51
|
Osundiji MA, Hurst P, Moore SP, Markkula SP, Yueh CY, Swamy A, Hoashi S, Shaw JS, Riches CH, Heisler LK, Evans ML. Recurrent hypoglycemia increases hypothalamic glucose phosphorylation activity in rats. Metabolism 2011; 60:550-6. [PMID: 20667558 PMCID: PMC3063198 DOI: 10.1016/j.metabol.2010.05.009] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/16/2009] [Revised: 05/12/2010] [Accepted: 05/18/2010] [Indexed: 10/19/2022]
Abstract
The mechanisms underpinning impaired defensive counterregulatory responses to hypoglycemia that develop in some people with diabetes who suffer recurrent episodes of hypoglycemia are unknown. Previous work examining whether this is a consequence of increased glucose delivery to the hypothalamus, postulated to be the major hypoglycemia-sensing region, has been inconclusive. Here, we hypothesized instead that increased hypothalamic glucose phosphorylation, the first committed intracellular step in glucose metabolism, might develop following exposure to hypoglycemia. We anticipated that this adaptation might tend to preserve glucose flux during hypoglycemia, thus reducing detection of a falling glucose. We first validated a model of recurrent hypoglycemia in chronically catheterized (right jugular vein) rats receiving daily injections of insulin. We confirmed that this model of recurrent insulin-induced hypoglycemia results in impaired counterregulation, with responses of the key counterregulatory hormone, epinephrine, being suppressed significantly and progressively from the first day to the fourth day of insulin-induced hypoglycemia. In another cohort, we investigated the changes in brain glucose phosphorylation activity over 4 days of recurrent insulin-induced hypoglycemia. In keeping with our hypothesis, we found that recurrent hypoglycemia markedly and significantly increased hypothalamic glucose phosphorylation activity in a day-dependent fashion, with day 4 values 2.8 ± 0.6-fold higher than day 1 (P < .05), whereas there was no change in glucose phosphorylation activity in brain stem and frontal cortex. These findings suggest that the hypothalamus may adapt to recurrent hypoglycemia by increasing glucose phosphorylation; and we speculate that this metabolic adaptation may contribute, at least partly, to hypoglycemia-induced counterregulatory failure.
Collapse
Affiliation(s)
- Mayowa A Osundiji
- Department of Medicine and Institute of Metabolic Science, University of Cambridge, Addenbrookes Hospital, Cambridge, UK
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
52
|
Lee HY, Lee JJ, Park J, Park SB. Development of fluorescent glucose bioprobes and their application on real-time and quantitative monitoring of glucose uptake in living cells. Chemistry 2011; 17:143-50. [PMID: 21207611 DOI: 10.1002/chem.201002560] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
We developed a novel fluorescent glucose bioprobe, GB2-Cy3, for the real-time and quantitative monitoring of glucose uptake in living cells. We synthesized a series of fluorescent glucose analogues by adding Cy3 fluorophores to the α-anomeric position of D-glucose through various linkers. Systematic and quantitative analysis of these Cy3-labeled glucose analogues revealed that GB2-Cy3 was the ideal fluorescent glucose bioprobe. The cellular uptake of this probe competed with the cellular uptake of D-glucose in the media and was mediated by a glucose-specific transport system, and not by passive diffusion. Flow cytometry and fluorescence microscopy analyses revealed that GB2-Cy3 is ten times more sensitive than 2-NBDG, a leading fluorescent glucose bioprobe. GB2-Cy3 can also be utilized for the quantitative flow cytometry monitoring of glucose uptake in metabolically active C2C12 myocytes under various treatment conditions. As opposed to a glucose uptake assay performed by using radioisotope-labeled deoxy-D-glucose and a scintillation counter, GB2-Cy3 allows the real-time monitoring of glucose uptake in living cells under various experimental conditions by using fluorescence microscopy or confocal laser scanning microscopy (CLSM). Therefore, we believe that GB2-Cy3 can be utilized in high-content screening (HCS) for the discovery of novel therapeutic agents and for making significant advances in biomedical studies and diagnosis of various diseases, especially metabolic diseases.
Collapse
Affiliation(s)
- Hyang Yeon Lee
- Department of Chemistry, Seoul National University, Seoul 151-747, Korea
| | | | | | | |
Collapse
|
53
|
|
54
|
Abstract
The counterregulatory response to hypoglycemia is a complex and well-coordinated process. As blood glucose concentration declines, peripheral and central glucose sensors relay this information to central integrative centers to coordinate neuroendocrine, autonomic, and behavioral responses and avert the progression of hypoglycemia. Diabetes, both type 1 and type 2, can perturb these counterregulatory responses. Moreover, defective counterregulation in the setting of diabetes can progress to hypoglycemia unawareness. While the mechanisms that underlie the development of hypoglycemia unawareness are not completely known, possible causes include altered sensing of hypoglycemia by the brain and/or impaired coordination of responses to hypoglycemia. Further study is needed to better understand the intricacies of the counterregulatory response and the mechanisms contributing to the development of hypoglycemia unawareness.
Collapse
Affiliation(s)
- Nolawit Tesfaye
- Department of Medicine, Division of Endocrinology and Diabetes, University of Minnesota, 420 Delaware St. SE, Minneapolis, MN 55455, USA
| | | |
Collapse
|
55
|
Affiliation(s)
- Rory J McCrimmon
- Biomedical Research Institute, University of Dundee, Dundee, Scotland.
| | | |
Collapse
|
56
|
Heikkilä O, Lundbom N, Timonen M, Groop PH, Heikkinen S, Mäkimattila S. Evidence for abnormal glucose uptake or metabolism in thalamus during acute hyperglycaemia in type 1 diabetes--a 1H MRS study. Metab Brain Dis 2010; 25:227-34. [PMID: 20424902 DOI: 10.1007/s11011-010-9199-5] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/25/2009] [Accepted: 01/15/2010] [Indexed: 11/24/2022]
Abstract
Acute hyperglycaemia impairs cognitive function. It is however not known, whether different brain regions are equally exposed to glucose during acute hyperglycemia or whether the brain is able to adjust its glucose uptake or metabolism in response to blood glucose fluctuation. We studied the effect of acute hyperglycaemia on the brain glucose concentration in seven men with type 1 diabetes with daily glucose fluctuations of 11 +/- 3 mmol/l, and in eleven age-matched non-diabetic men. Glucose was quantified with proton magnetic resonance spectroscopy in three different brain regions at baseline (fasting glycaemia) and twice during a 2 h hyperglycaemic clamp with plasma glucose increase of 12 mmol/l. The increase in brain glucose during acute hyperglycaemia in the non-diabetic group was: cortex (2.7 +/- 0.9 mmol/l) > thalamus (2.3 +/- 0.7 mmol/l) > white matter (1.7 +/- 0.7 mmol/l, P = 0.021 vs. cortex) and in the diabetic group: cortex (2.0 +/- 0.7 mmol/l) > white matter (1.3 +/- 0.7 mmol/l) > thalamus (1.1 +/- 0.4 mmol/l, P = 0.010 vs. cortex). In the diabetic group, the glucose increase in the thalamus was attenuated compared to the non-diabetic participants (P = 0.011). In conclusion, the increase of glucose during acute hyperglycaemia seems to be dependent on the brain tissue type. The high exposure of cortex to excess glucose and the altered glucose uptake or metabolism in the thalamus may thus contribute to hyperglycaemia related cognitive dysfunction.
Collapse
Affiliation(s)
- Outi Heikkilä
- Folkhälsan Institute of Genetics, Folkhälsan Research Center, Haarmaninkatu 8, Helsinki, Finland.
| | | | | | | | | | | |
Collapse
|
57
|
Puente EC, Silverstein J, Bree AJ, Musikantow DR, Wozniak DF, Maloney S, Daphna-Iken D, Fisher SJ. Recurrent moderate hypoglycemia ameliorates brain damage and cognitive dysfunction induced by severe hypoglycemia. Diabetes 2010; 59:1055-62. [PMID: 20086229 PMCID: PMC2844814 DOI: 10.2337/db09-1495] [Citation(s) in RCA: 80] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
OBJECTIVE Although intensive glycemic control achieved with insulin therapy increases the incidence of both moderate and severe hypoglycemia, clinical reports of cognitive impairment due to severe hypoglycemia have been highly variable. It was hypothesized that recurrent moderate hypoglycemia preconditions the brain and protects against damage caused by severe hypoglycemia. RESEARCH DESIGN AND METHODS Nine-week-old male Sprague-Dawley rats were subjected to either 3 consecutive days of recurrent moderate (25-40 mg/dl) hypoglycemia (RH) or saline injections. On the fourth day, rats were subjected to a hyperinsulinemic (0.2 units x kg(-1) x min(-1)) severe hypoglycemic ( approximately 11 mg/dl) clamp for 60 or 90 min. Neuronal damage was subsequently assessed by hematoxylin-eosin and Fluoro-Jade B staining. The functional significance of severe hypoglycemia-induced brain damage was evaluated by motor and cognitive testing. RESULTS Severe hypoglycemia induced brain damage and striking deficits in spatial learning and memory. Rats subjected to recurrent moderate hypoglycemia had 62-74% less brain cell death and were protected from most of these cognitive disturbances. CONCLUSIONS Antecedent recurrent moderate hypoglycemia preconditioned the brain and markedly limited both the extent of severe hypoglycemia-induced neuronal damage and associated cognitive impairment. In conclusion, changes brought about by recurrent moderate hypoglycemia can be viewed, paradoxically, as providing a beneficial adaptive response in that there is mitigation against severe hypoglycemia-induced brain damage and cognitive dysfunction.
