51
|
Reusch B, Bartram MP, Dafinger C, Palacio-Escat N, Wenzel A, Fenton RA, Saez-Rodriguez J, Schermer B, Benzing T, Altmüller J, Beck BB, Rinschen MM. MAGED2 controls vasopressin-induced aquaporin-2 expression in collecting duct cells. J Proteomics 2021; 252:104424. [PMID: 34775100 DOI: 10.1016/j.jprot.2021.104424] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2021] [Revised: 10/19/2021] [Accepted: 11/01/2021] [Indexed: 11/30/2022]
Abstract
Mutations in the Melanoma-Associated Antigen D2 (MAGED2) cause antenatal Bartter syndrome type 5 (BARTS5). This rare disease is characterized by perinatal loss of urinary concentration capability and large urine volumes. The underlying molecular mechanisms of this disease are largely unclear. Here, we study the effect of MAGED2 knockdown on kidney cell cultures using proteomic and phosphoproteomic analyses. In HEK293T cells, MAGED2 knockdown induces prominent changes in protein phosphorylation rather than changes in protein abundance. MAGED2 is expressed in mouse embryonic kidneys and its expression declines during development. MAGED2 interacts with G-protein alpha subunit (GNAS), suggesting a role in G-protein coupled receptors (GPCR) signalling. In kidney collecting duct cell lines, Maged2 knockdown subtly modulated vasopressin type 2 receptor (V2R)-induced cAMP-generation kinetics, rewired phosphorylation-dependent signalling, and phosphorylation of CREB. Maged2 knockdown resulted in a large increase in aquaporin-2 abundance during long-term V2R activation. The increase in aquaporin-2 protein was mediated transcriptionally. Taken together, we link MAGED2 function to cellular signalling as a desensitizer of V2R-induced aquaporin-2 expression. SIGNIFICANCE: In most forms of Bartter Syndrome, the underlying cause of the disease is well understood. In contrast, the role of MAGED2 mutations in a newly discovered form of Bartter Syndrome (BARTS5) is unknown. In our manuscript we could show that MAGED2 modulates vasopressin-induced protein and phosphorylation patterns in kidney cells, providing a broad basis for further studies of MAGED2 function in development and disease.
Collapse
Affiliation(s)
- Björn Reusch
- Institute of Human Genetics, Faculty of Medicine and University Hospital Cologne, University of Cologne, 50931 Cologne, Germany; Center for Molecular Medicine Cologne, Faculty of Medicine and University Hospital Cologne, University of Cologne, 50931 Cologne, Germany
| | - Malte P Bartram
- Center for Molecular Medicine Cologne, Faculty of Medicine and University Hospital Cologne, University of Cologne, 50931 Cologne, Germany; Department II of Internal Medicine, Faculty of Medicine and University Hospital Cologne, University of Cologne, 50937 Cologne, Germany
| | - Claudia Dafinger
- Center for Molecular Medicine Cologne, Faculty of Medicine and University Hospital Cologne, University of Cologne, 50931 Cologne, Germany; Department II of Internal Medicine, Faculty of Medicine and University Hospital Cologne, University of Cologne, 50937 Cologne, Germany; CECAD, Faculty of Medicine and University Hospital Cologne, University of Cologne, 50931 Cologne, Germany
| | - Nicolàs Palacio-Escat
- Joint Research Centre for Computational Biomedicine (JRC-COMBINE), Faculty of Medicine, RWTH Aachen University, 52074 Aachen, Germany; Institute of Computational Biomedicine, Bioquant, Faculty of Medicine, Heidelberg University, 69120 Heidelberg, Germany
| | - Andrea Wenzel
- Institute of Human Genetics, Faculty of Medicine and University Hospital Cologne, University of Cologne, 50931 Cologne, Germany; Center for Molecular Medicine Cologne, Faculty of Medicine and University Hospital Cologne, University of Cologne, 50931 Cologne, Germany
| | - Robert A Fenton
- Department of Biomedicine, Aarhus University, 8000 Aarhus, Denmark
| | - Julio Saez-Rodriguez
- Joint Research Centre for Computational Biomedicine (JRC-COMBINE), Faculty of Medicine, RWTH Aachen University, 52074 Aachen, Germany; Institute of Computational Biomedicine, Bioquant, Faculty of Medicine, Heidelberg University, 69120 Heidelberg, Germany; European Molecular Biology Laboratory, European Bioinformatics Institute, Cambridge CB10 1SD, United Kingdom
| | - Bernhard Schermer
- Center for Molecular Medicine Cologne, Faculty of Medicine and University Hospital Cologne, University of Cologne, 50931 Cologne, Germany; Department II of Internal Medicine, Faculty of Medicine and University Hospital Cologne, University of Cologne, 50937 Cologne, Germany; CECAD, Faculty of Medicine and University Hospital Cologne, University of Cologne, 50931 Cologne, Germany
| | - Thomas Benzing
- Center for Molecular Medicine Cologne, Faculty of Medicine and University Hospital Cologne, University of Cologne, 50931 Cologne, Germany; Department II of Internal Medicine, Faculty of Medicine and University Hospital Cologne, University of Cologne, 50937 Cologne, Germany; CECAD, Faculty of Medicine and University Hospital Cologne, University of Cologne, 50931 Cologne, Germany
| | - Janine Altmüller
- Center for Molecular Medicine Cologne, Faculty of Medicine and University Hospital Cologne, University of Cologne, 50931 Cologne, Germany; Cologne Center for Genomics, University of Cologne, 50931 Cologne, Germany; Berlin Institute of Health at Charité, Core Facility Genomics, 10178 Berlin, Germany; Max Delbrück Center for Molecular Medicine in the Helmholtz Association, 10115 Berlin, Germany
| | - Bodo B Beck
- Institute of Human Genetics, Faculty of Medicine and University Hospital Cologne, University of Cologne, 50931 Cologne, Germany; Center for Molecular Medicine Cologne, Faculty of Medicine and University Hospital Cologne, University of Cologne, 50931 Cologne, Germany.
| | - Markus M Rinschen
- Center for Molecular Medicine Cologne, Faculty of Medicine and University Hospital Cologne, University of Cologne, 50931 Cologne, Germany; Department II of Internal Medicine, Faculty of Medicine and University Hospital Cologne, University of Cologne, 50937 Cologne, Germany; Department of Biomedicine, Aarhus University, 8000 Aarhus, Denmark; III Department of Medicine, University Medical Center Hamburg-Eppendorf, 20246 Hamburg, Germany; Aarhus Institute of Advanced Studies (AIAS), Aarhus University, 8000 Aarhus, Denmark.
| |
Collapse
|
52
|
Abstract
Nephrolithiasis is a worldwide problem with increasing prevalence, enormous costs, and significant morbidity. Calcium-containing kidney stones are by far the most common kidney stones encountered in clinical practice. Consequently, hypercalciuria is the greatest risk factor for kidney stone formation. Hypercalciuria can result from enhanced intestinal absorption, increased bone resorption, or altered renal tubular transport. Kidney stone formation is complex and driven by high concentrations of calcium-oxalate or calcium-phosphate in the urine. After discussing the mechanism mediating renal calcium salt precipitation, we review recent discoveries in renal tubular calcium transport from the proximal tubule, thick ascending limb, and distal convolution. Furthermore, we address how calcium is absorbed from the intestine and mobilized from bone. The effect of acidosis on bone calcium resorption and urinary calcium excretion is also considered. Although recent discoveries provide insight into these processes, much remains to be understood in order to provide improved therapies for hypercalciuria and prevent kidney stone formation. Expected final online publication date for the Annual Review of Physiology, Volume 84 is February 2022. Please see http://www.annualreviews.org/page/journal/pubdates for revised estimates.
Collapse
Affiliation(s)
- R T Alexander
- Departments of Physiology and Pediatrics, University of Alberta, Edmonton, Canada; .,Membrane Protein Disease Research Group, University of Alberta, Edmonton, Canada
| | - D G Fuster
- Department of Nephrology and Hypertension, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland
| | - H Dimke
- Department of Cardiovascular and Renal Research, Institute of Molecular Medicine, University of Southern Denmark, Odense, Denmark.,Department of Nephrology, Odense University Hospital, Odense, Denmark
| |
Collapse
|
53
|
Nuñez-Gonzalez L, Carrera N, Garcia-Gonzalez MA. Molecular Basis, Diagnostic Challenges and Therapeutic Approaches of Bartter and Gitelman Syndromes: A Primer for Clinicians. Int J Mol Sci 2021; 22:11414. [PMID: 34768847 PMCID: PMC8584233 DOI: 10.3390/ijms222111414] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2021] [Revised: 10/13/2021] [Accepted: 10/14/2021] [Indexed: 12/18/2022] Open
Abstract
Gitelman and Bartter syndromes are rare inherited diseases that belong to the category of renal tubulopathies. The genes associated with these pathologies encode electrolyte transport proteins located in the nephron, particularly in the Distal Convoluted Tubule and Ascending Loop of Henle. Therefore, both syndromes are characterized by alterations in the secretion and reabsorption processes that occur in these regions. Patients suffer from deficiencies in the concentration of electrolytes in the blood and urine, which leads to different systemic consequences related to these salt-wasting processes. The main clinical features of both syndromes are hypokalemia, hypochloremia, metabolic alkalosis, hyperreninemia and hyperaldosteronism. Despite having a different molecular etiology, Gitelman and Bartter syndromes share a relevant number of clinical symptoms, and they have similar therapeutic approaches. The main basis of their treatment consists of electrolytes supplements accompanied by dietary changes. Specifically for Bartter syndrome, the use of non-steroidal anti-inflammatory drugs is also strongly supported. This review aims to address the latest diagnostic challenges and therapeutic approaches, as well as relevant recent research on the biology of the proteins involved in disease. Finally, we highlight several objectives to continue advancing in the characterization of both etiologies.
Collapse
Affiliation(s)
- Laura Nuñez-Gonzalez
- Grupo de Xenetica e Bioloxia do Desenvolvemento das Enfermidades Renais, Laboratorio de Nefroloxia (No. 11), Instituto de Investigacion Sanitaria de Santiago (IDIS), Complexo Hospitalario de Santiago de Compostela (CHUS), 15706 Santiago de Compostela, Spain;
- Grupo de Medicina Xenomica, Complexo Hospitalario de Santiago de Compostela (CHUS), 15706 Santiago de Compostela, Spain
| | - Noa Carrera
- Grupo de Xenetica e Bioloxia do Desenvolvemento das Enfermidades Renais, Laboratorio de Nefroloxia (No. 11), Instituto de Investigacion Sanitaria de Santiago (IDIS), Complexo Hospitalario de Santiago de Compostela (CHUS), 15706 Santiago de Compostela, Spain;
- Grupo de Medicina Xenomica, Complexo Hospitalario de Santiago de Compostela (CHUS), 15706 Santiago de Compostela, Spain
- RedInRen (Red en Investigación Renal) RETIC (Redes Temáticas de Investigación Cooperativa en Salud), ISCIII (Instituto de Salud Carlos III), 28029 Madrid, Spain
| | - Miguel A. Garcia-Gonzalez
- Grupo de Xenetica e Bioloxia do Desenvolvemento das Enfermidades Renais, Laboratorio de Nefroloxia (No. 11), Instituto de Investigacion Sanitaria de Santiago (IDIS), Complexo Hospitalario de Santiago de Compostela (CHUS), 15706 Santiago de Compostela, Spain;
- Grupo de Medicina Xenomica, Complexo Hospitalario de Santiago de Compostela (CHUS), 15706 Santiago de Compostela, Spain
- RedInRen (Red en Investigación Renal) RETIC (Redes Temáticas de Investigación Cooperativa en Salud), ISCIII (Instituto de Salud Carlos III), 28029 Madrid, Spain
- Fundación Pública Galega de Medicina Xenomica—SERGAS, Complexo Hospitalario de Santiago de Compotela (CHUS), 15706 Santiago de Compostela, Spain
| |
Collapse
|
54
|
Mani S, Nair J, Handa D. Antenatal Bartter syndrome: a new compound heterozygous mutation in exon 2 of KCNJ1 gene. BMJ Case Rep 2021; 14:e244685. [PMID: 34663630 PMCID: PMC8524263 DOI: 10.1136/bcr-2021-244685] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/22/2021] [Indexed: 11/03/2022] Open
Abstract
A 30+6/7-week infant was born by vaginal delivery to a 21-year-old primigravida with pregnancy complicated by polyhydramnios. The infant developed polyuria and significant weight loss in the first 2 weeks of life despite appropriate fluid management. He developed hyponatraemia, hypochloraemia, transient hyperkalaemia and prerenal azotaemia with metabolic acidosis. On further evaluation, he had elevated plasma renin and aldosterone levels. Bartter syndrome was considered in the differential diagnosis. Bartter syndrome gene panel revealed a rare compound heterozygous mutation in exon 2 of the KCNJ1 gene (Lys186Glu/Thr71Met), suggesting antenatal Bartter syndrome (type 2). The infant developed late-onset hypokalaemia and metabolic alkalosis by week 4 of life. He regained birth weight by week 3 of life but failed to thrive (10-20 g/kg/day) despite high caloric intake (140 kcal/kg/day). His electrolyte abnormalities gradually improved, and he was discharged home without the need for electrolyte supplements or medications.
Collapse
Affiliation(s)
- Srinivasan Mani
- Pediatrics, University at Buffalo Jacobs School of Medicine and Biomedical Sciences, Buffalo, New York, USA
| | - Jayasree Nair
- Pediatrics, University at Buffalo Jacobs School of Medicine and Biomedical Sciences, Buffalo, New York, USA
| | - Deepali Handa
- Pediatrics, University at Buffalo Jacobs School of Medicine and Biomedical Sciences, Buffalo, New York, USA
| |
Collapse
|
55
|
Schmitz D, Henn W. The fetus in the age of the genome. Hum Genet 2021; 141:1017-1026. [PMID: 34426855 PMCID: PMC9160108 DOI: 10.1007/s00439-021-02348-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2021] [Accepted: 08/16/2021] [Indexed: 12/15/2022]
Abstract
Due to a number of recent achievements, the field of prenatal medicine is now on the verge of a profound transformation into prenatal genomic medicine. This transformation is expected to not only substantially expand the spectrum of prenatal diagnostic and screening possibilities, but finally also to advance fetal care and the prenatal management of certain fetal diseases and malformations. It will come along with new and profound challenges for the normative framework and clinical care pathways in prenatal (and reproductive) medicine. To adequately address the potential ethically challenging aspects without discarding the obvious benefits, several agents are required to engage in different debates. The permissibility of the sequencing of the whole fetal exome or genome will have to be examined from a philosophical and legal point of view, in particular with regard to conflicts with potential rights of future children. A second requirement is a societal debate on the question of priority setting and justice in relation to prenatal genomic testing. Third, a professional-ethical debate and positioning on the goal of prenatal genomic testing and a consequential re-structuring of clinical care pathways seems to be important. In all these efforts, it might be helpful to envisage the unborn rather not as a fetus, not as a separate moral subject and a second "patient", but in its unique physical connection with the pregnant woman, and to accept the moral quandaries implicitly given in this situation.
