51
|
Chen X, Bao G, Hua Y, Li Y, Wang Z, Zhang X. The effects of topiramate on caspase-3 expression in hippocampus of basolateral amygdala (BLA) electrical kindled epilepsy rat. J Mol Neurosci 2009; 38:201-6. [PMID: 19148780 DOI: 10.1007/s12031-008-9173-4] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2008] [Accepted: 12/18/2008] [Indexed: 11/29/2022]
Abstract
Caspase-3 expression was determined in the hippocampus of electrically kindled rats with and without topiramate treatment. Bipolar electrotrodes were implanted for chronic stimulation of the basolateral amygdala (BLA) to achieve a kindled state. Seizure and behavioral responses were observed, and video-electroencephalograms were recorded during and after kindling. After topiramate treatment (80 mg/kg, p.o.), the hippocampi were extracted and caspase-3 mRNA analyzed by semiquantitative RT-PCR. Caspase-3 immunoreactivity was determined with immunohistochemical staining. Topiramate treatment resulted in a significant decrease in the mean duration of seizures from 52 s in kindled rats to 13 s. The after-discharge duration was significantly decreased by 70% after topiramate treatment. Significant upregulations of both caspase-3 mRNA and caspase-3 immunoreactivity were observed in the kindled rats. These kindling-mediated increases in caspase-3 were prevented by topiramate treatment, and these levels were not different from those of sham-operated controls. In BLA-kindled rats, mRNA and immunoreactivity for caspase-3 were increased. Treatment with topiramate prevented the kindling-associated increases in caspase-3 as well as the increases in seizure duration and after-discharge duration. These data suggest that topiramate may have a neuroprotective role in addition to its action as an anticonvulsant.
Collapse
Affiliation(s)
- Xuqin Chen
- Department of Neurology, Children's Hospital of Soochow University, No.303, Jingde Road, Suzhou, 215003, China
| | | | | | | | | | | |
Collapse
|
52
|
Hamaishi M, Orihashi K, Isaka M, Kumagai H, Takahashi S, Okada K, Ohtaki M, Sueda T. Low-Dose Edaravone Injection into the Clamped Aorta Prevents Ischemic Spinal Cord Injury. Ann Vasc Surg 2009; 23:128-35. [DOI: 10.1016/j.avsg.2008.05.010] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2008] [Revised: 05/18/2008] [Accepted: 05/19/2008] [Indexed: 11/16/2022]
|
53
|
Yune TY, Park HG, Lee JY, Oh TH. Estrogen-Induced Bcl-2 Expression after Spinal Cord Injury Is Mediated through Phosphoinositide-3-Kinase/Akt-Dependent CREB Activation. J Neurotrauma 2008; 25:1121-31. [DOI: 10.1089/neu.2008.0544] [Citation(s) in RCA: 71] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Affiliation(s)
- Tae Y. Yune
- Age-Related and Brain Diseases Research Center, Kyunghee University, Seoul, Korea
| | - Hong G. Park
- Age-Related and Brain Diseases Research Center, Kyunghee University, Seoul, Korea
| | - Jee Y. Lee
- Age-Related and Brain Diseases Research Center, Kyunghee University, Seoul, Korea
- Bioanalysis and Biotransformation Research Center, Korea Institute of Science and Technology, Seoul, Korea
| | - Tae H. Oh
- Age-Related and Brain Diseases Research Center, Kyunghee University, Seoul, Korea
| |
Collapse
|
54
|
Abstract
