51
|
Bartell JA, Cameron DR, Mojsoska B, Haagensen JAJ, Pressler T, Sommer LM, Lewis K, Molin S, Johansen HK. Bacterial persisters in long-term infection: Emergence and fitness in a complex host environment. PLoS Pathog 2020; 16:e1009112. [PMID: 33315938 PMCID: PMC7769609 DOI: 10.1371/journal.ppat.1009112] [Citation(s) in RCA: 53] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2020] [Revised: 12/28/2020] [Accepted: 10/31/2020] [Indexed: 12/20/2022] Open
Abstract
Despite intensive antibiotic treatment, Pseudomonas aeruginosa often persists in the airways of cystic fibrosis (CF) patients for decades, and can do so without antibiotic resistance development. Using high-throughput screening assays of bacterial survival after treatment with high concentrations of ciprofloxacin, we have determined the prevalence of persisters in a large patient cohort using 460 longitudinal isolates of P. aeruginosa from 39 CF patients. Isolates were classed as high persister variants (Hip) if they regrew following antibiotic treatment in at least 75% of the experimental replicates. Strain genomic data, isolate phenotyping, and patient treatment records were integrated in a lineage-based analysis of persister formation and clinical impact. In total, 19% of the isolates were classified as Hip and Hip emergence increased over lineage colonization time within 22 Hip+ patients. Most Hip+ lineages produced multiple Hip isolates, but few Hip+ lineages were dominated by Hip. While we observed no strong signal of adaptive genetic convergence within Hip isolates, they generally emerged in parallel or following the development of ciprofloxacin resistance and slowed growth. Transient lineages were majority Hip-, while strains that persisted over a clinically diagnosed 'eradication' period were majority Hip+. Patients received indistinguishable treatment regimens before Hip emergence, but Hip+ patients overall were treated significantly more than Hip- patients, signaling repeated treatment failure. When subjected to in vivo-similar antibiotic dosing, a Hip isolate survived better than a non-Hip in a structured biofilm environment. In sum, the Hip phenotype appears to substantially contribute to long-term establishment of a lineage in the CF lung environment. Our results argue against the existence of a single dominant molecular mechanism underlying bacterial antibiotic persistence. We instead show that many routes, both phenotypic and genetic, are available for persister formation and consequent increases in strain fitness and treatment failure in CF airways.
Collapse
Affiliation(s)
- Jennifer A. Bartell
- The Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Kgs. Lyngby, Denmark
| | - David R. Cameron
- Antimicrobial Discovery Center, Department of Biology, Northeastern University, Boston, Massachusetts, United States of America
- Department of Intensive Care Medicine, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland
| | - Biljana Mojsoska
- Department of Clinical Microbiology, Rigshospitalet, Copenhagen, Denmark
| | - Janus Anders Juul Haagensen
- The Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Kgs. Lyngby, Denmark
| | | | - Lea M. Sommer
- Department of Clinical Microbiology, Rigshospitalet, Copenhagen, Denmark
| | - Kim Lewis
- Antimicrobial Discovery Center, Department of Biology, Northeastern University, Boston, Massachusetts, United States of America
| | - Søren Molin
- The Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Kgs. Lyngby, Denmark
| | - Helle Krogh Johansen
- Department of Clinical Microbiology, Rigshospitalet, Copenhagen, Denmark
- Department of Clinical Medicine, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
52
|
Latour X. The Evanescent GacS Signal. Microorganisms 2020; 8:microorganisms8111746. [PMID: 33172195 PMCID: PMC7695008 DOI: 10.3390/microorganisms8111746] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2020] [Revised: 11/02/2020] [Accepted: 11/04/2020] [Indexed: 12/18/2022] Open
Abstract
The GacS histidine kinase is the membrane sensor of the major upstream two-component system of the regulatory Gac/Rsm signal transduction pathway. This pathway governs the expression of a wide range of genes in pseudomonads and controls bacterial fitness and motility, tolerance to stress, biofilm formation, and virulence or plant protection. Despite the importance of these roles, the ligands binding to the sensor domain of GacS remain unknown, and their identification is an exciting challenge in this domain. At high population densities, the GacS signal triggers a switch from primary to secondary metabolism and a change in bacterial lifestyle. It has been suggested, based on these observations, that the GacS signal is a marker of the emergence of nutritional stress and competition. Biochemical investigations have yet to characterize the GacS signal fully. However, they portray this cue as a low-molecular weight, relatively simple and moderately apolar metabolite possibly resembling, but nevertheless different, from the aliphatic organic acids acting as quorum-sensing signaling molecules in other Proteobacteria. Significant progress in the development of metabolomic tools and new databases dedicated to Pseudomonas metabolism should help to unlock some of the last remaining secrets of GacS induction, making it possible to control the Gac/Rsm pathway.
Collapse
Affiliation(s)
- Xavier Latour
- Laboratory of Microbiology Signals and Microenvironment (LMSM EA 4312), Normandy University (University of Rouen Normandy), 55 rue Saint-Germain, 27000 Evreux, France;
- Research Federation NORVEGE Fed4277, Normandy University, F-76821 Mont-Saint-Aignan, France
| |
Collapse
|
53
|
Graham KJ, Burrows LL. More than a feeling: microscopy approaches to understanding surface-sensing mechanisms. J Bacteriol 2020; 203:JB.00492-20. [PMID: 33077631 PMCID: PMC8095462 DOI: 10.1128/jb.00492-20] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
The mechanisms by which bacteria sense and respond to surface attachment have long been a mystery. Our understanding of the structure and dynamics of bacterial appendages, notably type IV pili (T4P), provided new insights into the potential ways that bacteria sense surfaces. T4P are ubiquitous, retractable hair-like adhesins that until recently were difficult to image in the absence of fixation due to their nanoscale size. This review focuses on recent microscopy innovations used to visualize T4P in live cells to reveal the dynamics of their retraction and extension. We discuss recently proposed mechanisms by which T4P facilitate bacterial surface sensing, including the role of surface-exposed PilY1, two-component signal transduction pathways, force-induced structural modifications of the major pilin, and altered dynamics of the T4P motor complex.
Collapse
Affiliation(s)
- Katherine J Graham
- Department of Biochemistry and Biomedical Sciences, and the Michael G. DeGroote Institute for Infectious Disease Research, McMaster University, Hamilton ON Canada L8S4K1
| | - Lori L Burrows
- Department of Biochemistry and Biomedical Sciences, and the Michael G. DeGroote Institute for Infectious Disease Research, McMaster University, Hamilton ON Canada L8S4K1
| |
Collapse
|
54
|
Peng J, Chen G, Xu X, Wang T, Liang H. Iron facilitates the RetS-Gac-Rsm cascade to inversely regulate protease IV (piv) expression via the sigma factor PvdS in Pseudomonas aeruginosa. Environ Microbiol 2020; 22:5402-5413. [PMID: 33015962 DOI: 10.1111/1462-2920.15270] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2019] [Revised: 09/30/2020] [Accepted: 10/01/2020] [Indexed: 01/22/2023]
Abstract
Pseudomonas aeruginosa produces several proteases, such as an elastase (LasB protease), a LasA protease, and protease IV (PIV), which are thought as significant virulence factors during infection. Regulators of LasA and LasB expression have been identified and well characterized; however, the molecular details of this regulation of protease IV (PIV) remained largely unknown. Here, we describe the interaction between protease IV and the RetS/Rsm signalling pathway, which plays a central role in controlling the production of multiple virulence factors and the switch from planktonic to biofilm lifestyle. We show that the expression of piv was reduced in ΔretS or ΔrsmA strain grown under restrictive conditions but was induced in ΔretS or ΔrsmA mutant grown under rich conditions as compared with wild-type parent. We compare the expression of piv under various conditions and found that iron facilitates RetS/Rsm system to lead this inverse regulation. Moreover, we reveal that the RetS/Rsm pathway regulates PIV production dependent on the alternative sigma factor PvdS. Collectively, this study extends the understanding of the RetS/Rsm regulatory cascade in response to environmental signals and provides insights into how P. aeruginosa adapts to the complex conditions.