Collapse
Affiliation(s)
- Dagmar Schmitz
- Institute for History, Theory and Ethics in Medicine, RWTH Aachen University, Wendlingweg 2, 52074, Aachen, Germany.
| | - Wolfram Henn
- Institute of Human Genetics, Saarland University, Homburg/Saar, Germany
| |
Collapse
|
56
|
Takemori S, Tanigaki S, Nozu K, Yoshihashi H, Uchiumi Y, Sakaguchi K, Tsushima K, Kitamura A, Kobayashi C, Matsuhima M, Tajima A, Nagano C, Kobayashi Y. Prenatal diagnosis of MAGED2 gene mutation causing transient antenatal Bartter syndrome. Eur J Med Genet 2021; 64:104308. [PMID: 34400373 DOI: 10.1016/j.ejmg.2021.104308] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2021] [Revised: 07/31/2021] [Accepted: 08/12/2021] [Indexed: 12/01/2022]
Abstract
Transient antenatal Bartter syndrome due to melanoma-associated antigen D2 gene mutation is a newly reported type of Bartter syndrome. Its characteristics include an X-linked inheritance pattern, early-onset hydramnios, and spontaneous disappearance of symptoms after childbirth. To date, there have been no reports of prenatally diagnosed cases. We herein present the case of a preterm male born to a mother with early-onset hydramnios and a family history of X-linked idiopathic hydramnios. We suspected melanoma-associated antigen D2 gene mutation and performed direct sequencing. As a result, we were able to prenatally establish a diagnosis of transient Bartter syndrome due to a melanoma-associated antigen D2 gene mutation.
Collapse
Affiliation(s)
- Satoshi Takemori
- Department of Obstetrics and Gynecology, Kyorin University Hospital, Tokyo, Japan.
| | - Shinji Tanigaki
- Department of Obstetrics and Gynecology, Kyorin University Hospital, Tokyo, Japan
| | - Kandai Nozu
- Department of Pediatrics, Kobe University Graduate School of Medicine, Kobe, Hyogo, Japan
| | - Hiroshi Yoshihashi
- Department of Medical Genetics, Tokyo Metropolitan Children's Medical Center, Tokyo, Japan
| | - Yutaro Uchiumi
- Department of Obstetrics and Gynecology, Kyorin University Hospital, Tokyo, Japan
| | - Kyoko Sakaguchi
- Department of Obstetrics and Gynecology, Kyorin University Hospital, Tokyo, Japan
| | - Kana Tsushima
- Department of Obstetrics and Gynecology, Kyorin University Hospital, Tokyo, Japan
| | - Aya Kitamura
- Department of Obstetrics and Gynecology, Kyorin University Hospital, Tokyo, Japan
| | - Chie Kobayashi
- Department of Obstetrics and Gynecology, Kyorin University Hospital, Tokyo, Japan
| | - Miho Matsuhima
- Department of Obstetrics and Gynecology, Kyorin University Hospital, Tokyo, Japan
| | - Atsushi Tajima
- Department of Obstetrics and Gynecology, Kyorin University Hospital, Tokyo, Japan
| | - China Nagano
- Department of Pediatrics, Kobe University Graduate School of Medicine, Kobe, Hyogo, Japan
| | - Yoichi Kobayashi
- Department of Obstetrics and Gynecology, Kyorin University Hospital, Tokyo, Japan
| |
Collapse
|
57
|
Sanderson MR, Fahlman RP, Wevrick R. The N-terminal domain of the Schaaf-Yang syndrome protein MAGEL2 likely has a role in RNA metabolism. J Biol Chem 2021; 297:100959. [PMID: 34265304 PMCID: PMC8350409 DOI: 10.1016/j.jbc.2021.100959] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2021] [Revised: 06/22/2021] [Accepted: 07/11/2021] [Indexed: 02/08/2023] Open
Abstract
MAGEL2 encodes the L2 member of the melanoma-associated antigen gene (MAGE) protein family, truncating mutations of which can cause Schaaf-Yang syndrome, an autism spectrum disorder. MAGEL2 is also inactivated in Prader-Willi syndrome, which overlaps clinically and mechanistically with Schaaf-Yang syndrome. Studies to date have only investigated the C-terminal portion of the MAGEL2 protein, containing the MAGE homology domain that interacts with RING-E3 ubiquitin ligases and deubiquitinases to form protein complexes that modify protein ubiquitination. In contrast, the N-terminal portion of the MAGEL2 protein has never been studied. Here, we find that MAGEL2 has a low-complexity intrinsically disordered N-terminus rich in Pro-Xn-Gly motifs that is predicted to mediate liquid-liquid phase separation to form biomolecular condensates. We used proximity-dependent biotin identification (BioID) and liquid chromatography-tandem mass spectrometry to identify MAGEL2-proximal proteins, then clustered these proteins into functional networks. We determined that coding mutations analogous to disruptive mutations in other MAGE proteins alter these networks in biologically relevant ways. Proteins identified as proximal to the N-terminal portion of MAGEL2 are primarily involved in mRNA metabolic processes and include three mRNA N 6-methyladenosine (m6A)-binding YTHDF proteins and two RNA interference-mediating TNRC6 proteins. We found that YTHDF2 coimmunoprecipitates with MAGEL2, and coexpression of MAGEL2 reduces the nuclear accumulation of YTHDF2 after heat shock. We suggest that the N-terminal region of MAGEL2 may have a role in RNA metabolism and in particular the regulation of mRNAs modified by m6A methylation. These results provide mechanistic insight into pathogenic MAGEL2 mutations associated with Schaaf-Yang syndrome and related disorders.
Collapse
Affiliation(s)
- Matthea R Sanderson
- Department of Medical Genetics, University of Alberta, Edmonton, Alberta, Canada
| | - Richard P Fahlman
- Department of Biochemistry, University of Alberta, Edmonton, Alberta, Canada; Department of Oncology, University of Alberta, Edmonton, Alberta, Canada
| | - Rachel Wevrick
- Department of Medical Genetics, University of Alberta, Edmonton, Alberta, Canada.
| |
Collapse
|
58
|
Shaukat I, Bakhos-Douaihy D, Zhu Y, Seaayfan E, Demaretz S, Frachon N, Weber S, Kömhoff M, Vargas-Poussou R, Laghmani K. New insights into the role of endoplasmic reticulum-associated degradation in Bartter Syndrome Type 1. Hum Mutat 2021; 42:947-968. [PMID: 33973684 DOI: 10.1002/humu.24217] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2020] [Revised: 04/12/2021] [Accepted: 04/30/2021] [Indexed: 12/13/2022]
Abstract
Mutations in Na-K-2Cl co-transporter, NKCC2, lead to type I Bartter syndrome (BS1), a life-threatening kidney disease. Yet, our knowledge of the molecular regulation of NKCC2 mutants remains poor. Here, we aimed to identify the molecular pathogenic mechanisms of one novel and three previously reported missense NKCC2 mutations. Co-immunolocalization studies revealed that all NKCC2 variants are not functional because they are not expressed at the cell surface due to retention in the endoplasmic reticulum (ER). Cycloheximide chase assays together with treatment by protein degradation and mannose trimming inhibitors demonstrated that the defect in NKCC2 maturation arises from ER retention and associated degradation (ERAD). Small interfering RNA (siRNA) knock-down experiments revealed that the ER lectin OS9 is involved in the ERAD of NKCC2 mutants. 4-phenyl butyric acid (4-PBA) treatment mimicked OS9 knock-down effect on NKCC2 mutants by stabilizing their immature forms. Importantly, out of the four studied mutants, only one showed an increased protein maturation upon treatment with glycerol. In summary, our study reveals that BS1 is among diseases linked to the ERAD pathway. Moreover, our data open the possibility that maturation of some ER retained NKCC2 variants is correctable by chemical chaperones offering, therefore, promising avenues in elucidating the molecular pathways governing the ERAD of NKCC2 folding mutants.
Collapse
Affiliation(s)
- Irfan Shaukat
- Centre de Recherche des Cordeliers, Sorbonne Université, Inserm, Université de Paris, Paris, France
- CNRS, ERL8228, Paris, France
| | - Dalal Bakhos-Douaihy
- Centre de Recherche des Cordeliers, Sorbonne Université, Inserm, Université de Paris, Paris, France
- CNRS, ERL8228, Paris, France
| | - Yingying Zhu
- Centre de Recherche des Cordeliers, Sorbonne Université, Inserm, Université de Paris, Paris, France
- CNRS, ERL8228, Paris, France
| | - Elie Seaayfan
- Centre de Recherche des Cordeliers, Sorbonne Université, Inserm, Université de Paris, Paris, France
- CNRS, ERL8228, Paris, France
| | - Sylvie Demaretz
- Centre de Recherche des Cordeliers, Sorbonne Université, Inserm, Université de Paris, Paris, France
- CNRS, ERL8228, Paris, France
| | - Nadia Frachon
- Centre de Recherche des Cordeliers, Sorbonne Université, Inserm, Université de Paris, Paris, France
- CNRS, ERL8228, Paris, France
| | - Stefanie Weber
- Division of Pediatric Nephrology and Transplantation, University Children's Hospital, Philipps-University, Marburg, Germany
| | - Martin Kömhoff
- Division of Pediatric Nephrology and Transplantation, University Children's Hospital, Philipps-University, Marburg, Germany
| | | | - Kamel Laghmani
- Centre de Recherche des Cordeliers, Sorbonne Université, Inserm, Université de Paris, Paris, France
- CNRS, ERL8228, Paris, France
| |
Collapse
|
59
|
Abstract
The known genetic architecture of blood pressure now comprises >30 genes, with rare variants resulting in monogenic forms of hypertension or hypotension and >1,477 common single-nucleotide polymorphisms (SNPs) being associated with the blood pressure phenotype. Monogenic blood pressure syndromes predominantly involve the renin-angiotensin-aldosterone system and the adrenal glucocorticoid pathway, with a smaller fraction caused by neuroendocrine tumours of the sympathetic and parasympathetic nervous systems. The SNPs identified in genome-wide association studies (GWAS) as being associated with the blood pressure phenotype explain only approximately 27% of the 30-50% estimated heritability of blood pressure, and the effect of each SNP on the blood pressure phenotype is small. A paucity of SNPs from GWAS are mapped to known genes causing monogenic blood pressure syndromes. For example, a GWAS signal mapped to the gene encoding uromodulin has been shown to affect blood pressure by influencing sodium homeostasis, and the effects of another GWAS signal were mediated by endothelin. However, the majority of blood pressure-associated SNPs show pleiotropic associations. Unravelling these associations can potentially help us to understand the underlying biological pathways. In this Review, we appraise the current knowledge of blood pressure genomics, explore the causal pathways for hypertension identified in Mendelian randomization studies and highlight the opportunities for drug repurposing and pharmacogenomics for the treatment of hypertension.
Collapse
Affiliation(s)
- Sandosh Padmanabhan
- BHF Glasgow Cardiovascular Research Centre, Institute of Cardiovascular and Medical Sciences, University of Glasgow, Glasgow, UK
| | - Anna F Dominiczak
- BHF Glasgow Cardiovascular Research Centre, Institute of Cardiovascular and Medical Sciences, University of Glasgow, Glasgow, UK.
| |
Collapse
|
60
|
Halbritter J. Genetics of kidney stone disease-Polygenic meets monogenic. Nephrol Ther 2021; 17S:S88-S94. [PMID: 33910705 DOI: 10.1016/j.nephro.2020.02.003] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2020] [Accepted: 02/03/2020] [Indexed: 11/16/2022]
Abstract
Kidney stone disease comprising nephrolithiasis and nephrocalcinosis is a clinical syndrome of increasing prevalence with remarkable heterogeneity. Stone composition, age of manifestation, rate of recurrence, and impairment of kidney function varies with underlying etiologies. While calcium-based kidney stones account for the vast majority their etiology is still poorly understood. Recent studies underline the notion that genetic susceptibility together with dietary habits constitutes the major driver of kidney stone formation. In addition to single gene (Mendelian) disorders, which are most likely underestimated in the adult population, common risk alleles explain part of the observed heritability. Interestingly, identified GWAS loci often match those of Mendelian disease genes and vice versa (CASR, SLC34A1, CYP24A1). These findings provide mechanistic links related to renal calcium homeostasis, vitamin D metabolism, and CaSR-signaling regulated by the CaSR-CLDN14-CLDN16/19 axis (paracellular Ca2+ reabsorption) and TRPV5 (transcellular Ca2+ reabsorption). Recent identification of new single gene disorders of calcium-oxalate-nephrolithiasis (SLC26A1, CLDN2) and distal renal tubular acidosis with nephrocalcinosis (FOXI1, WDR72, ATP6V1C2) enabled additional insights into the kidney-gut axis and molecular prerequisites of proper urinary acidification. Implementation of centralized patient registries on hereditary kidney stone diseases are necessary to build up well characterized cohorts for urgently needed clinical studies.
Collapse
Affiliation(s)
- Jan Halbritter
- Medical Department III, Endocrinology, Nephrology and Rheumatology, Division of Nephrology, University of Leipzig Medical Center, Leipzig, Germany.
| |
Collapse
|
61
|
Marcoux A, Tremblay LE, Slimani S, Fiola M, Mac‐Way F, Garneau AP, Isenring P. Molecular characteristics and physiological roles of Na + -K + -Cl - cotransporter 2. J Cell Physiol 2021; 236:1712-1729. [PMID: 32776569 PMCID: PMC7818487 DOI: 10.1002/jcp.29997] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2020] [Revised: 06/28/2020] [Accepted: 07/24/2020] [Indexed: 12/23/2022]
Abstract
Na+ -K+ -Cl- cotransporter 2 (NKCC2; SLC12A1) is an integral membrane protein that comes as three splice variants and mediates the cotranslocation of Na+ , K+ , and Cl- ions through the apical membrane of the thick ascending loop of Henle (TALH). In doing so, and through the involvement of other ion transport systems, it allows this nephron segment to reclaim a large fraction of the ultrafiltered Na+ , Cl- , Ca2+ , Mg2+ , and HCO3- loads. The functional relevance of NKCC2 in human is illustrated by the many abnormalities that result from the inactivation of this transport system through the use of loop diuretics or in the setting of inherited disorders. The following presentation aims at discussing the physiological roles and molecular characteristics of Na+ -K+ -Cl- cotransport in the TALH and those of the individual NKCC2 splice variants more specifically. Many of the historical and recent data that have emerged from the experiments conducted will be outlined and their larger meaning will also be placed into perspective with the aid of various hypotheses.
Collapse
Affiliation(s)
- Andree‐Anne Marcoux
- Department of Medicine, Nephrology Research GroupLaval UniversityQuebec CityQuébecCanada
| | - Laurence E. Tremblay
- Department of Medicine, Nephrology Research GroupLaval UniversityQuebec CityQuébecCanada
| | - Samira Slimani
- Department of Medicine, Nephrology Research GroupLaval UniversityQuebec CityQuébecCanada
| | - Marie‐Jeanne Fiola
- Department of Medicine, Nephrology Research GroupLaval UniversityQuebec CityQuébecCanada
| | - Fabrice Mac‐Way
- Department of Medicine, Nephrology Research GroupLaval UniversityQuebec CityQuébecCanada
| | - Alexandre P. Garneau
- Department of Medicine, Nephrology Research GroupLaval UniversityQuebec CityQuébecCanada
- Cardiometabolic Axis, School of Kinesiology and Physical Activity SciencesUniversity of MontréalMontréalQuebecCanada
| | - Paul Isenring
- Department of Medicine, Nephrology Research GroupLaval UniversityQuebec CityQuébecCanada
| |
Collapse
|
62
|
Differential Effects of STCH and Stress-Inducible Hsp70 on the Stability and Maturation of NKCC2. Int J Mol Sci 2021. [PMID: 33672238 DOI: 10.3390/ijms22042207.] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Mutations in the Na-K-2Cl co-transporter NKCC2 lead to type I Bartter syndrome, a life-threatening kidney disease. We previously showed that export from the ER constitutes the limiting step in NKCC2 maturation and cell surface expression. Yet, the molecular mechanisms involved in this process remain obscure. Here, we report the identification of chaperone stress 70 protein (STCH) and the stress-inducible heat shock protein 70 (Hsp70), as two novel binding partners of the ER-resident form of NKCC2. STCH knock-down increased total NKCC2 expression whereas Hsp70 knock-down or its inhibition by YM-01 had the opposite effect. Accordingly, overexpressing of STCH and Hsp70 exerted opposite actions on total protein abundance of NKCC2 and its folding mutants. Cycloheximide chase assay showed that in cells over-expressing STCH, NKCC2 stability and maturation are heavily impaired. In contrast to STCH, Hsp70 co-expression increased NKCC2 maturation. Interestingly, treatment by protein degradation inhibitors revealed that in addition to the proteasome, the ER associated degradation (ERAD) of NKCC2 mediated by STCH, involves also the ER-to-lysosome-associated degradation pathway. In summary, our data are consistent with STCH and Hsp70 having differential and antagonistic effects with regard to NKCC2 biogenesis. These findings may have an impact on our understanding and potential treatment of diseases related to aberrant NKCC2 trafficking and expression.