Obstructive sleep apnea is associated with neural injury and dysfunction. Hypoxia/reoxygenation exposures, modeling sleep apnea, injure select populations of neurons, including hypoglossal motoneurons. The mechanisms underlying this motoneuron injury are not understood. We hypothesize that endoplasmic reticulum injury contributes to motoneuron demise. Hypoxia/reoxygenation exposures across 8 weeks in adult mice upregulated the unfolded protein response as evidenced by increased phosphorylation of PERK [PKR-like endoplasmic reticulum (ER) kinase] in facial and hypoglossal motoneurons and persistent upregulation of CCAAT/enhancer-binding protein-homologous protein (CHOP)/growth arrest and DNA damage-inducible protein (GADD153) with nuclear translocation. Long-term hypoxia/reoxygenation also resulted in cleavage and nuclear translocation of caspase-7 and caspase-3 in hypoglossal and facial motoneurons. In contrast, occulomotor and trigeminal motoneurons showed persistent phosphorylation of eIF-2a across hypoxia/reoxygenation, without activations of CHOP/GADD153 or either caspase. Ultrastructural analysis of rough ER in hypoglossal motoneurons revealed hypoxia/reoxygenation-induced luminal swelling and ribosomal detachment. Protection of eIF-2alpha phosphorylation with systemically administered salubrinal throughout hypoxia/reoxygenation exposure prevented CHOP/GADD153 activation in susceptible motoneurons. Collectively, this work provides evidence that long-term exposure to hypoxia/reoxygenation events, modeling sleep apnea, results in significant endoplasmic reticulum injury in select upper airway motoneurons. Augmentation of eIF-2a phosphorylation minimizes motoneuronal injury in this model. It is anticipated that obstructive sleep apnea results in endoplasmic reticulum injury involving motoneurons, whereas a critical balance of phosphorylated eIF-2a should minimize motoneuronal injury in obstructive sleep apnea.
Collapse
|
55
|
Intrathecally injected granulocyte colony-stimulating factor produced neuroprotective effects in spinal cord ischemia via the mitogen-activated protein kinase and Akt pathways. Neuroscience 2008; 153:31-43. [PMID: 18358629 DOI: 10.1016/j.neuroscience.2008.01.062] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2007] [Revised: 01/12/2008] [Accepted: 01/16/2008] [Indexed: 11/21/2022]
Abstract
Granulocyte colony-stimulating factor (G-CSF) is a potent hematopoietic factor. Recently, this factor has been shown to exhibit neuroprotective effects on many CNS injuries. Spinal cord ischemic injury that frequently results in paraplegia is a major cause of morbidity after thoracic aorta operations. In the present study, we examined the neuroprotective role of G-CSF on spinal cord ischemia-induced neurological dysfunctions and changes in the mitogen-activated protein kinase (MAPK) and Akt signaling pathways in the spinal cord. Spinal cord ischemia was induced in male Wistar rats by occluding the descending aorta with a 2F Fogarty catheter for 12 min 30 s. Immediately after ischemia surgery, the rats were administered G-CSF (10 mug) or saline by intrathecal (i.t.) injection. The rats were divided into four groups: control, ischemia plus saline, ischemia plus G-CSF and G-CSF alone. The neurological dysfunctions were assessed by calculating the motor deficit index after ischemia surgery. The expressions of MAPK and Akt were studied using Western blotting and double immunohistochemistry. First, we observed that ischemia plus i.t. G-CSF can significantly reduce the motor function defects and downregulate phospho-p38 and phospho-c-Jun N-terminal kinase protein expressions-this can be compared with the ischemia plus saline group. In addition, G-CSF inhibited the ischemia-induced activation of p38 in the astrocytes. Furthermore, we concluded that i.t. G-CSF produced a significant increase in phospho-Akt and phospho-ERK in the motor neurons and exhibited beneficial effects on the spinal cord ischemia-induced neurological defects.