Collapse
Affiliation(s)
- Erwin C. Puente
- Division of Endocrinology, Metabolism, and Lipid Research, Department of Medicine, Washington University, St. Louis, Missouri
| | - Julie Silverstein
- Division of Endocrinology, Metabolism, and Lipid Research, Department of Medicine, Washington University, St. Louis, Missouri
| | - Adam J. Bree
- Division of Endocrinology, Metabolism, and Lipid Research, Department of Medicine, Washington University, St. Louis, Missouri
| | - Daniel R. Musikantow
- Division of Endocrinology, Metabolism, and Lipid Research, Department of Medicine, Washington University, St. Louis, Missouri
| | - David F. Wozniak
- Department of Psychiatry, Washington University, St. Louis, Missouri
| | - Susan Maloney
- Department of Psychiatry, Washington University, St. Louis, Missouri
| | - Dorit Daphna-Iken
- Division of Endocrinology, Metabolism, and Lipid Research, Department of Medicine, Washington University, St. Louis, Missouri
| | - Simon J. Fisher
- Division of Endocrinology, Metabolism, and Lipid Research, Department of Medicine, Washington University, St. Louis, Missouri
- Department of Cell Biology and Physiology, Washington University, St. Louis, Missouri
- Corresponding author: Simon Fisher,
| |
Collapse
|
58
|
Abstract
The treatment of patients poisoned with drugs and pharmaceuticals can be quite challenging. Diverse exposure circumstances, varied clinical presentations, unique patient-specific factors, and inconsistent diagnostic and therapeutic infrastructure support, coupled with relatively few definitive antidotes, may complicate evaluation and management. The historical approach to poisoned patients (patient arousal, toxin elimination, and toxin identification) has given way to rigorous attention to the fundamental aspects of basic life support--airway management, oxygenation and ventilation, circulatory competence, thermoregulation, and substrate availability. Selected patients may benefit from methods to alter toxin pharmacokinetics to minimize systemic, target organ, or tissue compartment exposure (either by decreasing absorption or increasing elimination). These may include syrup of ipecac, orogastric lavage, activated single- or multi-dose charcoal, whole bowel irrigation, endoscopy and surgery, urinary alkalinization, saline diuresis, or extracorporeal methods (hemodialysis, charcoal hemoperfusion, continuous venovenous hemofiltration, and exchange transfusion). Pharmaceutical adjuncts and antidotes may be useful in toxicant-induced hyperthermias. In the context of analgesic, anti-inflammatory, anticholinergic, anticonvulsant, antihyperglycemic, antimicrobial, antineoplastic, cardiovascular, opioid, or sedative-hypnotic agents overdose, N-acetylcysteine, physostigmine, L-carnitine, dextrose, octreotide, pyridoxine, dexrazoxane, leucovorin, glucarpidase, atropine, calcium, digoxin-specific antibody fragments, glucagon, high-dose insulin euglycemia therapy, lipid emulsion, magnesium, sodium bicarbonate, naloxone, and flumazenil are specifically reviewed. In summary, patients generally benefit from aggressive support of vital functions, careful history and physical examination, specific laboratory analyses, a thoughtful consideration of the risks and benefits of decontamination and enhanced elimination, and the use of specific antidotes where warranted. Data supporting antidotes effectiveness vary considerably. Clinicians are encouraged to utilize consultation with regional poison centers or those with toxicology training to assist with diagnosis, management, and administration of antidotes, particularly in unfamiliar cases.
Collapse
Affiliation(s)
- Silas W Smith
- New York City Poison Control Center, New York University School of Medicine, New York, USA.
| |
Collapse
|
59
|
Psychosocial problems in adolescents with type 1 diabetes mellitus. DIABETES & METABOLISM 2009; 35:339-50. [PMID: 19700362 DOI: 10.1016/j.diabet.2009.05.002] [Citation(s) in RCA: 78] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/19/2008] [Revised: 05/11/2009] [Accepted: 05/11/2009] [Indexed: 12/11/2022]
Abstract
Adolescents with diabetes are at increased risk of developing psychiatric (10-20%) or eating disorders (8-30%), as well as substance abuse (25-50%), leading to non-compliance with treatment and deterioration of diabetic control. At high risk are female adolescents with family problems and other comorbid disorders. Impaired cognitive function has also been reported among children with diabetes, mainly in boys, and especially in those with early diabetes diagnosis (< 5 years), or with episodes of severe hypoglycaemia or prolonged hyperglycaemia. Type 1 diabetes mellitus contributes to the development of problems in parent-child relationships and employment difficulties, and negatively affects the quality of life. However, insulin pumps appear to improve patients' metabolic control and lifestyle. The contributions of family and friends to the quality of metabolic control and emotional support are also crucial. In addition, the role of the primary-care provider is important in identifying patients at high risk of developing psychosocial disorders and referring them on to health specialists. At high risk are patients in mid-adolescence with comorbid disorders, low socioeconomic status or parental health problems. Multisystem therapy, involving the medical team, school personnel, family and peer group, is also essential. The present review focuses on the prevalence of nutritional and psychosocial problems among adolescents with diabetes, and the risk factors for its development, and emphasizes specific goals in their management and prevention.
Collapse
|
60
|
Bree AJ, Puente EC, Daphna-Iken D, Fisher SJ. Diabetes increases brain damage caused by severe hypoglycemia. Am J Physiol Endocrinol Metab 2009; 297:E194-201. [PMID: 19435850 PMCID: PMC2711670 DOI: 10.1152/ajpendo.91041.2008] [Citation(s) in RCA: 91] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Insulin-induced severe hypoglycemia causes brain damage. The hypothesis to be tested was that diabetes portends to more extensive brain tissue damage following an episode of severe hypoglycemia. Nine-week-old male streptozotocin-diabetic (DIAB; n = 10) or vehicle-injected control (CONT; n = 7) Sprague-Dawley rats were subjected to hyperinsulinemic (0.2 U.kg(-1).min(-1)) severe hypoglycemic (10-15 mg/dl) clamps while awake and unrestrained. Groups were precisely matched for depth and duration (1 h) of severe hypoglycemia (CONT 11 +/- 0.5 and DIAB 12 +/- 0.2 mg/dl, P = not significant). During severe hypoglycemia, an equal number of episodes of seizure-like activity were noted in both groups. One week later, histological analysis demonstrated extensive neuronal damage in regions of the hippocampus, especially in the dentate gyrus and CA1 regions and less so in the CA3 region (P < 0.05), although total hippocampal damage was not different between groups. However, in the cortex, DIAB rats had significantly (2.3-fold) more dead neurons than CONT rats (P < 0.05). There was a strong correlation between neuronal damage and the occurrence of seizure-like activity (r(2) > 0.9). Separate studies conducted in groups of diabetic (n = 5) and nondiabetic (n = 5) rats not exposed to severe hypoglycemia showed no brain damage. In summary, under the conditions studied, severe hypoglycemia causes brain damage in the cortex and regions within the hippocampus, and the extent of damage is closely correlated to the presence of seizure-like activity in nonanesthetized rats. It is concluded that, in response to insulin-induced severe hypoglycemia, diabetes uniquely increases the vulnerability of specific brain areas to neuronal damage.
Collapse
Affiliation(s)
- Adam J Bree
- Division of Endocrinology, Metabolism, & Lipid Research, Washington University in St. Louis, Campus Box 8127, 660 South Euclid Ave., St. Louis, MO 63110, USA
| | | | | | | |
Collapse
|
61
|
Peters A, Langemann D. Build-ups in the supply chain of the brain: on the neuroenergetic cause of obesity and type 2 diabetes mellitus. FRONTIERS IN NEUROENERGETICS 2009; 1:2. [PMID: 19584906 PMCID: PMC2691548 DOI: 10.3389/neuro.14.002.2009] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/18/2008] [Accepted: 04/08/2009] [Indexed: 01/12/2023]
Abstract
Obesity and type 2 diabetes have become the major health problems in many industrialized countries. A few theoretical frameworks have been set up to derive the possible determinative cause of obesity. One concept views that food availability determines food intake, i.e. that obesity is the result of an external energy "push" into the body. Another one views that the energy milieu within the human organism determines food intake, i.e. that obesity is due to an excessive "pull" from inside the organism. Here we present the unconventional concept that a healthy organism is maintained by a "competent brain-pull" which serves systemic homeostasis, and that the underlying cause of obesity is "incompetent brain-pull", i.e. that the brain is unable to properly demand glucose from the body. We describe the energy fluxes from the environment, through the body, towards the brain with a mathematical "supply chain" model and test whether its predictions fit medical and experimental data sets from our and other research groups. In this way, we show data-based support of our hypothesis, which states that under conditions of food abundance incompetent brain-pull will lead to build-ups in the supply chain culminating in obesity and type 2 diabetes. In the same way, we demonstrate support of the related hypothesis, which states that under conditions of food deprivation a competent brain-pull mechanism is indispensable for the continuance of the brain s high energy level. In conclusion, we took the viewpoint of integrative physiology and provided evidence for the necessity of brain-pull mechanisms for the benefit of health. Along these lines, our work supports recent molecular findings from the field of neuroenergetics and continues the work on the "Selfish Brain" theory dealing with the maintenance of the cerebral and peripheral energy homeostasis.
Collapse
Affiliation(s)
- Achim Peters
- Head of the Clinical Research Group, Brainmetabolism, Neuroenergetics, Obesity and Diabetes, Medical Clinic 1Lübeck, Germany
| | - Dirk Langemann
- Institute of Mathematics, University of LuebeckLübeck, Germany
| |
Collapse
|
62
|
Affiliation(s)
- Robert S Sherwin
- Department of Internal Medicine and Endocrinology, Yale University School of Medicine, New Haven, Connecticut, USA.
| |
Collapse
|
63
|
Affiliation(s)
- Daniel E. Jacome
- From the Department of Medicine, Franklin Medical Center, Greenfield, Mass and the Division of Neurology, Dartmouth‐Hitchcock Medical Center, Lebanon, NH
| |
Collapse
|
64
|
Chan O, Cheng H, Herzog R, Czyzyk D, Zhu W, Wang A, McCrimmon RJ, Seashore MR, Sherwin RS. Increased GABAergic tone in the ventromedial hypothalamus contributes to suppression of counterregulatory responses after antecedent hypoglycemia. Diabetes 2008; 57:1363-70. [PMID: 18375441 PMCID: PMC5518793 DOI: 10.2337/db07-1559] [Citation(s) in RCA: 94] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
OBJECTIVE We have previously demonstrated that modulation of gamma-aminobutyric acid (GABA) inhibitory tone in the ventromedial hypothalamus (VMH), an important glucose-sensing region in the brain, modulates the magnitude of glucagon and sympathoadrenal responses to hypoglycemia. In the current study, we examined whether increased VMH GABAergic tone may contribute to suppression of counterregulatory responses after recurrent hypoglycemia. RESEARCH DESIGN AND METHODS To test this hypothesis, we quantified expression of the GABA synthetic enzyme, glutamic acid decarboxylase (GAD), in the VMH of control and recurrently hypoglycemic rats. Subsequently, we used microdialysis and microinjection techniques to assess changes in VMH GABA levels and the effects of GABA(A) receptor blockade on counterregulatory responses to a standardized hypoglycemic stimulus. RESULTS Quantitative RT-PCR and immunoblots in recurrently hypoglycemic animals revealed that GAD(65) mRNA and protein were increased 33 and 580%, respectively. Basal VMH GABA concentrations were more than threefold higher in recurrently hypoglycemic animals. Furthermore, whereas VMH GABA levels decreased in both control and recurrently hypoglycemic animals with the onset of hypoglycemia, the fall was not significant in recurrently hypoglycemic rats. During hypoglycemia, recurrently hypoglycemic rats exhibited a 49-63% reduction in glucagon and epinephrine release. These changes were reversed by delivery of a GABA(A) receptor antagonist to the VMH. CONCLUSIONS Our data suggest that recurrent hypoglycemia increases GABAergic inhibitory tone in the VMH and that this, in turn, suppresses glucagon and sympathoadrenal responses to subsequent bouts of acute hypoglycemia. Thus, hypoglycemia-associated autonomic failure may be due in part to a relative excess of the inhibitory neurotransmitter, GABA, within the VMH.
