51
|
Syutkin VM, Vyazovkin VL, Grebenkin S. Oxygen Diffusion in Glassy Poly(ethyl methacrylate): Spatial Correlation of Jump Rates. Macromolecules 2021. [DOI: 10.1021/acs.macromol.1c01183] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Vladimir M. Syutkin
- Voevodsky Institute of Chemical Kinetics and Combustion, Siberian Branch of the Russian Academy of Sciences, Novosibirsk 630090, Russian Federation
| | - Vladimir L. Vyazovkin
- Voevodsky Institute of Chemical Kinetics and Combustion, Siberian Branch of the Russian Academy of Sciences, Novosibirsk 630090, Russian Federation
| | - Sergey Grebenkin
- Voevodsky Institute of Chemical Kinetics and Combustion, Siberian Branch of the Russian Academy of Sciences, Novosibirsk 630090, Russian Federation
| |
Collapse
|
52
|
Mei B, Zhou Y, Schweizer KS. Experimental Tests of a Theoretically Predicted Noncausal Correlation between Dynamics and Thermodynamics in Glass-forming Polymer Melts. Macromolecules 2021. [DOI: 10.1021/acs.macromol.1c01633] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Affiliation(s)
- Baicheng Mei
- Department of Materials Science, University of Illinois, Urbana, Illinois 61801, United States
- Material Research Laboratory, University of Illinois, Urbana, Illinois 61801, United States
| | - Yuxing Zhou
- Department of Materials Science, University of Illinois, Urbana, Illinois 61801, United States
- Material Research Laboratory, University of Illinois, Urbana, Illinois 61801, United States
| | - Kenneth S. Schweizer
- Department of Materials Science, University of Illinois, Urbana, Illinois 61801, United States
- Department of Chemistry, University of Illinois, Urbana, Illinois 61801, United States
- Department of Chemical and Biomolecular Engineering, University of Illinois, Urbana, Illinois 61801, United States
- Material Research Laboratory, University of Illinois, Urbana, Illinois 61801, United States
| |
Collapse
|
53
|
Ballard AF, Panter JR, Wales DJ. The energy landscapes of bidisperse particle assemblies on a sphere. SOFT MATTER 2021; 17:9019-9027. [PMID: 34541597 DOI: 10.1039/d1sm01140e] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
The interplay between crystalline ordering, curvature, and size dispersity make the packing of bidisperse mixtures of particles on a sphere a varied and complex phenomenon. These structures have functional significance in a broad range of systems, such as cellular organisation in spherical epithelia, catalytic activity in binary colloidosomes, and chemical activity in heterofullerenes. In this contribution, we elucidate the potential energy landscapes for systems of repulsive, bidisperse particles confined to the surface of a sphere. It is commonly asserted that particle size dispersity destroys ordered arrangements, leading to glassy landscapes. Surprisingly, across a range of compositions, we find highly ordered global minima. Moreover, a minority of small particles is able to passivate defects, stabilising bidisperse global minima relative to monodisperse systems. However, our landscape analysis also reveals that bidispersity introduces numerous defective, low-lying states that are expected to cause broken ergodicity in corresponding experimental and computational systems. Probing the global minimum structures further, particle segregation is energetically preferred at intermediate compositions, contrasting with the approximate icosahedral global packing at either end of the composition range. Finally, changing the composition has a dramatic effect on the heat capacity: systems with low-symmetry global minima have melting temperatures an order of magnitude lower than monodisperse or high-symmetry systems. This observation may provide a further example of the principle of maximum symmetry: higher symmetry global minima exhibit a larger energy separation from the minima that define the high-entropy phase-like region of configuration space, raising the transition temperature.
Collapse
Affiliation(s)
- Alexander F Ballard
- Yusuf Hamied Department of Chemistry, Lensfield Road, Cambridge, CB2 1EW, UK.
| | - Jack R Panter
- Yusuf Hamied Department of Chemistry, Lensfield Road, Cambridge, CB2 1EW, UK.
| | - David J Wales
- Yusuf Hamied Department of Chemistry, Lensfield Road, Cambridge, CB2 1EW, UK.
| |
Collapse
|
54
|
Bama JA, Dudognon E, Affouard F. Impact of Low Concentration of Strongly Hydrogen-Bonded Water Molecules on the Dynamics of Amorphous Terfenadine: Insights from Molecular Dynamics Simulations and Dielectric Relaxation Spectroscopy. J Phys Chem B 2021; 125:11292-11307. [PMID: 34590855 DOI: 10.1021/acs.jpcb.1c06087] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The impact of low water concentration of strongly hydrogen-bonded water molecules on the dynamical properties of amorphous terfenadine (TFD) is investigated through complementary molecular dynamics (MD) simulations and dielectric relaxation spectroscopy (DRS) experiments. In this article, we especially highlight the important role played by some residual water molecules in the concentration of 1-2% (w/w) trapped in the TFD glassy matrix, which are particularly difficult to remove experimentally without a specific heating/drying process. From MD computations and analyses of the hydrogen bonding (HB) interactions, different categories of water molecules are revealed and particularly the presence of strongly HB water molecules. These latter localize themselves in small pockets in empty spaces existing in between the TFD molecules due to the poor packing of the glassy state and preferentially interact with the polar groups close to the flexible central part of the TFD molecules. We present a simple model which rationalizes at the molecular scale the effect of these strongly HB water molecules on dynamics and how they give rise to a supplementary relaxation process (namely process S) which is detected for the first time in the glassy state of TFD annealed at room temperature while this process is completely absent in a non-annealed glass. It also explains how this supplementary relaxation is coupled with the intramolecular motion (namely process γ) of the very flexible central part of the TFD molecule. The present findings help to understand more generally the microscopic origin of the secondary relaxations often detected by DRS in the glassy states of molecular compounds for which the exact nature is still debated.
Collapse
Affiliation(s)
- Jeanne-Annick Bama
- University Lille, CNRS, INRAE, Centrale Lille, UMR 8207-UMET-Unité Matériaux et Transformations, Lille F-59000, France
| | - Emeline Dudognon
- University Lille, CNRS, INRAE, Centrale Lille, UMR 8207-UMET-Unité Matériaux et Transformations, Lille F-59000, France
| | - Frédéric Affouard
- University Lille, CNRS, INRAE, Centrale Lille, UMR 8207-UMET-Unité Matériaux et Transformations, Lille F-59000, France
| |
Collapse
|
55
|
Frusawa H. Non-hyperuniform metastable states around a disordered hyperuniform state of densely packed spheres: stochastic density functional theory at strong coupling. SOFT MATTER 2021; 17:8810-8831. [PMID: 34585714 DOI: 10.1039/d1sm01052b] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
The disordered and hyperuniform structures of densely packed spheres near and at jamming are characterized by vanishing of long-wavelength density fluctuations, or equivalently by long-range power-law decay of the direct correlation function (DCF). We focus on previous simulation results that exhibit the degradation of hyperuniformity in jammed structures while maintaining the long-range nature of the DCF to a certain length scale. Here we demonstrate that the field-theoretic formulation of stochastic density functional theory is relevant to explore the degradation mechanism. The strong-coupling expansion method of stochastic density functional theory is developed to obtain the metastable chemical potential considering the intermittent fluctuations in dense packings. The metastable chemical potential yields the analytical form of the metastable DCF that has a short-range cutoff inside the sphere while retaining the long-range power-law behavior. It is confirmed that the metastable DCF provides the zero-wavevector limit of the structure factor in quantitative agreement with the previous simulation results of degraded hyperuniformity. We can also predict the emergence of soft modes localized at the particle scale by plugging this metastable DCF into the linearized Dean-Kawasaki equation, a stochastic density functional equation.
Collapse
Affiliation(s)
- Hiroshi Frusawa
- Laboratory of Statistical Physics, Kochi University of Technology, Tosa-Yamada, Kochi 782-8502, Japan.
| |
Collapse
|
56
|
Doss K, Mauro JC. Theory of structural relaxation in glass from the thermodynamics of irreversible processes. Phys Rev E 2021; 103:062606. [PMID: 34271756 DOI: 10.1103/physreve.103.062606] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2021] [Accepted: 05/12/2021] [Indexed: 11/07/2022]
Abstract
This work proposes a fundamental thermodynamic description of structural relaxation in glasses by establishing a link between the Prony series solution to volume relaxation derived from the principles of irreversible thermodynamics and asymmetric Lévy stable distribution of relaxation rates. Additionally, it is shown that the bulk viscosity of glass, and not the shear viscosity, is the transport coefficient governing structural relaxation. We also report the distribution of relaxation times and energy barrier heights underpinning stretched exponential relaxation. It is proposed that this framework may be used for qualitative and quantitative descriptions of the relaxation kinetics in glass.
Collapse
Affiliation(s)
- Karan Doss
- Department of Materials Science and Engineering, The Pennsylvania State University, University Park, Pennsylvania 16802, USA
| | - John C Mauro
- Department of Materials Science and Engineering, The Pennsylvania State University, University Park, Pennsylvania 16802, USA
| |
Collapse
|
57
|
Körber T, Pötzschner B, Krohn F, Rössler EA. Reorientational dynamics in highly asymmetric binary low-molecular mixtures-A quantitative comparison of dielectric and NMR spectroscopy results. J Chem Phys 2021; 155:024504. [PMID: 34266265 DOI: 10.1063/5.0056838] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
Previously, we scrutinized the dielectric spectra of a binary glass former made by a low-molecular high-Tg component 2-(m-tertbutylphenyl)-2'-tertbutyl-9,9'-spirobi[9H]fluorene (m-TPTS; Tg = 350 K) and low-Tg tripropyl phosphate (TPP; Tg = 134 K) [Körber et al., Phys. Chem. Chem. Phys. 23, 7200 (2021)]. Here, we analyze nuclear magnetic resonance (NMR) spectra and stimulated echo decays of deuterated m-TPTS-d4 (2H) and TPP (31P) and attempt to understand the dielectric spectra in terms of component specific dynamics. The high-Tg component (α1) shows relaxation similar to that of neat systems, yet with some broadening upon mixing. This correlates with high-frequency broadening of the dielectric spectra. The low-Tg component (α2) exhibits highly stretched relaxations and strong dynamic heterogeneities indicated by "two-phase" spectra, reflecting varying fractions of fast and slow liquid-like reorienting molecules. Missing for the high-Tg component, such two-phase spectra are identified down to wTPP = 0.04, indicating that isotropic reorientation prevails in the rigid high-Tg matrix stretching from close to Tg TPP to Tg1 wTPP. This correlates with low-frequency broadening of the dielectric spectra. Two Tg values are defined: Tg1 (wTPP) displays a plasticizer effect, whereas Tg2 (wTPP) passes through a maximum, signaling extreme separation of the component dynamics at low wTPP. We suggest understanding the latter counter-intuitive feature by referring to a crossover from "single glass" to "double glass" scenario revealed by recent MD simulations. Analyses reveal that a second population of TPP molecules exists, which is associated with the dynamics of the high-Tg component. However, the fractions are lower than suggested by the dielectric spectra. We discuss this discrepancy considering the role of collective dynamics probed by dielectric but not by NMR spectroscopy.