Collapse
|
56
|
Yamauchi T, Sakurai M, Abe K, Matsumiya G, Sawa Y. Impact of the endoplasmic reticulum stress response in spinal cord after transient ischemia. Brain Res 2007; 1169:24-33. [PMID: 17707355 DOI: 10.1016/j.brainres.2007.06.093] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2007] [Revised: 06/10/2007] [Accepted: 06/14/2007] [Indexed: 12/01/2022]
Abstract
BACKGROUND Delayed paraplegia after operation of the thoracic aorta is considered to be related to vulnerability of motor neurons to ischemia. Recently, endoplasmic reticulum (ER) stress has been reported to participate in neuronal cell death. In the present study, we investigate the expression of ER stress-related molecules and discuss the relationship between neuronal vulnerability and ER stress after transient ischemia in the spinal cord. METHODS A rabbit spinal cord ischemia model was generated using a balloon catheter. In this model, spinal motor neurons show selectively delayed neuronal death whereas other spinal neuron, such as interneurons, survive. Immunohistochemical analysis and Western blotting for ER stress-related molecules, including phosphorylated eukaryotic initiation factor 2 alpha (p-eIF2alpha), activating transcription factor 4 (ATF4), glucose-regulated protein 78 (GRP78) and inositol-requiring ER transmembrane RNAse alpha isoform (IRE1alpha), were examined. RESULTS P-eIF2alpha, which inhibits protein synthesis and modulates ER stress, was induced only in interneurons after 6 h of reperfusion. ATF4, which is specifically activated by PERK-eIF2alpha, was induced only in interneurons between 6 h and 1 day after reperfusion. GRP78 was induced strongly both in interneurons and motor neurons at an early stage of reperfusion, but prolonged expression was observed only in interneurons. IRE1alpha, which is supposed to transduce an ER stress-related death signal, was expressed more strongly and over a more prolonged period in motor neurons. CONCLUSIONS These results indicate that the vulnerability of motor neurons in the spinal cord might be partially attributed to an ER stress response to transient ischemia.
Collapse
Affiliation(s)
- Takashi Yamauchi
- Department of Cardiovascular Surgery, Osaka University Graduate School of Medicine, 2-2 Yamadaoka, Suita, Osaka, 565-0871, Japan.
| | | | | | | | | |
Collapse
|
57
|
Reply to the Editor. J Thorac Cardiovasc Surg 2007. [DOI: 10.1016/j.jtcvs.2006.12.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
58
|
Jankowski MP, Cornuet PK, McIlwrath S, Koerber HR, Albers KM. SRY-box containing gene 11 (Sox11) transcription factor is required for neuron survival and neurite growth. Neuroscience 2006; 143:501-14. [PMID: 17055661 PMCID: PMC1698553 DOI: 10.1016/j.neuroscience.2006.09.010] [Citation(s) in RCA: 106] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2006] [Revised: 08/18/2006] [Accepted: 09/03/2006] [Indexed: 12/17/2022]
Abstract
The transcription factor Sox11 is expressed at high levels in developing sensory neurons and injured adult neurons but little is known about its transcriptional targets and function. In this study we examined the role of Sox11 using Neuro2a neuroblastoma cells and cultured mouse dorsal root ganglia (DRG) neurons. Results show Sox11 has an essential role in regulation of neuron survival and neurite outgrowth in Neuro2a cells and primary sensory neurons. Neuro2a cells increase expression of Sox11 as they differentiate in culture. Following addition of 20 microM retinoic acid (RA), a stimulus for differentiation that enhances neurite growth and differentiation, Sox11 level rises. RNAi-mediated knockdown of Sox11 in RA-differentiated Neuro2a cells caused a decrease in neurite growth and an increase in the percent of apoptotic cells. RNA expression analysis showed that Sox11 knockdown modulated the level of mRNAs encoding several genes related to cell survival and death. Further validation in the Neuro2a model showed Sox11 knockdown increased expression of the pro-apoptotic gene BNIP3 (BclII interacting protein 1 NIP3) and decreased expression of the anti-apoptotic gene TANK (TNF receptor-associated factor family member-associated NFkappaB activator). Cultured primary DRG neurons also express Sox11 and treatment with Sox11 small interfering RNA (siRNA) caused a significant decrease in neurite growth and branching and a decrease in mRNA encoding actin-related protein complex 3 (Arpc3), an actin organizing protein that may be involved in axon growth. The percent of apoptotic neurons also increased in cultures of DRG neurons treated with Sox11 siRNA. Similar to Neuro2a cells, a decrease in TANK gene expression occurred, suggesting at least some overlap in Sox11 transcriptional targets in Neuro2a and DRG neurons. These data are consistent with a central role for Sox11 in regulating events that promote neurite growth and neuron survival.