Collapse
Affiliation(s)
- Owen Chan
- Section of Endocrinology, Department of Internal Medicine, Yale University School of Medicine, New Haven, Connecticut
| | - Haiying Cheng
- Section of Endocrinology, Department of Internal Medicine, Yale University School of Medicine, New Haven, Connecticut
| | - Raimund Herzog
- Section of Endocrinology, Department of Internal Medicine, Yale University School of Medicine, New Haven, Connecticut
| | - Daniel Czyzyk
- Department of Genetics, Department of Internal Medicine, Yale University School of Medicine, New Haven, Connecticut
| | - Wanling Zhu
- Section of Endocrinology, Department of Internal Medicine, Yale University School of Medicine, New Haven, Connecticut
| | - Ajin Wang
- Section of Endocrinology, Department of Internal Medicine, Yale University School of Medicine, New Haven, Connecticut
| | - Rory J. McCrimmon
- Section of Endocrinology, Department of Internal Medicine, Yale University School of Medicine, New Haven, Connecticut
| | - Margretta R. Seashore
- Department of Genetics, Department of Internal Medicine, Yale University School of Medicine, New Haven, Connecticut
| | - Robert S. Sherwin
- Section of Endocrinology, Department of Internal Medicine, Yale University School of Medicine, New Haven, Connecticut
| |
Collapse
|
65
|
Abstract
Hypoglycaemia is a frequent and greatly feared side-effect of insulin therapy, and a major obstacle to achieving near-normal glucose control. This review will focus on the more recent developments in our understanding of the mechanisms that underlie the sensing of hypoglycaemia in both non-diabetic and diabetic individuals, and how this mechanism becomes impaired over time. The research focus of my own laboratory and many others is directed by three principal questions. Where does the body sense a falling glucose? How does the body detect a falling glucose? And why does this mechanism fail in Type 1 diabetes? Hypoglycaemia is sensed by specialized neurons found in the brain and periphery, and of these the ventromedial hypothalamus appears to play a major role. Neurons that react to fluctuations in glucose use mechanisms very similar to those that operate in pancreatic B- and A-cells, in particular in their use of glucokinase and the K(ATP) channel as key steps through which the metabolic signal is translated into altered neuronal firing rates. During hypoglycaemia, glucose-inhibited (GI) neurons may be regulated by the activity of AMP-activated protein kinase. This sensing mechanism is disturbed by recurrent hypoglycaemia, such that counter-regulatory defence responses are triggered at a lower glucose level. Why this should occur is not yet known, but it may involve increased metabolism or fuel delivery to glucose-sensing neurons or alterations in the mechanisms that regulate the stress response.
Collapse
Affiliation(s)
- R McCrimmon
- Yale University School of Medicine, Department of Internal Medicine, New Haven, CT 06520-8020, USA.
| |
Collapse
|
66
|
Rossetti P, Porcellati F, Bolli GB, Fanelli CG. Prevention of hypoglycemia while achieving good glycemic control in type 1 diabetes: the role of insulin analogs. Diabetes Care 2008; 31 Suppl 2:S113-20. [PMID: 18227470 DOI: 10.2337/dc08-s227] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Affiliation(s)
- Paolo Rossetti
- Department of Internal Medicine, University of Perugia, Perugia, Italy
| | | | | | | |
Collapse
|
67
|
Dunn JT, Cranston I, Marsden PK, Amiel SA, Reed LJ. Attenuation of amydgala and frontal cortical responses to low blood glucose concentration in asymptomatic hypoglycemia in type 1 diabetes: a new player in hypoglycemia unawareness? Diabetes 2007; 56:2766-73. [PMID: 17660265 DOI: 10.2337/db07-0666] [Citation(s) in RCA: 51] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
OBJECTIVE Loss of ability to recognize hypoglycemia (hypoglycemia unawareness) increases risk of severe hypoglycemia threefold in insulin-treated diabetes. We set out to investigate the cerebral correlates of unawareness in type 1 patients. RESEARCH DESIGN AND METHODS Regional changes in brain glucose kinetics were measured using [(18)F]-fluorodeoxyglucose (FDG) positron emission tomography (PET), in 13 men with type 1 diabetes--6 with hypoglycemia awareness and 7 with hypoglycemia unawareness--at euglycemia (5 mmol/l) and hypoglycemia (2.6 mmol/l), in random order. RESULTS Epinephrine responses to hypoglycemia were reduced in hypoglycemia unawareness (P < 0.0003), as were symptoms. Statistical parametric mapping (SPM) of FDG uptake using SPM2 at a statistical threshold of P < 0.005 showed increased FDG uptake in left amygdala in hypoglycemia awareness, but not in hypoglycemia unawareness (region of interest analysis -0.40 +/- 1.03 vs. 3.66 +/- 0.42, respectively; P = 0.007), and robust increase in bilateral ventral striatum during hypoglycemia (region of interest analysis hypoglycemia unawareness 3.52 +/- 1.02 vs. awareness 6.1 +/- 0.53; P = 0.054). Further analysis at the statistical threshold of P < 0.01 showed bilateral attenuated activation of brain stem regions and less deactivation in lateral orbitofrontal cortex in hypoglycemia unawareness. CONCLUSIONS Ventral striatal, amygdala, brain stem, and orbitofrontal responses to hypoglycemia indicate engagement of appetitive motivational networks, associated with integrated behavioral responses to hypoglycemia. Reduced responses in these networks in hypoglycemia unawareness, particularly failure of amygdala and orbifrontal cortex responses, suggest habituation of higher behavioral responses to hypoglycemia as a basis for unawareness. New approaches may be needed to restore awareness effectively in practice.
Collapse
Affiliation(s)
- Joel T Dunn
- Diabetes Research Group, King's College London School of Medicine, King's College, London, UK
| | | | | | | | | |
Collapse
|
68
|
Weghuber D, Mandl M, Krssák M, Roden M, Nowotny P, Brehm A, Krebs M, Widhalm K, Bischof MG. Characterization of hepatic and brain metabolism in young adults with glycogen storage disease type 1: a magnetic resonance spectroscopy study. Am J Physiol Endocrinol Metab 2007; 293:E1378-84. [PMID: 17785500 DOI: 10.1152/ajpendo.00658.2006] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
In glycogen storage disease type 1 (GSD1), children present with severe hypoglycemia, whereas the propensity for hypoglycemia may decrease with age in these patients. It was the aim of this study to elucidate the mechanisms for milder hypoglycemia symptoms in young adult GSD1 patients. Four patients with GSD1 [body mass index (BMI) 23.2 +/- 6.3 kg/m, age 21.3 +/- 2.9 yr] and four healthy controls matched for BMI (23.1 +/- 3.0 kg/m) and age (24.0 +/- 3.1 yr) were studied. Combined (1)H/(31)P nuclear magnetic resonance spectroscopy (NMRS) was used to assess brain metabolism. Before and after administration of 1 mg glucagon, endogenous glucose production (EGP) was measured with d-[6,6-(2)H(2)]glucose and hepatic glucose metabolism was examined by (1)H/(13)C/(31)P NMRS. At baseline, GSD1 patients exhibited significantly lower rates of EGP (0.53 +/- 0.04 vs. 1.74 +/- 0.03 mg.kg(-1).min(-1); P < 0.01) but an increased intrahepatic glycogen (502 +/- 89 vs. 236 +/- 11 mmol/l; P = 0.05) and lipid content (16.3 +/- 1.1 vs. 1.4 +/- 0.4%; P < 0.001). After glucagon challenge, EGP did not change in GSD1 patients (0.53 +/- 0.04 vs. 0.59 +/- 0.24 mg.kg(-1).min(-1); P = not significant) but increased in healthy controls (1.74 +/- 0.03 vs. 3.95 +/- 1.34; P < 0.0001). In GSD1 patients, we found an exaggerated increase of intrahepatic phosphomonoesters (0.23 +/- 0.08 vs. 0.86 +/- 0.19 arbitrary units; P < 0.001), whereas inorganic phosphate decreased (0.36 +/- 0.08 vs. -0.43 +/- 0.17 arbitrary units; P < 0.01). Intracerebral ratios of glucose and lactate to creatine were higher in GSD1 patients (P < 0.05 vs. control). Therefore, hepatic defects of glucose metabolism persist in young adult GSD1 patients. Upregulation of the glucose and lactate transport at the blood-brain barrier could be responsible for the amelioration of hypoglycemic symptoms.
Collapse
Affiliation(s)
- D Weghuber
- Division of Endocrinology and Metabolism, Department of Internal Medicine III, Medical University of Vienna, Währinger Gürtel 18-20, A-1090, Vienna, Austria
| | | | | | | | | | | | | | | | | |
Collapse
|
69
|
Boyle PJ, Zrebiec J. Physiological and behavioral aspects of glycemic control and hypoglycemia in diabetes. South Med J 2007; 100:175-82. [PMID: 17330688 DOI: 10.1097/01.smj.0000242866.81791.70] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Homeostatic mechanisms that maintain blood glucose concentration within a narrow physiologic range are complex and redundant. Elaborate feedback loops involving insulin, glucagon, sympathoadrenal mediators, growth hormone, amylin, and incretins normally operate synchronously to keep blood glucose within a narrow set point. Individuals with diabetes have defects in glucose homeostatic pathways, including the counterregulatory pathways that oppose hypoglycemia and ensure sufficient glucose is available to serve the brain's metabolic needs. Because available interventions to manage hyperglycemia do not precisely mimic physiologic insulin secretion patterns, hypoglycemia can occur any time dosing exceeds demand. Focusing on the practical implications, we review the endocrinological principles underlying normal glucose homeostasis and the defects in regulation and counterregulation, including hypoglycemia unawareness, that occur with diabetes. Iatrogenic and behavioral factors that contribute to hypoglycemia risk and nocturnal hypoglycemia are discussed. A companion manuscript reviews the clinical symptoms and fundamentals of hypoglycemia prevention, recognition, and management.