Collapse
Affiliation(s)
- Thomas Körber
- Department of Inorganic Chemistry III and Northern Bavarian NMR Centre, University of Bayreuth, 95440 Bayreuth, Germany
| | - Björn Pötzschner
- Department of Inorganic Chemistry III and Northern Bavarian NMR Centre, University of Bayreuth, 95440 Bayreuth, Germany
| | - Felix Krohn
- Department of Macromolecular Chemistry and Bavarian Polymer Institute, University of Bayreuth, 95440 Bayreuth, Germany
| | - Ernst A Rössler
- Department of Inorganic Chemistry III and Northern Bavarian NMR Centre, University of Bayreuth, 95440 Bayreuth, Germany
| |
Collapse
|
58
|
Jiang J, Lu Z, Shen J, Wada T, Kato H, Chen M. Decoupling between calorimetric and dynamical glass transitions in high-entropy metallic glasses. Nat Commun 2021; 12:3843. [PMID: 34158476 PMCID: PMC8219663 DOI: 10.1038/s41467-021-24093-w] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2021] [Accepted: 05/26/2021] [Indexed: 11/25/2022] Open
Abstract
Glass transition is one of the unresolved critical issues in solid-state physics and materials science, during which a viscous liquid is frozen into a solid or structurally arrested state. On account of the uniform arrested mechanism, the calorimetric glass transition temperature (Tg) always follows the same trend as the dynamical glass transition (or α-relaxation) temperature (Tα) determined by dynamic mechanical analysis (DMA). Here, we explored the correlations between the calorimetric and dynamical glass transitions of three prototypical high-entropy metallic glasses (HEMGs) systems. We found that the HEMGs present a depressed dynamical glass transition phenomenon, i.e., HEMGs with moderate calorimetric Tg represent the highest Tα and the maximum activation energy of α-relaxation. These decoupled glass transitions from thermal and mechanical measurements reveal the effect of high configurational entropy on the structure and dynamics of supercooled liquids and metallic glasses, which are associated with sluggish diffusion and decreased dynamic and spatial heterogeneities from high mixing entropy. The results have important implications in understanding the entropy effect on the structure and properties of metallic glasses for designing new materials with plenteous physical and mechanical performances.
Collapse
Affiliation(s)
- Jing Jiang
- Institute for Materials Research, Tohoku University, Sendai, Japan
| | - Zhen Lu
- Advanced Institute for Materials Research, Tohoku University, Sendai, Japan
| | - Jie Shen
- Institute of Physics, Chinese Academy of Sciences, Beijing, China
- School of Physical Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Takeshi Wada
- Institute for Materials Research, Tohoku University, Sendai, Japan
| | - Hidemi Kato
- Institute for Materials Research, Tohoku University, Sendai, Japan.
| | - Mingwei Chen
- Department of Materials Science and Engineering, Johns Hopkins University, Baltimore, MD, USA.
| |
Collapse
|
59
|
Deng X, Ren P, Mai W, Wang Y, Zhang Y, Wu H, Xie Y, Chen H. From Lab Formulation Development to CTM Manufacturing of KO-947 Injectable Drug Products: a Case Study and Lessons Learned. AAPS PharmSciTech 2021; 22:168. [PMID: 34080070 DOI: 10.1208/s12249-021-02059-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2021] [Accepted: 05/15/2021] [Indexed: 01/27/2023] Open
Abstract
Formulation development of KO-947-K mesylate injectable drug products was described. Solution formulations were initially attempted, and key parameters such as drug concentration, buffer, pH, complexing agent, and tonicity modifying agent were carefully evaluated in the lab setting, mainly focusing on solubility and chemical stability. A lead solution formulation was advanced to a scaleup campaign. An unexpected stability issue was encountered, and the root cause was attributed to the heterogeneous liquid freezing process of the formulated solution at -20°C, which had not been captured in the lab setting. A lyophilized product was then designed to overcome the issue and supplied to the phase I clinical trial.
Collapse
|
60
|
Park H, Park CB, Sung BJ. The effects of vacancies and their mobility on the dynamic heterogeneity in 1,3-dimethylimidazolium hexafluorophosphate organic ionic plastic crystals. Phys Chem Chem Phys 2021; 23:11980-11989. [PMID: 34002734 DOI: 10.1039/d1cp00952d] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
Organic ionic plastic crystals (OIPCs) are the crystals of electrolytes with a long-range translational order. The rotational modes of ions in OIPCs are, however, activated even in solid phases such that the diffusion of dopants such as lithium ions may be facilitated. OIPCs have been, therefore, considered as good candidates for solid electrolytes. Recent experiments and theoretical studies have suggested that both the translational and the rotational diffusion of ions are quite heterogeneous: the diffusion of some ions are quite fast while other ions of the same kind hardly diffuse, either rotationally or translationally. Such dynamic heterogeneity would be a key to the transport mechanism of dopants in solid state electrolytes. In this work, we investigate the effects of defects on the dynamic heterogeneity of OIPCs. We perform atomistic molecular dynamics simulation of 1,3-dimethylimidazolium hexafluorophosphate ([MMIM][PF6]) with a pair of cation and anion vacancies. At low temperature, vacancies undergo hopping motions toward each other and form a charge-neutral cluster. At high temperature, two vacancies act like a loosely bonded molecule and diffuse together via hopping motions. We find that the translational diffusion of ions is correlated strongly with the vacancy diffusion and becomes heterogeneous when the vacancies hop. The rotation of ions also becomes active when the ions are close to vacancies such that the rotational dynamic heterogeneity strengthens.
Collapse
Affiliation(s)
- Hyungshick Park
- Department of Chemistry, Sogang University, Seoul 04107, Republic of Korea.
| | - Chung Bin Park
- Department of Chemistry, Sogang University, Seoul 04107, Republic of Korea.
| | - Bong June Sung
- Department of Chemistry, Sogang University, Seoul 04107, Republic of Korea.
| |
Collapse
|
61
|
Klippenstein V, Tripathy M, Jung G, Schmid F, van der Vegt NFA. Introducing Memory in Coarse-Grained Molecular Simulations. J Phys Chem B 2021; 125:4931-4954. [PMID: 33982567 PMCID: PMC8154603 DOI: 10.1021/acs.jpcb.1c01120] [Citation(s) in RCA: 51] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
Preserving the correct dynamics at the coarse-grained (CG) level is a pressing problem in the development of systematic CG models in soft matter simulation. Starting from the seminal idea of simple time-scale mapping, there have been many efforts over the years toward establishing a meticulous connection between the CG and fine-grained (FG) dynamics based on fundamental statistical mechanics approaches. One of the most successful attempts in this context has been the development of CG models based on the Mori-Zwanzig (MZ) theory, where the resulting equation of motion has the form of a generalized Langevin equation (GLE) and closely preserves the underlying FG dynamics. In this Review, we describe some of the recent studies in this regard. We focus on the construction and simulation of dynamically consistent systematic CG models based on the GLE, both in the simple Markovian limit and the non-Markovian case. Some recent studies of physical effects of memory are also discussed. The Review is aimed at summarizing recent developments in the field while highlighting the major challenges and possible future directions.
Collapse
Affiliation(s)
- Viktor Klippenstein
- Eduard-Zintl-Institut für Anorganische und Physikalische Chemie, Technische Universität Darmstadt, 64287 Darmstadt, Germany
| | - Madhusmita Tripathy
- Eduard-Zintl-Institut für Anorganische und Physikalische Chemie, Technische Universität Darmstadt, 64287 Darmstadt, Germany
| | - Gerhard Jung
- Institut für Theoretische Physik, Universität Innsbruck, Technikerstraße 21 A, A-6020 Innsbruck, Austria
| | - Friederike Schmid
- Institut für Physik, Johannes Gutenberg-Universität Mainz, Staudingerweg 9, 55128 Mainz, Germany
| | - Nico F A van der Vegt
- Eduard-Zintl-Institut für Anorganische und Physikalische Chemie, Technische Universität Darmstadt, 64287 Darmstadt, Germany
| |
Collapse
|
62
|
Mei B, Zhou Y, Schweizer KS. Experimental test of a predicted dynamics-structure-thermodynamics connection in molecularly complex glass-forming liquids. Proc Natl Acad Sci U S A 2021; 118:e2025341118. [PMID: 33903245 PMCID: PMC8106312 DOI: 10.1073/pnas.2025341118] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Understanding in a unified manner the generic and chemically specific aspects of activated dynamics in diverse glass-forming liquids over 14 or more decades in time is a grand challenge in condensed matter physics, physical chemistry, and materials science and engineering. Large families of conceptually distinct models have postulated a causal connection with qualitatively different "order parameters" including various measures of structure, free volume, thermodynamic properties, short or intermediate time dynamics, and mechanical properties. Construction of a predictive theory that covers both the noncooperative and cooperative activated relaxation regimes remains elusive. Here, we test using solely experimental data a recent microscopic dynamical theory prediction that although activated relaxation is a spatially coupled local-nonlocal event with barriers quantified by local pair structure, it can also be understood based on the dimensionless compressibility via an equilibrium statistical mechanics connection between thermodynamics and structure. This prediction is found to be consistent with observations on diverse fragile molecular liquids under isobaric and isochoric conditions and provides a different conceptual view of the global relaxation map. As a corollary, a theoretical basis is established for the structural relaxation time scale growing exponentially with inverse temperature to a high power, consistent with experiments in the deeply supercooled regime. A criterion for the irrelevance of collective elasticity effects is deduced and shown to be consistent with viscous flow in low-fragility inorganic network-forming melts. Finally, implications for relaxation in the equilibrated deep glass state are briefly considered.
