51
|
Abstract
Metabolic bone disease in children includes many hereditary and acquired conditions of diverse etiology that lead to disturbed metabolism of the bone tissue. Some of these processes primarily affect bone; others are secondary to nutritional deficiencies, a variety of chronic disorders, and/or treatment with some drugs. Some of these disorders are rare, but some present public health concerns (for instance, rickets) that have been well known for many years but still persist. The most important clinical consequences of bone metabolic diseases in the pediatric population include reduced linear growth, bone deformations, and non-traumatic fractures leading to bone pain, deterioration of motor development and disability. In this article, we analyze primary and secondary osteoporosis, rickets, osteomalacia (nutritional and hereditary vitamin D-dependent, hypophosphatemic and that due to renal tubular abnormalities), renal osteodystrophy, sclerosing bony disorders, and some genetic bone diseases (hypophosphatasia, fibrous dysplasia, skeletal dysplasia, juvenile Paget disease, familial expansile osteolysis, and osteoporosis pseudoglioma syndrome). Early identification and treatment of potential risk factors is essential for skeletal health in adulthood. In most conditions it is necessary to ensure an appropriate diet, with calcium and vitamin D, and an adequate amount of physical activity as a means of prevention. In secondary bone diseases, treatment of the primary disorder is crucial. Most genetic disorders await prospective gene therapies, while bone marrow transplantation has been attempted in other disorders. At present, affected patients are treated symptomatically, frequently by interdisciplinary teams. The role of exercise and pharmacologic therapy with calcium, vitamin D, phosphate, bisphosphonates, calcitonin, sex hormones, growth hormone, and thiazides is discussed. The perspectives on future therapy with insulin-like growth factor-1, new analogs of vitamin D, strontium, osteoprotegerin, and calcimimetics are presented.
Collapse
|
52
|
Abstract
Hereditary hypophosphatemic rickets groups together X-linked hypophosphatemic rickets (XLH), autosomal dominant hypophosphatemic rickets (ADHR) and hereditary hypophosphatemic rickets with hypercalciuria (HHRH, autosomal recessive). Clinical and biological characteristics and treatment depend on specific etiology. Mutations causing hereditary hypophosphatemic rickets involve PHEX located on Xp11.22 for XLH and FGF-23 located on 12p13 for ADHR. The gene involved in HHRH remains unknown: candidates may encode proteins that modulate phosphate transporter expression or activity. Others forms of rickets must be ruled out: acquired hypophosphatemia due to oncogenic osteomalacia, X-linked recessive hypophosphatemic rickets or Dent's disease, and hereditary 1, 25-dihydroxyvitamin D-resistant rickets with a defect either in the 1-alpha-hydroxylase gene (pseudo-vitamin D deficiency rickets, PDDR) or in the vitamin D receptor (hereditary vitamin D-resistant rickets, HVDRR).
Collapse
Affiliation(s)
- F-L Vélayoudom-Céphise
- Service d'endocrinologie et métabolisme, Clinique Marc Linquette, CHRU de Lille (59). flvelayoudom@ tiscali.fr
| | | | | |
Collapse
|
53
|
Abstract
Receptors, hormones, enzymes, ion channels, and structural components of the cell are created by the act of protein synthesis. Synthesis alone is insufficient for proper function, of course; for a cell to operate effectively, its components must be correctly compartmentalized. The mechanism by which proteins maintain the fidelity of localization warrants attention in light of the large number of different molecules that must be routed to distinct subcellular loci, the potential for error, and resultant disease. This review summarizes diseases known to have etiologies based on defective protein folding or failure of the cell's quality control apparatus and presents approaches for therapeutic intervention.
Collapse
Affiliation(s)
- Cecilia Castro-Fernández
- Oregon National Primate Research Center/Oregon Health and Science University, 505 NW 185th Avenue, Beaverton, Oregon 97006, USA
| | | | | |
Collapse
|
54
|
Lin SH, Hsu YD, Cheng NL, Kao MC. Skeletal muscle dihydropyridine-sensitive calcium channel (CACNA1S) gene mutations in chinese patients with hypokalemic periodic paralysis. Am J Med Sci 2005; 329:66-70. [PMID: 15711422 DOI: 10.1097/00000441-200502000-00003] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
BACKGROUND Thyrotoxic periodic paralysis (TPP), familial periodic paralysis (FPP), and sporadic periodic paralysis (SPP) are common causes of hypokalemic periodic paralysis and have similar clinical presentations, thus possibly sharing the identical mutations. METHODS We analyzed the role of the three known CACNA1S gene mutations (R528H, R1239H, and R1239G) in Chinese patients, including two FPP families, 36 TPP patients, 12 SPP patients, and their relatives. Fifty unrelated healthy subjects were also studied. Genomic DNA was prepared from the peripheral blood of all patients, their family members, and healthy subjects. Mutations of the CACNA1S gene were screened using polymerase chain reaction-based restriction analysis. RESULTS Two FPP families had the R528H point mutation, but with incomplete penetrance occurring more commonly in men than in women. Only one SPP patient had a de novo mutation (R528H). None of the TPP patients had mutations in the three hot spots. CONCLUSION Patients with FPP have R528H mutations in the CACNA1S gene. Only a few patients with SPP may share similar mutations with FPP. TPP patients do not carry any of the three known gene mutations.
Collapse
Affiliation(s)
- Shih-Hua Lin
- Division of Nephrology, Department of Medicine, Tri-Service General Hospital, 114 Taipei, Taiwan
| | | | | | | |
Collapse
|
55
|
Capasso G, Rizzo M, Evangelista C, Ferrari P, Geelen G, Lang F, Bianchi G. Altered expression of renal apical plasma membrane Na+ transporters in the early phase of genetic hypertension. Am J Physiol Renal Physiol 2005; 288:F1173-82. [PMID: 15687246 DOI: 10.1152/ajprenal.00228.2004] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
The present study explores whether the development of hypertension in the Milan strain of rats (MHS) rats is preceded or paralleled by alterations of mRNA and/or protein levels of the major luminal Na+ transporters. MHS rats were studied at 23-25 days after birth; age-matched Milan normotensive (MNS) rats were used as controls. The glomerular filtration rate (GFR), measured by inulin clearance, was higher in MHS than in MNS rats, while the mean blood pressure was not different in the two strains of animals indicating that the MHS rats were still in the prehypertensive state. Type 3 sodium/hydrogen exchanger (NHE3), bumetanide-sensitive sodium-potassium-2 chloride cotransporter (NKCC2), sodium-chloride cotransporter (NCC) and alpha-ENaC mRNA abundances were quantified by competitive PCR. In MHS compared with MNS, mRNA abundance was unchanged for NHE3 in proximal tubules, higher for NKCC2 in medullary thick ascending limbs of Henle's loops (TAL) and lower for NCC in distal convoluted tubules (DCT) and for alpha-ENaC along collecting ducts (CD). Western blot experiments revealed 1) unchanged NHE3; 2) a significant increase in NKCC2 in the outer medulla; 3) a significant decrease in NCC in the renal cortex and of alpha-ENaC in both the renal cortex and outer medulla, whereas beta- and gamma-ENaC remained unchanged. These data indicate that, in MHS rats, there is a strong upregulation of NKCC2 along the TAL associated with increased GFR, robust inhibition of NCC cotransporter along the DCT and modest downregulation of alpha-ENaC along the CD. The interplay of the various Na+ transporters may well explain why, at this age, the rats are still in the prehypertensive state.
Collapse
Affiliation(s)
- Giovambattista Capasso
- Nephrology, Second Univ. of Napoli, Nuovo Policlinico, Padiglione 17, Via Pansini 5, 80131 Naples, Italy.
| | | | | | | | | | | | | |
Collapse
|
56
|
Abstract
MORE PRECISE IDENTIFICATION: The progress in molecular genetics has led to better understanding of primitive magnesium deficiency. Transporters of this cation have been identified in the intestines and kidneys. The majority of congential hypomanesemia phenotypes have been correlated with a defect in magnesium transport. The primary deficiency of intestinal absorption of magnesium is responsible for hypomagnesemia and subsequent hypocalcemia. DEPENDING ON THE MECHANISM: Magnesium absorption defects in Henle's loop induce hypomagnesemia with hypercalciuria and nephrocalcinosis, autosomal dominant hypocalcemia or Bartter syndrome. In isolated dominant hypomagnesemia and Gitelman syndrome, an abnormality in the distal convoluted tubule explains the primitive hypomagnesemia, through renal leaking. Conversely, the mechanisms of recessive isolated hypomagnesemia remains unknown. ORIENTING GENETIC DIAGNOSIS: In a context of primitive hypomagnesemia, the clinical and biological presentation will orient genetic research leading to correct diagnosis. However, there are many border-line phenotypes and the pheno-genotype correlation is still imperfect.