Collapse
Affiliation(s)
- Juan Peng
- Key Laboratory of Resources Biology and Biotechnology in Western China, Ministry of Education, College of Life Sciences, Northwest University, Xi'an, ShaanXi, 710069, China
| | - Gukui Chen
- Key Laboratory of Resources Biology and Biotechnology in Western China, Ministry of Education, College of Life Sciences, Northwest University, Xi'an, ShaanXi, 710069, China
| | - Xuejie Xu
- Key Laboratory of Resources Biology and Biotechnology in Western China, Ministry of Education, College of Life Sciences, Northwest University, Xi'an, ShaanXi, 710069, China
| | - Tietao Wang
- Key Laboratory of Resources Biology and Biotechnology in Western China, Ministry of Education, College of Life Sciences, Northwest University, Xi'an, ShaanXi, 710069, China
| | - Haihua Liang
- Key Laboratory of Resources Biology and Biotechnology in Western China, Ministry of Education, College of Life Sciences, Northwest University, Xi'an, ShaanXi, 710069, China
| |
Collapse
|
55
|
Perault AI, Chandler CE, Rasko DA, Ernst RK, Wolfgang MC, Cotter PA. Host Adaptation Predisposes Pseudomonas aeruginosa to Type VI Secretion System-Mediated Predation by the Burkholderia cepacia Complex. Cell Host Microbe 2020; 28:534-547.e3. [PMID: 32755549 PMCID: PMC7554260 DOI: 10.1016/j.chom.2020.06.019] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2020] [Revised: 06/05/2020] [Accepted: 06/24/2020] [Indexed: 12/14/2022]
Abstract
Pseudomonas aeruginosa and Burkholderia cepacia complex (Bcc) species are opportunistic lung pathogens of cystic fibrosis (CF) patients. While P. aeruginosa can initiate long-term infections in younger CF patients, Bcc infections only arise in teenagers and adults. Both P. aeruginosa and Bcc use type VI secretion systems (T6SSs) to mediate interbacterial competition. Here, we show P. aeruginosa isolates from teenage and adult CF patients, but not those from young CF patients, are outcompeted by the epidemic Bcc isolate Burkholderia cenocepacia strain AU1054 in a T6SS-dependent manner. The genomes of susceptible P. aeruginosa isolates harbor T6SS-abrogating mutations, the repair of which, in some cases, rendered the isolates resistant. Moreover, seven of eight Bcc strains outcompeted P. aeruginosa strains isolated from the same patients. Our findings suggest certain mutations that arise as P. aeruginosa adapts to the CF lung abrogate T6SS activity, making P. aeruginosa and its human host susceptible to potentially fatal Bcc superinfection.
Collapse
Affiliation(s)
- Andrew I Perault
- Department of Microbiology and Immunology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Courtney E Chandler
- Department of Microbial Pathogenesis, University of Maryland, Baltimore, Baltimore, MD 21201, USA
| | - David A Rasko
- Institute for Genome Sciences, University of Maryland, Baltimore, Baltimore, MD 21201, USA; Department of Microbiology and Immunology, University of Maryland, Baltimore, Baltimore, MD 21201, USA
| | - Robert K Ernst
- Department of Microbial Pathogenesis, University of Maryland, Baltimore, Baltimore, MD 21201, USA
| | - Matthew C Wolfgang
- Department of Microbiology and Immunology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA; Marsio Lung Institute, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Peggy A Cotter
- Department of Microbiology and Immunology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA.
| |
Collapse
|
56
|
Zhang Y, Pan X, Wang L, Chen L. Iron metabolism in Pseudomonas aeruginosa biofilm and the involved iron-targeted anti-biofilm strategies. J Drug Target 2020; 29:249-258. [PMID: 32969723 DOI: 10.1080/1061186x.2020.1824235] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
Pseudomonas aeruginosa is a gram-negative bacterium that exists in various ecosystems, causing severe infections in patients with AIDS or cystic fibrosis. P. aeruginosa can form biofilm on a variety of surfaces, whereby the bacteria produce defensive substances and enhance antibiotic-resistance, making themselves more adaptable to hostile environments. P. aeruginosa resistance represents one of the main causes of infection-related morbidity and mortality at a global level. Iron is required for the growth of P. aeruginosa biofilm. This review summarises how the iron metabolism contributes to develop biofilm, and more importantly, it may provide some references for the clinic to achieve novel anti-biofilm therapeutics by targeting iron activities.
Collapse
Affiliation(s)
- Yapeng Zhang
- Department of Medical Microbiology, School of Basic Medical Sciences, Central South University, Changsha, China
| | - Xuanhe Pan
- Department of Medical Microbiology, School of Basic Medical Sciences, Central South University, Changsha, China
| | - Linqian Wang
- Department of Clinical Laboratory, Hunan Cancer Hospital, the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, China
| | - Liyu Chen
- Department of Medical Microbiology, School of Basic Medical Sciences, Central South University, Changsha, China
| |
Collapse
|
57
|
Shao X, Xie Y, Zhang Y, Liu J, Ding Y, Wu M, Wang X, Deng X. Novel therapeutic strategies for treating Pseudomonas aeruginosa infection. Expert Opin Drug Discov 2020; 15:1403-1423. [PMID: 32880507 DOI: 10.1080/17460441.2020.1803274] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
INTRODUCTION Persistent infections caused by the superbug Pseudomonas aeruginosa and its resistance to multiple antimicrobial agents are huge threats to patients with cystic fibrosis as well as those with compromised immune systems. Multidrug-resistant P. aeruginosa has posed a major challenge to conventional antibiotics and therapeutic approaches, which show limited efficacy and cause serious side effects. The public demand for new antibiotics is enormous; yet, drug development pipelines have started to run dry with limited targets available for inventing new antibacterial drugs. Consequently, it is important to uncover potential therapeutic targets. AREAS COVERED The authors review the current state of drug development strategies that are promising in terms of the development of novel and potent drugs to treat P. aeruginosa infection. EXPERT OPINION The prevention of P. aeruginosa infection is increasingly challenging. Furthermore, targeting key virulence regulators has great potential for developing novel anti-P. aeruginosa drugs. Additional promising strategies include bacteriophage therapy, immunotherapies, and antimicrobial peptides. Additionally, the authors believe that in the coming years, the overall network of molecular regulatory mechanism of P. aeruginosa virulence will be fully elucidated, which will provide more novel and promising drug targets for treating P. aeruginosa infections.
Collapse
Affiliation(s)
- Xiaolong Shao
- Department of Biomedical Sciences, City University of Hong Kong , Hong Kong SAR, China
| | - Yingpeng Xie
- Department of Biomedical Sciences, City University of Hong Kong , Hong Kong SAR, China
| | - Yingchao Zhang
- Department of Biomedical Sciences, City University of Hong Kong , Hong Kong SAR, China
| | - Jingui Liu
- Department of Biomedical Sciences, City University of Hong Kong , Hong Kong SAR, China
| | - Yiqing Ding
- Department of Biomedical Sciences, City University of Hong Kong , Hong Kong SAR, China
| | - Min Wu
- Department of Biomedical Sciences, University of North Dakota , Grand Forks, North Dakota, USA
| | - Xin Wang
- Department of Biomedical Sciences, City University of Hong Kong , Hong Kong SAR, China
| | - Xin Deng
- Department of Biomedical Sciences, City University of Hong Kong , Hong Kong SAR, China.,Shenzhen Research Institute, City University of Hong Kong , Shenzhen, China
| |
Collapse
|
58
|
Sobrero PM, Valverde C. Comparative Genomics and Evolutionary Analysis of RNA-Binding Proteins of the CsrA Family in the Genus Pseudomonas. Front Mol Biosci 2020; 7:127. [PMID: 32754614 PMCID: PMC7366521 DOI: 10.3389/fmolb.2020.00127] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2020] [Accepted: 06/02/2020] [Indexed: 12/15/2022] Open
Abstract
Gene expression is adjusted according to cellular needs through a combination of mechanisms acting at different layers of the flow of genetic information. At the posttranscriptional level, RNA-binding proteins are key factors controlling the fate of nascent and mature mRNAs. Among them, the members of the CsrA family are small dimeric proteins with heterogeneous distribution across the bacterial tree of life, that act as global regulators of gene expression because they recognize characteristic sequence/structural motifs (short hairpins with GGA triplets in the loop) present in hundreds of mRNAs. The regulatory output of CsrA binding to mRNAs is counteracted in most cases by molecular mimic, non-protein coding RNAs that titrate the CsrA dimers away from the target mRNAs. In γ-proteobacteria, the regulatory modules composed by CsrA homologs and the corresponding antagonistic sRNAs, are mastered by two-component systems of the GacS-GacA type, which control the transcription and the abundance of the sRNAs, thus constituting the rather linear cascade Gac-Rsm that responds to environmental or cellular signals to adjust and coordinate the expression of a set of target genes posttranscriptionally. Within the γ-proteobacteria, the genus Pseudomonas has been shown to contain species with different number of active CsrA (RsmA) homologs and of molecular mimic sRNAs. Here, with the help of the increasing availability of genomic data we provide a comprehensive state-of-the-art picture of the remarkable multiplicity of CsrA lineages, including novel yet uncharacterized paralogues, and discuss evolutionary aspects of the CsrA subfamilies of the genus Pseudomonas, and implications of the striking presence of csrA alleles in natural mobile genetic elements (phages and plasmids).