Collapse
Affiliation(s)
- Baicheng Mei
- Department of Materials Science, University of Illinois at Urbana-Champaign, Urbana, IL 61801
- Material Research Laboratory, University of Illinois at Urbana-Champaign, Urbana, IL 61801
| | - Yuxing Zhou
- Department of Materials Science, University of Illinois at Urbana-Champaign, Urbana, IL 61801
- Material Research Laboratory, University of Illinois at Urbana-Champaign, Urbana, IL 61801
| | - Kenneth S Schweizer
- Department of Materials Science, University of Illinois at Urbana-Champaign, Urbana, IL 61801;
- Material Research Laboratory, University of Illinois at Urbana-Champaign, Urbana, IL 61801
- Department of Chemistry, University of Illinois at Urbana-Champaign, Urbana, IL 61801
| |
Collapse
|
63
|
Moid M, Sastry S, Dasgupta C, Pascal TA, Maiti PK. Dimensionality dependence of the Kauzmann temperature: A case study using bulk and confined water. J Chem Phys 2021; 154:164510. [PMID: 33940812 DOI: 10.1063/5.0047656] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
The Kauzmann temperature (TK) of a supercooled liquid is defined as the temperature at which the liquid entropy becomes equal to that of the crystal. The excess entropy, the difference between liquid and crystal entropies, is routinely used as a measure of the configurational entropy, whose vanishing signals the thermodynamic glass transition. The existence of the thermodynamic glass transition is a widely studied subject, and of particular recent interest is the role of dimensionality in determining the presence of a glass transition at a finite temperature. The glass transition in water has been investigated intensely and is challenging as the experimental glass transition appears to occur at a temperature where the metastable liquid is strongly prone to crystallization and is not stable. To understand the dimensionality dependence of the Kauzmann temperature in water, we study computationally bulk water (three-dimensions), water confined in the slit pore of the graphene sheet (two-dimensions), and water confined in the pore of the carbon nanotube of chirality (11,11) having a diameter of 14.9 Å (one-dimension), which is the lowest diameter where amorphous water does not always crystallize into nanotube ice in the supercooled region. Using molecular dynamics simulations, we compute the entropy of water in bulk and under reduced dimensional nanoscale confinement to investigate the variation of the Kauzmann temperature with dimension. We obtain a value of TK (133 K) for bulk water in good agreement with experiments [136 K (C. A. Angell, Science 319, 582-587 (2008) and K. Amann-Winkel et al., Proc. Natl. Acad. Sci. U. S. A. 110, 17720-17725 (2013)]. However, for confined water, in two-dimensions and one-dimension, we find that there is no finite temperature Kauzmann point (in other words, the Kauzmann temperature is 0 K). Analysis of the fluidicity factor, a measure of anharmonicity in the oscillation of normal modes, reveals that the Kauzmann temperature can also be computed from the difference in the fluidicity factor between amorphous and ice phases.
Collapse
Affiliation(s)
- Mohd Moid
- Department of Physics, Centre for Condensed Matter Theory, Indian Institute of Science, Bangalore 560012, India
| | - Srikanth Sastry
- Jawaharlal Nehru Centre for Advanced Scientific Research, Bangalore 560064, India
| | - Chandan Dasgupta
- Department of Physics, Centre for Condensed Matter Theory, Indian Institute of Science, Bangalore 560012, India
| | - Tod A Pascal
- Department of Nanoengineering and Chemical Engineering, University of California San Diego, La Jolla, California 92023, USA
| | - Prabal K Maiti
- Department of Physics, Centre for Condensed Matter Theory, Indian Institute of Science, Bangalore 560012, India
| |
Collapse
|
64
|
Structural relaxation and crystallization in supercooled water from 170 to 260 K. Proc Natl Acad Sci U S A 2021; 118:2022884118. [PMID: 33790015 DOI: 10.1073/pnas.2022884118] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The origin of water's anomalous properties has been debated for decades. Resolution of the problem is hindered by a lack of experimental data in a crucial region of temperatures, T, and pressures where supercooled water rapidly crystallizes-a region often referred to as "no man's land." A recently developed technique where water is heated and cooled at rates greater than 109 K/s now enables experiments in this region. Here, it is used to investigate the structural relaxation and crystallization of deeply supercooled water for 170 K < T < 260 K. Water's relaxation toward a new equilibrium structure depends on its initial structure with hyperquenched glassy water (HQW) typically relaxing more quickly than low-density amorphous solid water (LDA). For HQW and T > 230 K, simple exponential relaxation kinetics is observed. For HQW at lower temperatures, increasingly nonexponential relaxation is observed, which is consistent with the dynamics expected on a rough potential energy landscape. For LDA, approximately exponential relaxation is observed for T > 230 K and T < 200 K, with nonexponential relaxation only at intermediate temperatures. At all temperatures, water's structure can be reproduced by a linear combination of two, local structural motifs, and we show that a simple model accounts for the complex kinetics within this context. The relaxation time, τ rel , is always shorter than the crystallization time, τ xtal For HQW, the ratio, τ xtal /τ rel , goes through a minimum at ∼198 K where the ratio is about 60.
Collapse
|
65
|
Abstract
Aqueous cosolvent systems (ACoSs) are mixtures of small polar molecules such as amides, alcohols, dimethyl sulfoxide, or ions in water. These liquids have been the focus of fundamental studies due to their complex intermolecular interactions as well as their broad applications in chemistry, medicine, and materials science. ACoSs are fully miscible at the macroscopic level but exhibit nanometer-scale spatial heterogeneity. ACoSs have recently received renewed attention within the chemical physics community as model systems to explore the relationship between intermolecular interactions and microscopic liquid-liquid phase separation. In this perspective, we provide an overview of ACoS spatial segregation, dynamic heterogeneity, and multiscale relaxation dynamics. We describe emerging approaches to characterize liquid microstructure, H-bond networks, and dynamics using modern experimental tools combined with molecular dynamics simulations and network-based analysis techniques.
Collapse
Affiliation(s)
- Kwang-Im Oh
- Department of Chemistry, University of Texas at Austin, Austin, Texas 19104, USA
| | - Carlos R Baiz
- Department of Chemistry, University of Texas at Austin, Austin, Texas 19104, USA
| |
Collapse
|
66
|
Jani A, Busch M, Mietner JB, Ollivier J, Appel M, Frick B, Zanotti JM, Ghoufi A, Huber P, Fröba M, Morineau D. Dynamics of water confined in mesopores with variable surface interaction. J Chem Phys 2021; 154:094505. [DOI: 10.1063/5.0040705] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Affiliation(s)
- Aîcha Jani
- Institute of Physics of Rennes, CNRS-University of Rennes 1, UMR 6251, F-35042 Rennes, France
| | - Mark Busch
- Center for Integrated Multiscale Materials Systems (CIMMS), Hamburg University of Technology, 21073 Hamburg, Germany
| | - J. Benedikt Mietner
- Institute of Inorganic and Applied Chemistry, University of Hamburg, 20146 Hamburg, Germany
| | - Jacques Ollivier
- Institut Laue-Langevin, 71 avenue des Martyrs, F-38000 Grenoble, France
| | - Markus Appel
- Institut Laue-Langevin, 71 avenue des Martyrs, F-38000 Grenoble, France
| | - Bernhard Frick
- Institut Laue-Langevin, 71 avenue des Martyrs, F-38000 Grenoble, France
| | - Jean-Marc Zanotti
- Laboratoire Léon Brillouin, CEA, CNRS, Université Paris-Saclay, F-91191 Gif-sur-Yvette, France
| | - Aziz Ghoufi
- Institute of Physics of Rennes, CNRS-University of Rennes 1, UMR 6251, F-35042 Rennes, France
| | - Patrick Huber
- Center for Integrated Multiscale Materials Systems (CIMMS), Hamburg University of Technology, 21073 Hamburg, Germany
- Centre for X-ray and Nano Science (CXNS), Deutsches Elektronen-Synchrotron DESY, 22603 Hamburg, Germany
- Centre for Hybrid Nanostructures (CHyN), Hamburg University, 22607 Hamburg, Germany
| | - Michael Fröba
- Institute of Inorganic and Applied Chemistry, University of Hamburg, 20146 Hamburg, Germany
| | - Denis Morineau
- Institute of Physics of Rennes, CNRS-University of Rennes 1, UMR 6251, F-35042 Rennes, France
| |
Collapse
|
67
|
Miyazaki Y, Nakano M, Krivchikov AI, Koroyuk OA, Gebbia JF, Cazorla C, Tamarit JL. Low-Temperature Heat Capacity Anomalies in Ordered and Disordered Phases of Normal and Deuterated Thiophene. J Phys Chem Lett 2021; 12:2112-2117. [PMID: 33625859 PMCID: PMC8594864 DOI: 10.1021/acs.jpclett.1c00289] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2021] [Accepted: 02/19/2021] [Indexed: 06/12/2023]
Abstract
We measured the specific heat Cp of normal (C4H4S) and deuterated (C4D4S) thiophene in the temperature interval of 1 ≤ T, K ≤ 25. C4H4S exhibits a metastable phase II2 and a stable phase V, both with frozen orientational disorder (OD), whereas C4D4S exhibits a metastable phase II2, which is analogous to the OD phase II2 of C4H4S and a fully ordered stable phase V. Our measurements demonstrate the existence of a large bump in the heat capacity of both stable and metastable C4D4S and C4H4S phases at temperatures of ∼10 K, which significantly departs from the expected Debye temperature behavior of Cp ≈ T3. This case study demonstrates that the identified low-temperature Cp anomaly, typically referred to as a "Boson-peak" in the context of glassy crystals, is not exclusive of disordered materials.
Collapse
Affiliation(s)
- Y. Miyazaki
- Research
Center for Thermal and Entropic Science, Graduate School of Science, Osaka University, 1-1 Machikaneyama, Toyonaka 560-0043, Osaka, Japan
| | - M. Nakano
- Research
Center for Thermal and Entropic Science, Graduate School of Science, Osaka University, 1-1 Machikaneyama, Toyonaka 560-0043, Osaka, Japan
| | - A. I. Krivchikov
- B.
Verkin Institute for Low Temperature Physics and Engineering, National Academy of Sciences Ukraine, 47 Science Avenue, Kharkov 61103, Ukraine
| | - O. A. Koroyuk
- B.
Verkin Institute for Low Temperature Physics and Engineering, National Academy of Sciences Ukraine, 47 Science Avenue, Kharkov 61103, Ukraine
| | - J. F. Gebbia
- Grup
de Caracterizació de Materials, Departament de Física,
EEBE and Barcelona Research Center in Multiscale Science and Engineering, Universitat Politècnica de Catalunya, Eduard Maristany, 10-14, Barcelona 08019, Catalonia, Spain
| | - C. Cazorla
- Departament
de Física, Universitat Politècnica
de Catalunya, Campus
Nord B4−B5, Barcelona E-08034, Catalonia, Spain
| | - J. Ll. Tamarit
- Grup
de Caracterizació de Materials, Departament de Física,
EEBE and Barcelona Research Center in Multiscale Science and Engineering, Universitat Politècnica de Catalunya, Eduard Maristany, 10-14, Barcelona 08019, Catalonia, Spain
| |
Collapse
|
68
|
Singh A, Bhattacharyya SM, Singh Y. Emergence of cooperatively reorganizing cluster and super-Arrhenius dynamics of fragile supercooled liquids. Phys Rev E 2021; 103:032611. [PMID: 33862818 DOI: 10.1103/physreve.103.032611] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2020] [Accepted: 03/12/2021] [Indexed: 06/12/2023]
Abstract
In this paper, we develop a theory to calculate the structural relaxation time τ_{α} of fragile supercooled liquids. Using the information of the configurational entropy and structure, we calculate the number of dynamically free, metastable, and stable neighbors around a central particle. In supercooled liquids, the cooperatively reorganizing clusters (CRCs) in which the stable neighbors form "stable" nonchemical bonds with the central particle emerge. For an event of relaxation to take place, these bonds have to reorganize irreversibly; the energy involved in the processes is the effective activation energy of relaxation. The theory brings forth a temperature T_{a} and a temperature-dependent parameter ψ(T) which characterize slowing down of dynamics on cooling. It is shown that the value of ψ(T) is equal to 1 for T>T_{a}, indicating that the underlying microscopic mechanism of relaxation is dominated by the entropy-driven processes, while for T<T_{a}, ψ(T) decreases on cooling, indicating the emergence of the energy-driven processes. This crossover of ψ(T) from high to low temperatures explains the crossover seen in τ_{α}. The dynamics of systems that may have similar static structure but very different dynamics can be understood in terms of ψ(T). We present results for the Kob-Anderson model for three densities and show that the calculated values of τ_{α} are in excellent agreement with simulation values for all densities. We also show that when ψ(T), τ_{α}, and other quantities are plotted as a function of T/T_{a} (or T_{a}/T), the data collapse on master curves.