Collapse
Affiliation(s)
- David Montaigne
- Service d'endocrinologie et métabolisme, Centre hospitalo-universitaire, Lille (59)
| | | | | | | | | |
Collapse
|
57
|
Nakamura N, Masuda S, Takahashi K, Saito H, Okuda M, Inui KI. Decreased expression of glucose and peptide transporters in rat remnant kidney. Drug Metab Pharmacokinet 2004; 19:41-7. [PMID: 15499168 DOI: 10.2133/dmpk.19.41] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The loss of renal mass induces tubular hypertrophy as well as glomerular sclerosis and results in the end stage of renal disease. However, there is little information about adaptation of tubular glucose and peptide reabsorption under conditions of chronic renal failure. In the present study, we performed functional and molecular analyses focused on the tubular reabsorption of filtered glucose and small peptides using 5/6 nephrectomized rats at 16 weeks, as a model of chronic renal failure. Sixteen weeks after 5/6 nephrectomy or sham treatment, the brush-border membranes and total RNA were obtained from the renal cortex to evaluate the uptake of Na(+) gradient-dependent D-glucose and H(+) gradient-dependent glycylsarcosine. The amounts of SGLT and PEPT mRNA levels were quantified by competitive PCR. The urinary glucose/creatinine ratio was markedly higher in nephrectomized rats than in sham-operated controls. Na(+)-dependent glucose uptake by the isolated renal brush-border membrane vesicles was markedly decreased in nephrectomized rats compared with that in sham-operated controls. However, H(+)-dependent peptide transport, another secondary active transport system in the brush-border membranes, was maintained. In addition, kinetic analysis revealed that both SGLT1 (high-affinity type)- and SGLT2 (low-affinity type)-mediated Na(+)/glucose uptake had markedly decreased Vmax values, but not Km values. Furthermore, competitive PCR demonstrated that the mRNA expression levels of SGLT2, PEPT1 and PEPT2, but not SGLT1, were markedly depressed. These findings suggested that loss of SGLT2 during chronic renal failure implies a high risk of renal glucosuria.
Collapse
Affiliation(s)
- Nobuhiko Nakamura
- Department of Pharmacy, Kyoto University Hospital, Faculty of Medicine, Kyoto University, Japan
| | | | | | | | | | | |
Collapse
|
58
|
Abstract
Childhood urolithiasis remains endemic in certain parts of the world, namely, Turkey and the Far East. The prevalence of nephrolithiasis in North American children varies widely among geographic regions and accounts for 1 per 1000 to 1 per 7600 pediatric hospital admissions. Stones occur in children of all ages. The clinical manifestations of stone disease are often more subtle in children when compared with the dramatic adult presentation. This article discusses the evaluation and medical management of pediatric stone disease.
Collapse
Affiliation(s)
- Sharon M Bartosh
- Department of Pediatrics, University of Wisconsin, University of Wisconsin Children's Hospital, 600 Highland Avenue, Madison, WI 53792, USA
| |
Collapse
|
59
|
Basu A, Dillon RDS, Taylor R, Davison JM, Marshall SM. Is normalisation of serum potassium and magnesium always necessary in Gitelman Syndrome for a successful obstetric outcome? BJOG 2004; 111:630-4. [PMID: 15198796 DOI: 10.1111/j.1471-0528.2004.00148.x] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- A Basu
- City Hospital Birmingham, UK
| | | | | | | | | |
Collapse
|
60
|
Naesens M, Steels P, Verberckmoes R, Vanrenterghem Y, Kuypers D. Bartter's and Gitelman's syndromes: from gene to clinic. Nephron Clin Pract 2004; 96:p65-78. [PMID: 15056980 DOI: 10.1159/000076752] [Citation(s) in RCA: 104] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Bartter's and Gitelman's syndromes are characterized by hypokalemia, normal to low blood pressure and hypochloremic metabolic alkalosis. Recently, investigators have been able to demonstrate mutations of six genes encoding several renal tubular transporters and ion channels that can be held responsible for Bartter's and Gitelman's syndromes. Neonatal Bartter's syndrome is caused by mutations of NKCC2 or ROMK, classic Bartter's syndrome by mutations of ClC-Kb, Bartter's syndrome associated with sensorineural deafness is due to mutations of BSND, Gitelman's syndrome to mutations of NCCT and Bartter's syndrome associated with autosomal dominant hypocalcemia is linked to mutations of CASR. We review the pathophysiology of these syndromes in relation to their clinical presentation.
Collapse
Affiliation(s)
- Maarten Naesens
- Department of Nephrology, Katholieke Universiteit Leuven, Belgium
| | | | | | | | | |
Collapse
|
61
|
Abstract
Salt and water homoeostasis is tightly regulated by a variety of control mechanisms with the adrenal steroid hormone aldosterone playing a central role. Defects or disturbances in these systems lead to either salt loss, which is life threatening in the neonatal period, or sodium retention causing hypertension. Rapid and accurate diagnosis is required to avoid severe complications. During the last few years molecular genetic advances have been identified as the basic genetic defects for a number of clinical syndromes. This knowledge has considerably increased our understanding of the basic pathways involved in sodium and water homoeostasis and of the pathophysiology of these syndromes, particularly the hypertension. In this review we have summarized the biochemical, physiological and genetic basis for clinical syndromes presenting with salt loss and failure to thrive as well as the rare but important genetic syndromes causing sodium retention and hypertension. Early diagnosis and identification will help to prevent severe complications, but it has to be emphasized that the complicated cascade of aldosterone action is still relatively poorly understood. Further syndromes may exist which once identified will help to better understand the basic physiology of aldosterone action.
Collapse
Affiliation(s)
- Ursula Kuhnle
- Center for Child and Adolescent Health, München-Gauting, Heidelberg, Germany.
| | | | | |
Collapse
|
62
|
Abstract
Acid-base problem solving has been an integral part of medical practice in recent generations. Diseases discovered in the last 30-plus years, for example, Bartter syndrome and Gitelman syndrome, D-lactic acidosis, and bulimia nervosa, can be diagnosed according to characteristic acid-base findings. Accuracy in acid-base problem solving is a direct result of a reproducible, systematic approach to arterial pH, partial pressure of carbon dioxide, bicarbonate concentration, and electrolytes. The 'Rules of Five' is one tool that enables clinicians to determine the cause of simple and complex disorders, even triple acid-base disturbances, with consistency. In addition, other electrolyte abnormalities that accompany acid-base disorders, such as hypokalemia, can be incorporated into algorithms that complement the Rules and contribute to efficient problem solving in a wide variety of diseases. Recently urine electrolytes have also assisted clinicians in further characterizing select disturbances. Acid-base patterns, in many ways, can serve as a 'common diagnostic pathway' shared by all subspecialties in medicine. From infectious disease (eg, lactic acidemia with highly active antiviral therapy therapy) through endocrinology (eg, Conn's syndrome, high urine chloride alkalemia) to the interface between primary care and psychiatry (eg, bulimia nervosa with multiple potential acid-base disturbances), acid-base problem solving is the key to unlocking otherwise unrelated diagnoses. Inasmuch as the Rules are clinical tools, they are applied throughout this monograph to diverse pathologic conditions typical in contemporary practice.
Collapse
|
63
|
Abstract
There has been a dramatic recent increase in the understanding of the renal epithelial transport systems with the identification, cloning and characterization of a large number of membrane transport proteins. The aim of this chapter is to integrate this body of knowledge with the understanding of the clinical disorders that accompany gain, loss or dysregulation of function of these transport systems. The specific focus is on the best-defined human clinical syndromes in which there are derangements in potassium (K(+)) homeostasis. The focus is on inherited syndromes, rather than on acquired syndromes due to tubular transport defects, and the therapeutic approaches address chronic derangements of K(+) homeostasis rather than acute interventions directed at life-threatening hyperkalaemia.
Collapse
Affiliation(s)
- David G Warnock
- Division of Nephrology, Departments of Medicine and Physiology, Nephrology Research and Training Center, University of Alabama at Birmingham, 647 THT, 1530 3rd Avenue South, Birmingham, AL 35294-0006, USA.
| |
Collapse
|
64
|
Kamel KS, Oh MS, Halperin ML. Bartter's, Gitelman's, and Gordon's syndromes. From physiology to molecular biology and back, yet still some unanswered questions. Nephron Clin Pract 2003; 92 Suppl 1:18-27. [PMID: 12401934 DOI: 10.1159/000065373] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
The molecular basis of many of the inherited disorders of potassium homeostasis has become much clearer in the last two decades. Despite these new insights into the physiology of renal potassium handling, a number of questions remain to be answered. The examples we use to illustrate these issues are Gordon's syndrome, Bartter's syndrome, and Gitelman's syndrome. Our objective is to integrate these new insights into an understanding of the pathophysiology of renal potassium handling. We also propose different ways to think about some of the unresolved issues in this area.