Collapse
|
63
|
Bakhos-Douaihy D, Seaayfan E, Demaretz S, Komhoff M, Laghmani K. Differential Effects of STCH and Stress-Inducible Hsp70 on the Stability and Maturation of NKCC2. Int J Mol Sci 2021; 22:2207. [PMID: 33672238 PMCID: PMC7926544 DOI: 10.3390/ijms22042207] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2021] [Revised: 02/13/2021] [Accepted: 02/20/2021] [Indexed: 12/16/2022] Open
Abstract
Mutations in the Na-K-2Cl co-transporter NKCC2 lead to type I Bartter syndrome, a life-threatening kidney disease. We previously showed that export from the ER constitutes the limiting step in NKCC2 maturation and cell surface expression. Yet, the molecular mechanisms involved in this process remain obscure. Here, we report the identification of chaperone stress 70 protein (STCH) and the stress-inducible heat shock protein 70 (Hsp70), as two novel binding partners of the ER-resident form of NKCC2. STCH knock-down increased total NKCC2 expression whereas Hsp70 knock-down or its inhibition by YM-01 had the opposite effect. Accordingly, overexpressing of STCH and Hsp70 exerted opposite actions on total protein abundance of NKCC2 and its folding mutants. Cycloheximide chase assay showed that in cells over-expressing STCH, NKCC2 stability and maturation are heavily impaired. In contrast to STCH, Hsp70 co-expression increased NKCC2 maturation. Interestingly, treatment by protein degradation inhibitors revealed that in addition to the proteasome, the ER associated degradation (ERAD) of NKCC2 mediated by STCH, involves also the ER-to-lysosome-associated degradation pathway. In summary, our data are consistent with STCH and Hsp70 having differential and antagonistic effects with regard to NKCC2 biogenesis. These findings may have an impact on our understanding and potential treatment of diseases related to aberrant NKCC2 trafficking and expression.
Collapse
Affiliation(s)
- Dalal Bakhos-Douaihy
- Centre de Recherche des Cordeliers, INSERM, Sorbonne Université, USPC, Université Paris Descartes, Université Paris Diderot, 75006 Paris, France; (D.B.-D.); (E.S.); (S.D.)
- CNRS, ERL8228, 75006 Paris, France
| | - Elie Seaayfan
- Centre de Recherche des Cordeliers, INSERM, Sorbonne Université, USPC, Université Paris Descartes, Université Paris Diderot, 75006 Paris, France; (D.B.-D.); (E.S.); (S.D.)
- CNRS, ERL8228, 75006 Paris, France
| | - Sylvie Demaretz
- Centre de Recherche des Cordeliers, INSERM, Sorbonne Université, USPC, Université Paris Descartes, Université Paris Diderot, 75006 Paris, France; (D.B.-D.); (E.S.); (S.D.)
- CNRS, ERL8228, 75006 Paris, France
| | - Martin Komhoff
- University Children’s Hospital, Philipps-University, 35043 Marburg, Germany;
| | - Kamel Laghmani
- Centre de Recherche des Cordeliers, INSERM, Sorbonne Université, USPC, Université Paris Descartes, Université Paris Diderot, 75006 Paris, France; (D.B.-D.); (E.S.); (S.D.)
- CNRS, ERL8228, 75006 Paris, France
| |
Collapse
|
64
|
Konrad M, Nijenhuis T, Ariceta G, Bertholet-Thomas A, Calo LA, Capasso G, Emma F, Schlingmann KP, Singh M, Trepiccione F, Walsh SB, Whitton K, Vargas-Poussou R, Bockenhauer D. Diagnosis and management of Bartter syndrome: executive summary of the consensus and recommendations from the European Rare Kidney Disease Reference Network Working Group for Tubular Disorders. Kidney Int 2021; 99:324-335. [PMID: 33509356 DOI: 10.1016/j.kint.2020.10.035] [Citation(s) in RCA: 61] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2020] [Revised: 09/30/2020] [Accepted: 10/29/2020] [Indexed: 12/13/2022]
Abstract
Bartter syndrome is a rare inherited salt-losing renal tubular disorder characterized by secondary hyperaldosteronism with hypokalemic and hypochloremic metabolic alkalosis and low to normal blood pressure. The primary pathogenic mechanism is defective salt reabsorption predominantly in the thick ascending limb of the loop of Henle. There is significant variability in the clinical expression of the disease, which is genetically heterogenous with 5 different genes described to date. Despite considerable phenotypic overlap, correlations of specific clinical characteristics with the underlying molecular defects have been demonstrated, generating gene-specific phenotypes. As with many other rare disease conditions, there is a paucity of clinical studies that could guide diagnosis and therapeutic interventions. In this expert consensus document, the authors have summarized the currently available knowledge and propose clinical indicators to assess and improve quality of care.
Collapse
Affiliation(s)
- Martin Konrad
- Department of General Pediatrics, University Hospital Münster, Münster, Germany.
| | - Tom Nijenhuis
- Department of Nephrology, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Gema Ariceta
- Pediatric Nephrology, Hospital Universitari Vall d'Hebron, Universitat Autonoma de Barcelona, Barcelona, Spain
| | | | - Lorenzo A Calo
- Department of Medicine (DIMED), Nephrology, Dialysis, Transplantation, University of Padova, Padua, Italy
| | - Giovambattista Capasso
- Division of Nephrology, Department of Translational Medical Sciences, School of Medicine, University of Campania "Luigi Vanvitelli", Naples, Italy
| | - Francesco Emma
- Division of Nephrology, Department of Pediatric Subspecialties, Bambino Gesù Children's Hospital IRCCS, Rome, Italy
| | - Karl P Schlingmann
- Department of General Pediatrics, University Hospital Münster, Münster, Germany
| | - Mandeep Singh
- Fetal Medicine Centre, Southend University Hospital NHS Foundation Trust, Essex, UK
| | - Francesco Trepiccione
- Division of Nephrology, Department of Translational Medical Sciences, School of Medicine, University of Campania "Luigi Vanvitelli", Naples, Italy
| | - Stephen B Walsh
- Department of Renal Medicine, University College London, London, United Kingdom
| | | | - Rosa Vargas-Poussou
- Hôpital Européen Georges Pompidou, Assistance Publique Hôpitaux de Paris, Centre d'Investigation Clinique, Paris, France; Centre de Référence des Maladies Rénales Héréditaires de l'Enfant et de l'Adulte, Paris, France
| | - Detlef Bockenhauer
- Department of Renal Medicine, University College London, London, United Kingdom; Department of Pediatric Nephrology, Great Ormond Street Hospital for Children NHS Foundation Trust, London, UK
| |
Collapse
|
65
|
Mrad FCC, Soares SBM, de Menezes Silva LAW, Dos Anjos Menezes PV, Simões-E-Silva AC. Bartter's syndrome: clinical findings, genetic causes and therapeutic approach. World J Pediatr 2021; 17:31-39. [PMID: 32488762 DOI: 10.1007/s12519-020-00370-4] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/21/2020] [Accepted: 05/24/2020] [Indexed: 02/07/2023]
Abstract
BACKGOUND Bartter's syndrome (BS) is a rare group of salt losing tubulopathies due to the impairment of transport mechanisms at the thick ascending limb of the Henle's loop. DATA SOURCES Literature reviews and original research articles were collected from database, including PubMed and Scopus. RESULTS According to the time of onset and symptoms, BS can be classified into antenatal and classic BS. Molecular studies have identified different subtypes of BS. BS types I, II and III are caused by mutations on genes encoding the luminal Na+-K+-2Cl- co-transporter, the luminal K+ channel ROMK, and the basolateral chloride channel ClC-Kb (CLCNKB), respectively. Loss-of-function mutations of Barttin CLCNK type accessory beta subunit cause BS type IVa. Simultaneous mutations of CLCNKB and CLCNKA cause BS type IVb. BS type V consists in a novel transient form characterized by antenatal presentation due to mutations in the MAGE family member D2. Severe gain-of-function mutations of the extracellular calcium sensing receptor gene can result in an autosomal dominant condition of BS. Main clinical and biochemical alterations in BS include polyuria, dehydration, hypokalemia, hypochloremic metabolic alkalosis, hyperreninemia, high levels of prostaglandins, normal or low blood pressure, hypercalciuria and failure to thrive. Treatment focuses mainly at correcting dehydration and electrolyte disturbances and in measures to reduce polyuria, including the use of nonsteroidal anti-inflammatory medications to control excessive renal prostaglandin E2 production. CONCLUSIONS Early diagnosis and treatment of BS may prevent long-term consequences such as growth failure, nephrocalcinosis and end-stage renal disease.
Collapse
Affiliation(s)
- Flavia Cristina Carvalho Mrad
- Interdisciplinary Laboratory of Medical Investigation, Faculty of Medicine, Federal University of Minas Gerais (UFMG), Av. Prof. Alfredo Balena, 190, Room # 281, Belo Horizonte, MG 30130-100, Brazil
- Pediatric Nephrology Unit, Faculty of Medicine, UFMG, Belo Horizonte, Brazil
| | - Sílvia Bouissou Morais Soares
- Interdisciplinary Laboratory of Medical Investigation, Faculty of Medicine, Federal University of Minas Gerais (UFMG), Av. Prof. Alfredo Balena, 190, Room # 281, Belo Horizonte, MG 30130-100, Brazil
| | - Luiz Alberto Wanderley de Menezes Silva
- Interdisciplinary Laboratory of Medical Investigation, Faculty of Medicine, Federal University of Minas Gerais (UFMG), Av. Prof. Alfredo Balena, 190, Room # 281, Belo Horizonte, MG 30130-100, Brazil
| | - Pedro Versiani Dos Anjos Menezes
- Interdisciplinary Laboratory of Medical Investigation, Faculty of Medicine, Federal University of Minas Gerais (UFMG), Av. Prof. Alfredo Balena, 190, Room # 281, Belo Horizonte, MG 30130-100, Brazil
| | - Ana Cristina Simões-E-Silva
- Interdisciplinary Laboratory of Medical Investigation, Faculty of Medicine, Federal University of Minas Gerais (UFMG), Av. Prof. Alfredo Balena, 190, Room # 281, Belo Horizonte, MG 30130-100, Brazil.
| |
Collapse
|
66
|
Klämbt V, Werth M, Onuchic-Whitford AC, Getwan M, Kitzler TM, Buerger F, Mao Y, Deutsch K, Mann N, Majmundar AJ, Kaminski MM, Shen T, Schmidt-Ott KM, Shalaby M, El Desoky S, Kari JA, Shril S, Lienkamp SS, Barasch J, Hildebrandt F. Mutations in transcription factor CP2-like 1 may cause a novel syndrome with distal renal tubulopathy in humans. Nephrol Dial Transplant 2021; 36:237-246. [PMID: 33097957 PMCID: PMC7834595 DOI: 10.1093/ndt/gfaa215] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2020] [Accepted: 06/18/2020] [Indexed: 11/14/2022] Open
Abstract
BACKGROUND An underlying monogenic cause of early-onset chronic kidney disease (CKD) can be detected in ∼20% of individuals. For many etiologies of CKD manifesting before 25 years of age, >200 monogenic causative genes have been identified to date, leading to the elucidation of mechanisms of renal pathogenesis. METHODS In 51 families with echogenic kidneys and CKD, we performed whole-exome sequencing to identify novel monogenic causes of CKD. RESULTS We discovered a homozygous truncating mutation in the transcription factor gene transcription factor CP2-like 1 (TFCP2L1) in an Arabic patient of consanguineous descent. The patient developed CKD by the age of 2 months and had episodes of severe hypochloremic, hyponatremic and hypokalemic alkalosis, seizures, developmental delay and hypotonia together with cataracts. We found that TFCP2L1 was localized throughout kidney development particularly in the distal nephron. Interestingly, TFCP2L1 induced the growth and development of renal tubules from rat mesenchymal cells. Conversely, the deletion of TFCP2L1 in mice was previously shown to lead to reduced expression of renal cell markers including ion transporters and cell identity proteins expressed in different segments of the distal nephron. TFCP2L1 localized to the nucleus in HEK293T cells only upon coexpression with its paralog upstream-binding protein 1 (UBP1). A TFCP2L1 mutant complementary DNA (cDNA) clone that represented the patient's mutation failed to form homo- and heterodimers with UBP1, an essential step for its transcriptional activity. CONCLUSION Here, we identified a loss-of-function TFCP2L1 mutation as a potential novel cause of CKD in childhood accompanied by a salt-losing tubulopathy.
Collapse
Affiliation(s)
- Verena Klämbt
- Division of Nephrology, Boston Children’s Hospital, Harvard Medical School, Boston, MA, USA
| | - Max Werth
- Division of Nephrology, Columbia University, New York, NY, USA
| | - Ana C Onuchic-Whitford
- Division of Nephrology, Boston Children’s Hospital, Harvard Medical School, Boston, MA, USA
- Renal Division, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA, USA
| | - Maike Getwan
- Department of Medicine, Renal Division, University Medical Center Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Thomas M Kitzler
- Division of Nephrology, Boston Children’s Hospital, Harvard Medical School, Boston, MA, USA
| | - Florian Buerger
- Division of Nephrology, Boston Children’s Hospital, Harvard Medical School, Boston, MA, USA
| | - Youying Mao
- Division of Nephrology, Boston Children’s Hospital, Harvard Medical School, Boston, MA, USA
| | - Konstantin Deutsch
- Division of Nephrology, Boston Children’s Hospital, Harvard Medical School, Boston, MA, USA
| | - Nina Mann
- Division of Nephrology, Boston Children’s Hospital, Harvard Medical School, Boston, MA, USA
| | - Amar J Majmundar
- Division of Nephrology, Boston Children’s Hospital, Harvard Medical School, Boston, MA, USA
| | - Michael M Kaminski
- Berlin Institute for Medical Systems Biology, Max Delbrück Center for Molecular Medicine in the Helmholtz Association, Berlin, Germany
- Department of Nephrology and Medical Intensive Care, Charité - Universitaetsmedizin Berlin, Germany
| | - Tian Shen
- Division of Nephrology, Columbia University, New York, NY, USA
| | - Kai M Schmidt-Ott
- Department of Nephrology and Medical Intensive Care, Charité - Universitaetsmedizin Berlin, Germany
| | - Mohamed Shalaby
- Pediatric Nephrology Center of Excellence and Pediatric Department, Faculty of Medicine, King Abdulaziz University, Jeddah, Kingdom of Saudi Arabia
| | - Sherif El Desoky
- Pediatric Nephrology Center of Excellence and Pediatric Department, Faculty of Medicine, King Abdulaziz University, Jeddah, Kingdom of Saudi Arabia
| | - Jameela A Kari
- Pediatric Nephrology Center of Excellence and Pediatric Department, Faculty of Medicine, King Abdulaziz University, Jeddah, Kingdom of Saudi Arabia
| | - Shirlee Shril
- Division of Nephrology, Boston Children’s Hospital, Harvard Medical School, Boston, MA, USA
| | - Soeren S Lienkamp
- Department of Medicine, Renal Division, University Medical Center Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
- Institute of Anatomy, University of Zurich, Zurich, Switzerland
| | | | - Friedhelm Hildebrandt
- Division of Nephrology, Boston Children’s Hospital, Harvard Medical School, Boston, MA, USA
| |
Collapse
|
67
|
Murillo-de-Ozores AR, Rodríguez-Gama A, Carbajal-Contreras H, Gamba G, Castañeda-Bueno M. WNK4 kinase: from structure to physiology. Am J Physiol Renal Physiol 2021; 320:F378-F403. [PMID: 33491560 DOI: 10.1152/ajprenal.00634.2020] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
With no lysine kinase-4 (WNK4) belongs to a serine-threonine kinase family characterized by the atypical positioning of its catalytic lysine. Despite the fact that WNK4 has been found in many tissues, the majority of its study has revolved around its function in the kidney, specifically as a positive regulator of the thiazide-sensitive NaCl cotransporter (NCC) in the distal convoluted tubule of the nephron. This is explained by the description of gain-of-function mutations in the gene encoding WNK4 that causes familial hyperkalemic hypertension. This disease is mainly driven by increased downstream activation of the Ste20/SPS1-related proline-alanine-rich kinase/oxidative stress responsive kinase-1-NCC pathway, which increases salt reabsorption in the distal convoluted tubule and indirectly impairs renal K+ secretion. Here, we review the large volume of information that has accumulated about different aspects of WNK4 function. We first review the knowledge on WNK4 structure and enumerate the functional domains and motifs that have been characterized. Then, we discuss WNK4 physiological functions based on the information obtained from in vitro studies and from a diverse set of genetically modified mouse models with altered WNK4 function. We then review in vitro and in vivo evidence on the different levels of regulation of WNK4. Finally, we go through the evidence that has suggested how different physiological conditions act through WNK4 to modulate NCC activity.