Collapse
Affiliation(s)
- Patricio Martín Sobrero
- Laboratorio de Fisiología y Genética de Bacterias Beneficiosas para Plantas, Centro de Bioquímica y Microbiología del Suelo, Departamento de Ciencia y Tecnología, Universidad Nacional de Quilmes - CONICET, Buenos Aires, Argentina
| | - Claudio Valverde
- Laboratorio de Fisiología y Genética de Bacterias Beneficiosas para Plantas, Centro de Bioquímica y Microbiología del Suelo, Departamento de Ciencia y Tecnología, Universidad Nacional de Quilmes - CONICET, Buenos Aires, Argentina
| |
Collapse
|
59
|
Wettstadt S, Lai EM, Filloux A. Solving the Puzzle: Connecting a Heterologous Agrobacterium tumefaciens T6SS Effector to a Pseudomonas aeruginosa Spike Complex. Front Cell Infect Microbiol 2020; 10:291. [PMID: 32656098 PMCID: PMC7324665 DOI: 10.3389/fcimb.2020.00291] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2020] [Accepted: 05/18/2020] [Indexed: 12/27/2022] Open
Abstract
The type VI secretion system (T6SS) is a contractile injection apparatus that translocates a spike loaded with various effectors directly into eukaryotic and prokaryotic target cells. Such T6SS spike consists of a needle-shaped trimer of VgrG proteins topped by a conical and sharp PAAR protein that facilitates puncturing of the target membrane. T6SS-delivered effector proteins can be either fused to one of the two spike proteins or interact with either in a highly specific manner. In Agrobacterium tumefaciens the T6SS effector Tde1 is targeted to its cognate VgrG1 protein. Here, we attempted to use a VgrG shuttle to deliver a heterologous T6SS effector by directing Tde1 onto a T6SS spike in Pseudomonas aeruginosa. For this, we designed chimeras between VgrG1 from A. tumefaciens and VgrG1a from P. aeruginosa and showed that modification of the spike protein hampered T6SS functionality in the presence of the Tde1 effector complex. We provide evidence suggesting that Tde1 specifically binds to the VgrG spike in the heterologous environment and propose that there are additional requirements to allow proper effector delivery and translocation. Our work sheds light on complex aspects of the molecular mechanisms of T6SS delivery and highlights some limitations on how effectors can be translocated using this nanomachine.
Collapse
Affiliation(s)
- Sarah Wettstadt
- MRC Centre for Molecular Bacteriology and Infection, Department of Life Sciences, Imperial College London, London, United Kingdom
| | - Erh-Min Lai
- Institute of Plant and Microbial Biology, Academia Sinica, Taipei, Taiwan
| | - Alain Filloux
- MRC Centre for Molecular Bacteriology and Infection, Department of Life Sciences, Imperial College London, London, United Kingdom
| |
Collapse
|
60
|
Badal D, Jayarani AV, Kollaran MA, Kumar A, Singh V. Pseudomonas aeruginosa biofilm formation on endotracheal tubes requires multiple two-component systems. J Med Microbiol 2020; 69:906-919. [PMID: 32459613 DOI: 10.1099/jmm.0.001199] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023] Open
Abstract
Introduction. Indwelling medical devices such as endotracheal tubes (ETTs), urinary catheters, vascular access devices, tracheostomies and feeding tubes are often associated with hospital-acquired infections. Bacterial biofilm formed on the ETTs in intubated patients is a significant risk factor associated with ventilator-associated pneumonia. Pseudomonas aeruginosa is one of the four frequently encountered bacteria responsible for causing pneumonia, and the biofilm formation on ETTs. However, understanding of biofilm formation on ETT and interventions to prevent biofilm remains lagging. The ability to sense and adapt to external cues contributes to their success. Thus, the biofilm formation is likely to be influenced by the two-component systems (TCSs) that are composed of a membrane-associated sensor kinase and an intracellular response regulator.Aim. This study aims to establish an in vitro method to analyse the P. aeruginosa biofilm formation on ETTs, and identify the TCSs that contribute to this process.Methodology. In total, 112 P. aeruginosa PA14 TCS mutants were tested for their ability to form biofilm on ETTs, their effect on quorum sensing (QS) and motility.Results. Out of 112 TCS mutants studied, 56 had altered biofilm biomass on ETTs. Although the biofilm formation on ETTs is QS-dependent, none of the 56 loci controlled quorum signal. Of these, 18 novel TCSs specific to ETT biofilm were identified, namely, AauS, AgtS, ColR, CopS, CprR, NasT, KdpD, ParS, PmrB, PprA, PvrS, RcsC, PA14_11120, PA14_32580, PA14_45880, PA14_49420, PA14_52240, PA14_70790. The set of 56 included the GacS network, TCS proteins involved in fimbriae synthesis, TCS proteins involved in antimicrobial peptide resistance, and surface-sensing. Additionally, several of the TCS-encoding genes involved in biofilm formation on ETTs were found to be linked to flagellum-dependent swimming motility.Conclusions. Our study established an in vitro method for studying P. aeruginosa biofilm formation on the ETT surfaces. We also identified novel ETT-specific TCSs that could serve as targets to prevent biofilm formation on indwelling devices frequently used in clinical settings.
Collapse
Affiliation(s)
- Divakar Badal
- Department of Biosystems Sciences and Engineering, Indian Institute of Science, Bangalore, Karnataka, INDIA
| | - Abhijith Vimal Jayarani
- Department of Molecular Reproduction, Development and Genetics, Indian Institute of Science, Bangalore, Karnataka, INDIA
| | - Mohammed Ameen Kollaran
- Department of Molecular Reproduction, Development and Genetics, Indian Institute of Science, Bangalore, Karnataka, INDIA
| | - Aloke Kumar
- Department of Mechanical Engineering, Indian Institute of Science, Bangalore, Karnataka, INDIA.,Department of Biosystems Sciences and Engineering, Indian Institute of Science, Bangalore, Karnataka, INDIA
| | - Varsha Singh
- Department of Molecular Reproduction, Development and Genetics, Indian Institute of Science, Bangalore, Karnataka, INDIA.,Department of Biosystems Sciences and Engineering, Indian Institute of Science, Bangalore, Karnataka, INDIA
| |
Collapse
|
61
|
Karna SLR, Nguyen JQ, Evani SJ, Qian LW, Chen P, Abercrombie JJ, Sebastian EA, Fourcaudot AB, Leung KP. T3SS and alginate biosynthesis of Pseudomonas aeruginosa impair healing of infected rabbit wounds. Microb Pathog 2020; 147:104254. [PMID: 32416139 DOI: 10.1016/j.micpath.2020.104254] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2019] [Revised: 05/05/2020] [Accepted: 05/08/2020] [Indexed: 10/24/2022]
Abstract
Pseudomonas aeruginosa (a Gram-negative bacterium) is an opportunistic pathogen found in many infected wounds and is known to impair healing. To test the hypothesis that knocking out P. aeruginosa genes that are overexpressed during wound infection can cripple a pathogen's ability to impair healing, we assessed two pathways: the Type III secretion system (T3SS) and alginate biosynthesis. We generated single- and double-mutant strains of ExsA (T3SS activator), AlgD (GDP- mannose 6-dehydrogenase of alginate biosynthesis) and their complemented strains and evaluated their pathogenicity in a rabbit ear full-thickness excision-wound infection model. Wounds were inoculated with different strains (wild type, mutants, and complementary strains) at 106 CFU/wound on post-wounding day 3. After 24 h, 5 days and 9 days post-infection, wounds were harvested for measuring bacterial counts (viable and total) and wound healing (epithelial gap). On day 9 post-infection, the viable counts of the double mutant, (exsA/algD)‾ were 100-fold lower than the counts of the wild type (PAO1), single mutants, or the complement double-mutant, (exsA/algD)‾/+. Also, when compared to wounds infected with wild type or control strains, wounds infected with the double-knockout mutant was less inhibitory to wound healing (p < 0.05). Additionally, the double mutant showed greater susceptibility to macrophage phagocytosis in vitro than all other strains (p < 0.001). In conclusion, compared to single gene knockouts, double knockout of virulence genes in T3SS pathway and alginate biosynthesis pathway is more effective in reducing P. aeruginosa pathogenicity and its ability to impair wound healing. This study highlights the necessity of a dual-targeted anti-virulence strategy to improve healing outcomes of P. aeruginosa-infected wounds.