Collapse
Affiliation(s)
- Ankit Singh
- Department of Physics, Banaras Hindu University, Varanasi 221 005, India
| | | | - Yashwant Singh
- Department of Physics, Banaras Hindu University, Varanasi 221 005, India
| |
Collapse
|
69
|
Xu WS, Douglas JF, Sun ZY. Polymer Glass Formation: Role of Activation Free Energy, Configurational Entropy, and Collective Motion. Macromolecules 2021. [DOI: 10.1021/acs.macromol.0c02740] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Affiliation(s)
- Wen-Sheng Xu
- State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, P. R. China
| | - Jack F. Douglas
- Materials Science and Engineering Division, National Institute of Standards and Technology, Gaithersburg, Maryland 20899, United States
| | - Zhao-Yan Sun
- State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, P. R. China
| |
Collapse
|
70
|
Švajdlenková H, Šauša O, Adichtchev SV, Surovtsev NV, Novikov VN, Bartoš J. On the Mutual Relationships between Molecular Probe Mobility and Free Volume and Polymer Dynamics in Organic Glass Formers: cis-1,4-poly(isoprene). Polymers (Basel) 2021; 13:polym13020294. [PMID: 33477605 PMCID: PMC7831304 DOI: 10.3390/polym13020294] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2020] [Revised: 01/08/2021] [Accepted: 01/11/2021] [Indexed: 11/16/2022] Open
Abstract
We report on the reorientation dynamics of small spin probe 2,2,6,6-tetramethylpiperidinyl-1-oxyl (TEMPO) in cis-1,4-poly(isoprene) (cis-1,4-PIP10k) from electron spin resonance (ESR) and the free volume of cis-1,4-PIP10k from positron annihilation lifetime spectroscopy (PALS) in relation to the high-frequency relaxations of cis-1,4-PIP10k using light scattering (LS) as well as to the slow and fast processes from broadband dielectric spectroscopy (BDS) and neutron scattering (NS). The hyperfine coupling constant, 2Azz
'(T), and the correlation times, τ
c(T), of cis-1,4-PIP10k/TEMPO system as a function of temperature exhibit several regions of the distinct spin probe TEMPO dynamics over a wide temperature range from 100 K up to 350 K. The characteristic ESR temperatures of changes in the spin probe dynamics in cis-1,4-PIP10k/TEMPO system are closely related to the characteristic PALS ones reflecting changes in the free volume expansion from PALS measurement. Finally, the time scales of the slow and fast dynamics of TEMPO in cis-1,4-PIP10k are compared with all of the six known slow and fast relaxation modes from BDS, LS and NS techniques with the aim to discuss the controlling factors of the spin probe reorientation mobility in polymer, oligomer and small molecular organic glass-formers.
Collapse
Affiliation(s)
- Helena Švajdlenková
- Polymer Institute of SAS, Dúbravská Cesta 9, 84541 Bratislava, Slovakia;
- Correspondence:
| | - Ondrej Šauša
- Institute of Physics of SAS, Dúbravská Cesta 9, 84511 Bratislava, Slovakia;
- Department of Nuclear Chemistry, Faculty of Natural Sciences, Comenius University, Mlynska Dolina, Ilkovicova 6, 84215 Bratislava, Slovakia
| | - Sergey V. Adichtchev
- IA&E, Russian Academy of Sciences, 630090 Novosibirsk, Russia; (S.V.A.); (N.V.S.); (V.N.N.)
| | - Nikolay V. Surovtsev
- IA&E, Russian Academy of Sciences, 630090 Novosibirsk, Russia; (S.V.A.); (N.V.S.); (V.N.N.)
- Novosibirsk State University, 630090 Novosibirsk, Russia
| | - Vladimir N. Novikov
- IA&E, Russian Academy of Sciences, 630090 Novosibirsk, Russia; (S.V.A.); (N.V.S.); (V.N.N.)
| | - Josef Bartoš
- Polymer Institute of SAS, Dúbravská Cesta 9, 84541 Bratislava, Slovakia;
| |
Collapse
|
71
|
Tourlakis GM, Adamopoulos SAT, Gavra IK, Milpanis AA, Tsagri LF, Pachygianni ASG, Chatzikokolis SS, Tsekouras AA. Sign flipping of spontaneous polarization in vapour-deposited films of small polar organic molecules. Phys Chem Chem Phys 2021; 23:14352-14362. [PMID: 34169950 DOI: 10.1039/d1cp01584b] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Films of polar molecules vapour-deposited on sufficiently cold substrates are not only amorphous, but also exhibit charge polarization across their thickness. This is an effect known for 50 years, but it is very poorly understood and no mechanism exists in the literature that can explain and predict it. We investigated this bulk effect for 18 small organic molecules as a function of substrate temperature (30-130 K). We found that, as a rule, alcohol films have the negative end on the vacuum side at all temperatures. Alkyl acetates and toluene showed positive voltages which reached a maximum around the middle of the temperature range investigated. Tetrahydrofuran showed positive voltages which dropped with increasing deposition temperature. Diethyl ether, acetone, propanal, and butanal showed positive film voltages at low temperatures, negative at intermediate temperatures and again positive voltages at higher temperatures. In all cases, film voltages were monitored during heating leading to film evaporation. Film voltages were irreversibly eliminated before film elimination, but voltage profiles during temperature ramps differed vastly depending on compound and deposition temperature. In general, there was a gradual voltage reduction, but propanal, butanal, and diethyl ether showed a change in voltage sign during temperature ramp in films deposited at low temperatures. All these data expand substantially the experimental information regarding spontaneous polarization in vapour-deposited films, but still require complementary measurements as well as numerical simulations for a detailed explanation of the phenomenon.
Collapse
Affiliation(s)
- Georgios M Tourlakis
- Physical Chemistry Laboratory, Department of Chemistry, National and Kapodistrian University of Athens, Panepistimiopolis, Zografos, GR-15784, Greece.
| | - Sotirios Alexandros T Adamopoulos
- Physical Chemistry Laboratory, Department of Chemistry, National and Kapodistrian University of Athens, Panepistimiopolis, Zografos, GR-15784, Greece.
| | - Irini K Gavra
- Physical Chemistry Laboratory, Department of Chemistry, National and Kapodistrian University of Athens, Panepistimiopolis, Zografos, GR-15784, Greece.
| | - Alexandros A Milpanis
- Physical Chemistry Laboratory, Department of Chemistry, National and Kapodistrian University of Athens, Panepistimiopolis, Zografos, GR-15784, Greece.
| | - Liveria F Tsagri
- Physical Chemistry Laboratory, Department of Chemistry, National and Kapodistrian University of Athens, Panepistimiopolis, Zografos, GR-15784, Greece.
| | - Aikaterini Sofia G Pachygianni
- Physical Chemistry Laboratory, Department of Chemistry, National and Kapodistrian University of Athens, Panepistimiopolis, Zografos, GR-15784, Greece.
| | - Stylianos S Chatzikokolis
- Physical Chemistry Laboratory, Department of Chemistry, National and Kapodistrian University of Athens, Panepistimiopolis, Zografos, GR-15784, Greece.
| | - Athanassios A Tsekouras
- Physical Chemistry Laboratory, Department of Chemistry, National and Kapodistrian University of Athens, Panepistimiopolis, Zografos, GR-15784, Greece.
| |
Collapse
|
72
|
Madkour S, Gawek M, Hertwig A, Schönhals A. Do Interfacial Layers in Thin Films Act as an Independent Layer within Thin Films? Macromolecules 2020. [DOI: 10.1021/acs.macromol.0c02149] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Affiliation(s)
- Sherif Madkour
- Bundesanstalt für Materialforschung und −prüfung (BAM), Unter den Eichen 87, 12205 Berlin, Germany
| | - Marcel Gawek
- Bundesanstalt für Materialforschung und −prüfung (BAM), Unter den Eichen 87, 12205 Berlin, Germany
| | - Andreas Hertwig
- Bundesanstalt für Materialforschung und −prüfung (BAM), Unter den Eichen 87, 12205 Berlin, Germany
| | - Andreas Schönhals
- Bundesanstalt für Materialforschung und −prüfung (BAM), Unter den Eichen 87, 12205 Berlin, Germany
| |
Collapse
|
73
|
Bagchi K, Fiori ME, Bishop C, Toney MF, Ediger MD. Stable Glasses of Organic Semiconductor Resist Crystallization. J Phys Chem B 2020; 125:461-466. [DOI: 10.1021/acs.jpcb.0c09925] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Kushal Bagchi
- Department of Chemistry, University of Wisconsin−Madison, Madison, Wisconsin 53706, United States
| | - Marie E. Fiori
- Department of Chemistry, University of Wisconsin−Madison, Madison, Wisconsin 53706, United States
| | - Camille Bishop
- Department of Chemistry, University of Wisconsin−Madison, Madison, Wisconsin 53706, United States
| | - M. F. Toney
- SLAC National Accelerator Laboratory, Stanford Synchrotron Radiation Lightsource, Menlo Park, California 94025, United States
- Department of Chemical and Biological Engineering, University of Colorado Boulder, Boulder, Colorado 80309, United States
| | - M. D. Ediger
- Department of Chemistry, University of Wisconsin−Madison, Madison, Wisconsin 53706, United States
| |
Collapse
|
74
|
Banerjee S, Ghorai PK, Das S, Rajbangshi J, Biswas R. Heterogeneous dynamics, correlated time and length scales in ionic deep eutectics: Anion and temperature dependence. J Chem Phys 2020; 153:234502. [DOI: 10.1063/5.0024355] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Affiliation(s)
- Swarup Banerjee
- Department of Chemical Sciences, Indian Institute of Science Education and Research (IISER), Kolkata, India
| | - Pradip Kr. Ghorai
- Department of Chemical Sciences, Indian Institute of Science Education and Research (IISER), Kolkata, India
| | - Suman Das
- Department of Chemical, Biological and Macromolecular Sciences, S.N. Bose National Centre for Basic Sciences, Kolkata, India
| | - Juriti Rajbangshi
- Department of Chemical, Biological and Macromolecular Sciences, S.N. Bose National Centre for Basic Sciences, Kolkata, India
| | - Ranjit Biswas
- Department of Chemical, Biological and Macromolecular Sciences, S.N. Bose National Centre for Basic Sciences, Kolkata, India
| |
Collapse
|
75
|
Weeks ER, Criddle K. Visualizing free-energy landscapes for four hard disks. Phys Rev E 2020; 102:062153. [PMID: 33466114 DOI: 10.1103/physreve.102.062153] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2020] [Accepted: 12/09/2020] [Indexed: 06/12/2023]
Abstract
We present a simple model system with four hard disks moving in a circular region for which free-energy landscapes can be directly calculated and visualized in two and three dimensions. We construct several energy landscapes for our system, and we explore the strengths and limitations of each in terms of understanding system dynamics, in particular the relationship between state transitions and free-energy barriers. We also demonstrate the importance of distinguishing between system dynamics in real space and those in landscape coordinates, and we show that care must be taken to appropriately combine dynamics with barrier properties to understand the transition rates. This simple model provides an intuitive way to understand free-energy landscapes, and it illustrates the benefits that free-energy landscapes can have over potential energy landscapes.