Collapse
Affiliation(s)
- Adrián Rafael Murillo-de-Ozores
- Department of Nephrology and Mineral Metabolism, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Tlalpan, Mexico City, Mexico.,Facultad de Medicina, Universidad Nacional Autónoma de México, Coyoacan, Mexico City, Mexico
| | | | - Héctor Carbajal-Contreras
- Department of Nephrology and Mineral Metabolism, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Tlalpan, Mexico City, Mexico.,Combined Studies Program in Medicine MD/PhD (PECEM), Facultad de Medicina, Universidad Nacional Autónoma de México, Coyoacan, Mexico City, Mexico, Mexico
| | - Gerardo Gamba
- Department of Nephrology and Mineral Metabolism, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Tlalpan, Mexico City, Mexico.,Molecular Physiology Unit, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Tlalpan, Mexico City, Mexico.,Combined Studies Program in Medicine MD/PhD (PECEM), Facultad de Medicina, Universidad Nacional Autónoma de México, Coyoacan, Mexico City, Mexico, Mexico
| | - María Castañeda-Bueno
- Department of Nephrology and Mineral Metabolism, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Tlalpan, Mexico City, Mexico.,Combined Studies Program in Medicine MD/PhD (PECEM), Facultad de Medicina, Universidad Nacional Autónoma de México, Coyoacan, Mexico City, Mexico, Mexico
| |
Collapse
|
68
|
Wu X, Huang L, Luo C, Liu Y, Niu J. A Case Report and Literature Review of a Novel Mutation in the MAGED2 Gene of a Patient With Severe Transient Polyhydramnios. Front Pediatr 2021; 9:778814. [PMID: 34926352 PMCID: PMC8671809 DOI: 10.3389/fped.2021.778814] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/17/2021] [Accepted: 11/02/2021] [Indexed: 11/13/2022] Open
Abstract
Background: Polyhydramnios occurs frequently during pregnancy. Mutations in the MAGED2 gene can cause X-linked acute early-onset polyhydramnios with a severe but transient form of antenatal Bartter's syndrome. Case Presentation: Here, we report a new novel frameshift mutation c.733_734delCT (p. Leu245GlufsTer4) in the MAGED2 gene (NM_177433.1) that caused prenatal polyhydramnios, but did not cause polyuria after birth. Follow-up was conducted for 2 months, and the baby's growth and development were normal, without polyuria and renal impairment. In addition, we identified all individuals with MAGED2 mutations reported in the literature before March 2021. Conclusion: We report a new case with a novel variant of the MAGED2 gene that caused severe hydramnios but with a good result and summary clinical characteristics in a newborn with antenatal Bartter's syndrome caused by an MAGED2 mutation. Good prenatal diagnosis and genetic consultation can improve pregnancy monitoring and newborn management.
Collapse
Affiliation(s)
- Xiaoxia Wu
- Cheeloo College of Medicine, Shandong University, Jinan, China.,Affiliated Shenzhen Maternity and Child Healthcare Hospital, Southern Medical University, Shenzhen, China
| | - Le Huang
- Affiliated Shenzhen Maternity and Child Healthcare Hospital, Southern Medical University, Shenzhen, China
| | - Caiqun Luo
- Affiliated Shenzhen Maternity and Child Healthcare Hospital, Southern Medical University, Shenzhen, China
| | - Yang Liu
- Affiliated Shenzhen Maternity and Child Healthcare Hospital, Southern Medical University, Shenzhen, China
| | - Jianmin Niu
- Cheeloo College of Medicine, Shandong University, Jinan, China.,Affiliated Shenzhen Maternity and Child Healthcare Hospital, Southern Medical University, Shenzhen, China
| |
Collapse
|
69
|
Florke Gee RR, Chen H, Lee AK, Daly CA, Wilander BA, Fon Tacer K, Potts PR. Emerging roles of the MAGE protein family in stress response pathways. J Biol Chem 2020; 295:16121-16155. [PMID: 32921631 PMCID: PMC7681028 DOI: 10.1074/jbc.rev120.008029] [Citation(s) in RCA: 40] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2020] [Revised: 09/08/2020] [Indexed: 12/21/2022] Open
Abstract
The melanoma antigen (MAGE) proteins all contain a MAGE homology domain. MAGE genes are conserved in all eukaryotes and have expanded from a single gene in lower eukaryotes to ∼40 genes in humans and mice. Whereas some MAGEs are ubiquitously expressed in tissues, others are expressed in only germ cells with aberrant reactivation in multiple cancers. Much of the initial research on MAGEs focused on exploiting their antigenicity and restricted expression pattern to target them with cancer immunotherapy. Beyond their potential clinical application and role in tumorigenesis, recent studies have shown that MAGE proteins regulate diverse cellular and developmental pathways, implicating them in many diseases besides cancer, including lung, renal, and neurodevelopmental disorders. At the molecular level, many MAGEs bind to E3 RING ubiquitin ligases and, thus, regulate their substrate specificity, ligase activity, and subcellular localization. On a broader scale, the MAGE genes likely expanded in eutherian mammals to protect the germline from environmental stress and aid in stress adaptation, and this stress tolerance may explain why many cancers aberrantly express MAGEs Here, we present an updated, comprehensive review on the MAGE family that highlights general characteristics, emphasizes recent comparative studies in mice, and describes the diverse functions exerted by individual MAGEs.
Collapse
Affiliation(s)
- Rebecca R Florke Gee
- Cell and Molecular Biology Department, St. Jude Children's Research Hospital, Memphis, Tennessee, USA; Graduate School of Biomedical Sciences, St. Jude Children's Research Hospital, Memphis, Tennessee, USA
| | - Helen Chen
- Cell and Molecular Biology Department, St. Jude Children's Research Hospital, Memphis, Tennessee, USA
| | - Anna K Lee
- Cell and Molecular Biology Department, St. Jude Children's Research Hospital, Memphis, Tennessee, USA
| | - Christina A Daly
- Cell and Molecular Biology Department, St. Jude Children's Research Hospital, Memphis, Tennessee, USA; Graduate School of Biomedical Sciences, St. Jude Children's Research Hospital, Memphis, Tennessee, USA
| | - Benjamin A Wilander
- Cell and Molecular Biology Department, St. Jude Children's Research Hospital, Memphis, Tennessee, USA; Graduate School of Biomedical Sciences, St. Jude Children's Research Hospital, Memphis, Tennessee, USA
| | - Klementina Fon Tacer
- Cell and Molecular Biology Department, St. Jude Children's Research Hospital, Memphis, Tennessee, USA; School of Veterinary Medicine, Texas Tech University, Amarillo, Texas, USA.
| | - Patrick Ryan Potts
- Cell and Molecular Biology Department, St. Jude Children's Research Hospital, Memphis, Tennessee, USA.
| |
Collapse
|
70
|
Bamgbola OF, Ahmed Y. Differential diagnosis of perinatal Bartter, Bartter and Gitelman syndromes. Clin Kidney J 2020; 14:36-48. [PMID: 33564404 PMCID: PMC7857843 DOI: 10.1093/ckj/sfaa172] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2020] [Accepted: 06/29/2020] [Indexed: 12/20/2022] Open
Abstract
The common finding of hypokalemic alkalosis in several unrelated disorders may confound the early diagnosis of salt-losing tubulopathy (SLT). Antenatal Bartter syndrome (BS) must be considered in idiopathic early-onset polyhydramnios. Fetal megabladder in BS may allow its distinction from third-trimester polyhydramnios that occurs in congenital chloride diarrhea (CCD). Fetal megacolon occurs in CCD while fecal chloride >90 mEq/L in infants is diagnostic. Failure-to-thrive, polydipsia and polyuria in early childhood are the hallmarks of classic BS. Unlike BS, there is low urinary chloride in hypokalemic alkalosis of intractable emesis and cystic fibrosis. Rarely, renal salt wasting may result from cystinosis, Dent disease, disorders of paracellular claudin-10b and Kir4.1 potassium-channel deficiency. Acquired BS may result from calcimimetic up-regulation of a calcium-sensing receptor or autoantibody inactivation of sodium chloride co-transporters in Sjögren syndrome. A relatively common event of heterozygous gene mutations for Gitelman syndrome increases the likelihood of its random occurrence in certain diseases of adult onset. Finally, diuretic abuse is the most common differential diagnosis of SLT. Unlike the persistent elevation in BS, urinary chloride concentration losses waxes and wanes on day-to-day assessment in patients with diuretic misuse.
Collapse
Affiliation(s)
- Oluwatoyin Fatai Bamgbola
- Department of Pediatrics, Division of Pediatric Nephrology, SUNY Downstate Medical Center, Brooklyn, NY, USA
| | - Youssef Ahmed
- Department of Pediatrics, Kings County Hospital, Brooklyn, NY, USA
| |
Collapse
|
71
|
Zuo J, Guo W, Wang S, Lang Y, Wang S, Shi X, Zhang R, Zhao X, Han Y, Shao L. Eight novel KCNJ1 variants and parathyroid hormone overaction or resistance in 5 probands with Bartter syndrome type 2. Clin Chim Acta 2020; 511:248-254. [PMID: 33058840 DOI: 10.1016/j.cca.2020.10.002] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2020] [Revised: 08/07/2020] [Accepted: 10/02/2020] [Indexed: 01/19/2023]
Abstract
PURPOSE Bartter syndrome type 2 (BS2) is an autosomal recessive renal tubular disorder, which is caused by the mutations in KCNJ1. This study was designed to analyze and describe the genotype and clinical features of five Chinese probands with BS2. METHODS Identify KCNJ1 gene variants by the next generation sequencing and evaluate their mutation effects according to 2015 American College of Medical Genetics and Genomics (ACMG) standards and guidelines. RESULTS Ten variants including eight novel ones of KCNJ1 gene were found, the most common type was missense variant. The common symptoms and signs from high to low incidence were: polydipsia and polyuria (5/5), one of them (1/5) presented with diabetes insipidus; maternal polyhydramnios and premature delivery (4/5); growth retardation (3/5). Two patients presented with hypochloremic metabolic alkalosis and hypokalemia; whereas the acid-base disturbance was absent in the others. One patient had evident parathyroid hormone (PTH) resistance (hypocalcemia, hyperphosphatemia and markedly elevated PTH levels), three presented with PTH overacting (hypercalcemia, hypophosphatemia and mild elevated PTH levels), and one showed normal blood calcium and phosphorus concentrations with high-normal PTH levels. All patients had nephrocalcinosis and/or hypercalciuria, and one of them complicated with nephrolithiasis. Indomethacin has significant therapeutic effect on the growth retardation, polydipsia and polyuria and treatment was associated with a decrease in urine calcium excretion, normalization of electrolyte disturbance and PTH parameters. CONCLUSIONS Ten variants of KCNJ1 gene were identified in five Chinese probands. These patients had atypical BS phenotype lacking evident metabolic alkalosis and/or manifesting with PTH overaction/resistance, which reminds clinicians to carefully differentiate BS2 with other parathyroid disorders. This is the first report of BS2 from Chinese populations.
Collapse
Affiliation(s)
- Jianxin Zuo
- Department of Obstetrics, the Affiliated Hospital of Qingdao University, Qingdao 266003, People's Republic of China; Department of Nephrology, the Affiliated Qingdao Municipal Hospital of Qingdao University, No.5 Donghai Middle Road, Qingdao 266071, People's Republic of China
| | - Wencong Guo
- Department of Nephrology, the Affiliated Qingdao Municipal Hospital of Qingdao University, No.5 Donghai Middle Road, Qingdao 266071, People's Republic of China; Department of Nephrology, the Affiliated Qingdao Municipal Hospital of Shandong University, No.5 Donghai Middle Road, Qingdao 266071, People's Republic of China; Central Laboratory, the Affiliated Hospital of Qingdao University, Qingdao 266003, People's Republic of China
| | - Shujuan Wang
- Department of Nursing, the Affiliated Hospital of Qingdao University, Qingdao 266003, People's Republic of China
| | - Yanhua Lang
- Department of Nursing, the Affiliated Hospital of Qingdao University, Qingdao 266003, People's Republic of China
| | - Sai Wang
- Department of Nephrology, the Affiliated Qingdao Municipal Hospital of Qingdao University, No.5 Donghai Middle Road, Qingdao 266071, People's Republic of China; Department of Nephrology, the Affiliated Qingdao Municipal Hospital of Shandong University, No.5 Donghai Middle Road, Qingdao 266071, People's Republic of China; Central Laboratory, the Affiliated Hospital of Qingdao University, Qingdao 266003, People's Republic of China
| | - Xiaomeng Shi
- Department of Nephrology, the Affiliated Qingdao Municipal Hospital of Qingdao University, No.5 Donghai Middle Road, Qingdao 266071, People's Republic of China; Department of Nephrology, the Affiliated Qingdao Municipal Hospital of Shandong University, No.5 Donghai Middle Road, Qingdao 266071, People's Republic of China; Central Laboratory, the Affiliated Hospital of Qingdao University, Qingdao 266003, People's Republic of China
| | - Ruixiao Zhang
- Department of Nephrology, the Affiliated Qingdao Municipal Hospital of Qingdao University, No.5 Donghai Middle Road, Qingdao 266071, People's Republic of China; Department of Nephrology, the Affiliated Qingdao Municipal Hospital of Shandong University, No.5 Donghai Middle Road, Qingdao 266071, People's Republic of China; Central Laboratory, the Affiliated Hospital of Qingdao University, Qingdao 266003, People's Republic of China
| | - Xiangzhong Zhao
- Central Laboratory, the Affiliated Hospital of Qingdao University, Qingdao 266003, People's Republic of China
| | - Yue Han
- Department of Nephrology, the Affiliated Qingdao Municipal Hospital of Qingdao University, No.5 Donghai Middle Road, Qingdao 266071, People's Republic of China; Department of Nephrology, the Affiliated Qingdao Municipal Hospital of Shandong University, No.5 Donghai Middle Road, Qingdao 266071, People's Republic of China; Central Laboratory, the Affiliated Hospital of Qingdao University, Qingdao 266003, People's Republic of China.
| | - Leping Shao
- Department of Nephrology, the Affiliated Qingdao Municipal Hospital of Qingdao University, No.5 Donghai Middle Road, Qingdao 266071, People's Republic of China; Department of Nephrology, the Affiliated Qingdao Municipal Hospital of Shandong University, No.5 Donghai Middle Road, Qingdao 266071, People's Republic of China; Central Laboratory, the Affiliated Hospital of Qingdao University, Qingdao 266003, People's Republic of China.
| |
Collapse
|
72
|
Rinschen MM, Saez-Rodriguez J. The tissue proteome in the multi-omic landscape of kidney disease. Nat Rev Nephrol 2020; 17:205-219. [PMID: 33028957 DOI: 10.1038/s41581-020-00348-5] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/14/2020] [Indexed: 02/07/2023]
Abstract
Kidney research is entering an era of 'big data' and molecular omics data can provide comprehensive insights into the molecular footprints of cells. In contrast to transcriptomics, proteomics and metabolomics generate data that relate more directly to the pathological symptoms and clinical parameters observed in patients. Owing to its complexity, the proteome still holds many secrets, but has great potential for the identification of drug targets. Proteomics can provide information about protein synthesis, modification and degradation, as well as insight into the physical interactions between proteins, and between proteins and other biomolecules. Thus far, proteomics in nephrology has largely focused on the discovery and validation of biomarkers, but the systematic analysis of the nephroproteome can offer substantial additional insights, including the discovery of mechanisms that trigger and propagate kidney disease. Moreover, proteome acquisition might provide a diagnostic tool that complements the assessment of a kidney biopsy sample by a pathologist. Such applications are becoming increasingly feasible with the development of high-throughput and high-coverage technologies, such as versatile mass spectrometry-based techniques and protein arrays, and encourage further proteomics research in nephrology.