Collapse
Affiliation(s)
| | - Pamela K. Cornuet
- Medicine, University of Pittsburgh School of Medicine, Pittsburgh, PA 15261
| | | | | | - Kathryn M. Albers
- Departments of Neurobiology and
- Medicine, University of Pittsburgh School of Medicine, Pittsburgh, PA 15261
- CORRESPONDENCE: Kathryn M. Albers, PhD., 3550 Terrace St., S-857 Scaife Hall, University of Pittsburgh, Pittsburgh, Pa 15261, Phone: 412 648-9669; Fax 412 648-9731,
| |
Collapse
|
59
|
Lee JC, Hwang IK, Yoo KY, Kim DS, Kim WK, Won MH. Degradation of spectrin via calpains in the ventral horn after transient spinal cord ischemia in rabbits. Neurochem Res 2006; 31:989-98. [PMID: 16847592 DOI: 10.1007/s11064-006-9104-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/14/2006] [Indexed: 11/27/2022]
Abstract
In the present study, we investigated chronological changes of mu-calpain, m-calpain and cleaved spectrin alphaII immunoreactivity in the ventral horn after transient spinal cord ischemia to investigate relationship between calpains and vulnerability to ischemia using abdominal aorta occlusion model in rabbits. Spinal cord sections at the level of L(7) were immunostained with calpains and cleaved spectrin alphaII monoclonal antibodies. mu-Calpain and m-calpain immunoreactivity was significantly increased in the ischemic ventral horn at 30 min and 1 h after ischemia/reperfusion, respectively. Thereafter, they were decreased with time after ischemia/reperfusion: at 48 h after ischemia, their immunoreactivities nearly disappeared in the ischemic ventral horn. Cleaved spectrin alphaII immunoreactivity was significantly increased in the ventral horn of spinal cord at 12 h after ischemia/reperfusion, and thereafter, its immunoreactivity was decreased with time after ischemia/reperfusion. In addition, spectrin alphaII protein level (280 kDa) was decreased from 12 h after ischemia/reperfusion; in contrast, cleaved spectrin alphaII protein level (150 kDa) was significantly increased at 12 h after ischemia/reperfusion. In conclusion, our observations in this study indicate that calpain is associated with neuronal degeneration in the ventral horn at early time after transient spinal cord ischemia via the proteolysis of spectrin alphaII.
Collapse
Affiliation(s)
- Jae-Chul Lee
- Department of Pharmacology, Ewha Medical School and Institute of Neuroscience, Ewha Womans University, Seoul 110-783, South Korea
| | | | | | | | | | | |
Collapse
|
60
|
Fan LH, Wang KZ, Cheng B, Wang CS, Dang XQ. Anti-apoptotic and neuroprotective effects of Tetramethylpyrazine following spinal cord ischemia in rabbits. BMC Neurosci 2006; 7:48. [PMID: 16774675 PMCID: PMC1534051 DOI: 10.1186/1471-2202-7-48] [Citation(s) in RCA: 63] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2006] [Accepted: 06/14/2006] [Indexed: 12/21/2022] Open
Abstract
Background Tetramethylpyrazine (TMP) is one of the most important active ingredients of a Chinese herb Ligusticum wallichii Franchat, which is widely used in many ischemia disorders treatments. However, the exact mechanism by which TMP protects the spinal cord ischemia/reperfusion (I/R) injury is still unknown. For this purpose, rabbits were randomly divided into sham group, control group and TMP group. After the evaluation of neurologic function, the spinal cords were immediately removed for biochemical and histopathological analysis. Apoptosis was measured quantitatively by the terminal transferase UTP nick end-labeling (TUNEL) method and confirmed by electron microscopic examination, the expression of Bax and Bcl-2 was immunohistochemically evaluated and quantified by Western blot analysis. Results Neurologic outcomes in the TMP-group were significantly better than those in the control group (P < 0.05). TMP decreased spinal cord malondialdehyde (MDA) levels and ameliorated the down regulation of spinal cord superoxide dismutase (SOD) activity. TMP significantly reduced the loss of motoneurons and TUNEL-positive rate. Greater Bcl-2 and attenuated Bax expression was found in the TMP treating rabbits. Conclusion These findings suggest that TMP has protective effects against spinal cord I/R injury by reducing apoptosis through regulating Bcl-2 and Bax expression.
