, Boston, MA, USA,Broad Institute of Massachusetts Institute of Technology and Harvard, Cambridge, MA, USA
| | - Wendy S. Garrett
- Broad Institute of Massachusetts Institute of Technology and Harvard, Cambridge, MA, USA,Department of Immunology and Infectious Diseases, Harvard T.H. Chan School of Public Health, Boston, MA, USA
| | - Curtis Hutthenhower
- Department of Biostatistics, Harvard T.H. Chan School of Public Health, Boston, MA, USA,Broad Institute of Massachusetts Institute of Technology and Harvard, Cambridge, MA, USA
| | - Andrew T. Chan
- Channing Division of Network Medicine, Brigham and Women’s Hospital and Harvard Medical School, Boston, MA, USA,Clinical and Translational Epidemiology Unit, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA,Division of Gastroenterology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA,Broad Institute of Massachusetts Institute of Technology and Harvard, Cambridge, MA, USA
| | - Charles S. Fuchs
- Yale Cancer Center, New Haven, CT, USA,Department of Medicine, Yale School of Medicine, New Haven, CT, USA,Smilow Cancer Hospital, New Haven, CT, USA
| | - Reiko Nishihara
- Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, MA, USA,Department of Pathology, Brigham and Women’s Hospital and Harvard Medical School, Boston, MA, USA,Broad Institute of Massachusetts Institute of Technology and Harvard, Cambridge, MA, USA,Program in MPE Molecular Pathological Epidemiology, Department of Pathology, Brigham and Women’s Hospital and Harvard Medical School, Boston, MA, USA,Correspondence to: Shuji Ogino, MD, PhD, MS, Program in MPE Molecular Pathological Epidemiology, Department of Pathology, Brigham and Women’s Hospital, 450 Brookline Ave., Room SM1036, Boston, MA 02215 USA, Tel: +1-617-632-1972; Fax: +1-617-582-8558, , Edward L Giovannucci, MD, ScD, Department of Nutrition, Harvard T.H. Chan School of Public Health, 665 Huntington Ave., Bldg. 2, Room 371, Boston, MA 02115 USA, Tel: +1-617-432-4648; Fax: +1-617-432-2435,
| | - Shuji Ogino
- Department of Oncologic Pathology, Dana-Farber Cancer Institute and Harvard Medical School, Boston, Massachusetts; Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, Massachusetts; Department of Pathology, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts; Broad Institute of Massachusetts Institute of Technology, Harvard, Cambridge, Massachusetts; Program in MPE Molecular Pathological Epidemiology, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts.
| | - Edward L. Giovannucci
- Department of Nutrition, Harvard T.H. Chan School of Public Health, Boston, MA, USA,Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, MA, USA,Channing Division of Network Medicine, Brigham and Women’s Hospital and Harvard Medical School, Boston, MA, USA,Correspondence to: Shuji Ogino, MD, PhD, MS, Program in MPE Molecular Pathological Epidemiology, Department of Pathology, Brigham and Women’s Hospital, 450 Brookline Ave., Room SM1036, Boston, MA 02215 USA, Tel: +1-617-632-1972; Fax: +1-617-582-8558, , Edward L Giovannucci, MD, ScD, Department of Nutrition, Harvard T.H. Chan School of Public Health, 665 Huntington Ave., Bldg. 2, Room 371, Boston, MA 02115 USA, Tel: +1-617-432-4648; Fax: +1-617-432-2435,
| |
Collapse
|
60
|
Zadka Ł, Kulus MJ, Kurnol K, Piotrowska A, Glatzel-Plucińska N, Jurek T, Czuba M, Nowak A, Chabowski M, Janczak D, Dzięgiel P. The expression of IL10RA in colorectal cancer and its correlation with the proliferation index and the clinical stage of the disease. Cytokine 2018; 110:116-125. [DOI: 10.1016/j.cyto.2018.04.030] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2017] [Revised: 04/24/2018] [Accepted: 04/25/2018] [Indexed: 12/16/2022]
|
61
|
Shiao SPK, Grayson J, Lie A, Yu CH. Personalized Nutrition-Genes, Diet, and Related Interactive Parameters as Predictors of Cancer in Multiethnic Colorectal Cancer Families. Nutrients 2018; 10:nu10060795. [PMID: 29925788 PMCID: PMC6024706 DOI: 10.3390/nu10060795] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2018] [Revised: 06/13/2018] [Accepted: 06/19/2018] [Indexed: 01/04/2023] Open
Abstract