Collapse
Affiliation(s)
- Markus M Rinschen
- Department of Biomedicine, Aarhus University, Aarhus, Denmark. .,III. Department of Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany. .,Department II of Internal Medicine and Center for Molecular Medicine Cologne, University of Cologne, Cologne, Germany. .,Department of Chemistry, Scripps Center for Metabolomics and Mass Spectrometry, Scripps Research, La Jolla, CA, USA.
| | - Julio Saez-Rodriguez
- Institute for Computational Biomedicine, Faculty of Medicine, Heidelberg University, and Heidelberg University Hospital, Bioquant, Heidelberg, Germany.,Joint Research Center for Computational Biomedicine, RWTH Aachen University Hospital, Aachen, Germany.,Molecular Medicine Partnership Unit, European Molecular Biology Laboratory and Heidelberg University, Heidelberg, Germany
| |
Collapse
|
73
|
Bartter Syndrome Masquerading as Acute Kidney Injury in a Neonate. Indian Pediatr 2020. [PMID: 32999122 PMCID: PMC7498554 DOI: 10.1007/s13312-020-1973-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
|
74
|
Mantoo MR, Kabra M, Kabra SK. Cystic Fibrosis Presenting as Pseudo-Bartter Syndrome: An Important Diagnosis that is Missed! Indian J Pediatr 2020; 87:726-732. [PMID: 32504456 DOI: 10.1007/s12098-020-03342-8] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/14/2020] [Accepted: 05/06/2020] [Indexed: 12/24/2022]
Abstract
Cystic fibrosis (CF), an autosomal recessive disorder, occurs due to mutations in CFTR gene resulting in impaired cystic fibrosis transmembrane conductance regulator (CFTR) chloride channel function in various epithelia. In addition to the well-known pulmonary and pancreatic morbidities, CF is characterized by electrolyte and acid-base abnormalities- hypochloremia, hyponatremia, hypokalemia and metabolic alkalosis. These are collectively known as Pseudo-Bartter syndrome, as similar abnormalities are seen in Bartter syndrome- an inherited tubulopathy affecting thick ascending limb of loop of Henle. There may be a significant clinical overlap between the Classic Bartter syndrome, Gitelman syndrome and CF presenting as Pseudo-Bartter syndrome, especially in early childhood. This review focuses on Pseudo-Bartter syndrome in CF, its pathogenesis and differentiation from Bartter/Gitelman syndrome. Other causes of metabolic abnormalities resembling Bartter syndrome are also highlighted.
Collapse
Affiliation(s)
- Mohsin Raj Mantoo
- Department of Pediatrics, All India Institute of Medical Sciences, New Delhi, 110029, India
| | - Madhulika Kabra
- Department of Pediatrics, All India Institute of Medical Sciences, New Delhi, 110029, India
| | - S K Kabra
- Department of Pediatrics, All India Institute of Medical Sciences, New Delhi, 110029, India.
| |
Collapse
|
75
|
Wang K, Tian S, Galindo-González J, Dávalos LM, Zhang Y, Zhao H. Molecular adaptation and convergent evolution of frugivory in Old World and neotropical fruit bats. Mol Ecol 2020; 29:4366-4381. [PMID: 32633855 DOI: 10.1111/mec.15542] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2020] [Revised: 06/22/2020] [Accepted: 06/30/2020] [Indexed: 12/21/2022]
Abstract
Although cases of independent adaptation to the same dietary niche have been documented in mammalian ecology, the molecular correlates of such shifts are seldom known. Here, we used genomewide analyses of molecular evolution to examine two lineages of bats that, from an insectivorous ancestor, have both independently evolved obligate frugivory: the Old World family Pteropodidae and the neotropical subfamily Stenodermatinae. New genome assemblies from two neotropical fruit bats (Artibeus jamaicensis and Sturnira hondurensis) provide a framework for comparisons with Old World fruit bats. Comparative genomics of 10 bat species encompassing dietary diversity across the phylogeny revealed convergent molecular signatures of frugivory in both multigene family evolution and single-copy genes. Evidence for convergent molecular adaptations associated with frugivorous diets includes the composition of three subfamilies of olfactory receptor genes, losses of three bitter taste receptor genes, losses of two digestive enzyme genes and convergent amino acid substitutions in several metabolic genes. By identifying suites of adaptations associated with the convergent evolution of frugivory, our analyses both reveal the extent of molecular mechanisms under selection in dietary shifts and will facilitate future studies of molecular ecology in mammals.
Collapse
Affiliation(s)
- Kai Wang
- Department of Ecology, Tibetan Centre for Ecology and Conservation at WHU-TU, Hubei Key Laboratory of Cell Homeostasis, College of Life Sciences, Wuhan University, Wuhan, China.,The State Key Laboratory of Biocatalysis and Enzyme Engineering of China, College of Life Sciences, Hubei University, Wuhan, China
| | - Shilin Tian
- Department of Ecology, Tibetan Centre for Ecology and Conservation at WHU-TU, Hubei Key Laboratory of Cell Homeostasis, College of Life Sciences, Wuhan University, Wuhan, China.,Novogene Bioinformatics Institute, Beijing, China
| | - Jorge Galindo-González
- Biotechnology and Applied Ecology Institute (INBIOTECA), Universidad Veracruzana, Xalapa,Veracruz, Mexico
| | - Liliana M Dávalos
- Department of Ecology and Evolution and Center for Inter-Disciplinary Environmental Research, State University of New York at Stony Brook, Stony Brook, NY, USA
| | - Yuzhi Zhang
- Department of Ecology, Tibetan Centre for Ecology and Conservation at WHU-TU, Hubei Key Laboratory of Cell Homeostasis, College of Life Sciences, Wuhan University, Wuhan, China
| | - Huabin Zhao
- Department of Ecology, Tibetan Centre for Ecology and Conservation at WHU-TU, Hubei Key Laboratory of Cell Homeostasis, College of Life Sciences, Wuhan University, Wuhan, China.,College of Science, Tibet University, Lhasa, China
| |
Collapse
|
76
|
Syndromes de Bartter–Gitelman. Nephrol Ther 2020; 16:233-243. [DOI: 10.1016/j.nephro.2020.06.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
77
|
Pariente G, Walfisch A, Wainstock T, Landau D, Sergienko R, Sheiner E. Prenatal exposure to isolated amniotic fluid disorders and the risk for long-term endocrine morbidity of the offspring. Arch Gynecol Obstet 2020; 302:873-878. [PMID: 32602001 DOI: 10.1007/s00404-020-05674-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2020] [Accepted: 06/25/2020] [Indexed: 11/26/2022]
Abstract
BACKGROUND Amniotic fluid abnormalities may be associated with adverse perinatal outcomes, some of which are endocrine related. OBJECTIVE To evaluate whether in utero exposure to amniotic fluid abnormalities is associated with long-term endocrine morbidity in the offspring. STUDY DESIGN In this cohort study, the incidence of long-term endocrine disorders was compared between singletons exposed and non-exposed to oligohydramnios or polyhydramnios. RESULTS During the study period, 195 943 newborns were included in the study, of them 2.0% (n = 4072) and 2.9% (n = 5684) were exposed to oligohydramnios and polyhydramnios, respectively. Long-term endocrine morbidity was higher among children exposed to isolated amniotic fluid disorders, as was also noted in the Kaplan-Meier survival curve (log-rank test p < 0.001). Abnormal amniotic fluid volume was found to be independently associated with long-term endocrine morbidity of the offspring according to a Cox regression model controlled for clinically related confounders. CONCLUSION In utero exposure to isolated amniotic fluid abnormalities is independently associated with long-term endocrine morbidity in the offspring.
Collapse
Affiliation(s)
- Gali Pariente
- Department of Obstetrics and Gynecology, Soroka University Medical Center, Faculty of Health Sciences, Ben-Gurion University of the Negev, POB 151, 84101, Beer-Sheva, Israel
| | - Asnat Walfisch
- Department of Obstetrics and Gynecology, Soroka University Medical Center, Faculty of Health Sciences, Ben-Gurion University of the Negev, POB 151, 84101, Beer-Sheva, Israel
| | - Tamar Wainstock
- Department of Epidemiology and Health Services Evaluation, Ben-Gurion University of the Negev, Beer-Sheva, Israel
| | - Daniella Landau
- Department of Pediatrics, Soroka University Medical Center, Faculty of Health Sciences, Ben-Gurion University of the Negev, Beer-Sheva, Israel
| | - Ruslan Sergienko
- Department of Epidemiology and Health Services Evaluation, Ben-Gurion University of the Negev, Beer-Sheva, Israel
| | - Eyal Sheiner
- Department of Obstetrics and Gynecology, Soroka University Medical Center, Faculty of Health Sciences, Ben-Gurion University of the Negev, POB 151, 84101, Beer-Sheva, Israel.
| |
Collapse
|
78
|
Verma S, Chanchlani R, Siu VM, Filler G. Transient hyponatremia of prematurity caused by mild Bartter syndrome type II: a case report. BMC Pediatr 2020; 20:311. [PMID: 32590952 PMCID: PMC7318402 DOI: 10.1186/s12887-020-02214-6] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/29/2020] [Accepted: 06/17/2020] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Bartter syndrome subtypes are a group of rare renal tubular diseases characterized by impaired salt reabsorption in the tubule, specifically the thick ascending limb of Henle's loop. Clinically, they are characterized by the association of hypokalemic metabolic alkalosis, hypercalciuria, nephrocalcinosis, increased levels of plasma renin and aldosterone, low blood pressure and vascular resistance to angiotensin II. Bartter syndrome type II is caused by mutations in the renal outer medullary potassium channel (ROMK) gene (KCNJ1), can present in the newborn period and typically requires lifelong therapy. CASE PRESENTATION We describe a case of a prematurely born female infant presenting with antenatal polyhydramnios, and postnatal dehydration and hyponatremia. After 7 weeks of sodium supplementation, the patient demonstrated complete resolution of her hyponatremia and developed only transient metabolic alkalosis at 2 months of age but continues to be polyuric and exhibits hypercalciuria, without development of nephrocalcinosis. She was found to have two pathogenic variants in the KCNJ1 gene: a frameshift deletion, p.Glu334Glyfs*35 and a missense variant, p. Pro110Leu. While many features of classic ROMK mutations have resolved, the child does have Bartter syndrome type II and needs prolonged pediatric nephrology follow-up. CONCLUSION Transient neonatal hyponatremia warrants a multi-system workup and genetic variants of KCNJ1 should be considered.
Collapse
Affiliation(s)
- Subhrata Verma
- Department of Pediatrics, Schulich School of Medicine and Dentistry, University of Western Ontario, 1151 Richmond Street, London, ON, N6A5C1, Canada
| | - Rahul Chanchlani
- Division of Pediatric Nephrology, Department of Pediatrics, McMaster Children's Hospital, McMaster University, 1200 Main Street West, Hamilton, ON, L8N 3Z5, Canada
| | - Victoria Mok Siu
- Department of Pediatrics, Schulich School of Medicine and Dentistry, University of Western Ontario, 1151 Richmond Street, London, ON, N6A5C1, Canada.,Division of Medical Genetics, and Department of Biochemistry, London Health Sciences Centre, 800 Commissioners Road East, London, ON, N6A 5W9, Canada.,Children's Health Research Institute, 750 Baseline Road East, London, ON, N6C 2R5, Canada
| | - Guido Filler
- Department of Pediatrics, Schulich School of Medicine and Dentistry, University of Western Ontario, 1151 Richmond Street, London, ON, N6A5C1, Canada. .,Children's Health Research Institute, 750 Baseline Road East, London, ON, N6C 2R5, Canada. .,Departments of Pathology and Laboratory Medicine, Division of Nephrology, Lilibeth Caberto Kidney Clinical Research Unit, London Health Sciences Centre, University of Western Ontario, 800 Commissioners Road East, London, ON, N6A 5W9, Canada.
| |
Collapse
|
79
|
Sanderson MR, Badior KE, Fahlman RP, Wevrick R. The necdin interactome: evaluating the effects of amino acid substitutions and cell stress using proximity-dependent biotinylation (BioID) and mass spectrometry. Hum Genet 2020; 139:1513-1529. [PMID: 32529326 DOI: 10.1007/s00439-020-02193-9] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2020] [Accepted: 06/03/2020] [Indexed: 02/07/2023]
Abstract
Prader-Willi syndrome (PWS) is a neurodevelopmental disorder caused by the loss of function of a set of imprinted genes on chromosome 15q11-15q13. One of these genes, NDN, encodes necdin, a protein that is important for neuronal differentiation and survival. Loss of Ndn in mice causes defects in the formation and function of the nervous system. Necdin is a member of the melanoma-associated antigen gene (MAGE) protein family. The functions of MAGE proteins depend highly on their interactions with other proteins, and in particular MAGE proteins interact with E3 ubiquitin ligases and deubiquitinases to form MAGE-RING E3 ligase-deubiquitinase complexes. Here, we used proximity-dependent biotin identification (BioID) and mass spectrometry (MS) to determine the network of protein-protein interactions (interactome) of the necdin protein. This process yielded novel as well as known necdin-proximate proteins that cluster into a protein network. Next, we used BioID-MS to define the interactomes of necdin proteins carrying coding variants. Variant necdin proteins had interactomes that were distinct from wildtype necdin. BioID-MS is not only a useful tool to identify protein-protein interactions, but also to analyze the effects of variants of unknown significance on the interactomes of proteins involved in genetic disease.