Collapse
Affiliation(s)
- S L Rajasekhar Karna
- Division of Combat Wound Repair, US Army Institute of Surgical Research, JBSA Fort Sam Houston, TX, USA
| | - Jesse Q Nguyen
- Division of Combat Wound Repair, US Army Institute of Surgical Research, JBSA Fort Sam Houston, TX, USA
| | - Shankar Jaikishan Evani
- Division of Combat Wound Repair, US Army Institute of Surgical Research, JBSA Fort Sam Houston, TX, USA
| | - Li-Wu Qian
- Division of Combat Wound Repair, US Army Institute of Surgical Research, JBSA Fort Sam Houston, TX, USA
| | - Ping Chen
- Division of Combat Wound Repair, US Army Institute of Surgical Research, JBSA Fort Sam Houston, TX, USA
| | - Johnathan J Abercrombie
- Division of Combat Wound Repair, US Army Institute of Surgical Research, JBSA Fort Sam Houston, TX, USA
| | - Eliza A Sebastian
- Division of Combat Wound Repair, US Army Institute of Surgical Research, JBSA Fort Sam Houston, TX, USA
| | - Andrea B Fourcaudot
- Division of Combat Wound Repair, US Army Institute of Surgical Research, JBSA Fort Sam Houston, TX, USA
| | - Kai P Leung
- Division of Combat Wound Repair, US Army Institute of Surgical Research, JBSA Fort Sam Houston, TX, USA.
| |
Collapse
|
62
|
Wettstadt S, Filloux A. Manipulating the type VI secretion system spike to shuttle passenger proteins. PLoS One 2020; 15:e0228941. [PMID: 32101557 PMCID: PMC7043769 DOI: 10.1371/journal.pone.0228941] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2019] [Accepted: 01/27/2020] [Indexed: 12/21/2022] Open
Abstract
The type VI secretion system (T6SS) is a contractile injection apparatus that translocates a spike loaded with various effectors directly into eukaryotic or prokaryotic target cells. Pseudomonas aeruginosa can load either one of its three T6SSs with a variety of toxic bullets using different but specific modes. The T6SS spike, which punctures the bacterial cell envelope allowing effector transport, consists of a torch-like VgrG trimer on which sits a PAAR protein sharpening the VgrG tip. VgrG itself sits on the Hcp tube and all elements, packed into a T6SS sheath, are propelled out of the cell and into target cells. On occasion, effectors are covalent extensions of VgrG, PAAR or Hcp proteins, which are then coined "evolved" components as opposed to canonical. Here, we show how various passenger domains could be fused to the C terminus of a canonical VgrG, VgrG1a from P. aeruginosa, and be sent into the bacterial culture supernatant. There is no restriction on the passenger type, although the efficacy may vary greatly, since we used either an unrelated T6SS protein, β-lactamase, a covalent extension of an "evolved" VgrG, VgrG2b, or a Hcp-dependent T6SS toxin, Tse2. Our data further highlights an exceptional modularity/flexibility for loading the T6SS nano-weapon. Refining the parameters to optimize delivery of passenger proteins of interest would have attractive medical and industrial applications. This may for example involve engineering the T6SS as a delivery system to shuttle toxins into either bacterial pathogens or tumour cells which would be an original approach in the fight against antimicrobial resistant bacteria or cancer.
Collapse
Affiliation(s)
- Sarah Wettstadt
- MRC Centre for Molecular Bacteriology and Infection, Department of Life Sciences, Imperial College London, London, United Kingdom
| | - Alain Filloux
- MRC Centre for Molecular Bacteriology and Infection, Department of Life Sciences, Imperial College London, London, United Kingdom
| |
Collapse
|
63
|
Dave A, Samarth A, Karolia R, Sharma S, Karunakaran E, Partridge L, MacNeil S, Monk PN, Garg P, Roy S. Characterization of Ocular Clinical Isolates of Pseudomonas aeruginosa from Non-Contact Lens Related Keratitis Patients from South India. Microorganisms 2020; 8:microorganisms8020260. [PMID: 32075262 PMCID: PMC7074794 DOI: 10.3390/microorganisms8020260] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2020] [Revised: 02/10/2020] [Accepted: 02/13/2020] [Indexed: 12/25/2022] Open
Abstract
P. aeruginosa is the most common Gram-negative organism causing bacterial keratitis. Pseudomonas utilizes various virulence mechanisms to adhere and colonize in the host tissue. In the present study, we examined virulence factors associated with thirty-four clinical P. aeruginosa isolates collected from keratitis patients seeking care at L V Prasad Eye Institute, Hyderabad. The virulence-associated genes in all the isolates were genotyped and characteristics such as antibiotic susceptibility, biofilm formation, swarming motility, pyoverdine production and cell cytotoxicity were analyzed. All the isolates showed the presence of genes related to biofilm formation, alkaline proteases and elastases; however, there was a difference in the presence of genes related to the type III secretion system (T3SS). A higher prevalence of exoU+ genotype was noted in the drug-resistant isolates. All the isolates were capable of forming biofilms and more than 70% of the isolates showed good swarming motility. Pyoverdine production was not associated with the T3SS genotype. In the cytotoxicity assay, the presence of exoS,exoU or both resulted in higher cytotoxicity compared to the absence of both the genes. Overall, our results suggest that the T3SS profile is a good indicator of P. aeruginosa virulence characteristics and the isolates lacking the effector genes may have evolved alternate mechanisms of colonization in the host.
Collapse
Affiliation(s)
- Alpana Dave
- Prof. Brien Holden Eye Research Centre, LV Prasad Eye Institute, Hyderabad 500034, India; (A.D.); (A.S.); (P.G.)
| | - Apurwa Samarth
- Prof. Brien Holden Eye Research Centre, LV Prasad Eye Institute, Hyderabad 500034, India; (A.D.); (A.S.); (P.G.)
| | - Roshni Karolia
- Jhaveri Microbiology Centre, LV Prasad Eye Institute, Hyderabad 500034, India; (R.K.); (S.S.)
| | - Savitri Sharma
- Jhaveri Microbiology Centre, LV Prasad Eye Institute, Hyderabad 500034, India; (R.K.); (S.S.)
| | - Esther Karunakaran
- Department of Chemical and Biological Engineering, University of Sheffield, Sheffield S102TG, UK;
| | - Lynda Partridge
- Department of Molecular Biology and Biotechnology, University of Sheffield, Sheffield S102TG, UK;
| | - Sheila MacNeil
- Department of Material Science and Engineering, University of Sheffield, Sheffield S102TG, UK;
| | - Peter N. Monk
- Department of Infection Department of Infection, Immunity and Cardiovascular Disease, University of Sheffield, Sheffield S102RX, UK;
| | - Prashant Garg
- Prof. Brien Holden Eye Research Centre, LV Prasad Eye Institute, Hyderabad 500034, India; (A.D.); (A.S.); (P.G.)
| | - Sanhita Roy
- Prof. Brien Holden Eye Research Centre, LV Prasad Eye Institute, Hyderabad 500034, India; (A.D.); (A.S.); (P.G.)