To personalize nutrition, the purpose of this study was to examine five key genes in the folate metabolism pathway, and dietary parameters and related interactive parameters as predictors of colorectal cancer (CRC) by measuring the healthy eating index (HEI) in multiethnic families. The five genes included methylenetetrahydrofolate reductase (MTHFR) 677 and 1298, methionine synthase (MTR) 2756, methionine synthase reductase (MTRR 66), and dihydrofolate reductase (DHFR) 19bp, and they were used to compute a total gene mutation score. We included 53 families, 53 CRC patients and 53 paired family friend members of diverse population groups in Southern California. We measured multidimensional data using the ensemble bootstrap forest method to identify variables of importance within domains of genetic, demographic, and dietary parameters to achieve dimension reduction. We then constructed predictive generalized regression (GR) modeling with a supervised machine learning validation procedure with the target variable (cancer status) being specified to validate the results to allow enhanced prediction and reproducibility. The results showed that the CRC group had increased total gene mutation scores compared to the family members (p < 0.05). Using the Akaike’s information criterion and Leave-One-Out cross validation GR methods, the HEI was interactive with thiamine (vitamin B1), which is a new finding for the literature. The natural food sources for thiamine include whole grains, legumes, and some meats and fish which HEI scoring included as part of healthy portions (versus limiting portions on salt, saturated fat and empty calories). Additional predictors included age, as well as gender and the interaction of MTHFR 677 with overweight status (measured by body mass index) in predicting CRC, with the cancer group having more men and overweight cases. The HEI score was significant when split at the median score of 77 into greater or less scores, confirmed through the machine-learning recursive tree method and predictive modeling, although an HEI score of greater than 80 is the US national standard set value for a good diet. The HEI and healthy eating are modifiable factors for healthy living in relation to dietary parameters and cancer prevention, and they can be used for personalized nutrition in the precision-based healthcare era.
Collapse
Affiliation(s)
- S Pamela K Shiao
- College of Nursing and Medical College of Georgia, Augusta University, Augusta, GA 30912, USA.
| | - James Grayson
- Hull College of Business, Augusta University, Augusta, GA 30912, USA.
| | - Amanda Lie
- Citrus Valley Health Partners, Foothill Presbyterian Hospital, Glendora, CA 91741, USA.
| | - Chong Ho Yu
- School of Business, University of Phoenix, Pasadena, CA 91101, USA.
| |
Collapse
|
62
|
Ogino S, Nowak JA, Hamada T, Phipps AI, Peters U, Milner DA, Giovannucci EL, Nishihara R, Giannakis M, Garrett WS, Song M. Integrative analysis of exogenous, endogenous, tumour and immune factors for precision medicine. Gut 2018; 67:1168-1180. [PMID: 29437869 PMCID: PMC5943183 DOI: 10.1136/gutjnl-2017-315537] [Citation(s) in RCA: 128] [Impact Index Per Article: 18.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/24/2017] [Revised: 01/02/2018] [Accepted: 01/05/2018] [Indexed: 12/14/2022]
Abstract
Immunotherapy strategies targeting immune checkpoints such as the CTLA4 and CD274 (programmed cell death 1 ligand 1, PD-L1)/PDCD1 (programmed cell death 1, PD-1) T-cell coreceptor pathways are revolutionising oncology. The approval of pembrolizumab use for solid tumours with high-level microsatellite instability or mismatch repair deficiency by the US Food and Drug Administration highlights promise of precision immuno-oncology. However, despite evidence indicating influences of exogenous and endogenous factors such as diet, nutrients, alcohol, smoking, obesity, lifestyle, environmental exposures and microbiome on tumour-immune interactions, integrative analyses of those factors and immunity lag behind. Immune cell analyses in the tumour microenvironment have not adequately been integrated into large-scale studies. Addressing this gap, the transdisciplinary field of molecular pathological epidemiology (MPE) offers research frameworks to integrate tumour immunology into population health sciences, and link the exposures and germline genetics (eg, HLA genotypes) to tumour and immune characteristics. Multilevel research using bioinformatics, in vivo pathology and omics (genomics, epigenomics, transcriptomics, proteomics and metabolomics) technologies is possible with use of tissue, peripheral blood circulating cells, cell-free plasma, stool, sputum, urine and other body fluids. This immunology-MPE model can synergise with experimental immunology, microbiology and systems biology. GI neoplasms represent exemplary diseases for the immunology-MPE model, given rich microbiota and immune tissues of intestines, and the well-established carcinogenic role of intestinal inflammation. Proof-of-principle studies on colorectal cancer provided insights into immunomodulating effects of aspirin, vitamin D, inflammatory diets and omega-3 polyunsaturated fatty acids. The integrated immunology-MPE model can contribute to better understanding of environment-tumour-immune interactions, and effective immunoprevention and immunotherapy strategies for precision medicine.