Collapse
Affiliation(s)
| | - Katherine E Badior
- Department of Biochemistry, University of Alberta, Edmonton, AB, Canada.,Membrane Protein Disease Research Group, University of Alberta, Edmonton, AB, Canada
| | - Richard P Fahlman
- Department of Biochemistry, University of Alberta, Edmonton, AB, Canada.,Department of Oncology, University of Alberta, Edmonton, AB, Canada
| | - Rachel Wevrick
- Department of Medical Genetics, University of Alberta, Edmonton, AB, Canada.
| |
Collapse
|
80
|
Abstract
PURPOSE OF REVIEW The apical Na/K/2Cl cotransporter (NKCC2) mediates NaCl reabsorption by the thick ascending limb, contributing to maintenance of blood pressure (BP). Despite effective NKCC2 inhibition by loop diuretics, these agents are not viable for long-term management of BP due to side effects. Novel molecular mechanisms that control NKCC2 activity reveal an increasingly complex picture with interacting layers of NKCC2 regulation. Here, we review the latest developments that shine new light on NKCC2-mediated control of BP and potential new long-term therapies to treat hypertension. RECENT FINDINGS Emerging molecular NKCC2 regulators, often binding partners, reveal a complex overlay of interacting mechanisms aimed at fine tuning NKCC2 activity. Different factors achieve this by shifting the balance between trafficking steps like exocytosis, endocytosis, recycling and protein turnover, or by balancing phosphorylation vs. dephosphorylation. Further molecular details are also emerging on previously known pathways of NKCC2 regulation, and recent in-vivo data continues to place NKCC2 regulation at the center of BP control. SUMMARY Several layers of emerging molecular mechanisms that control NKCC2 activity may operate simultaneously, but they can also be controlled independently. This provides an opportunity to identify new pharmacological targets to fine-tune NKCC2 activity for BP management.
Collapse
|
81
|
Sahbani D, Strumbo B, Tedeschi S, Conte E, Camerino GM, Benetti E, Montini G, Aceto G, Procino G, Imbrici P, Liantonio A. Functional Study of Novel Bartter's Syndrome Mutations in ClC-Kb and Rescue by the Accessory Subunit Barttin Toward Personalized Medicine. Front Pharmacol 2020; 11:327. [PMID: 32256370 PMCID: PMC7092721 DOI: 10.3389/fphar.2020.00327] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2019] [Accepted: 03/05/2020] [Indexed: 12/12/2022] Open
Abstract
Type III and IV Bartter syndromes (BS) are rare kidney tubulopathies caused by loss-of-function mutations in the CLCNKB and BSND genes coding respectively for the ClC-Kb chloride channels and accessory subunit barttin. ClC-K channels are expressed in the Henle's loop, distal convoluted tubule, and cortical collecting ducts of the kidney and contribute to chloride absorption and urine concentration. In our Italian cohort, we identified two new mutations in CLCNKB, G167V and G289R, in children affected by BS and previously reported genetic variants, A242E, a chimeric gene and the deletion of the whole CLCNKB. All the patients had hypokalemia and metabolic alkalosis, increased serum renin and aldosterone levels and were treated with a symptomatic therapy. In order to define the molecular mechanisms responsible for BS, we co-expressed ClC-Kb wild type and channels with point mutations with barttin in HEK 293 cells and characterized chloride currents through the patch-clamp technique. In addition, we attempted to revert the functional defect caused by BS mutations through barttin overexpression. G167V and A242E channels showed a drastic current reduction compared to wild type, likely suggesting compromised expression of mutant channels at the plasma membrane. Conversely, G289R channel was similar to wild type raising the doubt that an additional mutation in another gene or other mechanisms could account for the clinical phenotype. Interestingly, increasing ClC-K/barttin ratio augmented G167V and A242E mutants' chloride current amplitudes towards wild type levels. These results confirm a genotype-phenotype correlation in BS and represent a preliminary proof of concept that molecules functioning as molecular chaperones can restore channel function in expression-defective ClC-Kb mutants.
Collapse
Affiliation(s)
- Dalila Sahbani
- Department of Pharmacy-Drug Sciences, University of Bari "Aldo Moro", Bari, Italy
| | - Bice Strumbo
- Laboratory of Medical Genetics, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy
| | - Silvana Tedeschi
- Laboratory of Medical Genetics, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy
| | - Elena Conte
- Department of Pharmacy-Drug Sciences, University of Bari "Aldo Moro", Bari, Italy
| | | | - Elisa Benetti
- Nephrology, Dialysis and Transplant Unit, Department of Women's and Children's Health, University-Hospital of Padova, Padova, Italy
| | - Giovanni Montini
- Pediatric Nephrology, Dialysis, and Transplant Unit, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy.,Department of Clinical Sciences and Community Health, University of Milan, Milan, Italy
| | | | - Giuseppe Procino
- Department of Biosciences, Biotechnologies and Biopharmaceutics, University of Bari "Aldo Moro", Bari, Italy
| | - Paola Imbrici
- Department of Pharmacy-Drug Sciences, University of Bari "Aldo Moro", Bari, Italy
| | - Antonella Liantonio
- Department of Pharmacy-Drug Sciences, University of Bari "Aldo Moro", Bari, Italy
| |
Collapse
|
82
|
Han Y, Cheng H, Shao S, Lang Y, Zhao X, Lin Y, Wang S, Shi X, Liu Z, Shao L. Thirteen novel CLCNKB variants and genotype/phenotype association study in 42 Chinese patients with Bartter syndrome type 3. Endocrine 2020; 68:192-202. [PMID: 31834604 DOI: 10.1007/s12020-019-02156-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/21/2019] [Accepted: 12/02/2019] [Indexed: 12/20/2022]
Abstract
PURPOSE Analyze the genotype of 42 Chinese patients with Bartter syndrome type 3 (BS3) and investigate their correlation between genotype and phenotype. METHODS Identify CLCNKB gene variants by the next-generation sequencing and the multiplex ligation-dependent probe amplification (MLPA), and then evaluate their mutation effects according to 2015 American College of Medical Genetics and Genomics (ACMG) standards and guidelines. RESULTS Thirty-six different variants in CLCNKB gene, including 13 novel ones, were found. The whole gene deletion of CLCNKB gene was the most frequent mutation (40%), and the rate of large deletions is up to 55%. Among 36 variants, six (c.1244T>A, c.1468G>A, c.849_851delCTT, c.359G>T, c.1052G>T, and c.1309G>A) and three (c.228A>C, c.1294_1295TA>CT, and c.1333T>G) variants were classified as "likely pathogenic variants" and "variants with uncertain significance (VUS)," respectively. The other 27 variants were classified as "pathogenic variants". The most common symptoms included: growth retardation (38/42), polydipsia and polyuria (35/42), constipation (31/42), and vomiting (27/42). All patients presented with hypokalemia, hypochloremia, and metabolic alkalosis. The genotype and phenotype association study revealed that who had mutations probably resulting in complete loss of function of both alleles might have severer phenotype. After the treatment that based on indomethacin and potassium chloride, most patients could achieve obvious recovery of growth rate and restoration of hypokalemia. CONCLUSIONS The present study have found 36 variants of CLCNKB gene, including 13 novel ones, which enrich the human gene mutation database and provide valuable references to diagnosis, treatment, and the genetic counseling of Chinese population.
Collapse
Affiliation(s)
- Yue Han
- Department of Nephrology, The Affiliated Qingdao Municipal Hospital of Qingdao University, No. 5 Donghai Middle Road, Qingdao, 266071, PR China
- Central Laboratory, The Affiliated Hospital of Qingdao University, Qingdao, 266003, PR China
| | - Hai Cheng
- Department of Nephrology, The Affiliated Qingdao Municipal Hospital of Qingdao University, No. 5 Donghai Middle Road, Qingdao, 266071, PR China
| | - Shihong Shao
- Department of Pathology, The Affiliated Hospital of Qingdao University, Qingdao, 266003, PR China
| | - Yanhua Lang
- Department of Nursing, The Affiliated Hospital of Qingdao University, Qingdao, 266003, PR China
| | - Xiangzhong Zhao
- Central Laboratory, The Affiliated Hospital of Qingdao University, Qingdao, 266003, PR China
| | - Yi Lin
- Department of Pathology, The Affiliated Hospital of Qingdao University, Qingdao, 266003, PR China
| | - Sai Wang
- Department of Nephrology, The Affiliated Qingdao Municipal Hospital of Qingdao University, No. 5 Donghai Middle Road, Qingdao, 266071, PR China
- Central Laboratory, The Affiliated Hospital of Qingdao University, Qingdao, 266003, PR China
| | - Xiaomeng Shi
- Department of Nephrology, The Affiliated Qingdao Municipal Hospital of Qingdao University, No. 5 Donghai Middle Road, Qingdao, 266071, PR China
- Central Laboratory, The Affiliated Hospital of Qingdao University, Qingdao, 266003, PR China
| | - Zhiying Liu
- Department of Nephrology, The Affiliated Qingdao Municipal Hospital of Qingdao University, No. 5 Donghai Middle Road, Qingdao, 266071, PR China
- Central Laboratory, The Affiliated Hospital of Qingdao University, Qingdao, 266003, PR China
| | - Leping Shao
- Department of Nephrology, The Affiliated Qingdao Municipal Hospital of Qingdao University, No. 5 Donghai Middle Road, Qingdao, 266071, PR China.
- Central Laboratory, The Affiliated Hospital of Qingdao University, Qingdao, 266003, PR China.
| |
Collapse
|
83
|
Nozu K, Yamamura T, Horinouchi T, Nagano C, Sakakibara N, Ishikura K, Hamada R, Morisada N, Iijima K. Inherited salt-losing tubulopathy: An old condition but a new category of tubulopathy. Pediatr Int 2020; 62:428-437. [PMID: 31830341 DOI: 10.1111/ped.14089] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/27/2019] [Revised: 08/11/2019] [Accepted: 10/21/2019] [Indexed: 12/16/2022]
Abstract
Bartter syndrome (BS) and Gitelman syndrome (GS) are syndromes associated with congenital tubular dysfunction, characterized by hypokalemia and metabolic alkalosis. Clinically, BS is classified into two types: the severe antenatal/neonatal type, which develops during the fetal period with polyhydramnios and preterm delivery; and the relatively mild classic type, which is usually found during infancy with failure to thrive. GS can be clinically differentiated from BS by its age at onset, usually after school age, or laboratory findings of hypomagnesemia and hypocalciuria. Recent advances in molecular biology have shown that these diseases can be genetically classified into type 1 to 5 BS and GS. As a result, it has become clear that the clinical classification of antenatal/neonatal BS, classic BS, and GS does not always correspond to the clinical symptoms associated with the genotypes in a one-to-one manner; and there is clinically no clear differential border between type 3 BS and GS. This has caused confusion among clinicians in the diagnosis of these diseases. It has been proposed that the disease name "inherited salt-losing tubulopathy" can be used for cases of tubulopathies accompanied by hypokalemia and metabolic alkalosis. It is reasonable to use this term prior to genetic typing into type 1-5 BS or GS, to avoid confusion in a clinical setting. In this article, we review causative genes and phenotypic correlations, diagnosis, and treatment strategies for salt-losing tubulopathy as well as the clinical characteristics of pseudo-BS/GS, which can also be called a "salt-losing disorder".
Collapse
Affiliation(s)
- Kandai Nozu
- Department of Pediatrics, Kobe University Graduate School of Medicine, Kobe, Japan
| | - Tomohiko Yamamura
- Department of Pediatrics, Kobe University Graduate School of Medicine, Kobe, Japan
| | - Tomoko Horinouchi
- Department of Pediatrics, Kobe University Graduate School of Medicine, Kobe, Japan
| | - China Nagano
- Department of Pediatrics, Kobe University Graduate School of Medicine, Kobe, Japan
| | - Nana Sakakibara
- Department of Pediatrics, Kobe University Graduate School of Medicine, Kobe, Japan
| | - Kenji Ishikura
- Kitasato University School of Medicine, Sagamihara, Japan
| | - Riku Hamada
- Department of Nephrology, Tokyo Metropolitan Children's Medical Center, Fuchu, Japan
| | - Naoya Morisada
- Department of Pediatrics, Kobe University Graduate School of Medicine, Kobe, Japan
| | - Kazumoto Iijima
- Department of Pediatrics, Kobe University Graduate School of Medicine, Kobe, Japan
| |
Collapse
|
84
|
Valiño-Rivas L, Cuarental L, Agustin M, Husi H, Cannata-Ortiz P, Sanz AB, Mischak H, Ortiz A, Sanchez-Niño MD. MAGE genes in the kidney: identification of MAGED2 as upregulated during kidney injury and in stressed tubular cells. Nephrol Dial Transplant 2020; 34:1498-1507. [PMID: 30541139 DOI: 10.1093/ndt/gfy367] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2018] [Indexed: 12/14/2022] Open
Abstract
BACKGROUND Mutations in Melanoma Antigen-encoding Gene D2 (MAGED2) promote tubular dysfunction, suggesting that MAGE proteins may play a role in kidney pathophysiology. We have characterized the expression and regulation of MAGE genes in normal kidneys and during kidney disease. METHODS The expression of MAGE genes and their encoded proteins was explored by systems biology multi-omics (kidney transcriptomics and proteomics) in healthy adult murine kidneys and following induction of experimental acute kidney injury (AKI) by a folic acid overdose. Changes in kidney expression during nephrotoxic AKI were validated by quantitative reverse transcription-polymerase chain reaction (qRT-PCR), western blot and immunohistochemistry. Factors regulating gene expression were studied in cultured tubular cells. RESULTS Five MAGE genes (MAGED1, MAGED2, MAGED3, MAGEH1, MAGEE1) were expressed at the mRNA level in healthy adult mouse kidneys, as assessed by RNA-Seq. Additionally, MAGED2 was significantly upregulated during experimental AKI as assessed by array transcriptomics. Kidney proteomics also identified MAGED2 as upregulated during AKI. The increased kidney expression of MAGED2 mRNA and protein was confirmed by qRT-PCR and western blot, respectively, in murine folic acid- and cisplatin-induced AKI. Immunohistochemistry located MAGED2 to tubular cells in experimental and human kidney injury. Tubular cell stressors [serum deprivation and the inflammatory cytokine tumour necrosis factor-like weak inducer of apoptosis (TWEAK)] upregulated MAGED2 in cultured tubular cells. CONCLUSIONS MAGED2 is upregulated in tubular cells in experimental and human kidney injury and is increased by stressors in cultured tubular cells. This points to a role of MAGED2 in tubular cell injury during kidney disease that should be dissected by carefully designed functional approaches.