Collapse
Affiliation(s)
- Eric R Weeks
- Department of Physics, Emory University, Atlanta, Georgia 30322, USA
| | - Keely Criddle
- Department of Physics, Emory University, Atlanta, Georgia 30322, USA
| |
Collapse
|
76
|
Marple MAT, Wynn TA, Cheng D, Shimizu R, Mason HE, Meng YS. Local Structure of Glassy Lithium Phosphorus Oxynitride Thin Films: A Combined Experimental and Ab Initio Approach. Angew Chem Int Ed Engl 2020. [DOI: 10.1002/ange.202009501] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Maxwell A. T. Marple
- Physical and Life Science Directorate Lawrence Livermore National Laboratory Livermore CA 94550 USA
| | - Thomas A. Wynn
- Department Department of NanoEngineering University of California San Diego La Jolla CA 92093 USA
| | - Diyi Cheng
- Materials Science & Engineering Program University of California San Diego La Jolla CA 92093 USA
| | - Ryosuke Shimizu
- Department Department of NanoEngineering University of California San Diego La Jolla CA 92093 USA
| | - Harris E. Mason
- Physical and Life Science Directorate Lawrence Livermore National Laboratory Livermore CA 94550 USA
| | - Y. Shirley Meng
- Department Department of NanoEngineering University of California San Diego La Jolla CA 92093 USA
- Materials Science & Engineering Program University of California San Diego La Jolla CA 92093 USA
- Sustainable Power and Energy Center University of California San Diego La Jolla CA 92093 USA
| |
Collapse
|
77
|
Ghosh A, Schweizer KS. The role of collective elasticity on activated structural relaxation, yielding, and steady state flow in hard sphere fluids and colloidal suspensions under strong deformation. J Chem Phys 2020; 153:194502. [DOI: 10.1063/5.0026258] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Affiliation(s)
- Ashesh Ghosh
- Department of Chemistry, University of Illinois at Urbana-Champaign, Champaign, Illinois 61801, USA
- Materials Research Laboratory, University of Illinois at Urbana-Champaign, Champaign, Illinois 61801, USA
| | - Kenneth S. Schweizer
- Department of Chemistry, University of Illinois at Urbana-Champaign, Champaign, Illinois 61801, USA
- Materials Research Laboratory, University of Illinois at Urbana-Champaign, Champaign, Illinois 61801, USA
- Department of Material Science, University of Illinois at Urbana-Champaign, Champaign, Illinois 61801, USA
- Department of Chemical and Biomolecular Engineering, University of Illinois at Urbana-Champaign, Champaign, Illinois 61801, USA
| |
Collapse
|
78
|
Alzate-Vargas L, Onofrio N, Strachan A. Universality in Spatio-Temporal High-Mobility Domains Across the Glass Transition from Bulk Polymers to Single Chains. Macromolecules 2020. [DOI: 10.1021/acs.macromol.0c00853] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Lorena Alzate-Vargas
- School of Materials Engineering and Birck Nanotechnology Center, Purdue University, West Lafayette, Indiana 47907, United States
| | - Nicolas Onofrio
- Department of Applied Physics, The Hong Kong Polytechnic University, Hung Hom, Hong Kong SAR
| | - Alejandro Strachan
- School of Materials Engineering and Birck Nanotechnology Center, Purdue University, West Lafayette, Indiana 47907, United States
| |
Collapse
|
79
|
Egami T, Ryu CW. Why Is the Range of Timescale So Wide in Glass-Forming Liquid? Front Chem 2020; 8:579169. [PMID: 33134277 PMCID: PMC7550744 DOI: 10.3389/fchem.2020.579169] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2020] [Accepted: 08/27/2020] [Indexed: 11/13/2022] Open
Abstract
The viscosity and the relaxation time of a glass-forming liquid vary over 15 orders of magnitude before the liquid freezes into a glass. The rate of the change with temperature is characterized by liquid fragility. The mechanism of such a spectacular behavior and the origin of fragility have long been discussed, but it remains unresolved because of the difficulty of carrying out experiments and constructing theories that bridge over a wide timescale from atomic (ps) to bulk (minutes). Through the x-ray diffraction measurement and molecular dynamics simulation for metallic liquids we suggest that large changes in viscosity can be caused by relatively small changes in the structural coherence which characterizes the medium-range order. Here the structural coherence does not imply that of atomic-scale structure, but it relates to the coarse-grained density fluctuations represented by the peaks in the pair-distribution function (PDF) beyond the nearest neighbors. The coherence length is related to fragility and increases with decreasing temperature, and it diverges only at a negative temperature. This analysis is compared with several current theories which predict a phase transition near the glass transition temperature.
Collapse
Affiliation(s)
- Takeshi Egami
- Department of Materials Science and Engineering, Shull-Wollan Center - Joint Institute for Neutron Sciences, University of Tennessee, Knoxville, Knoxville, TN, United States.,Department of Physics and Astronomy, University of Tennessee, Knoxville, Knoxville, TN, United States.,Materials Sciences and Technology Division, Oak Ridge National Laboratory, Oak Ridge, TN, United States
| | - Chae Woo Ryu
- Department of Materials Science and Engineering, Shull-Wollan Center - Joint Institute for Neutron Sciences, University of Tennessee, Knoxville, Knoxville, TN, United States
| |
Collapse
|
80
|
Kirova EM, Pisarev VV. Morphological aspect of crystal nucleation in wall-confined supercooled metallic film. JOURNAL OF PHYSICS. CONDENSED MATTER : AN INSTITUTE OF PHYSICS JOURNAL 2020; 33:034003. [PMID: 33078713 DOI: 10.1088/1361-648x/abba6b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/30/2019] [Accepted: 09/21/2020] [Indexed: 06/11/2023]
Abstract
In this paper, we simulate the nucleation and growth of crystalline nuclei in a molybdenum film cooled at different rates confined between two amorphous walls. We also compare the results for the wall-confined and wall-free systems. We apply the same methodology as in the work (Kirova and Pisarev 2019J. Cryst. Growth528125266) which is based on reconstructing the probability density function for the largest crystalline nucleus in the system. The size of the nucleus and the asphericity parameter are considered as the reaction coordinates. We demonstrate that in both the free and confined systems there are two mechanisms of crystal growth: the attachment of atoms to the biggest crystal from the amorphous phase and the merging of the biggest crystal cluster with small ones (coalescence). We show that the attachment mechanism is dominant in the melt cooled down at a slower rate, and the mechanism gradually shifts to coalescence as cooling rate increases. We also observe the formation of long-lived crystal clusters and demonstrate that amorphous walls do not affect their geometric characteristics. However, system confined between walls demonstrates higher glass-forming ability.
Collapse
Affiliation(s)
- E M Kirova
- National Research University Higher School of Economics, 20 Myasnitskaya str., 101000 Moscow, Russia
- Joint Institute for High Temperatures of RAS, 13/2 Izhorskaya str., 125412 Moscow, Russia
| | - V V Pisarev
- National Research University Higher School of Economics, 20 Myasnitskaya str., 101000 Moscow, Russia
- Joint Institute for High Temperatures of RAS, 13/2 Izhorskaya str., 125412 Moscow, Russia
| |
Collapse
|
81
|
Ivancic RJS, Riggleman RA. Dynamic phase transitions in freestanding polymer thin films. Proc Natl Acad Sci U S A 2020; 117:25407-25413. [PMID: 33008880 PMCID: PMC7568329 DOI: 10.1073/pnas.2006703117] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
After more than two decades of study, many fundamental questions remain unanswered about the dynamics of glass-forming materials confined to thin films. Experiments and simulations indicate that free interfaces enhance dynamics over length scales larger than molecular sizes, and this effect strengthens at lower temperatures. The nature of the influence of interfaces, however, remains a point of significant debate. In this work, we explore the properties of the nonequilibrium phase transition in dynamics that occurs in trajectory space between high- and low-mobility basins in a set of model polymer freestanding films. In thick films, the film-averaged mobility transition is broader than the bulk mobility transition, while in thin films it is a variant of the bulk result shifted toward a higher bias. Plotting this transition's local coexistence points against the distance from the films' surface shows thick films have surface and film-center transitions, while thin films practically have a single transition throughout the film. These observations are reminiscent of thermodynamic capillary condensation of a vapor-liquid phase between parallel plates, suggesting they constitute a demonstration of such an effect in a trajectory phase transition in the dynamics of a structural glass former. Moreover, this transition bears similarities to several experiments exhibiting anomalous behavior in the glass transition upon reducing film thickness below a material-dependent onset, including the broadening of the glass transition and the homogenization of surface and bulk glass transition temperatures.
Collapse
Affiliation(s)
- Robert J S Ivancic
- Department of Physics and Astronomy, University of Pennsylvania, Philadelphia, PA 19104
| | - Robert A Riggleman
- Department of Chemical and Biomolecular Engineering, University of Pennsylvania, Philadelphia, PA, 19104
| |
Collapse
|
82
|
Marple MAT, Wynn TA, Cheng D, Shimizu R, Mason HE, Meng YS. Local Structure of Glassy Lithium Phosphorus Oxynitride Thin Films: A Combined Experimental and Ab Initio Approach. Angew Chem Int Ed Engl 2020; 59:22185-22193. [PMID: 32818306 DOI: 10.1002/anie.202009501] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2020] [Indexed: 11/10/2022]
Abstract
Lithium phosphorus oxynitride (LiPON) is an amorphous solid-state lithium ion conductor displaying exemplary cyclability against lithium metal anodes. There is no definitive explanation for this stability due to the limited understanding of the structure of LiPON. Herein, we provide a structural model of RF-sputtered LiPON. Information about the short-range structure results from 1D and 2D solid-state NMR experiments. These results are compared with first principles chemical shielding calculations of Li-P-O/N crystals and ab initio molecular dynamics-generated amorphous LiPON models to unequivocally identify the glassy structure as primarily isolated phosphate monomers with N incorporated in both apical and as bridging sites in phosphate dimers. Structural results suggest LiPON's stability is a result of its glassy character. Free-standing LiPON films are produced that exhibit a high degree of flexibility, highlighting the unique mechanical properties of glassy materials.