Collapse
Affiliation(s)
- Shuji Ogino
- Program in MPE Molecular Pathological Epidemiology, Department of Pathology, Brigham and Women’s Hospital, Harvard Medical School, Boston, Massachusetts, USA,Department of Oncologic Pathology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, Massachusetts, USA,Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, Massachusetts, USA,Broad Institute of Massachusetts Institute of Technology and Harvard, Cambridge, Massachusetts, USA
| | - Jonathan A Nowak
- Program in MPE Molecular Pathological Epidemiology, Department of Pathology, Brigham and Women’s Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Tsuyoshi Hamada
- Department of Oncologic Pathology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, Massachusetts, USA
| | - Amanda I Phipps
- Public Health Sciences Division, Fred Hutchinson Cancer Research Center, Seattle, Washington, USA,Department of Epidemiology, University of Washington, Seattle, Washington, USA
| | - Ulrike Peters
- Public Health Sciences Division, Fred Hutchinson Cancer Research Center, Seattle, Washington, USA,Department of Epidemiology, University of Washington, Seattle, Washington, USA
| | - Danny A Milner
- American Society for Clinical Pathology, Chicago, Illinois, USA
| | - Edward L Giovannucci
- Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, Massachusetts, USA,Department of Nutrition, Harvard T.H. Chan School of Public Health, Boston, Massachusetts, USA,Channing Division of Network Medicine, Department of Medicine, Brigham and Women’s Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Reiko Nishihara
- Program in MPE Molecular Pathological Epidemiology, Department of Pathology, Brigham and Women’s Hospital, Harvard Medical School, Boston, Massachusetts, USA,Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, Massachusetts, USA,Broad Institute of Massachusetts Institute of Technology and Harvard, Cambridge, Massachusetts, USA,Department of Nutrition, Harvard T.H. Chan School of Public Health, Boston, Massachusetts, USA,Department of Biostatistics, Harvard T.H. Chan School of Public Health, Boston, Massachusetts, USA
| | - Marios Giannakis
- Broad Institute of Massachusetts Institute of Technology and Harvard, Cambridge, Massachusetts, USA,Department of Medical Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, Massachusetts, USA,Department of Medicine, Brigham and Women’s Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Wendy S Garrett
- Broad Institute of Massachusetts Institute of Technology and Harvard, Cambridge, Massachusetts, USA,Department of Medical Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, Massachusetts, USA,Department of Immunology and Infectious Diseases, Harvard T.H. Chan School of Public Health, Boston, Massachusetts, USA
| | - Mingyang Song
- Department of Nutrition, Harvard T.H. Chan School of Public Health, Boston, Massachusetts, USA,Clinical and Translational Epidemiology Unit, Massachusetts General Hospital, Boston, Massachusetts, USA,Division of Gastroenterology, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts, USA
| |
Collapse
|
63
|
Tabung FK, Giovannucci EL, Giulianini F, Liang L, Chandler PD, Balasubramanian R, Manson JE, Cespedes Feliciano EM, Hayden KM, Van Horn L, Rexrode KM. An Empirical Dietary Inflammatory Pattern Score Is Associated with Circulating Inflammatory Biomarkers in a Multi-Ethnic Population of Postmenopausal Women in the United States. J Nutr 2018; 148:771-780. [PMID: 29897561 PMCID: PMC5972616 DOI: 10.1093/jn/nxy031] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2017] [Revised: 01/05/2018] [Accepted: 02/01/2018] [Indexed: 02/01/2023] Open
Abstract
BACKGROUND The empirical dietary inflammatory pattern (EDIP) score has been associated with concentrations of circulating inflammatory biomarkers in European Americans. OBJECTIVE We used the EDIP score, a weighted sum of 18 food groups that characterizes dietary inflammatory potential based on circulating concentrations of inflammatory biomarkers, to test the hypothesis that a pro-inflammatory dietary pattern is associated with inflammatory biomarker concentrations in a US multi-ethnic population. METHODS In this cross-sectional study, we calculated EDIP scores using baseline food frequency questionnaire data from 31,472 women, aged 50-79 y, in the Women's Health Initiative observational study and clinical trials. Circulating biomarkers outcomes at baseline were: C-reactive protein (CRP), interleukin-6 (IL-6), tumor necrosis factor (TNF)-α, TNF receptor (TNFR) 1 and 2, and adiponectin. We used multivariable-adjusted linear regression analyses to estimate absolute concentrations and relative differences in biomarker concentrations, overall and in subgroups of