Collapse
Affiliation(s)
- Patrick J Boyle
- Department of Internal Medicine, University of New Mexico School of Medicine, Albuquerque, NM 87131, USA.
| | | |
Collapse
|
70
|
Yong TY, Phillips L, Horowitz M, Giles N. Severe hypoglycaemic unawareness in a patient with insulinoma. Intern Med J 2007; 37:141-2. [PMID: 17229264 DOI: 10.1111/j.1445-5994.2007.01255.x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
|
71
|
Abstract
Complex interactions exist amongst the various components of the neuroendocrine system in order to maintain homeostasis, energy balance and reproductive function. These components include the hypothalamus-pituitary- adrenal and -gonadal axes, the renin-angiotensin-aldosterone system, the sympathetic nervous system and the pancreatic islets. These hormones, peptides and neurotransmitters act in concert to regulate the functions of many organs, notably the liver, muscles, kidneys, thyroid, bone, adrenal glands, adipocytes, vasculature, intestinal tract and gonads, through many intermediary pathways. Endocrine and metabolic disorders can arise from imbalance amongst numerous hormonal factors. These disturbances may be due to endogenous processes, such as increased secretion of hormones from a tumour, as well as exogenous drug administration. Drugs can cause endocrine abnormalities via different mechanisms, including direct alteration of hormone production, changes in the regulation of the hormonal axis, effects on hormonal transport, binding, and signalling, as well as similar changes to counter-regulatory hormone systems. Furthermore, drugs can affect the evaluation of endocrine parameters by causing interference with diagnostic tests. Common drug-induced endocrine and metabolic disorders include disorders of carbohydrate metabolism, electrolyte and calcium abnormalities, as well as drug-induced thyroid and gonadal disorders. An understanding of the proposed mechanisms of these drug effects and their evaluation and differential diagnosis may allow for more critical interpretation of the clinical observations associated with such disorders, better prediction of drug-induced adverse effects and better choices of and rationales for treatment.
Collapse
Affiliation(s)
- Ronald C W Ma
- Department of Medicine and Therapeutics, The Chinese University of Hong Kong, Prince of Wales Hospital, Shatin, New Territories, Hong Kong, China.
| | | | | | | | | |
Collapse
|
72
|
Abstract
Diabetic complications result in much morbidity and mortality and considerable consumption of scarce medical resources. Thus, elucidation of the risk factors and pathophysiologic mechanisms underlying diabetic complications is important. The effects of diabetes on the central nervous system (CNS) result in cognitive dysfunction and cerebrovascular disease. Treatment-related hypoglycemia also has CNS consequences. Advances in neuroimaging now provide greater insights into the structural and functional impact of diabetes on the CNS. Greater understanding of CNS involvement could lead to new strategies to prevent or reverse the damage caused by diabetes mellitus.
Collapse
|
73
|
McCrimmon RJ, Song Z, Cheng H, McNay EC, Weikart-Yeckel C, Fan X, Routh VH, Sherwin RS. Corticotrophin-releasing factor receptors within the ventromedial hypothalamus regulate hypoglycemia-induced hormonal counterregulation. J Clin Invest 2006; 116:1723-30. [PMID: 16741581 PMCID: PMC1464911 DOI: 10.1172/jci27775] [Citation(s) in RCA: 75] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2005] [Accepted: 03/14/2006] [Indexed: 02/06/2023] Open
Abstract
Recurrent episodes of hypoglycemia impair sympathoadrenal counterregulatory responses (CRRs) to a subsequent episode of hypoglycemia. For individuals with type 1 diabetes, this markedly increases (by 25-fold) the risk of severe hypoglycemia and is a major limitation to optimal insulin therapy. The mechanisms through which this maladaptive response occurs remain unknown. The corticotrophin-releasing factor (CRF) family of neuropeptides and their receptors (CRFR1 and CRFR2) play a critical role in regulating the neuroendocrine stress response. Here we show in the Sprague-Dawley rat that direct in vivo application to the ventromedial hypothalamus (VMH), a key glucose-sensing region, of urocortin I (UCN I), an endogenous CRFR2 agonist, suppressed (approximately 55-60%), whereas CRF, a predominantly CRFR1 agonist, amplified (approximately 50-70%) CRR to hypoglycemia. UCN I was shown to directly alter the glucose sensitivity of VMH glucose-sensing neurons in whole-cell current clamp recordings in brain slices. Interestingly, the suppressive effect of UCN I-mediated CRFR2 activation persisted for at least 24 hours after in vivo VMH microinjection. Our data suggest that regulation of the CRR is largely determined by the interaction between CRFR2-mediated suppression and CRFR1-mediated activation in the VMH.
Collapse
Affiliation(s)
- Rory J McCrimmon
- Department of Internal Medicine, Yale University School of Medicine, New Haven, Connecticut 06520-8020, USA.
| | | | | | | | | | | | | | | |
Collapse
|
74
|
Galassetti P, Tate D, Neill RA, Richardson A, Leu SY, Davis SN. Effect of differing antecedent hypoglycemia on counterregulatory responses to exercise in type 1 diabetes. Am J Physiol Endocrinol Metab 2006; 290:E1109-17. [PMID: 16403779 DOI: 10.1152/ajpendo.00244.2005] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Hypoglycemia frequently occurs during or after exercise in intensively treated patients with type 1 diabetes mellitus (T1DM), but the underlying mechanisms are not clear. In both diabetic and nondiabetic subjects, moderate hypoglycemia blunts counterregulatory responses to subsequent exercise, but it is unknown whether milder levels of hypoglycemia can exert similar effects in a dose-dependent fashion. This study was designed to test the hypothesis that prior hypoglycemia of differing depths induces acute counterregulatory failure of proportionally greater magnitude during subsequent exercise in T1DM. Twenty-two T1DM patients (11 males/11 females, HbA1c 8.0 +/- 0.3%) were studied during 90 min of euglycemic cycling exercise after two 2-h periods of previous day euglycemia or hypoglycemia of 3.9, 3.3, or 2.8 mmol/l (HYPO-3.9, HYPO-3.3, HYPO-2.8, respectively). Patients' counterregulatory responses (circulating levels of neuroendocrine hormones, intermediary metabolites, substrate flux, tracer-determined glucose kinetics, and cardiovascular measurements) were assessed during exercise. Identical euglycemia and basal insulin levels were successfully maintained during all exercise studies, regardless of blood glucose levels during the previous day. After day 1 euglycemia, patients displayed normal counterregulatory responses to exercise. Conversely, when identical exercise was performed after day 1 hypoglycemia of increasing depth, a progressively greater blunting of glucagon, catecholamine, cortisol, endogenous glucose production, and lipolytic responses to exercise was observed. This was paralleled by a graduated increase in the amount of exogenous glucose needed to maintain euglycemia during exercise. Our results demonstrate that acute counterregulatory failure during prolonged, moderate-intensity exercise may be induced in a dose-dependent fashion by differing depths of antecedent hypoglycemia starting at only 3.9 mmol/l in patients with T1DM.
Collapse
Affiliation(s)
- Pietro Galassetti
- Division of Diabetes, Endocrinology & Metabolism, Vanderbilt Univ. School of Medicine, Nashville, TN 37232-6303, USA
| | | | | | | | | | | |
Collapse
|
75
|
McCrimmon RJ, Fan X, Cheng H, McNay E, Chan O, Shaw M, Ding Y, Zhu W, Sherwin RS. Activation of AMP-activated protein kinase within the ventromedial hypothalamus amplifies counterregulatory hormone responses in rats with defective counterregulation. Diabetes 2006; 55:1755-60. [PMID: 16731839 DOI: 10.2337/db05-1359] [Citation(s) in RCA: 94] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Defective counterregulatory responses (CRRs) to hypoglycemia are associated with a marked increase in the risk of severe hypoglycemia. The mechanisms leading to the development of defective CRRs remain largely unknown, although they are associated with antecedent hypoglycemia. Activation of AMP-activated protein kinase (AMPK) in the ventromedial hypothalamus (VMH) amplifies the counterregulatory increase in glucose production during acute hypoglycemia. To examine whether activation of AMPK in the VMH restores defective CRR, controlled hypoglycemia ( approximately 2.8 mmol/l) was induced in a group of 24 Sprague-Dawley rats, all of which had undergone a 3-day model of recurrent hypoglycemia before the clamp study. Before the acute study, rats were microinjected to the VMH with either 5-aminoimidazole-4-carboxamide (AICAR; n=12), to activate AMPK, or saline (n=12). In a subset of rats, an infusion of H(3)-glucose was additionally started to calculate glucose turnover. Stimulation of AMPK within the VMH was found to amplify hormonal CRR and increase endogenous glucose production. In addition, analysis of tissue from both whole hypothalamus and VMH showed that recurrent hypoglycemia induces an increase in the gene expression of AMPK alpha(1) and alpha(2). These findings suggest that the development of novel drugs designed to selectively activate AMPK in the VMH offer a future therapeutic potential for individuals with type 1 diabetes who have defective CRRs to hypoglycemia.
Collapse
Affiliation(s)
- Rory J McCrimmon
- Department of Internal Medicine and Encocrinology, Yale University School of Medicine, P.O. Box 208020, New Haven, CT 06520-8020, USA.
| | | | | | | | | | | | | | | | | |
Collapse
|
76
|
Jacobson L, Ansari T, McGuinness OP. Counterregulatory deficits occur within 24 h of a single hypoglycemic episode in conscious, unrestrained, chronically cannulated mice. Am J Physiol Endocrinol Metab 2006; 290:E678-84. [PMID: 16533951 PMCID: PMC1414786 DOI: 10.1152/ajpendo.00383.2005] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Hypoglycemia-induced counterregulatory failure is a dangerous complication of insulin use in diabetes mellitus. Controlled hypoglycemia studies in gene knockout models, which require the use of mice, would aid in identifying causes of defective counterregulation. Because stress can influence counterregulatory hormones and glucose homeostasis, we developed glucose clamps with remote blood sampling in conscious, unrestrained mice. Male C57BL/6 mice implanted with indwelling carotid artery and jugular vein catheters were subjected to 2 h of hyperinsulinemic glucose clamps 24 h apart, with a 6-h fast before each clamp. On day 1, blood glucose was maintained (euglycemia, 178 +/- 4 mg/dl) or decreased to 62 +/- 1 mg/dl (hypoglycemia) by insulin (20 mU x kg(-1) x min(-1)) and variable glucose infusion. Donor blood was continuously infused to replace blood sample volume. Baseline plasma epinephrine (32 +/- 8 pg/ml), corticosterone (16.1 +/- 1.8 microg/dl), and glucagon (35 +/- 3 pg/ml) were unchanged during euglycemia but increased significantly during hypoglycemia, with a glycemic threshold of approximately 80 mg/dl. On day 2, all mice underwent a hypoglycemic clamp (blood glucose, 64 +/- 1 mg/dl). Compared with mice that were euglycemic on day 1, previously hypoglycemic mice had significantly higher glucose requirements and significantly lower plasma glucagon and corticosterone (n = 6/group) on day 2. Epinephrine tended to decrease, although not significantly, in repeatedly hypoglycemic mice. Pre- and post-clamp insulin levels were similar between groups. We conclude that counterregulatory responses to acute and repeated hypoglycemia in unrestrained, chronically cannulated mice reproduce aspects of counterregulation in humans, and that repeated hypoglycemia in mice is a useful model of counterregulatory failure.