Collapse
Affiliation(s)
- Maxwell A T Marple
- Physical and Life Science Directorate, Lawrence Livermore National Laboratory, Livermore, CA, 94550, USA
| | - Thomas A Wynn
- Department Department of NanoEngineering, University of California San Diego, La Jolla, CA, 92093, USA
| | - Diyi Cheng
- Materials Science & Engineering Program, University of California San Diego, La Jolla, CA, 92093, USA
| | - Ryosuke Shimizu
- Department Department of NanoEngineering, University of California San Diego, La Jolla, CA, 92093, USA
| | - Harris E Mason
- Physical and Life Science Directorate, Lawrence Livermore National Laboratory, Livermore, CA, 94550, USA
| | - Y Shirley Meng
- Department Department of NanoEngineering, University of California San Diego, La Jolla, CA, 92093, USA.,Materials Science & Engineering Program, University of California San Diego, La Jolla, CA, 92093, USA.,Sustainable Power and Energy Center, University of California San Diego, La Jolla, CA, 92093, USA
| |
Collapse
|
83
|
Zheng W, Lei QL, Ma Y, Ni R. Hierarchical glass transition of hard hemidisks with local assemblies. SOFT MATTER 2020; 16:8108-8113. [PMID: 32896848 DOI: 10.1039/d0sm01003k] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Using computer simulation, we investigate the glass transition of a two-dimensional hard-hemidisk system. Upon increasing the packing fraction of the system, we find that the system vitrifies into a glass with local assembled discal "dimers", which are free to rotate in a collective way. The rotational mean square displacement does not exhibit the typical plateau (slowdown) like what occurs in the translational mean square displacement. This effect induces a pronounced violation of the rotational Stokes-Einstein relationship compared with the translational degree of freedom at the supercooled region. However, the obtained glass transition points in these two freedom degrees are found to be the same within the numerical accuracy, which is due to the strong positive spatial and dynamic correlation between translational and rotational slow-moving particles. Moreover, we find that the locally assembled dimers can serve as fast rotating gears facilitating the orientational relaxation in the system, and this suggests that the locally favored finite structures play an important role in the hierarchical glass transition of anisotropic colloids.
Collapse
Affiliation(s)
- Wei Zheng
- National Laboratory of Solid State Microstructures and Department of Physics, Collaborative Innovation Center of Advanced Microstructures, Nanjing 210093, China. and School of Chemical and Biomedical Engineering, Nanyang Technological University, 62 Nanyang Drive, 637459, Singapore.
| | - Qun-Li Lei
- School of Chemical and Biomedical Engineering, Nanyang Technological University, 62 Nanyang Drive, 637459, Singapore.
| | - Yuqiang Ma
- National Laboratory of Solid State Microstructures and Department of Physics, Collaborative Innovation Center of Advanced Microstructures, Nanjing 210093, China.
| | - Ran Ni
- School of Chemical and Biomedical Engineering, Nanyang Technological University, 62 Nanyang Drive, 637459, Singapore.
| |
Collapse
|
84
|
Royall CP, Turci F, Speck T. Dynamical phase transitions and their relation to structural and thermodynamic aspects of glass physics. J Chem Phys 2020; 153:090901. [PMID: 32891096 DOI: 10.1063/5.0006998] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
We review recent developments in structural-dynamical phase transitions in trajectory space based on dynamic facilitation theory. An open question is how the dynamic facilitation perspective on the glass transition may be reconciled with thermodynamic theories that posit collective reorganization accompanied by a growing static length scale and, eventually, a vanishing configurational entropy. In contrast, dynamic facilitation theory invokes a dynamical phase transition between an active phase (close to the normal liquid) and an inactive phase, which is glassy and whose order parameter is either a time-averaged dynamic or structural quantity. In particular, the dynamical phase transition in systems with non-trivial thermodynamics manifests signatures of a lower critical point that lies between the mode-coupling crossover and the putative Kauzmann temperature, at which a thermodynamic phase transition to an ideal glass state would occur. We review these findings and discuss such criticality in the context of the low-temperature decrease in configurational entropy predicted by thermodynamic theories of the glass transition.
Collapse
Affiliation(s)
- C Patrick Royall
- HH Wills Physics Laboratory, Tyndall Avenue, Bristol BS8 1TL, United Kingdom
| | - Francesco Turci
- HH Wills Physics Laboratory, Tyndall Avenue, Bristol BS8 1TL, United Kingdom
| | - Thomas Speck
- Institut für Physik, Johannes Gutenberg-Universität Mainz, Staudingerweg 7-9, 55128 Mainz, Germany
| |
Collapse
|
85
|
Xie SJ, Schweizer KS. Microscopic Theory of Dynamically Heterogeneous Activated Relaxation as the Origin of Decoupling of Segmental and Chain Relaxation in Supercooled Polymer Melts. Macromolecules 2020. [DOI: 10.1021/acs.macromol.0c00849] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Shi-Jie Xie
- Departments of Materials Science, University of Illinois, Urbana, Illinois 61801, United States
- Material Research Laboratory, University of Illinois, Urbana, Illinois 61801, United States
- Center for Membrane Separation and Water Science & Technology, Ocean College, Zhejiang University of Technology, Hangzhou 310014, PR China
| | - Kenneth S. Schweizer
- Departments of Materials Science, University of Illinois, Urbana, Illinois 61801, United States
- Department of Chemistry, University of Illinois, Urbana, Illinois 61801, United States
- Material Research Laboratory, University of Illinois, Urbana, Illinois 61801, United States
| |
Collapse
|
86
|
Bender JS, Zhi M, Cicerone MT. The polarizability response of a glass-forming liquid reveals intrabasin motion and interbasin transitions on a potential energy landscape. SOFT MATTER 2020; 16:5588-5598. [PMID: 32057068 DOI: 10.1039/c9sm02326g] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Potential energy landscape (PEL) concepts have been useful in conceptualizing the effects of intermolecular interactions on dynamic and thermodynamic properties of liquids and glasses. "Basins", or regions of reduced potential energy associated with locally preferred molecular packing are important PEL features. The molecular configurations at the bottom of these basins are referred to as inherent structures (ISs). Experimental methods for directly characterizing PEL features such as these are rare, largely relegating PEL concepts to theory and simulation studies, and impeding their exploration in real systems. Recently, we showed that quasielastic neutron scattering (QENS) data from propylene carbonate (PC) exhibit signatures of picosecond timescale motion that are consistent with intrabasin motion and interbasin transitions [Cicerone et al., J. Chem. Phys., 2017, 146, 054502]. Here we present optically-heterodyne-detected optical Kerr effect (OHD-OKE) spectroscopy studies on PC. The data exhibit signatures of motion within and transitions between basins that agree quantitatively with and extend the QENS results. We show that the librational component of the OKE response corresponds to intrabasin dynamics, and the enigmatic intermediate OKE response corresponds to interbasin transition events. The OKE data extend the measurement range of these parameters and reveal their utility in characterizing PEL features of real systems.
Collapse
Affiliation(s)
- John S Bender
- National Institute of Standards and Technology, Gaithersburg, MD 20899, USA
| | - Miaochan Zhi
- National Institute of Standards and Technology, Gaithersburg, MD 20899, USA
| | - Marcus T Cicerone
- National Institute of Standards and Technology, Gaithersburg, MD 20899, USA and Department of Chemistry and Biochemistry, Georgia Institute of Technology, Atlanta, GA 30332, USA.
| |
Collapse
|
87
|
Bagchi K, Deng C, Bishop C, Li Y, Jackson NE, Yu L, Toney MF, de Pablo JJ, Ediger MD. Over What Length Scale Does an Inorganic Substrate Perturb the Structure of a Glassy Organic Semiconductor? ACS APPLIED MATERIALS & INTERFACES 2020; 12:26717-26726. [PMID: 32402187 DOI: 10.1021/acsami.0c06428] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
While the bulk structure of vapor-deposited glasses has been extensively studied, structure at buried interfaces has received little attention, despite being important for organic electronic applications. To learn about glass structure at buried interfaces, we study the structure of vapor-deposited glasses of the organic semiconductor DSA-Ph (1,4-di-[4-(N,N-diphenyl)amino]styrylbenzene) as a function of film thickness; the structure is probed with grazing incidence X-ray scattering. We deposit on silicon and gold substrates and span a film thickness range of 10-600 nm. Our experiments demonstrate that interfacial molecular packing in vapor-deposited glasses of DSA-Ph is more disordered compared to the bulk. At a deposition temperature near room temperature, we estimate ∼8 nm near the substrate can have modified molecular packing. Molecular dynamics simulations of a coarse-grained representation of DSA-Ph reveal a similar length scale. In both the simulations and the experiments, deposition temperature controls glass structure beyond this interfacial layer of a few nanometers.
Collapse
Affiliation(s)
- Kushal Bagchi
- Department of Chemistry, University of Wisconsin-Madison, Madison, Wisconsin 53706, United States
| | - Chuting Deng
- Pritzker School of Molecular Engineering, University of Chicago, Chicago, Illinois 60637, United States
| | - Camille Bishop
- Department of Chemistry, University of Wisconsin-Madison, Madison, Wisconsin 53706, United States
| | - Yuhui Li
- School of Pharmacy, University of Wisconsin-Madison, 777 Highland Avenue, Madison, Wisconsin 53705-2222, United States
| | - Nicholas E Jackson
- Pritzker School of Molecular Engineering, University of Chicago, Chicago, Illinois 60637, United States
- Center for Molecular Engineering and Materials Science Division, Argonne National Laboratory, Lemont, Illinois 60439, United States
| | - Lian Yu
- Department of Chemistry, University of Wisconsin-Madison, Madison, Wisconsin 53706, United States
- School of Pharmacy, University of Wisconsin-Madison, 777 Highland Avenue, Madison, Wisconsin 53705-2222, United States
| | - M F Toney
- Stanford Synchrotron Radiation Lightsource, SLAC National Accelerator Laboratory, Menlo Park, California 94025, United States
| | - J J de Pablo
- Pritzker School of Molecular Engineering, University of Chicago, Chicago, Illinois 60637, United States
- Center for Molecular Engineering and Materials Science Division, Argonne National Laboratory, Lemont, Illinois 60439, United States
| | - M D Ediger
- Department of Chemistry, University of Wisconsin-Madison, Madison, Wisconsin 53706, United States
| |
Collapse
|
88
|
Heyes DM, Dini D, Smith ER. Single trajectory transport coefficients and the energy landscape by molecular dynamics simulations. J Chem Phys 2020; 152:194504. [PMID: 33687256 DOI: 10.1063/5.0005600] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
The Green-Kubo (GK) method is widely used to calculate the transport coefficients of model liquids by Molecular Dynamics (MD) simulation. A reformulation of GK was proposed by Heyes et al. [J. Chem. Phys. 150, 174504 (2019)], which expressed the shear viscosity in terms of a probability distribution function (PDF) of "single trajectory (ST) viscosities," called "viscuits." This approach is extended here to the bulk viscosity, thermal conductivity, and diffusion coefficient. The PDFs of the four STs expressed in terms of their standard deviations (calculated separately for the positive and negative sides) are shown by MD to be statistically the same for the Lennard-Jones fluid. This PDF can be represented well by a sum of exponentials and is independent of system size and state point in the equilibrium fluid regime. The PDF is not well reproduced by a stochastic model. The PDF is statistically the same as that derived from the potential energy, u, and other thermodynamic quantities, indicating that the transport coefficients are determined quantitatively by and follow closely the time evolution of the underlying energy landscape. The PDFs of out-of-equilibrium supercooled high density states are quite different from those of the equilibrium states.