Collapse
Affiliation(s)
- Li-Hong Fan
- Department of Orthopedics, Second Affiliated Hospital Xi'an Jiao Tong University, Xiwu Road, Xi'an, shaanxi, 710004, China
| | - Kun-Zheng Wang
- Department of Orthopedics, Second Affiliated Hospital Xi'an Jiao Tong University, Xiwu Road, Xi'an, shaanxi, 710004, China
| | - Bin Cheng
- Department of Orthopedics, Second Affiliated Hospital Xi'an Jiao Tong University, Xiwu Road, Xi'an, shaanxi, 710004, China
| | - Chun-Sheng Wang
- Department of Orthopedics, Second Affiliated Hospital Xi'an Jiao Tong University, Xiwu Road, Xi'an, shaanxi, 710004, China
| | - Xiao-Qian Dang
- Department of Orthopedics, Second Affiliated Hospital Xi'an Jiao Tong University, Xiwu Road, Xi'an, shaanxi, 710004, China
| |
Collapse
|
61
|
Suzuki K, Kazui T, Bashar AHM. Reply to the Editor. J Thorac Cardiovasc Surg 2006. [DOI: 10.1016/j.jtcvs.2006.01.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
62
|
Koray AK, Tekeli A, Isbir S. Apoptosis in ischemic spinal cord injury. J Thorac Cardiovasc Surg 2006; 131:1212-3; author reply 1213. [PMID: 16678634 DOI: 10.1016/j.jtcvs.2005.12.056] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/20/2005] [Accepted: 12/27/2005] [Indexed: 11/30/2022]
|
63
|
Yamauchi T, Sawa Y, Sakurai M, Hiroshi T, Matsumiya G, Abe K, Matsuda H. ONO-5046 attenuation of delayed motor neuron death and effect on the induction of brain-derived neurotrophic factor, phosphorylated extracellular signal–regulated kinase, and caspase3 after spinal cord ischemia in rabbits. J Thorac Cardiovasc Surg 2006; 131:644-50. [PMID: 16515918 DOI: 10.1016/j.jtcvs.2005.06.041] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/26/2004] [Revised: 04/20/2005] [Accepted: 06/20/2005] [Indexed: 10/25/2022]
Abstract
OBJECTIVE The mechanism of spinal cord injury is believed to be related to the vulnerability of spinal motor neuron cells to ischemia. The aim of this study was to investigate whether ONO-5046, a specific inhibitor of neutrophil elastase that can attenuate tissue or organ injury in various pathologic conditions, could protect against ischemic spinal cord damage. METHODS After induction of spinal ischemia, ONO-5046 or vehicle was injected intravenously. Cell damage was analyzed by counting the number of motor neurons. To investigate the mechanism by which ONO-5046 prevents ischemic spinal cord damage, we observed the immunoreactivity of CPP32 (caspase3), brain-derived neurotrophic factor, and phosphorylated extracellular signal-regulated kinase. RESULTS ONO-5046 eased the functional deficits and increased the number of motor neurons after ischemia. The induction of caspase3 was significantly reduced by ONO-5046 treatment. Furthermore, the expressions of brain-derived neurotrophic factor and phosphorylated extracellular signal-regulated kinase were prolonged. CONCLUSION ONO-5046 may protect motor neurons from ischemic injury by reducing caspase3 and prolonging the expressions of brain-derived neurotrophic factor and phosphorylated extracellular signal-regulated kinase. ONO-5046 may be a strong candidate for use as a therapeutic agent in the treatment of ischemic spinal cord injury.