Collapse
Affiliation(s)
- Kamel S Kamel
- Renal Division, St. Michael's Hospital, University of Toronto, Toronto, Ont., Canada
| | | | | |
Collapse
|
65
|
Christensen EI, Devuyst O, Dom G, Nielsen R, Van Der Smissen P, Verroust P, Leruth M, Guggino WB, Courtoy PJ. Loss of chloride channel ClC-5 impairs endocytosis by defective trafficking of megalin and cubilin in kidney proximal tubules. Proc Natl Acad Sci U S A 2003; 100:8472-7. [PMID: 12815097 PMCID: PMC166253 DOI: 10.1073/pnas.1432873100] [Citation(s) in RCA: 240] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Loss of the renal endosome-associated chloride channel, ClC-5, in Dent's disease and knockout (KO) mice strongly inhibits endocytosis of filtered proteins by kidney proximal tubular cells (PTC). The underlying mechanism remains unknown. We therefore tested whether this endocytic failure could primarily reflect a loss of reabsorption by the multiligand receptors, megalin, and cubilin, caused by a trafficking defect. Impaired protein endocytosis in PTC of ClC-5 KO mice was demonstrated by (i) a major decreased uptake of injected 125I-beta 2-microglobulin, but not of the fluid-phase tracer, FITC-dextran, (ii) reduced labeling of endosomes by injected peroxidase and for the endogenous megalin/cubilin ligands, vitamin D- and retinol-binding proteins, and (iii) urinary appearance of low-molecular-weight proteins and the selective cubilin ligand, transferrin. Contrasting with preserved mRNA levels, megalin and cubilin abundance was significantly decreased in kidney extracts of KO mice. Percoll gradients resolving early and late endosomes (Rab5a, Rab7), brush border (villin, aminopeptidase M), and a dense peak comprising lysosomes (acid hydrolases) showed a disappearance of the brush border component for megalin and cubilin in KO mice. Quantitative ultrastructural immunogold labeling confirmed the overall decrease of megalin and cubilin in PTC and their selective loss at the brush border. In contrast, total contents of the rate-limiting endocytic catalysts, Rab5a and Rab7, were unaffected. Thus, impaired protein endocytosis caused by invalidation of ClC-5 primarily reflects a trafficking defect of megalin and cubilin in PTC.
Collapse
Affiliation(s)
- Erik I. Christensen
- Institute of Anatomy, Department of Cell
Biology, University of Aarhus, DK-8000 Aarhus C, Denmark;
Division of Nephrology, Medical School, and
Christian de Duve Institute of Cellular
Pathology, Cell Unit, Université Catholique de Louvain, B-1200
Brussels, Belgium; Institut National de la
Santé et de la Recherche Médicale, U538, Centre
Hospitalo-Universitaire Saint Antoine, F-75012 Paris, France; and
Departments of Physiology and Medicine, The Johns
Hopkins University School of Medicine, Baltimore, MD 21205
| | - Olivier Devuyst
- Institute of Anatomy, Department of Cell
Biology, University of Aarhus, DK-8000 Aarhus C, Denmark;
Division of Nephrology, Medical School, and
Christian de Duve Institute of Cellular
Pathology, Cell Unit, Université Catholique de Louvain, B-1200
Brussels, Belgium; Institut National de la
Santé et de la Recherche Médicale, U538, Centre
Hospitalo-Universitaire Saint Antoine, F-75012 Paris, France; and
Departments of Physiology and Medicine, The Johns
Hopkins University School of Medicine, Baltimore, MD 21205
| | - Geneviève Dom
- Institute of Anatomy, Department of Cell
Biology, University of Aarhus, DK-8000 Aarhus C, Denmark;
Division of Nephrology, Medical School, and
Christian de Duve Institute of Cellular
Pathology, Cell Unit, Université Catholique de Louvain, B-1200
Brussels, Belgium; Institut National de la
Santé et de la Recherche Médicale, U538, Centre
Hospitalo-Universitaire Saint Antoine, F-75012 Paris, France; and
Departments of Physiology and Medicine, The Johns
Hopkins University School of Medicine, Baltimore, MD 21205
| | - Rikke Nielsen
- Institute of Anatomy, Department of Cell
Biology, University of Aarhus, DK-8000 Aarhus C, Denmark;
Division of Nephrology, Medical School, and
Christian de Duve Institute of Cellular
Pathology, Cell Unit, Université Catholique de Louvain, B-1200
Brussels, Belgium; Institut National de la
Santé et de la Recherche Médicale, U538, Centre
Hospitalo-Universitaire Saint Antoine, F-75012 Paris, France; and
Departments of Physiology and Medicine, The Johns
Hopkins University School of Medicine, Baltimore, MD 21205
| | - Patrick Van Der Smissen
- Institute of Anatomy, Department of Cell
Biology, University of Aarhus, DK-8000 Aarhus C, Denmark;
Division of Nephrology, Medical School, and
Christian de Duve Institute of Cellular
Pathology, Cell Unit, Université Catholique de Louvain, B-1200
Brussels, Belgium; Institut National de la
Santé et de la Recherche Médicale, U538, Centre
Hospitalo-Universitaire Saint Antoine, F-75012 Paris, France; and
Departments of Physiology and Medicine, The Johns
Hopkins University School of Medicine, Baltimore, MD 21205
| | - Pierre Verroust
- Institute of Anatomy, Department of Cell
Biology, University of Aarhus, DK-8000 Aarhus C, Denmark;
Division of Nephrology, Medical School, and
Christian de Duve Institute of Cellular
Pathology, Cell Unit, Université Catholique de Louvain, B-1200
Brussels, Belgium; Institut National de la
Santé et de la Recherche Médicale, U538, Centre
Hospitalo-Universitaire Saint Antoine, F-75012 Paris, France; and
Departments of Physiology and Medicine, The Johns
Hopkins University School of Medicine, Baltimore, MD 21205
| | - Michèle Leruth
- Institute of Anatomy, Department of Cell
Biology, University of Aarhus, DK-8000 Aarhus C, Denmark;
Division of Nephrology, Medical School, and
Christian de Duve Institute of Cellular
Pathology, Cell Unit, Université Catholique de Louvain, B-1200
Brussels, Belgium; Institut National de la
Santé et de la Recherche Médicale, U538, Centre
Hospitalo-Universitaire Saint Antoine, F-75012 Paris, France; and
Departments of Physiology and Medicine, The Johns
Hopkins University School of Medicine, Baltimore, MD 21205
| | - William B. Guggino
- Institute of Anatomy, Department of Cell
Biology, University of Aarhus, DK-8000 Aarhus C, Denmark;
Division of Nephrology, Medical School, and
Christian de Duve Institute of Cellular
Pathology, Cell Unit, Université Catholique de Louvain, B-1200
Brussels, Belgium; Institut National de la
Santé et de la Recherche Médicale, U538, Centre
Hospitalo-Universitaire Saint Antoine, F-75012 Paris, France; and
Departments of Physiology and Medicine, The Johns
Hopkins University School of Medicine, Baltimore, MD 21205
| | - Pierre J. Courtoy
- Institute of Anatomy, Department of Cell
Biology, University of Aarhus, DK-8000 Aarhus C, Denmark;
Division of Nephrology, Medical School, and
Christian de Duve Institute of Cellular
Pathology, Cell Unit, Université Catholique de Louvain, B-1200
Brussels, Belgium; Institut National de la
Santé et de la Recherche Médicale, U538, Centre
Hospitalo-Universitaire Saint Antoine, F-75012 Paris, France; and
Departments of Physiology and Medicine, The Johns
Hopkins University School of Medicine, Baltimore, MD 21205
- To whom correspondence should be addressed. E-mail:
| |
Collapse
|
66
|
Dow JT, Davies SA. Integrative physiology and functional genomics of epithelial function in a genetic model organism. Physiol Rev 2003; 83:687-729. [PMID: 12843407 DOI: 10.1152/physrev.00035.2002] [Citation(s) in RCA: 107] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Classically, biologists try to understand their complex systems by simplifying them to a level where the problem is tractable, typically moving from whole animal and organ-level biology to the immensely powerful "cellular" and "molecular" approaches. However, the limitations of this reductionist approach are becoming apparent, leading to calls for a new, "integrative" physiology. Rather than use the term as a rallying cry for classical organismal physiology, we have defined it as the study of how gene products integrate into the function of whole tissues and intact organisms. From this viewpoint, the convergence between integrative physiology and functional genomics becomes clear; both seek to understand gene function in an organismal context, and both draw heavily on transgenics and genetics in genetic models to achieve their goal. This convergence between historically divergent fields provides powerful leverage to those physiologists who can phrase their research questions in a particular way. In particular, the use of appropriate genetic model organisms provides a wealth of technologies (of which microarrays and knock-outs are but two) that allow a new precision in physiological analysis. We illustrate this approach with an epithelial model system, the Malpighian (renal) tubule of Drosophila melanogaster. With the use of the beautiful genetic tools and extensive genomic resources characteristic of this genetic model, it has been possible to gain unique insights into the structure, function, and control of epithelia.