Collapse
Affiliation(s)
- Lauren Jacobson
- Center for Neuropharmacology and Neuroscience, Albany Medical College, MC-136, Albany, NY 12208, USA.
| | | | | |
Collapse
|
77
|
Mason GF, Petersen KF, Lebon V, Rothman DL, Shulman GI. Increased brain monocarboxylic acid transport and utilization in type 1 diabetes. Diabetes 2006; 55:929-34. [PMID: 16567513 PMCID: PMC2995526 DOI: 10.2337/diabetes.55.04.06.db05-1325] [Citation(s) in RCA: 107] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
We hypothesized that increased capacity for brain utilization of nonglucose substrates (monocarboxylic acids [MCAs]) by upregulation of the MCA transporters may contribute metabolic substrates during hypoglycemia. To test this hypothesis, we assessed brain acetate metabolism in five well-controlled type 1 diabetic subjects and six nondiabetic control subjects using 13C magnetic resonance spectroscopy during infusions of [2-(13)C]acetate during hypoglycemia (approximately 55 mg/dl). Acetate is transported into the brain through MCA transporters that are also used for lactate and ketones. Brain acetate concentrations were over twofold higher in the subjects with diabetes than the control subjects (P = 0.01). The fraction of oxidative metabolism from acetate (P = 0.015) and the rate of MCA transport (P = 0.01) were also approximately twofold higher in the diabetic subjects. We conclude that during hypoglycemia MCA transport in the brain was increased by approximately twofold in patients with well-controlled type 1 diabetes, as reflected by higher brain acetate concentrations and rates of acetate oxidation. This upregulation would potentially allow a similar twofold increase in the transport of other MCAs, including lactate, during insulin-induced hypoglycemia. These data are consistent with the hypothesis that upregulation of MCA transport may contribute to the maintenance of brain energetics during hypoglycemia in patients with type 1 diabetes.
Collapse
Affiliation(s)
- Graeme F. Mason
- Department of Psychiatry and Diagnostic Radiology, Yale School of Medicine, New Haven, Connecticut
- Department of Diagnostic Radiology, Yale School of Medicine, New Haven, Connecticut
| | - Kitt F. Petersen
- Department of Internal Medicine, Yale School of Medicine, New Haven, Connecticut
| | - Vincent Lebon
- Groupe de Spectroscopie RMN, Unité d'Imagerie Isotopique Biochimique et Pharmacologique, Orsay Cedex, France
| | - Douglas L. Rothman
- Department of Diagnostic Radiology, Yale School of Medicine, New Haven, Connecticut
- Department of Biomedical Engineering, Yale School of Medicine, New Haven, Connecticut
| | - Gerald I. Shulman
- Department of Internal Medicine, Yale School of Medicine, New Haven, Connecticut
- Department of Cellular and Molecular Physiology, Howard Hughes Medical Institute, Yale School of Medicine, New Haven, Connecticut
| |
Collapse
|
78
|
Bischof MG, Brehm A, Bernroider E, Krssák M, Mlynárik V, Krebs M, Roden M. Cerebral glutamate metabolism during hypoglycaemia in healthy and type 1 diabetic humans. Eur J Clin Invest 2006; 36:164-9. [PMID: 16506960 DOI: 10.1111/j.1365-2362.2006.01615.x] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
BACKGROUND The mechanisms responsible for the progressive failure of hypoglycaemia counterregulation in long-standing type 1 diabetes are poorly understood. Increased brain glucose uptake during hypoglycaemia or alterations of brain energy metabolism could effect glucose sensing by the brain and thus contribute to hypoglycaemia-associated autonomic failure. MATERIALS AND METHODS Type 1 diabetic patients (T1DM) and healthy volunteers (CON) were studied before, during and after a hypoglycaemic (50 mg dL(-1)) hyperinsulinaemic (1.5 mU kg(-1) min(-1)) clamp test. The (1)H magnetic resonance spectroscopy of the occipital lobe of the brain was performed employing the STEAM localization technique. The water signal was suppressed by the modified SWAMP method. All spectra were acquired on a 3 Tesla scanner (80 cm MEDSPEC-DBX, Bruker Medical, Ettlingen, Germany) using a 10-cm diameter surface coil. RESULTS During hypoglycaemia, T1DM showed blunted endocrine counterregulation. At baseline the brain tissue glucose : creatine ratio was lower in CON than in T1DM (CON 0.13 +/- 0.05 vs. T1DM 0.19 0.11; P < 0.01). During hypoglycaemia glucose : creatine ratios decreased in both groups (CON 0.07 +/- 0.08, P < 0.05; T1DM 0.03 +/- 0.03, P < 0.001). A significant drop in the glutamate : creatine ratio could only be found in CON during hypoglycaemia (CON 1.36 +/- 0.08 vs. 1.26 +/- 0.11; P < 0.01; T1DM 1.32 +/- 0.13 vs. 1.28 +/- 0.15; P = NS). The ratios of glutamine, N-acetylaspartate, choline and myo-inositol : creatine were not different between both groups and did not change throughout the experiment. CONCLUSIONS Only in CON does moderate hypoglycaemia reduce intracerebral glutamate concentrations, possibly owing to a slower substrate flux through the tricarboxylic acid cycle in neurones. The maintenance of normal energy metabolism in T1DM during hypoglycaemia might effect glucose sensing in the brain and contribute to hypoglycaemia-associated autonomic failure.
Collapse
Affiliation(s)
- M G Bischof
- Department of Internal Medicine III, Division of Endocrinology and Metabolism,Medical University of Vienna, Hanusch Hospital, A-1090 Vienna, Austria.
| | | | | | | | | | | | | |
Collapse
|
79
|
|
80
|
Lubow JM, Piñón IG, Avogaro A, Cobelli C, Treeson DM, Mandeville KA, Toffolo G, Boyle PJ. Brain oxygen utilization is unchanged by hypoglycemia in normal humans: lactate, alanine, and leucine uptake are not sufficient to offset energy deficit. Am J Physiol Endocrinol Metab 2006; 290:E149-E153. [PMID: 16144821 DOI: 10.1152/ajpendo.00049.2005] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
During hypoglycemia, substrates other than glucose have been suggested to serve as alternate neural fuels. We evaluated brain uptake of endogenously produced lactate, alanine, and leucine at euglycemia and during insulin-induced hypoglycemia in 17 normal subjects. Cross-brain arteriovenous differences for plasma glucose, lactate, alanine, leucine, and oxygen content were quantitated. Cerebral blood flow (CBF) was measured by Fick methodology using N(2)O as the dilution indicator gas. Substrate uptake was measured as the product of CBF and the arteriovenous concentration difference. As arterial glucose concentration fell, cerebral oxygen utilization and CBF remained unchanged. Brain glucose uptake (BGU) decreased from 36.3+/-2.6 to 26.6+/-2.1 micromol.100 g of brain(-1).min(-1) (P<0.001), equivalent to a drop in ATP of 291 micromol.100 g(-1).min(-1). Arterial lactate rose (P<0.001), whereas arterial alanine and leucine fell (P<0.009 and P<0.001, respectively). Brain lactate uptake (BLU) increased from a net release of -1.8+/- 0.6 to a net uptake of 2.5+/-1.2 micromol.100 g(-1).min(-1) (P<0.001), equivalent to an increase in ATP of 74 micromol.100 g(-1).min(-1). Brain leucine uptake decreased from 7.1+/-1.2 to 2.5 +/- 0.5 micromol.100 g(-1).min(-1) (P<0.001), and brain alanine uptake trended downward (P<0.08). We conclude that the ATP generated from the physiological increase in BLU during hypoglycemia accounts for no more than 25% of the brain glucose energy deficit.
Collapse
Affiliation(s)
- Jeffrey M Lubow
- Department of Internal Medicine, University of New Mexico, Albuquerque NM 87131-0001, USA
| | | | | | | | | | | | | | | |
Collapse
|
81
|
Abstract
Iatrogenic hypoglycemia is a problem for people with diabetes. It causes recurrent morbidity, and sometimes death, as well as a vicious cycle of recurrent hypoglycemia, precluding maintenance of euglycemia over a lifetime of diabetes. Improved therapeutic approaches that will minimize both hypo- and hyperglycemia will be based on insight into the pathophysiology of glucoregulation, specifically glucose counterregulation, in insulin-deficient (type 1 and advanced type 2) diabetes. In such patients, hypoglycemia is the result of the interplay of relative or absolute therapeutic insulin excess and compromised physiological (the syndrome of defective glucose counterregulation) and behavioral (the syndrome of hypoglycemia unawareness) defenses against falling plasma glucose concentrations. The concept of hypoglycemia-associated autonomic failure (HAAF) in diabetes posits that recent antecedent iatrogenic hypoglycemia causes both defective glucose counterregulation (by reducing epinephrine responses to a given level of subsequent hypoglycemia in the setting of absent decrements in insulin and absent increments in glucagon) and hypoglycemia unawareness (by reducing sympathoadrenal and the resulting neurogenic symptom responses to a given level of subsequent hypoglycemia) and thus a vicious cycle of recurrent hypoglycemia. The clinical impact of HAAF is well established in type 1 diabetes; it also affects those with advanced type 2 diabetes. It is now known to be largely reversible, by as little as 2-3 weeks of scrupulous avoidance of hypoglycemia, in most affected patients. However, the mechanisms of HAAF and its component syndromes are largely unknown. Loss of the glucagon secretory response, a key feature of defective glucose counterregulation, is plausibly explained by insulin deficiency, specifically loss of the decrement in intraislet insulin that normally signals glucagon secretion as glucose levels fall. Reduced neurogenic symptoms, a key feature of hypoglycemia unawareness, are largely the result of reduced sympathetic neural responses to falling glucose levels. The mechanism by which hypoglycemia shifts the glycemic thresholds for sympathoadrenal activation to lower plasma glucose concentrations, the key feature of both components of HAAF, is not known. It does not appear to be the result of the release of a systemic mediator (e.g., cortisol, epinephrine) during antecedent hypoglycemia or of increased blood-to-brain glucose transport (although increased transport of alternative fuels is conceivable). It is likely the result of alterations of brain metabolism. Although there is an array of clues, the specific alteration remains to be identified. While the research focus has been largely on the hypothalamus, hypoglycemia is now known to activate widespread brain regions, including the medial prefrontal cortex. The possibility that HAAF could be the result of posthypoglycemic brain glycogen supercompensation has also been raised. Finally, there appear to be diverse causes of HAAF. In addition to recent antecedent hypoglycemia, these include exercise- and sleep-related HAAF. Clearly, a unifying mechanism of HAAF would need to incorporate these causes as well. Pending the prevention and cure of diabetes, critical fundamental, translational, and outcomes research is needed if we are to eliminate hypoglycemia from the lives of people affected by diabetes.