- Correspondence: ; Tel.: +91-40-30612529; Fax: +91-40-30612535
| |
Collapse
|
64
|
Wood TE, Howard SA, Wettstadt S, Filloux A. PAAR proteins act as the 'sorting hat' of the type VI secretion system. MICROBIOLOGY-SGM 2020; 165:1203-1218. [PMID: 31380737 PMCID: PMC7376260 DOI: 10.1099/mic.0.000842] [Citation(s) in RCA: 41] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Bacteria exist in polymicrobial environments and compete to prevail in a niche. The type VI secretion system (T6SS) is a nanomachine employed by Gram-negative bacteria to deliver effector proteins into target cells. Consequently, T6SS-positive bacteria produce a wealth of antibacterial effector proteins to promote their survival among a prokaryotic community. These toxins are loaded onto the VgrG–PAAR spike and Hcp tube of the T6SS apparatus and recent work has started to document the specificity of effectors for certain spike components. Pseudomonas aeruginosa encodes several PAAR proteins, whose roles have been poorly investigated. Here we describe a phospholipase family antibacterial effector immunity pair from Pseudomonas aeruginosa and demonstrate that a specific PAAR protein is necessary for the delivery of the effector and its cognate VgrG. Furthermore, the PAAR protein appears to restrict the delivery of other phospholipase effectors that utilise distinct VgrG proteins. We provide further evidence for competition for PAAR protein recruitment to the T6SS apparatus, which determines the identities of the delivered effectors.
Collapse
Affiliation(s)
- Thomas E Wood
- Present address: Department of Microbiology, Blavatnik Institute, Harvard Medical School, Boston, MA, USA.,Present address: Department of Medicine, Division of Infectious Diseases, Massachusetts General Hospital, Cambridge, MA, USA.,MRC Centre for Molecular Bacteriology and Infection, Department of Life Sciences, Imperial College, London, London, SW7 2AZ, UK
| | - Sophie A Howard
- MRC Centre for Molecular Bacteriology and Infection, Department of Life Sciences, Imperial College, London, London, SW7 2AZ, UK
| | - Sarah Wettstadt
- Present address: Department of Environmental Protection, Estación Experimental de Zaidín - Consejo Superior de Investigaciones Científicas, Granada, Spain.,MRC Centre for Molecular Bacteriology and Infection, Department of Life Sciences, Imperial College, London, London, SW7 2AZ, UK
| | - Alain Filloux
- MRC Centre for Molecular Bacteriology and Infection, Department of Life Sciences, Imperial College, London, London, SW7 2AZ, UK
| |
Collapse
|
65
|
Sharp JS, Rietsch A, Dove SL. RNase E Promotes Expression of Type III Secretion System Genes in Pseudomonas aeruginosa. J Bacteriol 2019; 201:e00336-19. [PMID: 31481542 PMCID: PMC6805110 DOI: 10.1128/jb.00336-19] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2019] [Accepted: 08/26/2019] [Indexed: 12/19/2022] Open
Abstract
Pseudomonas aeruginosa is an important opportunistic pathogen that employs a type III secretion system (T3SS) to inject effector proteins into host cells. Using a protein depletion system, we show that the endoribonuclease RNase E positively regulates expression of the T3SS genes. We also present evidence that RNase E antagonizes the expression of genes of the type VI secretion system and limits biofilm production in P. aeruginosa Thus, RNase E, which is thought to be the principal endoribonuclease involved in the initiation of RNA degradation in P. aeruginosa, plays a key role in controlling the production of factors involved in both acute and chronic stages of infection. Although the posttranscriptional regulator RsmA is also known to positively regulate expression of the T3SS genes, we find that RNase E does not appreciably influence the abundance of RsmA in P. aeruginosa Moreover, we show that RNase E still exerts its effects on T3SS gene expression in cells lacking all four of the key small regulatory RNAs that function by sequestering RsmA.IMPORTANCE The type III secretion system (T3SS) is a protein complex produced by many Gram-negative pathogens. It is capable of injecting effector proteins into host cells that can manipulate cell metabolism and have toxic effects. Understanding how the T3SS is regulated is important in understanding the pathogenesis of bacteria with such systems. Here, we show that RNase E, which is typically thought of as a global regulator of RNA stability, plays a role in regulating the T3SS in Pseudomonas aeruginosa Depleting RNase E results in the loss of T3SS gene expression as well as a concomitant increase in biofilm formation. These observations are reminiscent of the phenotypes associated with the loss of activity of the posttranscriptional regulator RsmA. However, RNase E-mediated regulation of these systems does not involve changes in the abundance of RsmA and is independent of the known small regulatory RNAs that modulate RsmA activity.
Collapse
Affiliation(s)
- Josh S Sharp
- Division of Infectious Diseases, Boston Children's Hospital, Harvard Medical School, Boston, Massachusetts, USA
- Biology Department, Northern Michigan University, Marquette, Michigan, USA
| | - Arne Rietsch
- Department of Molecular Biology and Microbiology, Case Western Reserve University, Cleveland, Ohio, USA
| | - Simon L Dove
- Division of Infectious Diseases, Boston Children's Hospital, Harvard Medical School, Boston, Massachusetts, USA
| |
Collapse
|
66
|
Sana TG, Lomas R, Gimenez MR, Laubier A, Soscia C, Chauvet C, Conesa A, Voulhoux R, Ize B, Bleves S. Differential Modulation of Quorum Sensing Signaling through QslA in Pseudomonas aeruginosa Strains PAO1 and PA14. J Bacteriol 2019; 201:e00362-19. [PMID: 31405911 PMCID: PMC6779463 DOI: 10.1128/jb.00362-19] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2019] [Accepted: 08/06/2019] [Indexed: 11/20/2022] Open
Abstract
Two clinical isolates of the opportunist pathogen Pseudomonas aeruginosa named PAO1 and PA14 are commonly studied in research laboratories. Despite the isolates being closely related, PA14 exhibits increased virulence compared to that of PAO1 in various models. To determine which players are responsible for the hypervirulence phenotype of the PA14 strain, we elected a transcriptomic approach through RNA sequencing. We found 2,029 genes that are differentially expressed between the two strains, including several genes that are involved with or regulated by quorum sensing (QS), known to control most of the virulence factors in P. aeruginosa Among them, we chose to focus our study on QslA, an antiactivator of QS whose expression was barely detectable in the PA14 strain according our data. We hypothesized that lack of expression of qslA in PA14 could be responsible for higher QS expression in the PA14 strain, possibly explaining its hypervirulence phenotype. After confirming that QslA protein was highly produced in PAO1 but not in the PA14 strain, we obtained evidence showing that a PAO1 deletion strain of qslA has faster QS gene expression kinetics than PA14. Moreover, known virulence factors activated by QS, such as (i) pyocyanin production, (ii) H2-T6SS (type VI secretion system) gene expression, and (iii) Xcp-T2SS (type II secretion system) machinery production and secretion, were all lower in PAO1 than in PA14, due to higher qslA expression. However, biofilm formation and cytotoxicity toward macrophages, although increased in PA14 compared to PAO1, were independent of QslA control. Together, our findings implicated differential qslA expression as a major determinant of virulence factor expression in P. aeruginosa strains PAO1 and PA14.IMPORTANCEPseudomonas aeruginosa is an opportunistic pathogen responsible for acute nosocomial infections and chronic pulmonary infections. P. aeruginosa strain PA14 is known to be hypervirulent in different hosts. Despite several studies in the field, the underlining molecular mechanisms sustaining this phenotype remain enigmatic. Here we provide evidence that the PA14 strain has faster quorum sensing (QS) kinetics than the PAO1 strain, due to the lack of QslA expression, an antiactivator of QS. QS is a major regulator of virulence factors in P. aeruginosa; therefore, we propose that the hypervirulent phenotype of the PA14 strain is, at least partially, due to the lack of QslA expression. This mechanism could be of great importance, as it could be conserved among other P. aeruginosa isolates.