Collapse
Affiliation(s)
- Julian T Dow
- Division of Molecular Genetics, Institute of Biomedical and Life Sciences, University of Glasgow, Glasgow G11 6NU, UK.
| | | |
Collapse
|
67
|
Achard JM, Warnock DG, Disse-Nicodème S, Fiquet-Kempf B, Corvol P, Fournier A, Jeunemaitre X. Familial hyperkalemic hypertension: phenotypic analysis in a large family with the WNK1 deletion mutation. Am J Med 2003; 114:495-8. [PMID: 12727582 DOI: 10.1016/s0002-9343(03)00054-8] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
68
|
Stewart GW, Fricke B. The curious genomic path from leaky red cell to nephrotic kidney. NEPHRON. PHYSIOLOGY 2003; 93:p29-33. [PMID: 12629268 DOI: 10.1159/000068527] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
The human red cell has proved to be an invaluable model cell for the study of many aspects of membrane structure and function. It has a series of transport pathways which mediate the movements of the univalent cations Na and K, which are either identical or similar to systems in other human tissues, including the human kidney. The balance between the energy-consuming NaK pump and a 'passive leak' component maintains a net deficit of cations within the cell, which defends the cell volume against osmotic swelling. There exist a series of dominantly inherited human red cell conditions, gathered under the generic title 'hereditary stomatocytoses', in which the so-called 'passive leak' to Na and K is pathologically increased. In the more severe variants this compromises the integrity of the cell and the patients suffer haemolytic anaemia. Some less severe variants present with pseudohyperkalaemia caused by loss of K from red cells on storage of blood at room temperature. The most severe variants show a deficiency in a widely distributed 'raft' protein known as stomatin. The stomatin protein is homologous to the 'podocin' protein, the gene for which is mutated in a recessively inherited form of nephrotic syndrome. Among other possible functions, both proteins could be involved in the trafficking of membrane proteins to and from the plasma membrane.
Collapse
Affiliation(s)
- G W Stewart
- Department of Medicine, University College London, Rayne Institute, London, UK.
| | | |
Collapse
|
69
|
Affiliation(s)
- Kevin K Frick
- Department of Medicine, Nephrology Unit, University of Rochester School of Medicine and Dentistry, Rochester, New York 14642, USA.
| | | |
Collapse
|
70
|
Loffing J, Kaissling B. Sodium and calcium transport pathways along the mammalian distal nephron: from rabbit to human. Am J Physiol Renal Physiol 2003; 284:F628-43. [PMID: 12620920 DOI: 10.1152/ajprenal.00217.2002] [Citation(s) in RCA: 116] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
The final adjustment of renal sodium and calcium excretion is achieved by the distal nephron, in which transepithelial ion transport is under control of various hormones, tubular fluid composition, and flow rate. Acquired or inherited diseases leading to deranged renal sodium and calcium balance have been linked to dysfunction of the distal nephron. Diuretic drugs elicit their effects on sodium balance by specifically inhibiting sodium transport proteins in the apical plasma membrane of distal nephron segments. The identification of the major apical sodium transport proteins allows study of their precise distribution pattern along the distal nephron and helps address their cellular and molecular regulation under various physiological and pathophysiological settings. This review focuses on the topological arrangement of sodium and calcium transport proteins along the cortical distal nephron and on some aspects of their functional regulation. The availability of data on the distribution of transporters in various species points to the strengths, as well as to the limitations, of animal models for the extrapolation to humans.
Collapse
Affiliation(s)
- Johannes Loffing
- Institute of Anatomy, University of Zurich, CH-8057 Zurich, Switzerland.
| | | |
Collapse
|
71
|
Prüss H, Wenzel M, Eulitz D, Thomzig A, Karschin A, Veh RW. Kir2 potassium channels in rat striatum are strategically localized to control basal ganglia function. BRAIN RESEARCH. MOLECULAR BRAIN RESEARCH 2003; 110:203-19. [PMID: 12591157 DOI: 10.1016/s0169-328x(02)00649-6] [Citation(s) in RCA: 38] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Parkinson's disease is the most frequent movement disorder caused by loss of dopaminergic neurons in the midbrain. Intentions to avoid side effects of the conventional therapy should aim to identify additional targets for potential pharmacological intervention. In principle, every step of a signal transduction cascade such as presynaptic transmitter release, type and occupation of postsynaptic receptors, G protein-mediated effector mechanisms, and the alterations of pre- or postsynaptic potentials as determined by the local ion channel composition, have to be considered. Due to their diversity and their widespread but distinct localizations, potassium channels represent interesting candidates for new therapeutic strategies. As a first step, the present report aimed to study in the striatum the cellular and subcellular distribution of the individual members of the Kir2 family, a group of proteins forming inwardly rectifying potassium channels. For this purpose polyclonal monospecific affinity-purified antibodies against the less conserved carboxyterminal sequences from the Kir2.1, Kir2.2, Kir2.3, and Kir2.4 proteins were prepared. All subunits of the Kir2 family were detected on somata and dendrites of most striatal neurons. However, the distribution of two of them was not homogeneous. Striatal patch areas were largely devoid of the Kir2.3 protein, and the Kir2.4 subunit was most prominently expressed on the tonically active, giant cholinergic interneurons of the striatum. These two structures are among the key players in regulating dopaminergic and cholinergic neurotransmission within the striatum, and therefore are of major importance for the output of the basal ganglia. The heterogeneous localization of the Kir2.3 and the Kir2.4 subunits with respect to these strategic structures pinpoints to these channel proteins as promising targets for future pharmacological efforts.
Collapse
Affiliation(s)
- Harald Prüss
- Institut für Anatomie, der Charité, Universitätsklinikum der Humboldt-Universität zu Berlin, Philippstrasse 12, D-10115 Berlin, Germany
| | | | | | | | | | | |
Collapse
|
72
|
Zelikovic I, Szargel R, Hawash A, Labay V, Hatib I, Cohen N, Nakhoul F. A novel mutation in the chloride channel gene, CLCNKB, as a cause of Gitelman and Bartter syndromes. Kidney Int 2003; 63:24-32. [PMID: 12472765 DOI: 10.1046/j.1523-1755.2003.00730.x] [Citation(s) in RCA: 135] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
BACKGROUND Gitelman syndrome (GS) and Bartter syndrome (BS) are hereditary hypokalemic tubulopathies with distinct phenotypic features. GS has been considered a genetically homogeneous disorder caused by mutation in the gene encoding the NaCl cotransporter (TSC) of the distal convoluted tubule. In contrast, BS is caused by mutations in the genes encoding either the Na-K-2Cl cotransporter (NKCC2), the K+ channel (ROMK) or the Cl- channel (ClC-Kb) of the thick ascending limb. The purpose of this study was to examine the clinical, biochemical and genetic characteristics of a very large inbred Bedouin kindred in Northern Israel with hereditary hypokalemic tubulopathy. METHODS Twelve family members affected with hypokalemic tubulopathy, as well as 26 close relatives were clinically and biochemically evaluated. All study participants underwent genetic linkage analysis. Mutation analysis was performed in affected individuals. RESULTS Evaluation of affected family members (age range 3 to 36 years) revealed phenotypic features of both GS and classic Bartter syndrome (CBS). Features typical of GS included late age of presentation (>15 years) in 7 patients (58%), normal growth in 9 (75%), hypomagnesemia (SMg <0.7mmol/L) in 5 (42%), hypermagnesiuria (FEMg>5%) in 6 (50%) and hypocalciuria (urinary calcium/creatinine mmol/mmol <0.15) in 5 (42%). Features typical of CBS included early age of presentation (<1 year) in 3 (25%), polyuria/dehydration in 4 (33%), growth retardation in 3 (25%), hypercalciuria (urinary calcium/creatinine mmol/mmoverline>0.55) in 4 (33%) and nephrolithiasis in 1 (8%). Linkage analysis in affected patients excluded the TSC gene, SLC12A3, as the mutated gene, but demonstrated linkage to the Cl- channel gene, CLCNKB, on chromosome 1p36. Mutation analysis by direct sequencing revealed a novel homozygous missense mutation, arginine 438 to histidine (R438H), in exon 13 of CLCNKB in all patients. A restriction fragment length polymorphism (RFLP) analysis has been developed to aid in genotyping of family members. CONCLUSIONS Our findings demonstrate intrafamilial heterogeneity, namely the presence of GS and CBS phenotypes, in a kindred with the CLCNKB R438H mutation. We conclude that GS can be caused by a mutation in a gene other than SLC12A3. The exact role of the CLCNKB R438H mutation in the pathogenesis of the electrolyte and mineral abnormalities in GS and CBS remains to be established.