Collapse
Affiliation(s)
- Philip E Cryer
- Division of Endocrinology, Metabolism and Lipid Research and General Clinical Research Center, Campus Box 8127, Washington University School of Medicine, 660 South Euclid Ave., St. Louis, Missouri 63110, USA.
| |
Collapse
|
82
|
McCall AL. Altered glycemia and brain—update and potential relevance to the aging brain. Neurobiol Aging 2005; 26 Suppl 1:70-5. [PMID: 16198444 DOI: 10.1016/j.neurobiolaging.2005.08.009] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2005] [Accepted: 08/17/2005] [Indexed: 10/25/2022]
Abstract
Hyperglycemia characterizes diabetes mellitus and is linked to its chronic and acute complications. Cognitive dysfunction in diabetes occurs especially in longstanding disease and with poor glycemic control. Recent data in humans suggests that hyperglycemia causes acute cognitive dysfunction. The underlying mechanisms are unknown but deserve further research as diabetes is becoming epidemic and will likely contribute increasingly to premature cognitive decline. The primary side effect of diabetes treatment is hypoglycemia, particularly resulting from insulin treatment. CNS adaptations to acute and chronic hypoglycemia underlie the inability of some people to promptly recognize and defend against the risk of serious hypoglycemia. Data from human and animal models may help explain how altered glycemia affects brain function both acutely and chronically. Improved mechanistic understanding of altered glycemia's effects could prevent the adverse impact of diabetes upon the CNS and give new insights into effects that may exist in normal aging.
Collapse
Affiliation(s)
- Anthony L McCall
- The Diabetes and Hormone Center of Excellence, Department of Internal Medicine, University of Virginia Health System, PO Box 801407, Aurbach Medical Research Building, Charlottesville, VA 22908, USA.
| |
Collapse
|
83
|
McNay EC. The impact of recurrent hypoglycemia on cognitive function in aging. Neurobiol Aging 2005; 26 Suppl 1:76-9. [PMID: 16236383 DOI: 10.1016/j.neurobiolaging.2005.08.014] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2005] [Accepted: 08/29/2005] [Indexed: 11/27/2022]
Abstract
The decline in cognitive function, especially on challenging tasks, associated with aging is well known and relatively well-characterised. Recent evidence has provided strong support for the view that reduced ability to provide and regulate fuel supply, i.e., glucose, to the aged brain is a major cause of such decline. Inability to regulate glucose also defines diabetes, and both diabetes and the recurrent hypoglycemia seen in intensively insulin-treated diabetic patients also affect cognition. Recent data on the interaction between such recurrent hypoglycemia and aging in modulating cognition is reviewed, and the insights gained into mechanisms of age-related cognitive decline discussed.
Collapse
Affiliation(s)
- Ewan C McNay
- Section of Endocrinology, Yale University School of Medicine, TAC S147, One Gilbert Street, New Haven, CT 06519, USA.
| |
Collapse
|
84
|
Bingham EM, Dunn JT, Smith D, Sutcliffe-Goulden J, Reed LJ, Marsden PK, Amiel SA. Differential changes in brain glucose metabolism during hypoglycaemia accompany loss of hypoglycaemia awareness in men with type 1 diabetes mellitus. An [11C]-3-O-methyl-D-glucose PET study. Diabetologia 2005; 48:2080-9. [PMID: 16143864 DOI: 10.1007/s00125-005-1900-6] [Citation(s) in RCA: 55] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/17/2005] [Accepted: 05/11/2005] [Indexed: 12/30/2022]
Abstract
AIMS/HYPOTHESIS Hypoglycaemia unawareness in type 1 diabetes increases the risk of severe hypoglycaemia and impairs quality of life for people with diabetes. To explore the central mechanisms of hypoglycaemia awareness, we used [11C]-3-O-methyl-D-glucose (CMG) positron emission tomography (PET) to measure changes in global and regional brain glucose metabolism between euglycaemia and hypoglycaemia in aware and unaware diabetic subjects. MATERIALS AND METHODS Twelve men with type 1 diabetes, of whom six were characterised as aware and six as unaware of hypoglycaemia, underwent two CMG-PET brain scans while plasma glucose was controlled by insulin and glucose infusion either at euglycaemia (5 mmol/l) or at hypoglycaemia (2.6 mmol/l) in random order. RESULTS With hypoglycaemia, symptoms and sweating occurred only in the aware group. Brain glucose content fell in both groups (p=0.0002; aware, 1.18+/-0.45 to 0.02+/-0.2 mmol/l; unaware, 1.07+/-0.46 to 0.19+/-0.23 mmol/l), with a relative increase in tracer uptake in prefrontal cortical regions, including the anterior cingulate. No detectable differences were found between groups in global brain glucose transport parameters (K1, k2). The cerebral metabolic rate for glucose (CMRglc) showed a relative rise in the aware subjects (11.839+/-2.432 to 13.958+/-2.372) and a fall in the unaware subjects (from 12.457+/-1.938 to 10.16+/-0.801 micromol 100 g(-1) min(-1), p=0.043). CONCLUSIONS/INTERPRETATION Hypoglycaemia is associated with reduced brain glucose content in aware and unaware subjects, with a relative preservation of metabolism in areas associated with sympathetic activation. The relative rise in global glucose metabolic rate seen in aware subjects during hypoglycaemia contrasted with the relative fall in the unaware subjects and suggests that cortical neuronal activation is a necessary correlate of the state of hypoglycaemia awareness.
Collapse
Affiliation(s)
- E M Bingham
- Department of Diabetes, Endocrinology and Internal Medicine, Guy's, King's and St Thomas' School of Medicine, King's College, London, UK
| | | | | | | | | | | | | |
Collapse
|
85
|
Abstract
Acute hypoglycaemia impairs cerebral function, and available data indicate that cognitive performance becomes impaired at a blood glucose level of 2.6-3.0 mmol/l in healthy subjects. Methodological problems limit comparisons between studies, but in general complex tasks are more sensitive to hypoglycaemia than simple tasks, and some cognitive abilities are completely abolished. The onset of hypoglycaemic cognitive dysfunction is immediate, but recovery may be considerably delayed. There is persuasive evidence of adaptation to hypoglycaemia, partly due to increased brain glucose uptake capacity, although other mechanisms may exist. Patients who are exposed to chronic or recurrent hypoglycaemia become remarkably tolerant to the state, but this is insufficient to prevent severe hypoglycaemia with neuroglycopenic decompensation, probably because symptomatic and counterregulatory responses adapt even more. During experimental hypoglycaemia, administration of non-glucose cerebral fuels preserves cognitive function. However, little progress has been made as yet towards protecting cognitive function during hypoglycaemia in clinical practice. The chronic effects of recurrent hypoglycaemia remain contentious. There are numerous case reports of hypoglycaemic brain damage and of cognitive deterioration attributed to repeated severe hypoglycaemia. The major prospective studies, including the Diabetes Control and Complications Trial, did not report cognitive declines in intensively treated patients, but had unrepresentative study populations and may have been too short to detect such effects. Structural and functional brain changes are not only associated with recurrent severe hypoglycaemia, but also with hyperglycaemia and early disease onset and may in part be due to hyperglycaemic microvascular disease. Children may be more prone to acute metabolic insults, and there is evidence of developmental disadvantage associated with hypoglycaemic episodes.
Collapse
|
86
|
Qutub AA, Hunt CA. Glucose transport to the brain: a systems model. ACTA ACUST UNITED AC 2005; 49:595-617. [PMID: 16269321 DOI: 10.1016/j.brainresrev.2005.03.002] [Citation(s) in RCA: 68] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2004] [Revised: 03/02/2005] [Accepted: 03/09/2005] [Indexed: 02/07/2023]
Abstract
Glucose transport to the brain involves sophisticated interactions of solutes, transporters, enzymes, and cell signaling processes, within an intricate spatial architecture. The dynamics of the transport are influenced by the adaptive nature of the blood-brain barrier (BBB), the semi-impermeable membranes of brain capillaries. As both the gate and the gatekeeper between blood-borne nutrients and brain tissue, the BBB helps govern brain homeostasis. Glucose in the blood must cross the BBB's luminal and abluminal membranes to reach neural tissue. A robust representation of the glucose transport mechanism can highlight a target for brain therapeutic intervention, help characterize mechanisms behind several disease phenotypes, or suggest a new delivery route for drugs. The challenge for researchers is understanding the relationships between influential physiological variables in vivo, and using that knowledge to predict how alterations or interventions affect glucose transport. This paper reviews factors influencing glucose transport and approaches to representing blood-to-brain glucose transport including in vitro, in vivo, and kinetic models. Applications for different models are highlighted, while their limitations in answering arising questions about the human in vivo BBB lead to a discussion of an alternate approach. A developing complex systems simulation is introduced, initiating a single platform to represent the dynamics of glucose transport across the adapting human blood-brain barrier.