Collapse
Affiliation(s)
- Lara Valiño-Rivas
- Nephrology, IIS-Fundacion Jimenez Diaz-Universidad Autonoma de Madrid and Fundacion Renal Iñigo Alvarez de Toledo-IRSIN, Madrid, Spain.,Nephrology, REDINREN, Madrid, Spain
| | - Leticia Cuarental
- Nephrology, IIS-Fundacion Jimenez Diaz-Universidad Autonoma de Madrid and Fundacion Renal Iñigo Alvarez de Toledo-IRSIN, Madrid, Spain.,Nephrology, REDINREN, Madrid, Spain
| | - Mateo Agustin
- Nephrology, IIS-Fundacion Jimenez Diaz-Universidad Autonoma de Madrid and Fundacion Renal Iñigo Alvarez de Toledo-IRSIN, Madrid, Spain
| | - Holger Husi
- Institute of Cardiovascular and Medical Sciences, University of Glasgow, Glasgow, UK.,Department of Diabetes and Cardiovascular Science, University of the Highlands and Islands, Inverness, UK
| | - Pablo Cannata-Ortiz
- Nephrology, IIS-Fundacion Jimenez Diaz-Universidad Autonoma de Madrid and Fundacion Renal Iñigo Alvarez de Toledo-IRSIN, Madrid, Spain
| | - Ana B Sanz
- Nephrology, IIS-Fundacion Jimenez Diaz-Universidad Autonoma de Madrid and Fundacion Renal Iñigo Alvarez de Toledo-IRSIN, Madrid, Spain.,Nephrology, REDINREN, Madrid, Spain
| | - Harald Mischak
- Institute of Cardiovascular and Medical Sciences, University of Glasgow, Glasgow, UK.,Mosaiques diagnostics GmbH, Hannover, Germany
| | - Alberto Ortiz
- Nephrology, IIS-Fundacion Jimenez Diaz-Universidad Autonoma de Madrid and Fundacion Renal Iñigo Alvarez de Toledo-IRSIN, Madrid, Spain.,Nephrology, REDINREN, Madrid, Spain
| | - Maria Dolores Sanchez-Niño
- Nephrology, IIS-Fundacion Jimenez Diaz-Universidad Autonoma de Madrid and Fundacion Renal Iñigo Alvarez de Toledo-IRSIN, Madrid, Spain.,Nephrology, REDINREN, Madrid, Spain
| |
Collapse
|
85
|
Khandelwal P, Sabanadesan J, Sinha A, Hari P, Bagga A. Isolated nephrocalcinosis due to compound heterozygous mutations in renal outer medullary potassium channel. CEN Case Rep 2020; 9:232-236. [PMID: 32185747 DOI: 10.1007/s13730-020-00464-y] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2019] [Accepted: 03/03/2020] [Indexed: 02/06/2023] Open
Abstract
Identification of a monogenic etiology is possible in a proportion of patients with childhood-onset nephrolithiasis or nephrocalcinosis. Bartter syndrome (BS), a hereditary tubulopathy characterized by polyuria, hypokalemic alkalosis and growth retardation that rarely presents with isolated nephrocalcinosis. Patients with defect in renal outer medullary potassium channel, encoded by the KCNJ1 gene causing BS type 2, typically present during the neonatal period. We describe a 14-year-old girl with mild late-onset BS type 2 with reported pathogenic compound heterozygous variations in exon 2 of KCNJ1 (c.146G > A and c.657C > G). This patient presented with isolated medullary nephrocalcinosis due to hypercalciuria; absence of hypokalemia and metabolic alkalosis was unique. This case highlights the importance of screening the KCNJ1 gene in patients with hypercalciuria and nephrocalcinosis, even in older children.
Collapse
Affiliation(s)
- Priyanka Khandelwal
- Division of Nephrology, Department of Pediatrics, All India Institute of Medical Sciences, Ansari Nagar, New Delhi, 110029, India
| | - Jasintha Sabanadesan
- Division of Nephrology, Department of Pediatrics, All India Institute of Medical Sciences, Ansari Nagar, New Delhi, 110029, India
| | - Aditi Sinha
- Division of Nephrology, Department of Pediatrics, All India Institute of Medical Sciences, Ansari Nagar, New Delhi, 110029, India
| | - Pankaj Hari
- Division of Nephrology, Department of Pediatrics, All India Institute of Medical Sciences, Ansari Nagar, New Delhi, 110029, India
| | - Arvind Bagga
- Division of Nephrology, Department of Pediatrics, All India Institute of Medical Sciences, Ansari Nagar, New Delhi, 110029, India.
| |
Collapse
|
86
|
Wang C, Han Y, Zhou J, Zheng B, Zhou W, Bao H, Jia Z, Zhang A, Huang S, Ding G, Zhao F. Splicing Characterization of CLCNKB Variants in Four Patients With Type III Bartter Syndrome. Front Genet 2020; 11:81. [PMID: 32153641 PMCID: PMC7047732 DOI: 10.3389/fgene.2020.00081] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2019] [Accepted: 01/24/2020] [Indexed: 12/22/2022] Open
Abstract
Objective Type III Bartter syndrome (BS) is caused by loss-of-function mutations in the gene encoding basolateral chloride channel ClC-Kb (CLCNKB), and is characterized by hypokalemic metabolic alkalosis and hyperreninemic hyperaldosteronism. Here, we investigated the molecular defects in four Chinese children with clinical manifestations of Bartter syndrome. Methods The genomic DNA of the four patients was screened for gene variations using whole-exome sequencing (WES). The candidate variants were validated by direct Sanger sequencing. Quantitative PCR (qPCR) was subsequently performed to confirm the whole CLCNK gene deletion mutation. A minigene assay and reverse transcription PCR (RT-PCR) were performed to analyze the effect of splice variants in vitro. Results Our patients showed early onset age with hyponatremia, hypokalemia, hypochloremia, repeated vomiting and growth retardation, suggesting Bartter syndrome. Genetic analysis revealed that all patients carried compound heterozygous or homozygous truncating variants in the CLCNKB gene. In particular, we identified a novel nonsense variant c.239G > A (p.(Trp80*)), two splice site variants (c.1053-1 G > A and c.1228-2A > G), a whole gene deletion, and a novel synonymous variant c.228A > C (p.(Arg76Arg)) which located -2 bp from the 5′ splice donor site in exon 3. Furthermore, our in vitro minigene analysis revealed c.228A > C, c.1053-1G > A, and c.1228-2A > G cause the skipping of exon 3, exon 12, and exon 13, respectively. Conclusion Our results support that the whole CLCNKB gene deletion is the most common mutation in Chinese patients with type III BS, and truncating and whole gene deletion variants may account for a more severe phenotype of patients. We verified the pathogenic effect of three splicing variants (c.228A > C, c.1053-1G > A, and c.1228-2A > G) which disturbed the normal mRNA splicing, suggesting that splice variants play an important role in the molecular basis of type III BS, and careful molecular profiling of these patients will be essential for future effective personalized treatment options.
Collapse
Affiliation(s)
- Chunli Wang
- Nanjing Key Laboratory of Pediatrics, Children's Hospital of Nanjing Medical University, Nanjing, China
| | - Yuan Han
- Department of Nephrology, Children's Hospital of Nanjing Medical University, Nanjing, China
| | - Jiaran Zhou
- Department of Nephrology, Children's Hospital of Nanjing Medical University, Nanjing, China
| | - Bixia Zheng
- Nanjing Key Laboratory of Pediatrics, Children's Hospital of Nanjing Medical University, Nanjing, China
| | - Wei Zhou
- Nanjing Key Laboratory of Pediatrics, Children's Hospital of Nanjing Medical University, Nanjing, China
| | - Huaying Bao
- Department of Nephrology, Children's Hospital of Nanjing Medical University, Nanjing, China
| | - Zhanjun Jia
- Nanjing Key Laboratory of Pediatrics, Children's Hospital of Nanjing Medical University, Nanjing, China
| | - Aihua Zhang
- Department of Nephrology, Children's Hospital of Nanjing Medical University, Nanjing, China.,Jiangsu Key Laboratory of Pediatrics, Nanjing Medical University, Nanjing, China
| | - Songming Huang
- Department of Nephrology, Children's Hospital of Nanjing Medical University, Nanjing, China.,Jiangsu Key Laboratory of Pediatrics, Nanjing Medical University, Nanjing, China
| | - Guixia Ding
- Department of Nephrology, Children's Hospital of Nanjing Medical University, Nanjing, China
| | - Fei Zhao
- Department of Nephrology, Children's Hospital of Nanjing Medical University, Nanjing, China
| |
Collapse
|
87
|
Besouw MTP, Kleta R, Bockenhauer D. Bartter and Gitelman syndromes: Questions of class. Pediatr Nephrol 2020; 35:1815-1824. [PMID: 31664557 PMCID: PMC7501116 DOI: 10.1007/s00467-019-04371-y] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/02/2019] [Revised: 08/28/2019] [Accepted: 09/17/2019] [Indexed: 12/30/2022]
Abstract
Bartter and Gitelman syndromes are rare inherited tubulopathies characterized by hypokalaemic, hypochloraemic metabolic alkalosis. They are caused by mutations in at least 7 genes involved in the reabsorption of sodium in the thick ascending limb (TAL) of the loop of Henle and/or the distal convoluted tubule (DCT). Different subtypes can be distinguished and various classifications have been proposed based on clinical symptoms and/or the underlying genetic cause. Yet, the clinical phenotype can show remarkable variability, leading to potential divergences between classifications. These problems mostly relate to uncertainties over the role of the basolateral chloride exit channel CLCNKB, expressed in both TAL and DCT and to what degree the closely related paralogue CLCNKA can compensate for the loss of CLCNKB function. Here, we review what is known about the physiology of the transport proteins involved in these disorders. We also review the various proposed classifications and explain why a gene-based classification constitutes a pragmatic solution.
Collapse
Affiliation(s)
- Martine T. P. Besouw
- Department of Pediatric Nephrology, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - Robert Kleta
- Renal Unit, Great Ormond Street Hospital for Children NHS Foundation Trust, London, UK ,Department of Renal Medicine, University College London, London, UK
| | - Detlef Bockenhauer
- Renal Unit, Great Ormond Street Hospital for Children NHS Foundation Trust, London, UK ,Department of Renal Medicine, University College London, London, UK
| |
Collapse
|
88
|
Mazaheri M, Assadi F, Sadeghi-Bojd S. Adjunctive acetazolamide therapy for the treatment of Bartter syndrome. Int Urol Nephrol 2019; 52:121-128. [PMID: 31820361 DOI: 10.1007/s11255-019-02351-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2019] [Accepted: 11/24/2019] [Indexed: 12/17/2022]
Abstract
PURPOSE Bartter syndrome is a rare hereditary salt-losing tubulopathy caused by mutations of several genes in the thick ascending limb of Henle's loop, characterized by polyuria, hypokalemic metabolic alkalosis, growth retardation and normal blood pressure. Cyclooxygenase inhibitors, potassium-sparing diuretics and angiotensin-converting enzyme inhibitors are currently used to treat electrolyte derangements, but with poor response. Whether treatment with acetazolamide, a carbonic-anhydrase inhibitor, would result in better clinical outcomes is unknown. METHODS We randomly assigned children with Bartter syndrome in a 1:1 ratio to either receive indomethacin, enalapril, and spironolactone or indomethacin, enalapril, and spironolactone plus acetazolamide once daily in the morning for 4 weeks. After 2 days of washout, participants crossed over to receive the alternative intervention for 4 weeks. The present study examines the serum bicarbonate lowering effect of acetazolamide as an adjunctive therapy in children with Batter syndrome. RESULTS Of the 43 patients screened for eligibility, 22 (51%), between the ages 6 and 42 months, were randomized to intervention. Baseline characteristics were similar between the two groups. Addition of acetazolamide for a period of 4 weeks significantly reduced serum bicarbonate and increased serum potassium levels, parallel with a reduction in serum aldosterone and plasma renin concentration. The 24-h urine volume, sodium, potassium, and chloride decreased significantly. CONCLUSION Our data define a new physiologic and therapeutic role of acetazolamide for the management of children with Bartter syndrome.
Collapse
Affiliation(s)
- Mojgan Mazaheri
- Department of Pediatrics, Section of Nephrology, Semnan University of Medical Science, Semnan, Iran
| | - Farahnak Assadi
- Department of Pediatrics, Division of Nephrology, Rush University Medical Center, 445 East North Water Street, Chicago, IL, USA.
| | - Simin Sadeghi-Bojd
- Department of Pediatrics, Division of Nephrology, Zahedan University of Medical Sciences, Zahedan, Iran
| |
Collapse
|
89
|
van der Wijst J, Belge H, Bindels RJM, Devuyst O. Learning Physiology From Inherited Kidney Disorders. Physiol Rev 2019; 99:1575-1653. [PMID: 31215303 DOI: 10.1152/physrev.00008.2018] [Citation(s) in RCA: 56] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
The identification of genes causing inherited kidney diseases yielded crucial insights in the molecular basis of disease and improved our understanding of physiological processes that operate in the kidney. Monogenic kidney disorders are caused by mutations in genes coding for a large variety of proteins including receptors, channels and transporters, enzymes, transcription factors, and structural components, operating in specialized cell types that perform highly regulated homeostatic functions. Common variants in some of these genes are also associated with complex traits, as evidenced by genome-wide association studies in the general population. In this review, we discuss how the molecular genetics of inherited disorders affecting different tubular segments of the nephron improved our understanding of various transport processes and of their involvement in homeostasis, while providing novel therapeutic targets. These include inherited disorders causing a dysfunction of the proximal tubule (renal Fanconi syndrome), with emphasis on epithelial differentiation and receptor-mediated endocytosis, or affecting the reabsorption of glucose, the handling of uric acid, and the reabsorption of sodium, calcium, and magnesium along the kidney tubule.
Collapse
Affiliation(s)
- Jenny van der Wijst
- Department of Physiology, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center , Nijmegen , The Netherlands ; Institute of Physiology, University of Zurich , Zurich , Switzerland ; and Division of Nephrology, Institute of Experimental and Clinical Research (IREC), Medical School, Université catholique de Louvain, Brussels, Belgium
| | - Hendrica Belge
- Department of Physiology, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center , Nijmegen , The Netherlands ; Institute of Physiology, University of Zurich , Zurich , Switzerland ; and Division of Nephrology, Institute of Experimental and Clinical Research (IREC), Medical School, Université catholique de Louvain, Brussels, Belgium
| | - René J M Bindels
- Department of Physiology, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center , Nijmegen , The Netherlands ; Institute of Physiology, University of Zurich , Zurich , Switzerland ; and Division of Nephrology, Institute of Experimental and Clinical Research (IREC), Medical School, Université catholique de Louvain, Brussels, Belgium
| | - Olivier Devuyst
- Department of Physiology, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center , Nijmegen , The Netherlands ; Institute of Physiology, University of Zurich , Zurich , Switzerland ; and Division of Nephrology, Institute of Experimental and Clinical Research (IREC), Medical School, Université catholique de Louvain, Brussels, Belgium
| |
Collapse
|
90
|
Quigley R, Saland JM. Transient antenatal Bartter's Syndrome and X-linked polyhydramnios: insights from the genetics of a rare condition. Kidney Int 2019; 90:721-3. [PMID: 27633862 DOI: 10.1016/j.kint.2016.07.031] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2016] [Revised: 07/22/2016] [Accepted: 07/27/2016] [Indexed: 10/21/2022]
Abstract
The discovery that mutations in MAGED2 cause a rare and transient form of antenatal Bartter's Syndrome may have implications beyond the very small number of affected families. Understanding the mechanism by which this severe form of Bartter's Syndrome resolves after birth could also provide new insights into the regulation of tubular transport and the response to tissue hypoxia.