Collapse
Affiliation(s)
- T G Sana
- Laboratoire d'Ingénierie des Systèmes Macromoléculaires-UMR7255, Institut de Microbiologie de la Méditerranée, Aix-Marseille University and CNRS, Marseille, France
| | - R Lomas
- Genomics of Gene Expression Laboratory, Centro de Investigación Príncipe Felipe, Valencia, Spain
| | - M R Gimenez
- Laboratoire d'Ingénierie des Systèmes Macromoléculaires-UMR7255, Institut de Microbiologie de la Méditerranée, Aix-Marseille University and CNRS, Marseille, France
| | - A Laubier
- Laboratoire d'Ingénierie des Systèmes Macromoléculaires-UMR7255, Institut de Microbiologie de la Méditerranée, Aix-Marseille University and CNRS, Marseille, France
| | - C Soscia
- Laboratoire d'Ingénierie des Systèmes Macromoléculaires-UMR7255, Institut de Microbiologie de la Méditerranée, Aix-Marseille University and CNRS, Marseille, France
| | - C Chauvet
- Laboratoire d'Ingénierie des Systèmes Macromoléculaires-UMR7255, Institut de Microbiologie de la Méditerranée, Aix-Marseille University and CNRS, Marseille, France
| | - A Conesa
- Microbiology and Cell Science, IFAS, Genetics Insitute, University of Florida, Gainesville, Florida, USA
| | - R Voulhoux
- Laboratoire d'Ingénierie des Systèmes Macromoléculaires-UMR7255, Institut de Microbiologie de la Méditerranée, Aix-Marseille University and CNRS, Marseille, France
| | - B Ize
- Laboratoire d'Ingénierie des Systèmes Macromoléculaires-UMR7255, Institut de Microbiologie de la Méditerranée, Aix-Marseille University and CNRS, Marseille, France
| | - S Bleves
- Laboratoire d'Ingénierie des Systèmes Macromoléculaires-UMR7255, Institut de Microbiologie de la Méditerranée, Aix-Marseille University and CNRS, Marseille, France
| |
Collapse
|
67
|
Mucin glycans attenuate the virulence of Pseudomonas aeruginosa in infection. Nat Microbiol 2019; 4:2146-2154. [PMID: 31611643 PMCID: PMC7157942 DOI: 10.1038/s41564-019-0581-8] [Citation(s) in RCA: 146] [Impact Index Per Article: 24.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2018] [Accepted: 09/09/2019] [Indexed: 12/17/2022]
Abstract
A slimy, hydrated mucus gel lines all wet epithelia in the human body, including the eyes, lungs, and gastrointestinal and urogenital tracts. Mucus forms the first line of defence while housing trillions of microorganisms that constitute the microbiota1. Rarely do these microorganisms cause infections in healthy mucus1, suggesting that mechanisms exist in the mucus layer that regulate virulence. Using the bacterium Pseudomonas aeruginosa and a three-dimensional (3D) laboratory model of native mucus, we determined that exposure to mucus triggers downregulation of virulence genes that are involved in quorum sensing, siderophore biosynthesis and toxin secretion, and rapidly disintegrates biofilms-a hallmark of mucosal infections. This phenotypic switch is triggered by mucins, which are polymers that are densely grafted with O-linked glycans that form the 3D scaffold inside mucus. Here, we show that isolated mucins act at various scales, suppressing distinct virulence pathways, promoting a planktonic lifestyle, reducing cytotoxicity to human epithelia in vitro and attenuating infection in a porcine burn model. Other viscous polymer solutions lack the same effect, indicating that the regulatory function of mucin does not result from its polymeric structure alone. We identify that interactions with P. aeruginosa are mediated by mucin-associated glycans (mucin glycans). By isolating glycans from the mucin backbone, we assessed the collective activity of hundreds of complex structures in solution. Similar to their grafted counterparts, free mucin glycans potently regulate bacterial phenotypes even at relatively low concentrations. This regulatory function is likely dependent on glycan complexity, as monosaccharides do not attenuate virulence. Thus, mucin glycans are potent host signals that 'tame' microorganisms, rendering them less harmful to the host.
Collapse
|
68
|
Krir A, Dhraief S, Messadi A, Thabet L. Profil bactériologique et résistance aux antibiotiques des bactéries isolées dans un service de réanimation des brûlés durant sept ans. ANNALS OF BURNS AND FIRE DISASTERS 2019; 32:197-202. [PMID: 32313533 PMCID: PMC7155405] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 07/23/2019] [Accepted: 07/30/2019] [Indexed: 06/11/2023]
Abstract
This study was retrospective, conducted over seven years at the Trauma and Burn Centre. Its purpose was to establish the bacteriological profile and antibiotic resistance of isolated bacteria in patients admitted to the Burn Intensive Care Unit. Identification was carried out according to the conventional methods and antibiotic susceptibility was analyzed according to the standards of the Antibiogram Committee of the French Society of Microbiology. Pseudomonas aeruginosa was the main isolated bacterium, followed by Staphylococcus aureus, Klebsiella pneumoniae and Acinetobacter baumannii. These strains were isolated mainly from haemocultures (37%). The resistance of Pseudomonas aeruginosa to ceftazidime increased from 9.2% in 2012 to 53.5% in 2018. The resistance to imipenem and ciprofloxacin was 63.3% and 42.9%, respectively. Four strains were resistant to colistin. The resistance of S. aureus to meticillin decreased from 65.3% in 2012 to 41.6% in 2018. All strains were susceptible to glycopeptides, tigecycline and linezolid. A. baumannii was multi-resistant to antibiotics with 81.8% resistance to ceftazidime, 88.9% to amikacin, 90.5% to ciprofloxacin and 94.5% to imipenem. Sixteen strains were resistant to colistin. Concerning K. pneumoniae, 77.5% of strains were resistant to cefotaxime and 5.2% to imipenem. Two strains were resistant to colistin. Vancomycin resistance in Enterococcus faecium increased from 33.4% in 2012 to 72.2% in 2018. Multidrug resistance in burn patients calls for an epidemiological surveillance of bacterial ecology and the application of hygiene measures.
Collapse
Affiliation(s)
- a. Krir
- Asma Krir
Laboratoire de Biologie Médicale et Banque du Sang, Centre de Traumatologie et des Grands Brûlésrue du 1er mai, Ben Arous 2013Tunisie +216 53 918 267+216 71 389 652
| | - S. Dhraief
- Laboratoire de Biologie Médicale et Banque du Sang, Centre de Traumatologie et des Grands Brûlés, Ben Arous, Tunisie
| | - A.A. Messadi
- Service de Réanimation des Brûlés, Centre de Traumatologie et des Grands Brûlés, Ben Arous, Tunisie
| | - L. Thabet
- Laboratoire de Biologie Médicale et Banque du Sang, Centre de Traumatologie et des Grands Brûlés, Ben Arous, Tunisie
| |
Collapse
|
69
|
Ahator SD, Zhang L. Small Is Mighty—Chemical Communication Systems in Pseudomonas aeruginosa. Annu Rev Microbiol 2019; 73:559-578. [DOI: 10.1146/annurev-micro-020518-120044] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Pseudomonas aeruginosa is an opportunistic pathogen that causes a variety of acute and chronic infections. Usually a commensal on the host body, P. aeruginosa is capable of transforming into a virulent pathogen upon sensing favorable changes in the host immune system or stress cues. P. aeruginosa infections are hard to eradicate, because this pathogen has developed strong resistance to most conventional antibiotics; in addition, in chronic infections it commonly forms a biofilm matrix, which provides bacterial cells a protected environment to withstand various stresses including antibiotics. Given its importance as a human pathogen and its notorious antimicrobial tolerance, P. aeruginosa has been the subject of intensive investigations internationally. Research progress over the last two decades has unveiled a range of chemical communication systems in this pathogen. These diversified chemical communication systems endow P. aeruginosa a superb ability and remarkable flexibility to coordinate and modulate accordingly the transcriptional expression of various sets of genes associated with virulence and other physiologic activities in response to environmental changes. A fair understanding of the chemical signaling mechanisms with which P. aeruginosa governs virulence gene expression may hold the key to developing alternative therapeutic interventions that control and prevent bacterial infections.