Collapse
Affiliation(s)
- Amina A Qutub
- Joint Graduate Group in Bioengineering, University of California, Berkeley and San Francisco, USA.
| | | |
Collapse
|
87
|
Criego AB, Tkac I, Kumar A, Thomas W, Gruetter R, Seaquist ER. Brain glucose concentrations in patients with type 1 diabetes and hypoglycemia unawareness. J Neurosci Res 2005; 79:42-7. [PMID: 15578722 DOI: 10.1002/jnr.20296] [Citation(s) in RCA: 82] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Although it is well established that recurrent hypoglycemia leads to hypoglycemia unawareness, the mechanisms responsible for this are unknown. One hypothesis is that recurrent hypoglycemia alters brain glucose transport or metabolism. We measured steady-state brain glucose concentrations during a glucose clamp to determine whether subjects with type 1 diabetes and hypoglycemia unawareness may have altered cerebral glucose transport or metabolism after exposure to recurrent hypoglycemia. We compared 14 subjects with diabetes and hypoglycemia unawareness to 27 healthy control subjects. Brain glucose concentrations were measured under similar metabolic conditions using in vivo (1)H nuclear magnetic resonance (NMR) spectroscopy at 4 Tesla during a hyperglycemic clamp (plasma glucose = 16.7 mmol/l) with somatostatin and insulin. Subjects with type 1 diabetes and hypoglycemia unawareness had significantly higher brain glucose concentrations compared to that in controls under the same conditions (5.5 +/- 0.3 vs. 4.7 +/- 0.1 micromol/g wet weight, P = 0.016). These data suggest that changes in brain glucose transport or metabolism may occur as a result of recurrent hypoglycemia.
Collapse
Affiliation(s)
- Amy B Criego
- Department of Pediatrics, University of Minnesota Medical School, 420 Delaware Street SE, Minneapolis, MN 55455, USA.
| | | | | | | | | | | |
Collapse
|
88
|
Schultes B, Kern W, Oltmanns K, Peters A, Gais S, Fehm HL, Born J. Differential adaptation of neurocognitive brain functions to recurrent hypoglycemia in healthy men. Psychoneuroendocrinology 2005; 30:149-61. [PMID: 15471613 DOI: 10.1016/j.psyneuen.2004.06.007] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/04/2004] [Revised: 06/18/2004] [Accepted: 06/19/2004] [Indexed: 11/23/2022]
Abstract
Antecedent hypoglycemia is known to attenuate hormonal and symptomatic responses to subsequent hypoglycemia. Whether this pertains also to hypoglycemia-induced cognitive dysfunction is controversially discussed. Neurocognitive adaptation might essentially depend on the type of function. Here, we compared the influence of recurrent hypoglycemia in 15 healthy men on counterregulatory hormones, subjective symptoms of hypoglycemia, short-term memory performance (word recall), and performance on an auditory attention task (oddball). The attention task was also used to record event-related brain potential (ERP) indicators of stimulus processing. In each subject, three consecutive hypoglycemic clamps were performed, two on day 1 and the third on day 2. Neurocognitive testing was performed during baseline and at two different hypoglycemic plateaus (2.8 and 2.5 mmol/l) during the first and last clamp. As expected, hormonal responses were significantly reduced to the last as compared to the first hypoglycemia indicating adaptation. Subjective symptoms also decreased in response to recurrent hypoglycemia. Short-term memory performance deteriorated distinctly on the first hypoglycemic clamp, but maintained the normal level on the last clamp (P=0.006). Likewise, the impairment in reaction time (P=0.022) and response accuracy (P=0.005) was distinctly smaller on the last than first hypoglycemia. In parallel, the hypoglycemia-induced decrease in P3 amplitude (P=0.019) and the increase in P3 latency (P=0.049) were diminished with recurrent hypoglycemia, indicating that late stages of controlled stimulus processing likewise adapted. In contrast, the distinct decrease in amplitudes of the N1 and P2 components of the ERP (preceding the P3) was closely comparable in response to the first and last hypoglycemia (P>0.3). Together results indicate an adaptation to recurrent hypoglycemia for signs of controlled stimulus processing presumably involving hippocampo-prefrontocortical circuitry, while earlier automatic stages of processing appear to be spared.
Collapse
Affiliation(s)
- B Schultes
- Department of Internal Medicine I, University of Luebeck, Ratzeburger Allee 160, D-23538 Luebeck, Germany.
| | | | | | | | | | | | | |
Collapse
|
89
|
Fanelli CG, Porcellati F, Pampanelli S, Bolli GB. Insulin therapy and hypoglycaemia: the size of the problem. Diabetes Metab Res Rev 2004; 20 Suppl 2:S32-42. [PMID: 15551297 DOI: 10.1002/dmrr.514] [Citation(s) in RCA: 54] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
BACKGROUND AND METHODS Hypoglycaemia is a fact of life for people with diabetes mellitus. Mild, asymptomatic episodes occur once or twice a week in insulin-treated diabetic subjects. Asymptomatic hypoglycaemia, including nocturnal hypoglycaemia, occurs in about 25% of diabetic subjects treated with insulin therapy. Mild hypoglycaemia, if recurrent, induces unawareness of hypoglycaemia and impairs glucose counterregulation, which in turn predisposes to severe hypoglycaemia. Even brief hypoglycaemia can cause profound dysfunction of the brain. Prolonged, severe hypoglycaemia can cause permanent neurological sequels. In addition, it is possible that hypoglycaemia may accelerate the vascular complications of diabetes by increasing platelet aggregation and/or fibrinogen formation. Finally, hypoglycaemia may be fatal. Hypoglycaemia induced by insulin as treatment of type 1 diabetes mellitus (T1 DM) is not the consequence of diabetes, but invariably of the non-physiological replacement of insulin. RESULTS A number of studies have demonstrated that by moving from non-physiological to more physiological models of insulin therapy, most of the hypoglycaemia problems may be overcome, the percentage of glycated hemoglobin (A1c) decreased, and the quality of life improved. Interestingly, in T1 DM with hypoglycaemia unawareness, prevention of hypoglycaemia reverses not only unawareness but also improves glucose counterregulation, primarily the responses of adrenaline. CONCLUSIONS In order to best prevent hypoglycaemia, insulin should preferably be given as continuous subcutaneous infusion via a minipump (the 'golden standard') or multiple daily insulin administrations with insulin analogues (basal insulin glargine, meal insulin rapid-acting insulin analogues) in T1 DM.
Collapse
|
90
|
Braithwaite SS, Buie MM, Thompson CL, Baldwin DF, Oertel MD, Robertson BA, Mehrotra HP. Hospital hypoglycemia: not only treatment but also prevention. Endocr Pract 2004; 10 Suppl 2:89-99. [PMID: 15251646 DOI: 10.4158/ep.10.s2.89] [Citation(s) in RCA: 67] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
OBJECTIVE To propose a strategy, applicable on general hospital wards, for prevention of hypoglycemia in hospitalized patients. RESULTS Although the mortality rate among hospitalized patients with hypoglycemia has been shown to be 22.2 to 27% in series that included patients with diabetes, some investigators have shown that hypoglycemia is not an independent predictor of mortality. Outside the critical care setting, the comparative risks of hyperglycemia and hypoglycemia and the relationship of hospital hypoglycemia to intensification of glycemic control have not been determined. The reported incidence of hospital hypoglycemia ranges from 1.2% for hospitalized adults to 20% for nonpregnant patients with diabetes admitted without a metabolic emergency. Among patients receiving antihyperglycemic therapy, the literature describes precipitating events--usually a sudden change of caloric exposure-- and predisposing conditions for hypoglycemic episodes. CONCLUSION Hospital hypoglycemia is predictable, and it is preventable by measures other than undertreatment of hyperglycemia. Physician orders for antihyperglycemic therapy should be written and, if necessary, be revised so as to respond to the presence of predisposing conditions for hypoglycemia. A ward-based protocol or hospital-wide policy should establish the appropriate response to triggering events. Within the time frame of action of previously administered antihyperglycemic drugs (after abrupt interruption of caloric exposure), the threshold for preventive intravenous administration of dextrose is a glucose concentration of 120 mg/dL.
Collapse
|
91
|
Heise T, Heinemann L, Heller S, Weyer C, Wang Y, Strobel S, Kolterman O, Maggs D. Effect of pramlintide on symptom, catecholamine, and glucagon responses to hypoglycemia in healthy subjects. Metabolism 2004; 53:1227-32. [PMID: 15334389 DOI: 10.1016/j.metabol.2004.04.010] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Pramlintide is an analog of the human glucoregulatory hormone amylin. Previous studies have shown no clear evidence that pramlintide modifies the response to insulin-induced hypoglycemia; however, a detailed assessment of responses at hypoglycemic thresholds has not been conducted. To further test the effect of pramlintide on symptom, catecholamine, and glucagon responses, a 3-step hypoglycemic clamp was investigated in healthy volunteers. In a randomized, double-blind, placebo-controlled, crossover study, 18 healthy subjects without diabetes received subcutaneous premeal injections of either placebo or 60 microg pramlintide 3 times daily for 5 consecutive days. On day 6, subjects received study drug with breakfast and, after a 7-hour fast, were connected to a Biostator for a 3-step, 3-hour clamp experiment (insulin infusion rate: 1.0 mU/kg/min; blood glucose targets: 70, 55, and 45 mg/dL). An intravenous (IV) infusion of pramlintide (16 microg/h) or placebo was initiated at t = 60 minutes. At the end of each 60-minute clamp step, autonomic (sweating, palpitations, hunger, etc) and neuroglycopenic (confusion, headache, odd behavior, etc) symptoms were assessed using a validated visual analog scale questionnaire. Blood samples were collected at 30-minute intervals for measurement of plasma glucose, insulin, pramlintide, catecholamine, and glucagon concentrations. Intraindividual and group mean responses showed that autonomic symptoms and plasma catecholamine and glucagon concentrations increased progressively during the clamp, with no discernible differences between pramlintide and placebo treatments. Group means for catecholamines at 60 minutes were: epinephrine 233 +/- 42, 892 +/- 85, 2,340 +/- 302 and 202 +/- 25, 774 +/- 114, 2,751 +/- 404 pg/mL and norepinephrine 1,138 +/- 86, 1,236 +/- 77, 1,721 +/- 158 and 1,278 +/- 108, 1,259 +/- 109, 1,580 +/-136 pg/mL (+/- SEM) for placebo- and pramlintide-treated groups at 70, 55, and 45 mg/dL glucose, respectively. Group means for glucagon were 72 +/- 6.3, 98 +/- 11.1, 130 +/- 14.7 and 63 +/- 3.6, 92 +/- 9.4, 120 +/- 16.0 pmol/L (+/- SEM) for placebo- and pramlintide-treated groups at 70, 55, and 45 mg/dL glucose, respectively. These results showed that pramlintide did not impair the symptom, catecholamine, and glucagon responses to insulin-induced hypoglycemia in healthy subjects.