Collapse
Affiliation(s)
- Israel Zelikovic
- Department of Nephrology, Rambam Medical Center, Faculty of Medicine, Technion - Israel Institute of Technology, Haifa, Israel.
| | | | | | | | | | | | | |
Collapse
|
73
|
Devuyst O, Guggino WB. Chloride channels in the kidney: lessons learned from knockout animals. Am J Physiol Renal Physiol 2002; 283:F1176-91. [PMID: 12426234 DOI: 10.1152/ajprenal.00184.2002] [Citation(s) in RCA: 52] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
Cl- channels are involved in a range of functions, including regulation of cell volume and/or intracellular pH, acidification of intracellular vesicles, and vectorial transport of NaCl across many epithelia. Numerous Cl- channels have been identified in the kidney, based on single-channel properties such as conductance, anion selectivity, gating, and response to inhibitors. The molecular counterpart of many of these Cl- channels is still not known. This review will focus on gene-targeted mouse models disrupting two structural classes of Cl- channels that are relevant for the kidney: the CLC family of voltage-gated Cl- channels and the CFTR. Disruption of several members of the CLC family in the mouse provided useful models for various inherited diseases of the kidney, including Dent's disease and diabetes insipidus. Mice with disrupted CFTR are valuable models for cystic fibrosis (CF), the most common autosomal recessive, lethal disease in Caucasians. Although CFTR is expressed in various nephron segments, there is no overt renal phenotype in CF. Analysis of CF mice has been useful to identify the role and potential interactions of CFTR in the kidney. Furthermore, observations made in CF mice are potentially relevant to all other models of Cl- channel knockouts because they emphasize the importance of alternative Cl- pathways in such models.
Collapse
Affiliation(s)
- Olivier Devuyst
- Division of Nephrology, Université Catholique de Louvain Medical School, B-1200 Brussels, Belgium
| | | |
Collapse
|
74
|
Abstract
Urinary stones in children are usually genetic and most commonly due to hypercalciuria. Symptoms of urolithiasis in children differ among age groups. Isolated hematuria in children may be caused by hypercalciuria and precede calculus formation. Careful evaluation successfully identifies the cause of urinary stones in most children, although diagnostic criteria may vary in different age groups. Therapies should be targeted to the underlying diagnosis.
Collapse
Affiliation(s)
- F Bruder Stapleton
- Children's Hospital and Regional Medical Center, University of Washington Seattle, 4800 Sand Point Way North East, CH-65, Seattle, WA 98105, USA.
| |
Collapse
|
75
|
Black DM, Bouillon R, Ducy P, Miller PD, Papapoulos SE, Ralston SH, Ross P, Schipani E, Seeman E, Strewler GJ, Teti A, Thakker RV, Vanderschueren D. Meeting report from the 24th annual meeting of the American society for bone and mineral research. ACTA ACUST UNITED AC 2002. [DOI: 10.1138/2002065] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
|
76
|
Motoyama HI, Friedman PA. Calcium-sensing receptor regulation of PTH-dependent calcium absorption by mouse cortical ascending limbs. Am J Physiol Renal Physiol 2002; 283:F399-406. [PMID: 12167589 DOI: 10.1152/ajprenal.00346.2001] [Citation(s) in RCA: 73] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
Resting Ca(2+) absorption by cortical thick ascending limbs (CALs) is passive and proceeds through the paracellular pathway. In contrast, parathyroid hormone (PTH) stimulates active, transcellular Ca(2+) absorption (J(Ca)). The Ca(2+)-sensing receptor (CaSR) is expressed on serosal membranes of CALs. In the present study, we tested the hypothesis that activation of the CAL CaSR indirectly inhibits passive Ca(2+) transport and directly suppresses PTH-induced cellular J(Ca). To test this theory, we measured J(Ca) and Na absorption (J(Na)) by single perfused mouse CALs. Net absorption was measured microfluorimetrically in samples collected from tubules perfused and bathed in symmetrical HEPES-buffered solutions or those in which luminal Na(+) was reduced from 150 to 50 mM. We first confirmed that Gd(3+) activated the CaSR by measuring intracellular Ca(2+) concentration ([Ca(2+)](i)) in CALs loaded with fura 2. On stepwise addition of Gd(3+) to the bath, [Ca(2+)](i) increased, with a half-maximal rise at 30 microM Gd(3+). J(Ca) and transepithelial voltage (V(e),) were measured in symmetrical Na(+)-containing solutions. PTH increased J(Ca) by 100%, and 30 microM Gd(3+) inhibited this effect. V(e) was unchanged by either PTH or Gd(3+). Similarly, NPS R-467, an organic CaSR agonist, inhibited PTH-stimulated J(Ca) without altering V(e). Neither PTH nor Gd(3+) affected J(Na). Addition of bumetanide to the luminal perfusate abolished J(Na) and V(e). These results show that CaSR activation directly inhibited PTH-induced transcellular J(Ca) and that cellular Ca(2+) and Na(+) transport can be dissociated. To test the effect of CaSR activation on passive paracellular Ca(2+) transport, J(Ca) was measured under asymmetrical Na conditions, in which passive Ca(2+) transport dominates transepithelial absorption. PTH stimulated J(Ca) by 24% and was suppressed by Gd(3+). In this setting, Gd(3+) reduced V(e) by 32%, indicating that CaSR activation inhibited both transcellular and paracellular Ca(2+) transport. We conclude that the CaSR regulates both active transcellular and passive paracellular Ca(2+) reabsorption but has no effect on J(Na) by CALs.
Collapse
Affiliation(s)
- Hiroki I Motoyama
- Department of Pharmacology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania 15261, USA
| | | |
Collapse
|
77
|
Peng JB, Hediger MA. A family of calcium-permeable channels in the kidney: distinct roles in renal calcium handling. Curr Opin Nephrol Hypertens 2002; 11:555-61. [PMID: 12187321 DOI: 10.1097/00041552-200209000-00012] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
PURPOSE OF REVIEW Calcium is an essential intracellular messenger and a major component of the mineral phase of the skeleton. Calcium is absorbed in the intestine and reabsorbed in the kidney. The underlying transepithelial calcium transport mechanisms play crucial roles in calcium homeostasis. In this review, we present new developments in the area of calcium transport at the apical membrane, the first step in transepithelial calcium transport. RECENT FINDINGS Recently, a group of transient receptor potential (TRP)-related calcium-permeable channels has been identified. Several of these channels serve as important epithelial calcium entry mechanisms and possibly also as osmolarity sensors. SUMMARY Calcium channels in the kidney play important roles in maintaining total body calcium homeostasis. Their dysfunction may be associated with several human diseases such as hypercaliuric nephrolithiasis, certain forms of osteoporosis, Gitelman's disease and Bartter's syndrome.
Collapse
Affiliation(s)
- Ji-Bin Peng
- Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, Massachusetts, USA.
| | | |
Collapse
|
78
|
De Jong JC, Van Der Vliet WA, Van Den Heuvel LPWJ, Willems PHGM, Knoers NVAM, Bindels RJM. Functional expression of mutations in the human NaCl cotransporter: evidence for impaired routing mechanisms in Gitelman's syndrome. J Am Soc Nephrol 2002; 13:1442-8. [PMID: 12039972 DOI: 10.1097/01.asn.0000017904.77985.03] [Citation(s) in RCA: 120] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
Abstract
Gitelman's syndrome is an autosomal recessive renal tubular disorder characterized by hypokalemic metabolic alkalosis, hypomagnesemia, and hypocalciuria. This disorder results from mutations in the thiazide-sensitive NaCl cotransporter (NCC). To elucidate the functional implications of mutations associated with this disorder, metolazone-sensitive (22)Na(+) uptake, subcellular localization, and glycosidase-sensitive glycosylation of human NCC (hNCC) were determined in Xenopus laevis oocytes expressing FLAG-tagged wild-type or mutant hNCC. Injection of 10 ng of FLAG-tagged hNCC cRNA resulted in metolazone-sensitive (22)Na(+) uptake of 3.4 +/- 0.2 nmol Na(+)/oocyte per 2 h. Immunocytochemical analysis revealed sharp immunopositive staining at the plasma membrane. In agreement with this finding, a broad endoglycosidase H-insensitive band of 130 to 140 kD was present in Western blots of total membranes. The plasma membrane localization of this complex-glycosylated protein was confirmed by immunoblotting of purified plasma membranes. The mutants could be divided into two distinct classes. Class I mutants (G439S, T649R, and G741R) exhibited no significant metolazone-sensitive (22)Na(+) uptake. Immunopositive staining was present in a diffuse band just below the plasma membrane. This endoplasmic reticulum and/or pre-Golgi complex localization was further suggested by the complete absence of the endoglycosidase H-insensitive band. Class II mutants (L215P, F536L, R955Q, G980R, and C985Y) demonstrated significant metolazone-sensitive (22)Na(+) uptake, although uptake was significantly lower than that obtained with wild-type hNCC. The latter mutants could be detected at and below the oocyte plasma membrane, and immunoblotting revealed the characteristic complex-glycosylated bands. In conclusion, this study substantiates NCC processing defects as the underlying pathogenic mechanism in Gitelman's syndrome.