Collapse
Affiliation(s)
- D M Heyes
- Department of Mechanical Engineering, Imperial College London, Exhibition Road, South Kensington, London SW7 2AZ, United Kingdom
| | - D Dini
- Department of Mechanical Engineering, Imperial College London, Exhibition Road, South Kensington, London SW7 2AZ, United Kingdom
| | - E R Smith
- Department of Mechanical and Aerospace Engineering, Brunel University London, Uxbridge, Middlesex UB8 3PH, United Kingdom
| |
Collapse
|
89
|
Eng J, Penfold TJ. Understanding and Designing Thermally Activated Delayed Fluorescence Emitters: Beyond the Energy Gap Approximation. CHEM REC 2020; 20:831-856. [PMID: 32267093 DOI: 10.1002/tcr.202000013] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2020] [Accepted: 03/13/2020] [Indexed: 11/08/2022]
Abstract
In this article recent progress in the development of molecules exhibiting Thermally Activated Delayed Fluorescence (TADF) is discussed with a particular focus upon their application as emitters in highly efficient organic light emitting diodes (OLEDs). The key aspects controlling the desirable functional properties, e. g. fast intersystem crossing, high radiative rate and unity quantum yield, are introduced with a particular focus upon the competition between the key requirements needed to achieve high performance OLEDs. The design rules required for organic and metal organic materials are discussed, and the correlation between them outlined. Recent progress towards understanding the influence of the interaction between a molecule and its environment are explained as is the role of the mechanism for excited state formation in OLEDs. Finally, all of these aspects are combined to discuss the ability to implement high level design rules for achieving higher quality materials for commercial applications. This article highlights the significant progress that has been made in recent years, but also outlines the significant challenges which persist to achieve a full understanding of the TADF mechanism and improve the stability and performance of these materials.
Collapse
Affiliation(s)
- Julien Eng
- Chemistry, School of Natural and Environmental Sciences, Newcastle University, Newcastle University, Newcastle upon Tyne, NE1 7RU, UK
| | - Thomas J Penfold
- Chemistry, School of Natural and Environmental Sciences, Newcastle University, Newcastle University, Newcastle upon Tyne, NE1 7RU, UK
| |
Collapse
|
90
|
Cho HW, Mugnai ML, Kirkpatrick TR, Thirumalai D. Fragile-to-strong crossover, growing length scales, and dynamic heterogeneity in Wigner glasses. Phys Rev E 2020; 101:032605. [PMID: 32290023 DOI: 10.1103/physreve.101.032605] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2019] [Accepted: 02/26/2020] [Indexed: 06/11/2023]
Abstract
Colloidal particles, which are ubiquitous, have become ideal testing grounds for the structural glass transition theories. In these systems glassy behavior arises as the density of the particles is increased. Thus, soft colloidal particles with varying degree of softness capture diverse glass-forming properties, observed normally in molecular glasses. Brownian dynamics simulations for a binary mixture of micron-sized charged colloidal suspensions show that tuning the softness of the interaction potential, achievable by changing the monovalent salt concentration results in a continuous transition from fragile to strong behavior. Remarkably, this is found in a system where the well characterized interaction potential between the colloidal particles is isotropic. We also show that the predictions of the random first-order transition (RFOT) theory quantitatively describes the universal features such as the growing correlation length, ξ∼(ϕ_{K}/ϕ-1)^{-ν} with ν=2/3 where ϕ_{K}, the analog of the Kauzmann temperature, depends on the salt concentration. As anticipated by the RFOT predictions, we establish a causal relationship between the growing correlation length and a steep increase in the relaxation time and dynamic heterogeneity as the system is compressed. The broad range of fragility observed in Wigner glasses is used to draw analogies with molecular and polymer glasses. The large variations in the fragility are normally found only when the temperature dependence of the viscosity is examined for a large class of diverse glass-forming materials. In sharp contrast, this is vividly illustrated in a single system that can be experimentally probed. Our work also shows that the RFOT predictions are accurate in describing the dynamics over the entire density range, regardless of the fragility of the glasses.
Collapse
Affiliation(s)
- Hyun Woo Cho
- Department of Chemistry, University of Texas at Austin, Austin, Texas 78712, USA
| | - Mauro L Mugnai
- Department of Chemistry, University of Texas at Austin, Austin, Texas 78712, USA
| | - T R Kirkpatrick
- Institute for Physical Science and Technology, University of Maryland, College Park, Maryland 20742, USA
| | - D Thirumalai
- Department of Chemistry, University of Texas at Austin, Austin, Texas 78712, USA
| |
Collapse
|
91
|
Yildirim A, Krause C, Zorn R, Lohstroh W, Schneider GJ, Zamponi M, Holderer O, Frick B, Schönhals A. Complex molecular dynamics of a symmetric model discotic liquid crystal revealed by broadband dielectric, thermal and neutron spectroscopy. SOFT MATTER 2020; 16:2005-2016. [PMID: 32003764 DOI: 10.1039/c9sm02487e] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
The molecular dynamics of the triphenylene-based discotic liquid crystal HAT6 is investigated by broadband dielectric spectroscopy, advanced dynamical calorimetry and neutron scattering. Differential scanning calorimetry in combination with X-ray scattering reveals that HAT6 has a plastic crystalline phase at low temperatures, a hexagonally ordered liquid crystalline phase at higher temperatures and undergoes a clearing transition at even higher temperatures. The dielectric spectra show several relaxation processes: a localized γ-relaxation at lower temperatures and a so called α2-relaxation at higher temperatures. The relaxation rates of the α2-relaxation have a complex temperature dependence and bear similarities to a dynamic glass transition. The relaxation rates estimated by Hyper DSC, Fast Scanning calorimetry and AC Chip calorimetry have a different temperature dependence than the dielectric α2-relaxation and follow the VFT-behavior characteristic for glassy dynamics. Therefore, this process is called α1-relaxation. Its relaxation rates show a similarity with that of polyethylene. For this reason, the α1-relaxation is assigned to the dynamic glass transition of the alkyl chains in the intercolumnar space. Moreover, this process is not observed by dielectric spectroscopy, which supports its assignment. The α2-relaxation is assigned to small scale translatorial and/or small angle fluctuations of the cores. The neutron scattering data reveal two relaxation processes. The process observed at shorter relaxation times is assigned to the methyl group rotation. The second relaxation process at longer time scales agree in the temperature dependence of its relaxation rates with that of the dielectric γ-relaxation.
Collapse
Affiliation(s)
- Arda Yildirim
- Bundesanstalt für Materialforschung und -prüfung (BAM), Unter den Eichen 87, 12205 Berlin, Germany.
| | - Christina Krause
- Bundesanstalt für Materialforschung und -prüfung (BAM), Unter den Eichen 87, 12205 Berlin, Germany.
| | - Reiner Zorn
- Forschungszentrum Jülich GmbH, Jülich Centre for Neutron Science (JCNS-1) and Institute for Complex Systems (ICS-1), 52425 Jülich, Germany
| | - Wiebke Lohstroh
- Heinz Maier-Leibnitz Zentrum (MLZ), Technische Universität München, Lichtenbergstraße 1, 85748 Garching, Germany
| | - Gerald J Schneider
- Forschungszentrum Jülich GmbH, Jülich Centre for Neutron Science at MLZ, Lichtenbergstr. 1, 85748 Garching, Germany
| | - Michaela Zamponi
- Forschungszentrum Jülich GmbH, Jülich Centre for Neutron Science at MLZ, Lichtenbergstr. 1, 85748 Garching, Germany
| | - Olaf Holderer
- Forschungszentrum Jülich GmbH, Jülich Centre for Neutron Science at MLZ, Lichtenbergstr. 1, 85748 Garching, Germany
| | - Bernhard Frick
- Institut Laue-Langevin, 71 avenue des Martyrs, 38042 Grenoble Cedex 9, France
| | - Andreas Schönhals
- Bundesanstalt für Materialforschung und -prüfung (BAM), Unter den Eichen 87, 12205 Berlin, Germany.
| |
Collapse
|
92
|
Ginzburg VV. A simple mean-field model of glassy dynamics and glass transition. SOFT MATTER 2020; 16:810-825. [PMID: 31840706 DOI: 10.1039/c9sm01575b] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
We propose a phenomenological model to describe the equilibrium dynamic behavior of amorphous glassy materials. It is assumed that a material can be represented by a lattice of cooperatively re-arranging regions (CRRs), with each CRR having two states, the low-temperature "solid" and the high-temperature "liquid". At low temperatures, the material exhibits two characteristic relaxation times, corresponding to the slow large-scale motion between the "solid" CRRs (α-relaxation) and the faster local motion within individual CRRs (β-relaxation). At high temperatures, the α- and β-relaxation times merge, as observed experimentally and suggested by the "Coupling Model" framework. Our new approach is labeled "Two-state, two (time)scale model" or TS2. It is shown that the TS2 treatment can successfully describe the "two-Arrhenius" relaxation time behavior described in several recent experiments. We also apply TS2 to describe the pressure- and molecular-weight dependence of the glass transition temperature in bulk polymers, as well as its dependence on film thickness in thin films.
Collapse
Affiliation(s)
- Valeriy V Ginzburg
- Core Research and Development, The Dow Chemical Company, Midland, MI 48674, USA.
| |
Collapse
|
93
|
Xie SJ, Schweizer KS. A collective elastic fluctuation mechanism for decoupling and stretched relaxation in glassy colloidal and molecular liquids. J Chem Phys 2020; 152:034502. [DOI: 10.1063/1.5129550] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Affiliation(s)
- Shi-Jie Xie
- Department of Materials Science, University of Illinois, Urbana, Illinois 61801, USA
- Material Research Laboratory, University of Illinois, Urbana, Illinois 61801, USA
- Center for Membrane Separation and Water Science and Technology, Ocean College, Zhejiang University of Technology, Hangzhou 310014, People’s Republic of China
| | - Kenneth S. Schweizer
- Department of Materials Science, University of Illinois, Urbana, Illinois 61801, USA
- Material Research Laboratory, University of Illinois, Urbana, Illinois 61801, USA
- Department of Chemistry, University of Illinois, Urbana, Illinois 61801, USA
| |
Collapse
|
94
|
Campo M, Speck T. Dynamical coexistence in moderately polydisperse hard-sphere glasses. J Chem Phys 2020; 152:014501. [DOI: 10.1063/1.5134842] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Affiliation(s)
- Matteo Campo
- Institut für Physik, Johannes Gutenberg-Universität Mainz, Staudingerweg 7-9, 55128 Mainz, Germany
| | - Thomas Speck
- Institut für Physik, Johannes Gutenberg-Universität Mainz, Staudingerweg 7-9, 55128 Mainz, Germany
| |
Collapse
|
95
|
Hansen HW, Lundin F, Adrjanowicz K, Frick B, Matic A, Niss K. Density scaling of structure and dynamics of an ionic liquid. Phys Chem Chem Phys 2020; 22:14169-14176. [DOI: 10.1039/d0cp01258k] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
The lines in the pressure–temperature phase diagram with constant conductivity are found to be lines where other dynamic variables as well as the molecular structure factor peak are constant, while charge ordering changes.