Collapse
Affiliation(s)
- Tim Heise
- Profil Institute for Metabolic Research, Neuss, Germany
| | | | | | | | | | | | | | | |
Collapse
|
92
|
Knudsen GM, Rostrup E, Hasselbalch SG. Quantitative PET for assessment of cerebral blood flow and glucose consumption under varying physiological conditions. ACTA ACUST UNITED AC 2004. [DOI: 10.1016/j.ics.2004.04.025] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
93
|
Affiliation(s)
- Philip E Cryer
- Division of Endocrinology, Metabolism, and Lipid Research, the General Clinical Research Center, Washington University School of Medicine, St. Louis, MO 63110, USA.
| |
Collapse
|
94
|
Teves D, Videen TO, Cryer PE, Powers WJ. Activation of human medial prefrontal cortex during autonomic responses to hypoglycemia. Proc Natl Acad Sci U S A 2004; 101:6217-21. [PMID: 15026569 PMCID: PMC395949 DOI: 10.1073/pnas.0307048101] [Citation(s) in RCA: 109] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2003] [Accepted: 02/05/2004] [Indexed: 12/30/2022] Open
Abstract
Studies in humans implicate the medial prefrontal cortex (MPFC) in complex cognitive and emotional states. We measured regional cerebral blood flow (CBF) four times each during euglycemia (5.2 +/- 0.2 mmol/liter) and hypoglycemia (3.0 +/- 0.3 mmol/liter) in nine normal human volunteers. Autonomic responses during hypoglycemia were manifested by increases in neurogenic symptoms, heart rate, and plasma levels of epinephrine, norepinephrine, and pancreatic polypeptide. Typical symptoms of hypoglycemia were mild, and none reflected evidence of cognitive or emotional stress. Quantitative CBF fell 6-8% in the cerebrum, brainstem, and cerebellum. Analysis of regional CBF differences identified neuronal activation during hypoglycemia in bilateral MPFC (areas 24 and 32) and bilateral thalamus. These results provide evidence that the MPFC participates in the autonomic responses to simple physiological stimuli in humans.
Collapse
Affiliation(s)
- Denise Teves
- Division of Endocrinology, Metabolism, and Lipid Research of the Department of Internal Medicine, Washington University School of Medicine, Campus Box 8127, 660 South Euclid Avenue, St. Louis, MO 63110, USA
| | | | | | | |
Collapse
|
95
|
McNay EC, Sherwin RS. Effect of recurrent hypoglycemia on spatial cognition and cognitive metabolism in normal and diabetic rats. Diabetes 2004; 53:418-25. [PMID: 14747293 DOI: 10.2337/diabetes.53.2.418] [Citation(s) in RCA: 74] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
The effects of recurrent hypoglycemia (RH) on cognition in human subjects remain controversial, perhaps in part due to difficulty in completely controlling previous hypoglycemic history. We used a model of RH in nondiabetic and diabetic rats to examine the effects of short-term (3 h daily for 3 days) RH on subsequent hippocampally dependent spatial memory, tested either at euglycemia or under acute hypoglycemia. Hippocampal metabolism was simultaneously measured using microdialysis. Antecedent RH improved task performance (79 +/- 2% alternation in nondiabetic RH animals vs. 63 +/- 3% in controls; P < 0.001) at euglycemia, accompanied by reversal of the task-associated dip (20 +/- 1% below baseline) in hippocampal extracellular fluid (ECF) glucose seen in control animals. RH rats also had a larger rise in hippocampal ECF glucose, after intraperitoneal glucose injection, than did controls. However, RH animals tested at acute hypoglycemia ( approximately 2.8 mmol/l) performed significantly worse than control animals. Results were similar in diabetic and nondiabetic rats. Our data suggest that RH causes improvement in subsequent cognitive performance at euglycemia, accompanied by alterations in cognitive metabolism. When glucose availability is limited, complex cognitive functioning seems to be adversely effected in RH animals, perhaps to better maintain and preserve basic brain functions.
Collapse
Affiliation(s)
- Ewan C McNay
- Department of Internal Medicine, Section of Endocrinology, Yale School of Medicine, New Haven, Connecticut, USA.
| | | |
Collapse
|
96
|
Zazulia AR, Markham J, Powers WJ. Cerebral Blood Flow and Metabolism in Human Cerebrovascular Disease. Stroke 2004. [DOI: 10.1016/b0-44-306600-0/50047-x] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
97
|
Abstract
Spontaneous hypoglycemia is uncommon in the general (nondiabetic) population, but iatrogenic hypoglycemia is rife in patients with type 1 diabetes mellitus, among whom hypoglycemia constitutes a barrier to optimal glycemic control. The obligate dependence on exogenous insulin, together with the current imperfection in insulin therapies, generates degrees of blood glucose fluctuations that often exceed physiological boundaries in these patients. Downward swings in blood glucose levels, if sustained, result in hypoglycemia and significant morbidity and mortality. Hypoglycemia in type 1 diabetes indicates an imbalance between caloric supply and glucose use in response to insulin or exercise. Counterregulatory mechanisms that auto-correct iatrogenic hypoglycemia often become progressively impaired in these patients. This defective counterregulation, together with the imperfections in insulin delivery, set the stage for significant morbidity from iatrogenic hypoglycemia. Recurrent episodes of iatrogenic hypoglycemia induce a state of hypoglycemia unawareness and defective counterregulation, which defines the syndrome of hypoglycemia-associated autonomic failure (HAAF). The reduced awareness of, and counterregulatory responses to, hypoglycemia in patients with HAAF lead to worsening episodes of severe hypoglycemia. Approaches to the prevention of hypoglycemia include glucose monitoring, patient education, meal planning, and medication adjustment. In patients with HAAF, scrupulous avoidance of iatrogenic hypoglycemia may restore the symptomatic and counterregulatory responses to hypoglycemia. Behavioral training focusing on recognition of the more subtle symptoms and signs of evolving hypoglycemia may be beneficial to some patients with HAAF. A methodical search for the pattern and etiology of iatrogenic hypoglycemia is a prerequisite for the identification of the best preventive approach. With proper education, patients with type 1 diabetes and their physicians can learn to prevent or minimize the risk of hypoglycemia while pursuing excellence in glycemic control.
Collapse
Affiliation(s)
- Samuel Dagogo-Jack
- Department of Medicine (Endocrinology) & General Clinical Research Center, University of Tennessee Health Science Center, Memphis, Tennessee 38163, USA.
| |
Collapse
|
98
|
Bolli GB. Treatment and prevention of hypoglycemia and its unawareness in type 1 diabetes mellitus. Rev Endocr Metab Disord 2003; 4:335-41. [PMID: 14618018 DOI: 10.1023/a:1027397911746] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Affiliation(s)
- Geremia B Bolli
- Department of Internal Medicine, University of Perugia, Italy.
| |
Collapse
|
99
|
Ben-Abraham R, Gazit V, Vofsi O, Ben-Shlomo I, Reznick AZ, Katz Y. ?-phenylpyruvate and glucose uptake in isolated mouse soleus muscle and cultured C2C12 muscle cells. J Cell Biochem 2003; 90:957-63. [PMID: 14624455 DOI: 10.1002/jcb.10690] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
Previous investigation demonstrated the potential of beta-phenylpyruvate at high concentration to cause hypoglycemia in mice totally deprived of insulin. For further elucidation of the glucose-lowering mechanism, glucose uptake, and quantity of glucose transporters (GLUT1 and GLUT4) in mouse soleus muscle and C2C12 muscle cell lines were investigated following incubation with beta-phenylpyruvate in various concentrations. A marked enhancement of glucose uptake was demonstrated that peaked at 0.5 and 1.0 mM beta-phenylpyruvate in soleus muscle (P<0.01) and C2C12 cells (P<0.001), respectively. Kinetic analysis in C2C12 cells showed a twofold increase in Vmax compared with controls (P<0.001). In addition, both GLUT1 and GLUT4 levels were increased following exposure to beta-phenylpyruvate. Our findings point to a peripheral hypoglycemic effect of beta-phenylpyruvate.
Collapse
Affiliation(s)
- Ron Ben-Abraham
- Department of Anesthesiology, Tel Aviv Sourasky Medical Center, 64239 Tel Aviv, Israel
| | | | | | | | | | | |
Collapse
|
100
|
de Galan BE, Rietjens SJ, Tack CJ, van der Werf SP, Sweep CGJ, Lenders JWM, Smits P. Antecedent adrenaline attenuates the responsiveness to but not the release of counterregulatory hormones during subsequent hypoglycemia. J Clin Endocrinol Metab 2003; 88:5462-7. [PMID: 14602790 DOI: 10.1210/jc.2003-030407] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/12/2023]
Abstract
Hypoglycemia unawareness is thought to be the consequence of recurrent hypoglycemia, yet the underlying mechanism is still incompletely understood. The aim of the present study was to determine the role of antecedent elevated adrenaline in the pathogenesis of hypoglycemia unawareness. Sixteen healthy volunteers (eight of either sex) participated in two experiments, performed in random order and at least 3 wk apart. During the morning, three consecutive doses of 0.04, 0.06, and 0.08 microg.kg(-1).min(-1) of adrenaline or matching placebo (normal saline) were infused for the total duration of 1 h. Three hours later, a hyperinsulinemic (360 pmol.m(-2).min(-1)) two-step hypoglycemic (5.0-3.5-2.5 mmol.liter(-1)) clamp study was performed. During hypoglycemia, hypoglycemic symptoms, counterregulatory hormones, cardiovascular responses, and cognitive function were monitored. Hypoglycemia induced similar responses of autonomic and neuroglycopenic symptoms, counterregulatory hormones, and lengthening in reaction time on the choice reaction time task, irrespective of antecedent infusions. However, prior adrenaline was associated with higher exogenous glucose requirements at hypoglycemic nadir (10.1 +/- 1.3 vs. 7.3 +/- 1.3 micromol.kg(-1).min(-1), P = 0.017), an attenuated hypoglycemia-induced fall in blood pressure (mean arterial pressure, -13 +/- 2 vs. -8 +/- 2 mm Hg, P = 0.006), and preserved cognitive function as assessed by the symbol digit test during hypoglycemia, when compared with prior placebo. We conclude that elevated adrenaline attenuates the responsiveness to, but not the release of counterregulatory hormones during subsequent hypoglycemia. As such, adrenaline's role in the development of hypoglycemia unawareness is limited.
Collapse
Affiliation(s)
- Bastiaan E de Galan
- Department of Medicine, University Medical Center Nijmegen, Nijmegen 6500HB, The Netherlands
| | | | | | | | | | | | | |
Collapse
|