Collapse
Affiliation(s)
- Stephen Dela Ahator
- Guangdong Province Key Laboratory of Microbial Signals and Disease Control, Integrative Microbiology Research Center, South China Agricultural University, Guangzhou 510642, China
| | - LianHui Zhang
- Guangdong Province Key Laboratory of Microbial Signals and Disease Control, Integrative Microbiology Research Center, South China Agricultural University, Guangzhou 510642, China
| |
Collapse
|
70
|
Guła G, Dorotkiewicz-Jach A, Korzekwa K, Valvano MA, Drulis-Kawa Z. Complex Signaling Networks Controlling Dynamic Molecular Changes in Pseudomonas aeruginosa Biofilm. Curr Med Chem 2019; 26:1979-1993. [PMID: 30207213 DOI: 10.2174/0929867325666180912110151] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2018] [Revised: 07/11/2018] [Accepted: 08/31/2018] [Indexed: 02/06/2023]
Abstract
The environment exerts strong influence on microbes. Adaptation of microbes to changing conditions is a dynamic process regulated by complex networks. Pseudomonas aeruginosa is a life-threating, versatile opportunistic and multi drug resistant pathogen that provides a model to investigate adaptation mechanisms to environmental changes. The ability of P. aeruginosa to form biofilms and to modify virulence in response to environmental changes is coordinated by various mechanisms including two-component systems (TCS), and secondary messengers involved in quorum sensing (QS) and c-di-GMP networks (diguanylate cyclase systems, DGC). In this review, we focus on the role of c-di-GMP during biofilm formation. We describe TCS and QS signal cascades regulated by c-di-GMP in response to changes in the external environment. We present a complex signaling network dynamically changing during the transition of P. aeruginosa from the free-living to sessile mode of growth.
Collapse
Affiliation(s)
- Grzegorz Guła
- Department of Pathogen Biology and Immunology, Institute of Genetics and Microbiology, University of Wroclaw, Przybyszewskiego 63/77, 51-148 Wroclaw, Poland
| | - Agata Dorotkiewicz-Jach
- Department of Pathogen Biology and Immunology, Institute of Genetics and Microbiology, University of Wroclaw, Przybyszewskiego 63/77, 51-148 Wroclaw, Poland
| | - Kamila Korzekwa
- Department of Microbiology, Institute of Genetics and Microbiology, University of Wroclaw, Przybyszewskiego 63/77, 51-148 Wroclaw, Poland
| | - Miguel A Valvano
- Wellcome- Wolfson Institute for Experimental Medicine, Queen's University Belfast, Queen's University Belfast, 97 Lisburn Road, Belfast BT9 7BL, United Kingdom
| | - Zuzanna Drulis-Kawa
- Department of Pathogen Biology and Immunology, Institute of Genetics and Microbiology, University of Wroclaw, Przybyszewskiego 63/77, 51-148 Wroclaw, Poland
| |
Collapse
|
71
|
An integrated genomic regulatory network of virulence-related transcriptional factors in Pseudomonas aeruginosa. Nat Commun 2019; 10:2931. [PMID: 31270321 PMCID: PMC6610081 DOI: 10.1038/s41467-019-10778-w] [Citation(s) in RCA: 97] [Impact Index Per Article: 16.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2018] [Accepted: 05/30/2019] [Indexed: 01/12/2023] Open
Abstract
The virulence of Pseudomonas aeruginosa, a Gram-negative opportunistic pathogen, is regulated by many transcriptional factors (TFs) that control the expression of quorum sensing and protein secretion systems. Here, we report a genome-wide, network-based approach to dissect the crosstalk between 20 key virulence-related TFs. Using chromatin immunoprecipitation coupled with high-throughput sequencing (ChIP-seq), as well as RNA-seq, we identify 1200 TF-bound genes and 4775 differentially expressed genes. We experimentally validate 347 of these genes as functional target genes, and describe the regulatory relationships of the 20 TFs with their targets in a network that we call ‘Pseudomonas aeruginosa genomic regulatory network’ (PAGnet). Analysis of the network led to the identification of novel functions for two TFs (ExsA and GacA) in quorum sensing and nitrogen metabolism. Furthermore, we present an online platform and R package based on PAGnet to facilitate updating and user-customised analyses. The virulence of Pseudomonas aeruginosa is regulated by many transcriptional factors (TFs). Here, the authors study the crosstalk between 20 key virulence-related TFs, validate 347 functional target genes, and describe the regulatory relationships of the 20 TFs with their targets in a network that is available as an online platform.
Collapse
|
72
|
Fitting Pieces into the Puzzle of Pseudomonas aeruginosa Type III Secretion System Gene Expression. J Bacteriol 2019; 201:JB.00209-19. [PMID: 31010903 DOI: 10.1128/jb.00209-19] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Type III secretion systems (T3SS) are widely distributed in Gram-negative microorganisms and critical for host-pathogen and host-symbiont interactions with plants and animals. Central features of the T3SS are a highly conserved set of secretion and translocation genes and contact dependence wherein host-pathogen interactions trigger effector protein delivery and serve as an inducing signal for T3SS gene expression. In addition to these conserved features, there are pathogen-specific properties that include a unique repertoire of effector genes and mechanisms to control T3SS gene expression. The Pseudomonas aeruginosa T3SS serves as a model system to understand transcriptional and posttranscriptional mechanisms involved in the control of T3SS gene expression. The central regulatory feature is a partner-switching system that controls the DNA-binding activity of ExsA, the primary regulator of T3SS gene expression. Superimposed upon the partner-switching mechanism are cyclic AMP and cyclic di-GMP signaling systems, two-component systems, global regulators, and RNA-binding proteins that have positive and negative effects on ExsA transcription and/or synthesis. In the present review, we discuss advances in our understanding of how these regulatory systems orchestrate the activation of T3SS gene expression in the context of acute infections and repression of the T3SS as P. aeruginosa adapts to and colonizes the cystic fibrosis airways.
Collapse
|
73
|
Francis VI, Porter SL. Multikinase Networks: Two-Component Signaling Networks Integrating Multiple Stimuli. Annu Rev Microbiol 2019; 73:199-223. [PMID: 31112439 DOI: 10.1146/annurev-micro-020518-115846] [Citation(s) in RCA: 47] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Bacteria depend on two-component systems to detect and respond to threats. Simple pathways comprise a single sensor kinase (SK) that detects a signal and activates a response regulator protein to mediate an appropriate output. These simple pathways with only a single SK are not well suited to making complex decisions where multiple different stimuli need to be evaluated. A recently emerging theme is the existence of multikinase networks (MKNs) where multiple SKs collaborate to detect and integrate numerous different signals to regulate a major lifestyle switch, e.g., between virulence, sporulation, biofilm formation, and cell division. In this review, the role of MKNs and the phosphosignaling mechanisms underpinning their signal integration and decision making are explored.
Collapse
Affiliation(s)
- Vanessa I Francis
- Biosciences, College of Life and Environmental Sciences, University of Exeter, Exeter EX4 4QD, United Kingdom; ,
| | - Steven L Porter
- Biosciences, College of Life and Environmental Sciences, University of Exeter, Exeter EX4 4QD, United Kingdom; ,
| |
Collapse
|
74
|
Bhagirath AY, Li Y, Patidar R, Yerex K, Ma X, Kumar A, Duan K. Two Component Regulatory Systems and Antibiotic Resistance in Gram-Negative Pathogens. Int J Mol Sci 2019; 20:E1781. [PMID: 30974906 PMCID: PMC6480566 DOI: 10.3390/ijms20071781] [Citation(s) in RCA: 99] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2019] [Revised: 04/05/2019] [Accepted: 04/08/2019] [Indexed: 12/17/2022] Open
Abstract
Gram-negative pathogens such as Klebsiella pneumoniae, Acinetobacter baumannii, and Pseudomonas aeruginosa are the leading cause of nosocomial infections throughout the world. One commonality shared among these pathogens is their ubiquitous presence, robust host-colonization and most importantly, resistance to antibiotics. A significant number of two-component systems (TCSs) exist in these pathogens, which are involved in regulation of gene expression in response to environmental signals such as antibiotic exposure. While the development of antimicrobial resistance is a complex phenomenon, it has been shown that TCSs are involved in sensing antibiotics and regulating genes associated with antibiotic resistance. In this review, we aim to interpret current knowledge about the signaling mechanisms of TCSs in these three pathogenic bacteria. We further attempt to answer questions about the role of TCSs in antimicrobial resistance. We will also briefly discuss how specific two-component systems present in K. pneumoniae, A. baumannii, and P. aeruginosa may serve as potential therapeutic targets.