Collapse
Affiliation(s)
- Henriette Wase Hansen
- Glass and Time
- IMFUFA
- Department of Science and Environment
- Roskilde University
- DK-4000 Roskilde
| | - Filippa Lundin
- Materials Physics
- Department of Physics
- Chalmers University of Technology
- Gothenburg
- Sweden
| | | | | | - Aleksandar Matic
- Materials Physics
- Department of Physics
- Chalmers University of Technology
- Gothenburg
- Sweden
| | - Kristine Niss
- Glass and Time
- IMFUFA
- Department of Science and Environment
- Roskilde University
- DK-4000 Roskilde
| |
Collapse
|
96
|
Rabideau BD, Soltani M, Parker RA, Siu B, Salter EA, Wierzbicki A, West KN, Davis JH. Tuning the melting point of selected ionic liquids through adjustment of the cation's dipole moment. Phys Chem Chem Phys 2020; 22:12301-12311. [PMID: 32432261 DOI: 10.1039/d0cp01214a] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
In previous work with thermally robust salts [Cassity et al., Phys. Chem. Chem. Phys., 2017, 19, 31560] it was noted that an increase in the dipole moment of the cation generally led to a decrease in the melting point. Molecular dynamics simulations of the liquid state revealed that an increased dipole moment reduces cation-cation repulsions through dipole-dipole alignment. This was believed to reduce the liquid phase enthalpy, which would tend to lower the melting point of the IL. In this work we further test this principle by replacing hydrogen atoms with fluorine atoms at selected positions within the cation. This allows us to alter the electrostatics of the cation without substantially affecting the sterics. Furthermore, the strength of the dipole moment can be controlled by choosing different positions within the cation for replacement. We studied variants of four different parent cations paired with bistriflimide and determined their melting points, and enthalpies and entropies of fusion through DSC experiments. The decreases in the melting point were determined to be enthalpically driven. We found that the dipole moment of the cation, as determined by quantum chemical calculations, is inversely correlated with the melting point of the given compound. Molecular dynamics simulations of the crystalline and solid states of two isomers showed differences in their enthalpies of fusion that closely matched those seen experimentally. Moreover, this reduction in the enthalpy of fusion was determined to be caused by an increase in the enthalpy of the crystalline state. We provide evidence that dipole-dipole interactions between cations leads to the formation of cationic domains in the crystalline state. These cationic associations partially block favourable cation-anion interactions, which are recovered upon melting. If, however, the dipole-dipole interactions between cations is too strong they have a tendency to form glasses. This study provides a design rule for lowering the melting point of structurally similar ILs by altering their dipole moment.
Collapse
Affiliation(s)
- Brooks D Rabideau
- Department of Chemical & Biomolecular Engineering, The University of South Alabama, Mobile, Alabama 36688, USA.
| | - Mohammad Soltani
- Department of Chemistry, The University of South Alabama, Mobile, Alabama 36688, USA.
| | - Rome A Parker
- Department of Chemical & Biomolecular Engineering, The University of South Alabama, Mobile, Alabama 36688, USA.
| | - Benjamin Siu
- Department of Chemical & Biomolecular Engineering, The University of South Alabama, Mobile, Alabama 36688, USA.
| | - E Alan Salter
- Department of Chemistry, The University of South Alabama, Mobile, Alabama 36688, USA.
| | - Andrzej Wierzbicki
- Department of Chemistry, The University of South Alabama, Mobile, Alabama 36688, USA.
| | - Kevin N West
- Department of Chemical & Biomolecular Engineering, The University of South Alabama, Mobile, Alabama 36688, USA.
| | - James H Davis
- Department of Chemistry, The University of South Alabama, Mobile, Alabama 36688, USA.
| |
Collapse
|
97
|
Schweizer KS, Simmons DS. Progress towards a phenomenological picture and theoretical understanding of glassy dynamics and vitrification near interfaces and under nanoconfinement. J Chem Phys 2019; 151:240901. [PMID: 31893888 DOI: 10.1063/1.5129405] [Citation(s) in RCA: 75] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
The nature of alterations to dynamics and vitrification in the nanoscale vicinity of interfaces-commonly referred to as "nanoconfinement" effects on the glass transition-has been an open question for a quarter century. We first analyze experimental and simulation results over the last decade to construct an overall phenomenological picture. Key features include the following: after a metrology- and chemistry-dependent onset, near-interface relaxation times obey a fractional power law decoupling relation with bulk relaxation; relaxation times vary in a double-exponential manner with distance from the interface, with an intrinsic dynamical length scale appearing to saturate at low temperatures; the activation barrier and vitrification temperature Tg approach bulk behavior in a spatially exponential manner; and all these behaviors depend quantitatively on the nature of the interface. We demonstrate that the thickness dependence of film-averaged Tg for individual systems provides a poor basis for discrimination between different theories, and thus we assess their merits based on the above dynamical gradient properties. Entropy-based theories appear to exhibit significant inconsistencies with the phenomenology. Diverse free-volume-motivated theories vary in their agreement with observations, with approaches invoking cooperative motion exhibiting the most promise. The elastically cooperative nonlinear Langevin equation theory appears to capture the largest portion of the phenomenology, although important aspects remain to be addressed. A full theoretical understanding requires improved confrontation with simulations and experiments that probe spatially heterogeneous dynamics within the accessible 1-ps to 1-year time window, minimal use of adjustable parameters, and recognition of the rich quantitative dependence on chemistry and interface.
Collapse
Affiliation(s)
- Kenneth S Schweizer
- Departments of Materials Science, Chemistry and Chemical & Biomolecular Engineering, Materials Research Laboratory, University of Illinois, Urbana, Illinois 61801, USA
| | - David S Simmons
- Department of Chemical and Biomedical Engineering, University of South Florida, Tampa, Florida 33620, USA
| |
Collapse
|
98
|
Tripodo A, Puosi F, Malvaldi M, Leporini D. Vibrational scaling of the heterogeneous dynamics detected by mutual information. THE EUROPEAN PHYSICAL JOURNAL. E, SOFT MATTER 2019; 42:146. [PMID: 31754931 DOI: 10.1140/epje/i2019-11916-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/04/2019] [Accepted: 11/03/2019] [Indexed: 06/10/2023]
Abstract
The correlations detected by the mutual information in the propensities of a molecular viscous liquid are studied by molecular-dynamics simulations. Dynamic heterogeneity is evidenced and two particle fractions with different mobility and relaxation identified. The two fractions exhibit the scaling of their relaxation in terms of the rattling amplitude of the particle trapped in the cage of the first neighbours 〈u2〉 . The scaling master curve does not differ from the one found for bulk systems, thus confirming identical results previously reported in other systems with strong dynamic heterogeneity as thin molecular films. The excitation of planar and globular structures at short and long times with respect to structural relaxation, respectively, is revealed. Some of the globular structures are different from the ones evidenced in atomic mixtures. States with equal 〈u2〉 are found to have identical time dependence of several quantities, referring to both bulk and the two fractions with heterogeneous dynamics, at least up to the structural relaxation time [Formula: see text].
Collapse
Affiliation(s)
- Antonio Tripodo
- Dipartimento di Fisica "Enrico Fermi", Università di Pisa, Largo B. Pontecorvo 3, I-56127, Pisa, Italy
| | - Francesco Puosi
- Dipartimento di Fisica "Enrico Fermi", Università di Pisa, Largo B. Pontecorvo 3, I-56127, Pisa, Italy
| | - Marco Malvaldi
- Dipartimento di Fisica "Enrico Fermi", Università di Pisa, Largo B. Pontecorvo 3, I-56127, Pisa, Italy
| | - Dino Leporini
- Dipartimento di Fisica "Enrico Fermi", Università di Pisa, Largo B. Pontecorvo 3, I-56127, Pisa, Italy.
- IPCF-CNR, UOS, Pisa, Italy.
| |
Collapse
|
99
|
The Proton Density of States in Confined Water (H 2O). Int J Mol Sci 2019; 20:ijms20215373. [PMID: 31671726 PMCID: PMC6861890 DOI: 10.3390/ijms20215373] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2019] [Revised: 10/17/2019] [Accepted: 10/24/2019] [Indexed: 12/05/2022] Open
Abstract
The hydrogen density of states (DOS) in confined water has been probed by inelastic neutron scattering spectra in a wide range of its P–T phase diagram. The liquid–liquid transition and the dynamical crossover from the fragile (super-Arrhenius) to strong (Arrhenius) glass forming behavior have been studied, by taking into account the system polymorphism in both the liquid and amorphous solid phases. The interest is focused in the low energy region of the DOS (E<10 meV) and the data are discussed in terms of the energy landscape (local minima of the potential energy) approach. In this latest research, we consider a unit scale energy (EC) linked to the water local order governed by the hydrogen bonding (HB). All the measured spectra, scaled according to such energy, evidence a universal power law behavior with different exponents (γ) in the strong and fragile glass forming regions, respectively. In the first case, the DOS data obey the Debye squared-frequency law, whereas, in the second one, we obtain a value predicted in terms of the mode-coupling theory (MCT) (γ≃1.6).
Collapse
|
100
|
Bachler J, Handle PH, Giovambattista N, Loerting T. Glass polymorphism and liquid-liquid phase transition in aqueous solutions: experiments and computer simulations. Phys Chem Chem Phys 2019; 21:23238-23268. [PMID: 31556899 DOI: 10.1039/c9cp02953b] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
One of the most intriguing anomalies of water is its ability to exist as distinct amorphous ice forms (glass polymorphism or polyamorphism). This resonates well with the possible first-order liquid-liquid phase transition (LLPT) in the supercooled state, where ice is the stable phase. In this Perspective, we review experiments and computer simulations that search for LLPT and polyamorphism in aqueous solutions containing salts and alcohols. Most studies on ionic solutes are devoted to NaCl and LiCl; studies on alcohols have mainly focused on glycerol. Less attention has been paid to protein solutions and hydrophobic solutes, even though they reveal promising avenues. While all solutions show polyamorphism and an LLPT only in dilute, sub-eutectic mixtures, there are differences regarding the nature of the transition. Isocompositional transitions for varying mole fractions are observed in alcohol but not in ionic solutions. This is because water can surround alcohol molecules either in a low- or high-density configuration whereas for ionic solutes, the water ion hydration shell is forced into high-density structures. Consequently, the polyamorphic transition and the LLPT are prevented near the ions, but take place in patches of water within the solutions. We highlight discrepancies and different interpretations within the experimental community as well as the key challenges that need consideration when comparing experiments and simulations. We point out where reinterpretation of past studies helps to draw a unified, consistent picture. In addition to the literature review, we provide original experimental results. A list of eleven open questions that need further consideration is identified.
Collapse
Affiliation(s)
- Johannes Bachler
- Institute of Physical Chemistry, University of Innsbruck, A-6020 Innsbruck, Austria.
| | | | | | | |
Collapse
|