race/ethnicity and BMI (body mass index) categories. RESULTS Independent of energy intake, BMI, physical activity, and other potential confounding variables, higher EDIP scores were significantly associated with higher (lower for adiponectin) absolute concentrations of all 6 biomarkers. On the relative scale, the percentage of difference in the concentration of biomarkers, among women in the highest compared to the lowest EDIP quintile, was: CRP, +13% (P-trend < 0.0001); IL-6, +15% (P-trend < 0.0001); TNF-α, +7% (P-trend = 0.0007); TNFR1, +4% (P-trend = 0.0009); TNFR2, +5% (P-trend < 0.0001); and adiponectin, -13% (P-trend <0.0001). These associations differed by racial/ethnic groups and by BMI categories. Whereas the absolute biomarker concentrations were lower among European-American women and among normal-weight women, the associations with diet were stronger than among women of African-American or Hispanic/Latino origin and among overweight and obese women. CONCLUSIONS Findings demonstrate the successful replication of an empirical hypothesis-oriented a posteriori dietary pattern score in a multi-ethnic population of postmenopausal women, with subgroup differences by race/ethnicity and body weight. Future research needs to apply the score in non-US populations.
Collapse
Affiliation(s)
- Fred K Tabung
- Departments of Nutrition, Epidemiology, and Biostatistics, Harvard T.H. Chan School of Public Health, Boston, MA,Departments of Epidemiology, and Biostatistics, Harvard T.H. Chan School of Public Health, Boston, MA,Division of Preventive Medicine, Department of Medicine,Address correspondence to FKT (e-mail: )
| | - Edward L Giovannucci
- Departments of Nutrition, Epidemiology, and Biostatistics, Harvard T.H. Chan School of Public Health, Boston, MA,Departments of Epidemiology, and Biostatistics, Harvard T.H. Chan School of Public Health, Boston, MA,Channing Division of Network Medicine, Department of Medicine
| | | | - Liming Liang
- Departments of Biostatistics, Harvard T.H. Chan School of Public Health, Boston, MA
| | | | - Raji Balasubramanian
- Department of Biostatistics and Epidemiology, University of Massachusetts-Amherst, Amherst, MA
| | - JoAnn E Manson
- Departments of Epidemiology, and Biostatistics, Harvard T.H. Chan School of Public Health, Boston, MA,Division of Preventive Medicine, Department of Medicine,Channing Division of Network Medicine, Department of Medicine
| | | | - Kathleen M Hayden
- Department of Social Sciences and Health Policy, Wake Forest School of Medicine, Winston-Salem, NC
| | - Linda Van Horn
- Department of Preventive Medicine, Feinberg School of Medicine, Northwestern University, Chicago, IL
| | - Kathryn M Rexrode
- Division of Preventive Medicine, Department of Medicine,Division of Women's Health, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA
| |
Collapse
|
64
|
Inamura K. Colorectal Cancers: An Update on Their Molecular Pathology. Cancers (Basel) 2018; 10:cancers10010026. [PMID: 29361689 PMCID: PMC5789376 DOI: 10.3390/cancers10010026] [Citation(s) in RCA: 121] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2018] [Revised: 01/17/2018] [Accepted: 01/18/2018] [Indexed: 02/07/2023] Open
Abstract
Colorectal cancers (CRCs) are the third leading cause of cancer-related mortality worldwide. Rather than being a single, uniform disease type, accumulating evidence suggests that CRCs comprise a group of molecularly heterogeneous diseases that are characterized by a range of genomic and epigenomic alterations. This heterogeneity slows the development of molecular-targeted therapy as a form of precision medicine. Recent data regarding comprehensive molecular characterizations and molecular pathological examinations of CRCs have increased our understanding of the genomic and epigenomic landscapes of CRCs, which has enabled CRCs to be reclassified into biologically and clinically meaningful subtypes. The increased knowledge of the molecular pathological epidemiology of CRCs has permitted their evolution from a vaguely understood, heterogeneous group of diseases with variable clinical courses to characteristic molecular subtypes, a development that will allow the implementation of personalized therapies and better management of patients with CRC. This review provides a perspective regarding recent developments in our knowledge of the molecular and epidemiological landscapes of CRCs, including results of comprehensive molecular characterizations obtained from high-throughput analyses and the latest developments regarding their molecular pathologies, immunological biomarkers, and associated gut microbiome. Advances in our understanding of potential personalized therapies for molecularly specific subtypes are also reviewed.