Collapse
Affiliation(s)
- Joke C De Jong
- Department of Cell Physiology, University Medical Center Nijmegen, Nijmegen, The Netherlands
| | | | | | | | | | | |
Collapse
|
79
|
Abstract
The recent knowledge of the renal epithelial transport systems has exploded with the identification, cloning, and characterization of a large number of membrane transport proteins. The fundamental aspects of these transporters are beginning to emerge at the molecular level and are summarized in the accompanying contributions in this volume of the Annual Review of Physiology. The aim of my review is to integrate this body of knowledge with the understanding of the clinical disorders of human mineral homeostasis that accompany gain, loss, or dysregulation of function of these transport systems. The specific focus is on the best defined human clinical syndromes in which there are derangements in K(+) and Mg(2+) homeostasis.
Collapse
Affiliation(s)
- David G Warnock
- Division of Nephrology, Department of Medicine, University of Alabama at Birmingham, 35294, USA.
| |
Collapse
|
80
|
Biner HL, Arpin-Bott MP, Loffing J, Wang X, Knepper M, Hebert SC, Kaissling B. Human cortical distal nephron: distribution of electrolyte and water transport pathways. J Am Soc Nephrol 2002; 13:836-847. [PMID: 11912242 DOI: 10.1681/asn.v134836] [Citation(s) in RCA: 121] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023] Open
Abstract
The exact distributions of the different salt transport systems along the human cortical distal nephron are unknown. Immunohistochemistry was performed on serial cryostat sections of healthy parts of tumor nephrectomized human kidneys to study the distributions in the distal convolution of the thiazide-sensitive Na-Cl cotransporter (NCC), the beta subunit of the amiloride-sensitive epithelial Na channel (ENaC), the vasopressin-sensitive water channel aquaporin 2 (AQP2), and aquaporin 3 (AQP3), the H(+) ATPase, the Na-Ca exchanger (NCX), plasma membrane calcium-ATPase, and calbindin-D28k (CaBP). The entire human distal convolution and the cortical collecting duct (CCD) display calbindin-D28k, although in variable amounts. Approximately 30% of the distal convolution profiles reveal NCC, characterizing the distal convoluted tubule. NCC overlaps with ENaC in a short portion at the end of the distal convoluted tubule. ENaC is displayed all along the connecting tubule (70% of the distal convolution) and the CCD. The major part of the connecting tubule and the CCD coexpress aquaporin 2 with ENaC. Intercalated cells, undetected in the first 20% of the distal convolution, were interspersed among the segment-specific cells of the remainder of the distal convolution, and of the CCD. The basolateral calcium extruding proteins, Na-Ca exchanger (NCX), and the plasma membrane Ca(2+)-ATPase were found all along the distal convolution, and, in contrast to other species, along the CCD, although in varying amounts. The knowledge regarding the precise distribution patterns of transport proteins in the human distal nephron and the knowledge regarding the differences from that in laboratory animals may be helpful for diagnostic purposes and may also help refine the therapeutic management of electrolyte disorders.
Collapse
Affiliation(s)
- Helena Lagger Biner
- *Anatomical Department, University of Zurich, Zurich, Switzerland; UMR CNRS 7519, University Louis Pasteur, Strasbourg, France; National Heart, Lung, and Blood Institute, Bethesda, Maryland; and Department of Cellular and Molecular Physiology, Yale University School of Medicine, New Haven, Connecticut
| | - Marie-Pierre Arpin-Bott
- *Anatomical Department, University of Zurich, Zurich, Switzerland; UMR CNRS 7519, University Louis Pasteur, Strasbourg, France; National Heart, Lung, and Blood Institute, Bethesda, Maryland; and Department of Cellular and Molecular Physiology, Yale University School of Medicine, New Haven, Connecticut
| | - Johannes Loffing
- *Anatomical Department, University of Zurich, Zurich, Switzerland; UMR CNRS 7519, University Louis Pasteur, Strasbourg, France; National Heart, Lung, and Blood Institute, Bethesda, Maryland; and Department of Cellular and Molecular Physiology, Yale University School of Medicine, New Haven, Connecticut
| | - Xiaoyan Wang
- *Anatomical Department, University of Zurich, Zurich, Switzerland; UMR CNRS 7519, University Louis Pasteur, Strasbourg, France; National Heart, Lung, and Blood Institute, Bethesda, Maryland; and Department of Cellular and Molecular Physiology, Yale University School of Medicine, New Haven, Connecticut
| | - Mark Knepper
- *Anatomical Department, University of Zurich, Zurich, Switzerland; UMR CNRS 7519, University Louis Pasteur, Strasbourg, France; National Heart, Lung, and Blood Institute, Bethesda, Maryland; and Department of Cellular and Molecular Physiology, Yale University School of Medicine, New Haven, Connecticut
| | - Steve C Hebert
- *Anatomical Department, University of Zurich, Zurich, Switzerland; UMR CNRS 7519, University Louis Pasteur, Strasbourg, France; National Heart, Lung, and Blood Institute, Bethesda, Maryland; and Department of Cellular and Molecular Physiology, Yale University School of Medicine, New Haven, Connecticut
| | - Brigitte Kaissling
- *Anatomical Department, University of Zurich, Zurich, Switzerland; UMR CNRS 7519, University Louis Pasteur, Strasbourg, France; National Heart, Lung, and Blood Institute, Bethesda, Maryland; and Department of Cellular and Molecular Physiology, Yale University School of Medicine, New Haven, Connecticut
| |
Collapse
|
81
|
|
82
|
Shaer AJ. Inherited primary renal tubular hypokalemic alkalosis: a review of Gitelman and Bartter syndromes. Am J Med Sci 2001; 322:316-32. [PMID: 11780689 DOI: 10.1097/00000441-200112000-00004] [Citation(s) in RCA: 96] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
Inherited hypokalemic metabolic alkalosis, or Bartter syndrome, comprises several closely related disorders of renal tubular electrolyte transport. Recent advances in the field of molecular genetics have demonstrated that there are four genetically distinct abnormalities, which result from mutations in renal electrolyte transporters and channels. Neonatal Bartter syndrome affects neonates and is characterized by polyhydramnios, premature delivery, severe electrolyte derangements, growth retardation, and hypercalciuria leading to nephrocalcinosis. It may be caused by a mutation in the gene encoding the Na-K-2Cl cotransporter (NKCC2) or the outwardly rectifying potassium channel (ROMK), a regulator of NKCC2. Classic Bartter syndrome is due to a mutation in the gene encoding the chloride channel (CLCNKB), also a regulator of NKCC2, and typically presents in infancy or early childhood with failure to thrive. Nephrocalcinosis is typically absent despite hypercalciuria. The hypocalciuric, hypomagnesemic variant of Bartter syndrome (Gitelman syndrome), presents in early adulthood with predominantly musculoskeletal symptoms and is due to mutations in the gene encoding the Na-Cl cotransporter (NCCT). Even though our understanding of these disorders has been greatly advanced by these discoveries, the pathophysiology remains to be completely defined. Genotype-phenotype correlations among the four disorders are quite variable and continue to be studied. A comprehensive review of Bartter and Gitelman syndromes will be provided here.