Collapse
Affiliation(s)
- Takashi Yamauchi
- Department of Cardiovascular Surgery, Osaka University Graduate School of Medicine, Osaka, Japan
| | | | | | | | | | | | | |
Collapse
|
64
|
Kim HS, Park CK. Retinal ganglion cell death is delayed by activation of retinal intrinsic cell survival program. Brain Res 2006; 1057:17-28. [PMID: 16139821 DOI: 10.1016/j.brainres.2005.07.005] [Citation(s) in RCA: 57] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2005] [Revised: 07/01/2005] [Accepted: 07/08/2005] [Indexed: 10/25/2022]
Abstract
Neuronal cells undergo apoptosis when deprived of neurotrophic factors due to injury, trauma, or neurodegenerative disease. This study examined cell death in the retina after chronic elevation of intraocular pressure (IOP) in an experimental rat model of human glaucomatous disease. Three episcleral veins on the ocular surface of rats were cauterized. Activation of several cell death programs represented by Fas ligand, FADD (Fas Associated Death Domain/Mort1) and the caspase cascade (caspase-8 and -3) and survival programs represented by phosphorylated protein kinase B (PKB/Akt), Bcl-2 associated death domain (BAD), and cAMP responsive element binding protein (CREB) were examined using immunohistochemistry and Western blotting. Following injury, two major events occurred simultaneously in the retina: activation of programmed cell death pathways and activation of survival mechanisms to maintain the cellular homeostasis of the retina. At the later stage of injury, markers of an activated cell death program appeared to be concentrated in the retinal ganglion cells. In conclusion, we suggest that endogenous cell survival factors triggered at the early stage of injury play a critical role in control of the death or survival of retinal ganglion cells and that the manipulation of this decision phase is one of the therapeutic targets for glaucoma.
Collapse
Affiliation(s)
- Hwa Sun Kim
- Department of Ophthalmology, College of Medicine, The Catholic University of Korea, 505 Banpo-dong, Seocho-ku, Seoul 137-701, South Korea
| | | |
Collapse
|
65
|
Sakurai M, Takahashi G, Abe K, Horinouchi T, Itoyama Y, Tabayashi K. Endoplasmic reticulum stress induced in motor neurons by transient spinal cord ischemia in rabbits. J Thorac Cardiovasc Surg 2005; 130:640-5. [PMID: 16153907 DOI: 10.1016/j.jtcvs.2005.01.007] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/14/2004] [Revised: 12/03/2004] [Accepted: 01/05/2005] [Indexed: 10/25/2022]
Abstract
OBJECTIVE The mechanism of spinal cord injury has been thought to be related to the vulnerability of spinal motor neuron cells against ischemia. However, the mechanisms of such vulnerability are not fully understood. Because we previously reported that spinal motor neurons were probably lost as the result of programmed cell death, we investigated a possible mechanism of neuronal death by immunohistochemical analysis for Grp78 and caspase12. METHODS We used a rabbit spinal cord ischemia model with a balloon catheter. The spinal cord was removed at 8 hours or 1, 2, or 7 days after 15 minutes of transient ischemia. Histologic changes were studied with hematoxylin-eosin staining. Western blot analysis for Grp78 and caspase12, temporal profiles of Grp78 and caspase12 immunoreactivity, and double-label fluorescence immunocytochemical studies were performed. RESULTS The majority of motor neurons were preserved for 2 days but were selectively lost at 7 days of reperfusion. Western blot analysis revealed scarce immunoreactivity for Grp78 and caspase12 in the sham-operated spinal cords. However, immunoreactivity for Grp78 and caspase12 became apparent at 8 hours after transient ischemia, which returned to the baseline level at 1 day. Double-label fluorescence immunocytochemical study revealed that both Grp78 and caspase12 were positive at 8 hours of reperfusion in the same motor neurons that eventually die. CONCLUSION This study demonstrated that immunoreactivities for both Grp78 and caspase12 were induced in the same motor neuron that eventually dies. These results suggest that endoplasmic reticulum stress was induced in motor neurons by transient spinal cord ischemia in rabbits.
Collapse
Affiliation(s)
- Masahiro Sakurai
- Department of Cardiovascular Surgery, National Hospital Organization Sendai Medical Center, Sendai, Japan.
| | | | | | | | | | | |
Collapse
|