Collapse
Affiliation(s)
- Kentaro Inamura
- Division of Pathology, The Cancer Institute, Japanese Foundation for Cancer Research, 3-8-31 Ariake, Koto-ku, Tokyo 135-8550, Japan.
| |
Collapse
|
65
|
Pan P, Huang YW, Oshima K, Yearsley M, Zhang J, Yu J, Arnold M, Wang LS. An immunological perspective for preventing cancer with berries. JOURNAL OF BERRY RESEARCH 2018; 8:163-175. [PMID: 30159104 PMCID: PMC6110394 DOI: 10.3233/jbr-180305] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2023]
Abstract
Berries and their phytochemicals have well documented chemopreventive roles, but understanding their ability to regulate cancer immunology is only beginning to be explored. The literature, including human studies, suggests that berry components can modulate our immune system to delay cancer development. Moreover, their wide spectrum of phytochemicals suggests that they might influence the functions of multiple immune cells and different aspects of cancer immunity. Cancer immune-therapies are showing promise for some types of cancer because they boost T cells' ability to recognize tumor cells - an essential prelude to destruction. Recognition occurs after dendritic cells present antigen, such as tumor antigen, to T cells, generating an adaptive response. Therefore, the potential of berries to aid cancer immune-therapies by, for example, regulating dendritic cells, warrants further investigation in animal and human studies. More information is also needed about berries' effects on the entire spectrum of immunity so that a comprehensive view can inform efforts to use berries to enhance immune responses during cancer prevention and treatment. This review summarizes the effects of berries as anti-tumor agents from the immunological perspective in tumor-bearing animals and humans.
Collapse
Affiliation(s)
- Pan Pan
- Department of Medicine, Division of Hematology and Oncology, Medical College of Wisconsin, Milwaukee, WI, USA
| | - Yi-Wen Huang
- Department of Obstetrics and Gynecology, Medical College of Wisconsin, Milwaukee, WI, USA
| | - Kiyoko Oshima
- Department of Pathology, John Hopkins University, Baltimore, MD, USA
| | - Martha Yearsley
- Department of Pathology, The Ohio State University, Columbus, OH, USA
| | - Jianying Zhang
- Center for Biostatistics, The Ohio State University, Columbus, OH, USA
| | - Jianhua Yu
- Department of Internal Medicine, Division of Hematology, College of Medicine, Comprehensive Cancer Center and The James Cancer Hospital, The Ohio State University, Columbus, OH, USA
| | - Mark Arnold
- Department of Surgery, The Ohio State University, OH, USA
| | - Li-Shu Wang
- Department of Medicine, Division of Hematology and Oncology, Medical College of Wisconsin, Milwaukee, WI, USA
- Corresponding author: Li-Shu Wang, Department of Medicine, Division of Hematology and Oncology, Medical College of Wisconsin, RM C4930, 8701 Watertown Plank Rd, Milwaukee, WI, 53226, USA. Tel.: +1 414 955 2827; Fax: +1 414 955 6059; .
| |
Collapse
|