Collapse
Affiliation(s)
- A J Shaer
- Division of Nephrology, Medical University of South Carolina, Charleston 29425, USA.
| |
Collapse
|
83
|
Loffing J, Loffing-Cueni D, Valderrabano V, Kläusli L, Hebert SC, Rossier BC, Hoenderop JG, Bindels RJ, Kaissling B. Distribution of transcellular calcium and sodium transport pathways along mouse distal nephron. Am J Physiol Renal Physiol 2001; 281:F1021-7. [PMID: 11704552 DOI: 10.1152/ajprenal.0085.2001] [Citation(s) in RCA: 242] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
The organization of Na(+) and Ca(2+) transport pathways along the mouse distal nephron is incompletely known. We revealed by immunohistochemistry a set of Ca(2+) and Na(+) transport proteins along the mouse distal convolution. The thiazide-sensitive Na(+)-Cl(-) cotransporter (NCC) characterized the distal convoluted tubule (DCT). The amiloride-sensitive epithelial Na(+) channel (ENaC) colocalized with NCC in late DCT (DCT2) and extended to the downstream connecting tubule (CNT) and collecting duct (CD). In early DCT (DCT1), the basolateral Ca(2+)-extruding proteins [Na(+)/Ca(2+) exchanger (NCX), plasma membrane Ca(2+)-ATPase (PCMA)] and the cytoplasmic Ca(2+)-binding protein calbindin D(28K) (CB) were found at very low levels, whereas the cytoplasmic Ca(2+)/Mg(2+)-binding protein parvalbumin was highly abundant. NCX, PMCA, and CB prevailed in DCT2 and CNT, where we located the apical epithelial Ca(2+) channel (ECaC1). Its subcellular localization changed from apical in DCT2 to exclusively cytoplasmic at the end of CNT. NCX and PMCA decreased in parallel with the fading of ECaC1 in the apical membrane. All three of them were undetectable in CD. These findings disclose DCT2 and CNT as major sites for transcellular Ca(2+) transport in the mouse distal nephron. Cellular colocalization of Ca(2+) and Na(+) transport pathways suggests their mutual interactions in transport regulation.
Collapse
Affiliation(s)
- J Loffing
- Institute of Anatomy, University of Zurich, CH-8057 Zurich.
| | | | | | | | | | | | | | | | | |
Collapse
|
84
|
|
85
|
Carter AR, Zhou ZH, Calhoun DA, Bubien JK. Hyperactive ENaC identifies hypertensive individuals amenable to amiloride therapy. Am J Physiol Cell Physiol 2001; 281:C1413-21. [PMID: 11600403 DOI: 10.1152/ajpcell.2001.281.5.c1413] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Pathophysiological features of both primary aldosteronism and pseudohyperaldosteronism are hyperactive amiloride-sensitive epithelial Na(+) channels (ENaC) and refractory hypertension. Peripheral blood lymphocytes express ENaC, which functions and is regulated similarly to ENaC expressed by renal principal cells. Thus it was hypothesized that individuals with either of these hypertensive etiologies could be identified by assessment of the function and regulation of peripheral blood lymphocyte ENaC, by whole cell patch clamp. We also tested the hypothesis that specific inhibition of hyperactive ENaC with amiloride could ameliorate the hypertension. To test these hypotheses, we solicited blood samples from normotensive, controlled hypertensive, and refractory hypertensive individuals. Lymphocytes were examined electrophysiologically to determine whether ENaC was hyperactive. All positive findings were from refractory hypertensive individuals. Nine refractory hypertensive patients had amiloride added to their hypertensive therapy. Amiloride normalized the blood pressure of four subjects. These individuals all had hyperactive ENaC. Amiloride had no effect on individuals with normal ENaC. These findings suggest that whole-cell patch clamp of peripheral blood lymphocytes can be used to identify accurately and rapidly hypertensive individuals who will respond to amiloride therapy.
Collapse
Affiliation(s)
- A R Carter
- Vascular Biology and Hypertension Program, Division of Cardiovascular Disease, Department of Medicine, University of Alabama at Birmingham, Birmingham, Alabama 35294, USA
| | | | | | | |
Collapse
|
86
|
|
87
|
Capasso G, Rizzo M, Morelli F, Metafora S. Gene regulation and targeting in the kidney: relevance to renal physiology and pathophysiology. Nephron Clin Pract 2001; 89:255-63. [PMID: 11598386 DOI: 10.1159/000046082] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Affiliation(s)
- G Capasso
- Chair of Nephrology, School of Medicine, Faculty of Medicine, Second University of Naples, Naples, Italy.
| | | | | | | |
Collapse
|
88
|
Case records of the Massachusetts General Hospital. Weekly clinicopathological exercises. Case 29-2001. A 14-year-old boy with abnormal bones and a sacral mass. N Engl J Med 2001; 345:903-8. [PMID: 11565524 DOI: 10.1056/nejmcpc010029] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
89
|
Lhotta K. [Pathogenesis and clinical course of hereditary nephropathies]. ACTA MEDICA AUSTRIACA 2001; 28:78-80. [PMID: 11475106 DOI: 10.1046/j.1563-2571.2001.01018.x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Hereditary diseases have to be considered in the differential diagnosis of many kidney diseases. The kidney can be affected by systemic metabolic diseases such as primary hyperoxaluria or Fabry's disease. Inborn errors of the coagulation cascade or the complement system may cause familiar forms of the hemolytic uremic syndrome. Of central interest are hereditary cystic kidney diseases with autosomal dominant polycystic kidney disease as its most prominent example. Hereditary forms of the nephrotic syndrome are usually caused by abnormalities of podocyte function. Alport's syndrome is a classical example of a basement membrane disease. Of special interest are hereditary defects in tubular transport mechanisms such as carrier defects affecting sodium reabsorption along the tubulus.
Collapse
Affiliation(s)
- K Lhotta
- Klinische Abteilung für Nephrologie, Universitätsklinik für Innere Medizin, Leopold-Franzens-Universität, Anichstrasse 35, A-6020 Innsbruck.
| |
Collapse
|
90
|
Abstract
Our basic understanding of sodium mechanisms provides unique insights into epithelial transport processes, and unusual clinical syndromes can arise from mutations of these ion transporters. These genetic disorders affect sodium balance, with both sodium-retaining and sodium-wasting conditions being the consequence. A major focus of such studies has been the epithelial sodium channel, which can be activated by mutations in the channel subunits or mineralocorticoid receptor, and changes in the response to or production of mineralocorticoids. As a result, there are now clearly defined Mendelian syndromes in which epithelial sodium channel activity is 'dysregulated', with the subsequent development of systemic hypertension with suppressed plasma renin activity that can be attributed to a primary renal mechanism. Applying these insights to the far more common disorder of low renin hypertension may shed new light on the underlying pathophysiology of this common form of human hypertension, and more clearly define the interactions of dietary constituents such as sodium and potassium in the regulation of blood pressure.
Collapse
Affiliation(s)
- D G Warnock
- Departments of Medicine and Physiology and Biophysics, and Nephrology Research and Training Center, University of Alabama at Birmingham, 35294-0007, USA.
| |
Collapse
|
91
|
Müller D, Hoenderop JG, van Os CH, J M Bindels R. The epithelial calcium channel, ECaC1: molecular details of a novel player in renal calcium handling. Nephrol Dial Transplant 2001; 16:1329-35. [PMID: 11427620 DOI: 10.1093/ndt/16.7.1329] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Affiliation(s)
- D Müller
- Department of Cell Physiology, University Medical Centre Nijmegen, The Netherlands
| | | | | | | |
Collapse
|
92
|
Schepkens H, Lameire N. Gitelman's syndrome: an overlooked cause of chronic hypokalemia and hypomagnesemia in adults. Acta Clin Belg 2001; 56:248-54. [PMID: 11603254 DOI: 10.1179/acb.2001.036] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
In 1966, Gitelman described a benign variant of classical Bartter's syndrome in adults characterized by consistent hypomagnesemia and hypocalciuria, hypokalemic metabolic alkalosis and hyperreninemic hyperaldosteronism with normal blood pressure. A specific gene has been found responsible for this disorder, encoding the thiazide-sensitve Na-Cl coporter (TSC) in the distal convoluted tubule. Mutant alleles result in loss of normal TSC function and the phenotype is identical to patients with chronic use of thiazide diuretics. Gitelman's syndrome is a more common cause of chronic hypokalemia than Bartter's syndrome, with which it is often confused. The distinguishing features between both syndromes are discussed.
Collapse
Affiliation(s)
- H Schepkens
- Dienst voor Inwendige Ziekten-Afdeling Nefrologie Universitair Ziekenhuis De Pintelaan 185-9000 Gent.
| | | |
Collapse
|
93
|
Affiliation(s)
- L A DiMeglio
- Department of Pediatrics, Indiana University School of Medicine, 975 W. Walnut Street, IB 445, Indianapolis, IN 46202, USA
| | | |
Collapse
|
94
|
Abstract
INTRODUCTION Hypokalemia is the most frequent electrolytic disturbance in hospitalized patients. It is sometimes familial. Careful clinical and biological evaluation may guide further genetic analysis. CURRENT KNOWLEDGE AND KEY POINTS Genetic hypokalemia is linked to disorders of mineralocorticoid hormone synthesis or action (glucocorticoid-remediable hyperaldosteronism, congenital adrenal hyperplasia, apparent excess of mineralocorticoids), to renal tubular disorders (Liddle's syndrome, Bartter's and Gitelmann's syndrome, tubular acidosis) or to disorders of cellular transfer of potassium (hypokalemic periodic paralysis). FUTURE PROSPECTS AND PROJECTS Molecular mechanisms of adult Bartter's syndrome are probably different from pediatric syndromes. A better clinical and biological evaluation with longitudinal follow-up could allow significant progress in the knowledge of the natural history and prognosis of these syndromes.