Collapse
Affiliation(s)
- Raymond Quigley
- Department of Pediatrics, University of Texas Southwestern Medical Center, Dallas, Texas, USA.
| | - Jeffrey M Saland
- Department of Pediatrics, Mount Sinai School of Medicine, New York, New York, USA
| |
Collapse
|
91
|
Najafi M, Kordi-Tamandani DM, Behjati F, Sadeghi-Bojd S, Bakey Z, Karimiani EG, Schüle I, Azarfar A, Schmidts M. Mimicry and well known genetic friends: molecular diagnosis in an Iranian cohort of suspected Bartter syndrome and proposition of an algorithm for clinical differential diagnosis. Orphanet J Rare Dis 2019; 14:41. [PMID: 30760291 PMCID: PMC6375149 DOI: 10.1186/s13023-018-0981-5] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2018] [Accepted: 12/14/2018] [Indexed: 12/21/2022] Open
Abstract
BACKGROUND Bartter Syndrome is a rare, genetically heterogeneous, mainly autosomal recessively inherited condition characterized by hypochloremic hypokalemic metabolic alkalosis. Mutations in several genes encoding for ion channels localizing to the renal tubules including SLC12A1, KCNJ1, BSND, CLCNKA, CLCNKB, MAGED2 and CASR have been identified as underlying molecular cause. No genetically defined cases have been described in the Iranian population to date. Like for other rare genetic disorders, implementation of Next Generation Sequencing (NGS) technologies has greatly facilitated genetic diagnostics and counseling over the last years. In this study, we describe the clinical, biochemical and genetic characteristics of patients from 15 Iranian families with a clinical diagnosis of Bartter Syndrome. RESULTS Age range of patients included in this study was 3 months to 6 years and all patients showed hypokalemic metabolic alkalosis. 3 patients additionally displayed hypercalciuria, with evidence of nephrocalcinosis in one case. Screening by Whole Exome Sequencing (WES) and long range PCR revealed that 12/17 patients (70%) had a deletion of the entire CLCNKB gene that was previously identified as the most common cause of Bartter Syndrome in other populations. 4/17 individuals (approximately 25% of cases) were found to suffer in fact from pseudo-Bartter syndrome resulting from congenital chloride diarrhea due to a novel homozygous mutation in the SLC26A3 gene, Pendred syndrome due to a known homozygous mutation in SLC26A4, Cystic Fibrosis (CF) due to a novel mutation in CFTR and apparent mineralocorticoid excess syndrome due to a novel homozygous loss of function mutation in HSD11B2 gene. 1 case (5%) remained unsolved. CONCLUSIONS Our findings demonstrate deletion of CLCNKB is the most common cause of Bartter syndrome in Iranian patients and we show that age of onset of clinical symptoms as well as clinical features amongst those patients are variable. Further, using WES we were able to prove that nearly 1/4 patients in fact suffered from Pseudo-Bartter Syndrome, reversing the initial clinical diagnosis with important impact on the subsequent treatment and clinical follow up pathway. Finally, we propose an algorithm for clinical differential diagnosis of Bartter Syndrome.
Collapse
Affiliation(s)
- Maryam Najafi
- Genome Research Division, Human Genetics department, Radboud University Medical Center, Geert Grooteplein Zuid 10, 6525KL Nijmegen, The Netherlands
- Departement of Biology, University of Sistan and Baluchestan, Zahedan, Iran
| | | | - Farkhondeh Behjati
- Genetics Research Center, University of Social Welfare and Rehabilitation Sciences, Tehran, Iran
| | - Simin Sadeghi-Bojd
- Children and Adolescents Health Research Center, resistant tuberculosis institute, Zahedan University of Medical Sciences, Zahedan, Iran
| | - Zeineb Bakey
- Genome Research Division, Human Genetics department, Radboud University Medical Center, Geert Grooteplein Zuid 10, 6525KL Nijmegen, The Netherlands
- Center for Pediatrics and Adolescent Medicine, Freiburg University Hospital, Freiburg University Faculty of Medicine, Mathildenstrasse 1, 79112 Freiburg, Germany
| | - Ehsan Ghayoor Karimiani
- Razavi Cancer Research, Razavi Hospital, Imam Reza International University, Mashhad, Iran
- Next Generation Genetic Polyclinic, Mashhad, Iran
| | - Isabel Schüle
- Center for Pediatrics and Adolescent Medicine, Freiburg University Hospital, Freiburg University Faculty of Medicine, Mathildenstrasse 1, 79112 Freiburg, Germany
| | - Anoush Azarfar
- Department of Pediatrics, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Miriam Schmidts
- Genome Research Division, Human Genetics department, Radboud University Medical Center, Geert Grooteplein Zuid 10, 6525KL Nijmegen, The Netherlands
- Center for Pediatrics and Adolescent Medicine, Freiburg University Hospital, Freiburg University Faculty of Medicine, Mathildenstrasse 1, 79112 Freiburg, Germany
- Center for Pediatrics and Adolescent Medicine, University Hospital Freiburg, 79112 Freiburg, Germany
| |
Collapse
|
92
|
Abstract
Bartter and Gitelman syndromes are conditions characterized by renal salt-wasting. Clinical presentations range from severe antenatal disease to asymptomatic with incidental diagnosis. Hypokalemic hypochloremic metabolic alkalosis is the common feature. Bartter variants may be associated with polyuria and weakness. Gitelman syndrome is often subtle, and typically diagnosed later life with incidental hypokalemia and hypomagnesemia. Treatment may involve fluid and electrolyte replenishment, prostaglandin inhibition, and renin-angiotensin-aldosterone system axis disruption. Investigators have identified causative mutations but genotypic-phenotypic correlations are still being characterized. Collaborative registries will allow improved classification schema and development of effective treatments.
Collapse
Affiliation(s)
- Rosanna Fulchiero
- Department of Pediatrics, Inova Children's Hospital, 3300 Gallows Road, Falls Church, VA 22042, USA
| | - Patricia Seo-Mayer
- Department of Pediatrics, Inova Children's Hospital, 3300 Gallows Road, Falls Church, VA 22042, USA; Division of Nephrology and Hypertension, Pediatric Specialists of Virginia, 3023 Hamaker Court, Suite 600, Fairfax, VA 22031, USA; Virginia Commonwealth School of Medicine, Richmond, VA, USA.
| |
Collapse
|
93
|
Disorders of renal NaCl transport and implications for blood pressure regulation. MED GENET-BERLIN 2019. [DOI: 10.1007/s11825-019-0232-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Abstract
Hypertension is one of the major risk factors for cardiovascular disease in industrialized societies. Substantial progress has been made in understanding its epidemiology, its pathophysiology, and its associated risks such as coronary artery disease, stroke, and heart failure. Because there is consensus that the abnormal retention of sodium by the kidney is a major important pathophysiological event in hypertension, this review focuses on mechanisms of renal NaCl transport and associated genetic disorders.
Collapse
|
94
|
Nephrolithiasis secondary to inherited defects in the thick ascending loop of henle and connecting tubules. Urolithiasis 2018; 47:43-56. [PMID: 30460527 DOI: 10.1007/s00240-018-1097-z] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2018] [Accepted: 11/08/2018] [Indexed: 12/19/2022]
Abstract
Twin and genealogy studies suggest a strong genetic component of nephrolithiasis. Likewise, urinary traits associated with renal stone formation were found to be highly heritable, even after adjustment for demographic, anthropometric and dietary covariates. Recent high-throughput sequencing projects of phenotypically well-defined cohorts of stone formers and large genome-wide association studies led to the discovery of many new genes associated with kidney stones. The spectrum ranges from infrequent but highly penetrant variants (mutations) causing mendelian forms of nephrolithiasis (monogenic traits) to common but phenotypically mild variants associated with nephrolithiasis (polygenic traits). About two-thirds of the genes currently known to be associated with nephrolithiasis code for membrane proteins or enzymes involved in renal tubular transport. The thick ascending limb of Henle and connecting tubules are of paramount importance for renal water and electrolyte handling, urinary concentration and maintenance of acid-base homeostasis. In most instances, pathogenic variants in genes involved in thick ascending limb of Henle and connecting tubule function result in phenotypically severe disease, frequently accompanied by nephrocalcinosis with progressive CKD and to a variable degree by nephrolithiasis. The aim of this article is to review the current knowledge on kidney stone disease associated with inherited defects in the thick ascending loop of Henle and the connecting tubules. We also highlight recent advances in the field of kidney stone genetics that have implications beyond rare disease, offering new insights into the most common type of kidney stone disease, i.e., idiopathic calcium stone disease.
Collapse
|
95
|
Abstract
Bartter syndrome is an inherited renal tubular disorder caused by a defective salt reabsorption in the thick ascending limb of loop of Henle, resulting in salt wasting, hypokalemia, and metabolic alkalosis. Mutations of several genes encoding the transporters and channels involved in salt reabsorption in the thick ascending limb cause different types of Bartter syndrome. A poor phenotype-genotype relationship due to the interaction with other cotransporters and different degrees of compensation through alternative pathways is currently reported. However, phenotypic identification still remains the first step to guide the suspicion of Bartter syndrome. Given the rarity of the syndrome, and the lack of genetic characterization in most cases, limited clinical evidence for treatment is available and the therapy is based mainly on the comprehension of renal physiology and relies on the physician's personal experiences. A better understanding of the mutated channels and transporters could possibly generate targets for specific treatment in the future, also encompassing drugs aiming to correct deficiencies in folding or plasma membrane expression of the mutated proteins.
Collapse
Affiliation(s)
- Tamara da Silva Cunha
- Nephrology Division, Universidade Federal de São Paulo (UNIFESP), Escola Paulista de Medicina, São Paulo, Brazil,
| | - Ita Pfeferman Heilberg
- Nephrology Division, Universidade Federal de São Paulo (UNIFESP), Escola Paulista de Medicina, São Paulo, Brazil,
| |
Collapse
|
96
|
Abstract
PURPOSE OF REVIEW Antenatal Bartter's syndrome (aBS) is the most severe form of Bartter's syndrome, requiring close follow-up, in particular during the neonatal period, primarily because of prematurity. The recent identification of a novel and very severe form of aBS merits an update on this topic. RECENT FINDING Despite the identification of several genes involved in Bartter's syndrome, about 20% of patients clinically diagnosed with aBS remained without genetic explanation for decades. We recently identified mutations in MAGED2 as a cause of an X-linked form of aBS characterized by a very early onset of severe polyhydramnios and extreme prematurity leading to high mortality. Remarkably, all symptoms in surviving patients with MAGE-D2 mutations resolve spontaneously, within weeks after preterm birth. Interestingly, MAGE-D2 affects the expression of the sodium chloride cotransporters NKCC2 and NCC, explaining thereby the severity of the disease. Importantly, a more recent analysis of MAGED2 in a large French cohort of patients with aBS confirmed our data and showed that females can also be affected. SUMMARY MAGE-D2 is critical for renal salt reabsorption in the fetus, amniotic fluid volume regulation, and maintenance of pregnancy. Most importantly, MAGED2 must be included in the genetic screening of every form of aBS.
Collapse
Affiliation(s)
- Martin Kömhoff
- University Children's Hospital, Philipps-University, Marburg, Germany
| | - Kamel Laghmani
- INSERM/UPMC/CNRS-U1138, ERL8228, Team 3, Paris Cedex 06, France
| |
Collapse
|
97
|
Bao M, Cai J, Yang X, Ma W. Genetic screening for Bartter syndrome and Gitelman syndrome pathogenic genes among individuals with hypertension and hypokalemia. Clin Exp Hypertens 2018; 41:381-388. [PMID: 29953267 DOI: 10.1080/10641963.2018.1489547] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
PURPOSE Bartter syndrome (BS) and Gitelman syndrome (GS) are hereditary diseases characterized by hypokalemia with decreased or normal blood pressure (BP). However, BS or GS patients who present with elevated BP levels have been increasingly reported recently. Therefore, this study aimed to investigate the presence of BS and GS among individuals with unexplained hypokalemia with hypertension in a clinical setting. METHODS Patients presented with unexplained hypertension and hypokalemia admitted to Hypertension Center of Fuwai Hospital from November 2015 to February 2017 were enrolled. High-throughput sequencing for five BS and GS causative genes were performed. Variants were classified using American College of Medical Genetics (ACMG) consensus guidelines. RESULTS Thirty-four patients with unexplained hypertension and hypokalemia were included for genetic analysis. A total number of 10 rare variants were identified in six individuals (mutation detection rate, 17.65%). One homozygous variant carried by one of the 34 patients, KCNJ1 c.941A> G (p.Tyr314Cys), were categorized as likely pathogenic variant and resulted in a diagnostic yield of 2.94%. Eight of the remaining nine variants were predicted to be deleterious by ≥ three bioinformatics software and may give additional potential diagnostic yields. CONCLUSIONS This is the first study performing combined genetic screening for BS and GS pathogenic genes among individuals with unexplained hypertension and hypokalemia. Our data suggested that BS or GS may contribute to the etiology of patients presented with hypertension and hypokalemia. Genetic testing for BS and GS pathogenic genes are recommended to facilitate precision diagnoses and targeted treatment.
Collapse
Affiliation(s)
- Minghui Bao
- a Department of Cardiology, Chaoyang Hospital , Capital Medical University , Beijing , China
| | - Jun Cai
- b Hypertension Center of Fuwai Hospital, State Key Laboratory of Cardiovascular Disease, National Center for Cardiovascular Diseases , Chinese Academy of Medical Sciences and Peking Union Medical College , Beijing , China
| | - Xinchun Yang
- a Department of Cardiology, Chaoyang Hospital , Capital Medical University , Beijing , China
| | - Wenjun Ma
- b Hypertension Center of Fuwai Hospital, State Key Laboratory of Cardiovascular Disease, National Center for Cardiovascular Diseases , Chinese Academy of Medical Sciences and Peking Union Medical College , Beijing , China
| |
Collapse
|
98
|
Arthuis CJ, Nizon M, Kömhoff M, Beck BB, Riehmer V, Bihouée T, Bruel A, Benbrik N, Winer N, Isidor B. A step towards precision medicine in management of severe transient polyhydramnios: MAGED2 variant. J OBSTET GYNAECOL 2018; 39:395-397. [PMID: 29893154 DOI: 10.1080/01443615.2018.1454415] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/14/2022]
Affiliation(s)
- Chloé J Arthuis
- a Service de Gynécologie et Obstétrique, CHU Nantes , Nantes Cedex , France
| | - Mathilde Nizon
- b Service de Génétique Médicale, CHU Nantes , Nantes Cedex , France
| | - Martin Kömhoff
- c University Children's Hospital, Philipps University Marburg , Marburg , Germany
| | - Bodo B Beck
- d Institute of Human Genetics, University of Cologne , Cologne , Germany.,e Center for Molecular Medicine Cologne (CMMC), University of Cologne , Cologne , Germany
| | - Vera Riehmer
- d Institute of Human Genetics, University of Cologne , Cologne , Germany
| | | | | | - Nadir Benbrik
- g Service de Cardiologie Pédiatrique, CHU Nantes , Nantes , France
| | - Norbert Winer
- a Service de Gynécologie et Obstétrique, CHU Nantes , Nantes Cedex , France
| | - Bertrand Isidor
- b Service de Génétique Médicale, CHU Nantes , Nantes Cedex , France
| |
Collapse
|
99
|
Congenital chloride diarrhea needs to be distinguished from Bartter and Gitelman syndrome. J Hum Genet 2018; 63:887-892. [DOI: 10.1038/s10038-018-0470-7] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2018] [Revised: 04/18/2018] [Accepted: 04/30/2018] [Indexed: 12/19/2022]
|
100
|
Future considerations based on the information from Barrter's and Gitelman's syndromes. Curr Opin Nephrol Hypertens 2018; 26:9-13. [PMID: 27798456 DOI: 10.1097/mnh.0000000000000285] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
PURPOSE OF REVIEW Bartter and Gitelman syndromes are typical normotensive salt losing hypokalaemic tubulopathies. Their pathogenesis was gradually deciphered in the past 5 decades, first by typical salt balance studies and histopathology, followed by genetic characterization and discovery of the affected different ion channels. Although the different genotypic subtypes were originally thought to show a similar phenotype, important clinical and biochemical differences can now be found. New findings on the regulation of these channels, as well as the recent discovery of newly affected genes, merit an update on this topic. RECENT FINDINGS Na-K-2CL cotransporter and NaCl cotransporter, the two main luminal channels in the thick ascending limb and distal convoluted tubule were found to be regulated by Ste 20-related proline alanine-rich kinase and oxidative stress response kinase. Knockout mice to these channels express a Bartter-like phenotype. MAGE-D2 is new gene found to cause severe polyhydramnios and transient postnatal Bartter-like syndrome. Variants in the different channels causing Bartter syndromes/Gitelman syndromes may also confer susceptibility for hypertension or protect against it. SUMMARY It remains to be determined if polymorphism or epigenetic changes in these genes and proteins may affect salt handling, explaining, apart from Bartter syndromes and Gitelman syndromes, also hypertension or stroke tendency, or both.
Collapse
|