Collapse
Affiliation(s)
- B Goichot
- Service de médecine interne et nutrition, hôpital de Hautepierre, CHRU, avenue Molière, 67098 Strasbourg, France.
| |
Collapse
|
95
|
Silva IV, Morales MM, Lopes AG. ClC-5 chloride channel and kidney stones: what is the link? Braz J Med Biol Res 2001; 34:315-23. [PMID: 11262581 DOI: 10.1590/s0100-879x2001000300004] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
Nephrolithiasis is one of the most common diseases in the Western world. The disease manifests itself with intensive pain, sporadic infections, and, sometimes, renal failure. The symptoms are due to the appearance of urinary stones (calculi) which are formed mainly by calcium salts. These calcium salts precipitate in the renal papillae and/or within the collecting ducts. Inherited forms of nephrolithiasis related to chromosome X (X-linked hypercalciuric nephrolithiasis or XLN) have been recently described. Hypercalciuria, nephrocalcinosis, and male predominance are the major characteristics of these diseases. The gene responsible for the XLN forms of kidney stones was cloned and characterized as a chloride channel called ClC-5. The ClC-5 chloride channel belongs to a superfamily of voltage-gated chloride channels, whose physiological roles are not completely understood. The objective of the present review is to identify recent advances in the molecular pathology of nephrolithiasis, with emphasis on XLN. We also try to establish a link between a chloride channel like ClC-5, hypercalciuria, failure in urine acidification and protein endocytosis, which could explain the symptoms exhibited by XLN patients.
Collapse
Affiliation(s)
- I V Silva
- Laboratório de Fisiologia Renal, Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, RJ, Brasil
| | | | | |
Collapse
|
96
|
Thakker RV. Molecular pathology of renal chloride channels in Dent's disease and Bartter's syndrome. EXPERIMENTAL NEPHROLOGY 2000; 8:351-60. [PMID: 11014932 DOI: 10.1159/000020689] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Recent advances in molecular biology have characterised a new class of chloride channels that are referred to as voltage-gated chloride channels (CLCs). To date 9 such CLCs (CLC-1 to CLC-7, CLC-Ka and CLC-Kb which are respectively encoded by the genes CLCN1 to CLCN7, CLCNKa and CLCNKb) have been identified in mammals. Mutations in 2 of these, referred to as CLC-5 and CLC-Kb, have been defined in the hypercalciuric nephrolithiasis disorders of Dent's disease and a form of Bartter's syndrome, respectively. In addition, other forms of Bartter's syndrome have been defined with mutations involving the bumetanide-sensitive sodium-potassium-chloride co-transporter (NKCC2) and the potassium channel ROMK. Finally, mutations of the thiazide-sensitive sodium chloride co-transporter (NCCT) are associated with Gitelman's syndrome, in which hypocalciuria and hypomagnesaemia are notable features. These molecular genetic studies have increased our understanding of the renal tubular mechanisms that regulate mineral homeostasis.
Collapse
Affiliation(s)
- R V Thakker
- Molecular Endocrinology Group, University of Oxford, John Radcliffe Hospital, Headington, Oxford, Oxon, UK.
| |
Collapse
|
97
|
MENETON PIERRE. Comparative Roles of the Renal Apical Sodium Transport Systems in Blood Pressure Control. J Am Soc Nephrol 2000. [DOI: 10.1681/asn.v11suppl_2s135] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022] Open
Abstract
Abstract.Human genetic studies suggest that the genes encoding renal apical Na+transport proteins play an essential role in the control of extracellular fluid volume and BP. Mice with mutations in each of these genes provide the unique opportunity to directly assess their respective involvement in fluid homeostasis and BP controlin vivo. Inactivation of either the epithelial Na+channel (ENaC) or the Na+-Cl-cotransporter decreases BP to the same extent in mice fed a low-salt diet, despite a more pronounced perturbation of fluid homeostasis in ENaC-deficient mice. In contrast, inactivation of Na+/H+exchanger 3 (NHE3) or the Na+-K+-2Cl-contransporter reduces BP with a normal-salt diet and renders mice unable to survive with a low-salt diet. Therefore, the general conception that ENaC in the collecting duct is the main renal controller of Na+balance and extracellular fluid volume should be tempered. For example, NHE3 in the proximal convoluted tubule seems to play a more substantial role in the control of fluid homeostasis. The overall effect of NHE3 inacthvation on BP may also involve absorptive defects in the intestine and colon, where the exchanger normally reabsorbs significant amounts of Na+and water.
Collapse
|
98
|
Ellison DH. Divalent cation transport by the distal nephron: insights from Bartter's and Gitelman's syndromes. Am J Physiol Renal Physiol 2000; 279:F616-25. [PMID: 10997911 DOI: 10.1152/ajprenal.2000.279.4.f616] [Citation(s) in RCA: 62] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Elucidation of the gene defects responsible for many disorders of renal fluid and electrolyte homeostasis has provided new insights into normal and abnormal physiology. Identifying the causes of Gitelman's and Bartter's syndromes has greatly enhanced our understanding of ion transport by thick ascending limb and distal convoluted tubule cells. Despite this information, several phenotypic features of these diseases remain confusing, even in the face of molecular insight. Paramount among these are disorders of divalent cation homeostasis. Bartter's syndrome is caused by dysfunction of thick ascending limb cells. It is associated with calcium wasting, but magnesium wasting is usually mild. Loop diuretics, which inhibit ion transport by thick ascending limb cells, markedly increase urinary excretion of both calcium and magnesium. In contrast, Gitelman's syndrome is caused by dysfunction of the distal convoluted tubule. Hypocalciuria and hypomagnesemia are universal parts of this disorder. Yet although thiazide diuretics, which inhibit ion transport by distal convoluted tubule cells, reduce urinary calcium excretion, they have minimal effects on urinary magnesium excretion, when given acutely. This review proposes mechanisms that may account for the differences between the effects of diuretic drugs and the phenotypic features of Gitelman's and Bartter's syndromes. These mechanisms are based on recent insights from another inherited disease of ion transport, inherited magnesium wasting, and from a review of the chronic effects of diuretic drugs in animals and people.
Collapse
Affiliation(s)
- D H Ellison
- Division of Nephrology and Hypertension, University of Colorado School of Medicine and Veterans Affairs Medical Center, Denver, Colorado 80220, USA.
| |
Collapse
|
99
|
Laurant P, Touyz RM. Physiological and pathophysiological role of magnesium in the cardiovascular system: implications in hypertension. J Hypertens 2000; 18:1177-91. [PMID: 10994748 DOI: 10.1097/00004872-200018090-00003] [Citation(s) in RCA: 116] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Attention is growing for a potential role of magnesium in the pathoetiology of cardiovascular disease. Magnesium modulates mechanical, electrical and structural functions of cardiac and vascular cells, and small changes in extracellular magnesium levels and/or intracellular free magnesium concentration may have significant effects on cardiac excitability and on vascular tone, contractility and reactivity. Thus, magnesium may be important in the physiological regulation of blood pressure whereas alterations in cellular magnesium metabolism could contribute to the pathogenesis of blood pressure elevation. Although most epidemiological and experimental studies support a pathological role for magnesium in the etiology and development of hypertension, data from clinical studies have been less convincing. Furthermore, the therapeutic value of magnesium in the management of essential hypertension is unclear. The present review discusses the molecular, biochemical, physiological and pharmacological roles of magnesium in the regulation of vascular function and blood pressure and introduces novel concepts relating to magnesium as a second messenger in intracellular signaling in cardiovascular cells. In addition, alterations in magnesium regulation in experimental and clinical hypertension and the potential antihypertensive therapeutic effects of magnesium are addressed.
Collapse
Affiliation(s)
- P Laurant
- Laboratoire Physiologie, Pharmacologie et Nutrition Prèventive Expérimentale, UFR Médecine et Pharmacie, Université de Franche-Comté, Besancon, France
| | | |
Collapse
|
100
|
Abstract
Recent evidence suggests that some of the syntaxin isoforms may physically interact with and regulate the transport activity of a defined set of membrane transport proteins. This review examines recent studies of the cystic fibrosis transmembrane conductance regulator and the epithelial sodium channel which define distinct roles of syntaxin 1A and syntaxin 3 in the regulation of surface expression as well as intrinsic properties of these epithelial ion transporters.
Collapse
Affiliation(s)
- S Saxena
- Nephrology Research and Training Center, Department of Medicine, University of Alabama at Birmingham, USA
| | | | | |
Collapse
|