Collapse
Affiliation(s)
- Anjali Y Bhagirath
- Department of Oral Biology, Rady Faculty of Health Sciences, University of Manitoba, 780 Bannatyne Ave, Winnipeg, MB R3E 0J9, Canada.
| | - Yanqi Li
- Department of Oral Biology, Rady Faculty of Health Sciences, University of Manitoba, 780 Bannatyne Ave, Winnipeg, MB R3E 0J9, Canada.
| | - Rakesh Patidar
- Department of Microbiology, Faculty of Sciences, University of Manitoba, Winnipeg, MB R3E 0J9, Canada.
| | - Katherine Yerex
- Department of Oral Biology, Rady Faculty of Health Sciences, University of Manitoba, 780 Bannatyne Ave, Winnipeg, MB R3E 0J9, Canada.
| | - Xiaoxue Ma
- Department of Oral Biology, Rady Faculty of Health Sciences, University of Manitoba, 780 Bannatyne Ave, Winnipeg, MB R3E 0J9, Canada.
| | - Ayush Kumar
- Department of Microbiology, Faculty of Sciences, University of Manitoba, Winnipeg, MB R3E 0J9, Canada.
| | - Kangmin Duan
- Department of Oral Biology, Rady Faculty of Health Sciences, University of Manitoba, 780 Bannatyne Ave, Winnipeg, MB R3E 0J9, Canada.
- Department of Medical Microbiology & Infectious Diseases, Rady Faculty of Health Sciences, University of Manitoba, 780 Bannatyne Ave, Winnipeg, MB R3E 0J9, Canada.
| |
Collapse
|
75
|
Song Y, Yang C, Chen G, Zhang Y, Seng Z, Cai Z, Zhang C, Yang L, Gan J, Liang H. Molecular insights into the master regulator CysB-mediated bacterial virulence in Pseudomonas aeruginosa. Mol Microbiol 2019; 111:1195-1210. [PMID: 30618115 DOI: 10.1111/mmi.14200] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/04/2019] [Indexed: 12/21/2022]
Abstract
Pseudomonas aeruginosa is a major pathogen that causes serious acute and chronic infections in humans. The type III secretion system (T3SS) is an important virulence factor that plays essential roles in acute infections. However, the regulatory mechanisms of T3SS are not fully understood. In this study, we found that the deletion of cysB reduced the T3SS gene expression and swarming motility but enhanced biofilm formation. In a mouse acute pneumonia model, mutation of cysB decreased the average bacterial load compared to that of the wild-type strain. Further experiments demonstrated that CysB contributed to the reduced T3SS gene expression and bacterial pathogenesis by directly regulating the sensor kinase RetS. We also performed crystallographic studies of PaCysB. The overall fold of PaCysB NTD domain is similar to other LysR superfamily proteins and structural superposition revealed one possible DNA-binding model for PaCysB. Structural comparison also revealed great flexibility of the PaCysB RD domain, which may play an important role in bending and transcriptional regulation of target DNA. Taken together, these results expand our current understanding of the complex regulatory networks of T3SS and RetS pathways. The crystal structure of CysB provides new insights for studying the function of its homologs in other bacterial species.
Collapse
Affiliation(s)
- Yaqin Song
- Key Laboratory of Resources Biology and Biotechnology in Western China, Ministry of Education, College of Life Sciences, Northwest University, Xi'an, Shaanxi, 710069, China
| | - Chun Yang
- State Key Laboratory of Genetic Engineering, Collaborative Innovation Center of Genetics and Development, Department of Physiology and Biophysics, School of Life Sciences, Fudan University, Shanghai, 200433, China
| | - Gukui Chen
- Key Laboratory of Resources Biology and Biotechnology in Western China, Ministry of Education, College of Life Sciences, Northwest University, Xi'an, Shaanxi, 710069, China
| | - Yixi Zhang
- Key Laboratory of Resources Biology and Biotechnology in Western China, Ministry of Education, College of Life Sciences, Northwest University, Xi'an, Shaanxi, 710069, China
| | - Zijing Seng
- School of Biological Sciences, Singapore Centre for Environmental Life Sciences Engineering, Nanyang Technological University, Singapore, 639798, Singapore
| | - Zhao Cai
- School of Biological Sciences, Singapore Centre for Environmental Life Sciences Engineering, Nanyang Technological University, Singapore, 639798, Singapore
| | - Chao Zhang
- Key Laboratory of Resources Biology and Biotechnology in Western China, Ministry of Education, College of Life Sciences, Northwest University, Xi'an, Shaanxi, 710069, China
| | - Liang Yang
- School of Biological Sciences, Singapore Centre for Environmental Life Sciences Engineering, Nanyang Technological University, Singapore, 639798, Singapore.,School of Medicine, Southern University of Science and Technology, Shenzhen, 518055, China
| | - Jianhua Gan
- State Key Laboratory of Genetic Engineering, Collaborative Innovation Center of Genetics and Development, Department of Physiology and Biophysics, School of Life Sciences, Fudan University, Shanghai, 200433, China
| | - Haihua Liang
- Key Laboratory of Resources Biology and Biotechnology in Western China, Ministry of Education, College of Life Sciences, Northwest University, Xi'an, Shaanxi, 710069, China
| |
Collapse
|
76
|
Mancl JM, Ray WK, Helm RF, Schubot FD. Helix Cracking Regulates the Critical Interaction between RetS and GacS in Pseudomonas aeruginosa. Structure 2019; 27:785-793.e5. [PMID: 30879888 DOI: 10.1016/j.str.2019.02.006] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2018] [Revised: 01/07/2019] [Accepted: 02/15/2019] [Indexed: 12/13/2022]
Abstract
Recent paradigm shifting discoveries have demonstrated that bacterial signaling kinases engage in unexpected regulatory crosstalk, yet the underlying molecular mechanisms remain largely uncharacterized. The Pseudomonas aeruginosa RetS/GacS system constitutes an ideal model for studying these mechanisms. The in-depth analysis of the kinase region of RetS and RetS/GacS interactions presented here refutes a longstanding model, which posited the formation of a catalytically inactive RetS/GacS heterodimer. Crystallographic studies uncovered structurally dynamic features within the RetS kinase region, suggesting that RetS uses the reversible unfolding of a helix, or helix cracking, to control interactions with GacS. The pivotal importance of this helical region for regulating GacS and, by extension, Pseudomonas aeruginosa virulence, was corroborated via in vivo assays. The implications of this work extend beyond the RetS/GacS system because the helix cracking occurs right next to a highly conserved catalytic residue histidine-424, suggesting this model could represent an emergent archetype for histidine kinase regulation.
Collapse
Affiliation(s)
- Jordan M Mancl
- Department of Biological Sciences, Virginia Polytechnic Institute and State University, Blacksburg, VA 24061, USA
| | - William K Ray
- Department of Biochemistry, Virginia Polytechnic Institute and State University, Blacksburg, VA 24061, USA
| | - Rich F Helm
- Department of Biochemistry, Virginia Polytechnic Institute and State University, Blacksburg, VA 24061, USA
| | - Florian D Schubot
- Department of Biological Sciences, Virginia Polytechnic Institute and State University, Blacksburg, VA 24061, USA.
| |
Collapse
|
77
|
Bartell JA, Sommer LM, Haagensen JAJ, Loch A, Espinosa R, Molin S, Johansen HK. Evolutionary highways to persistent bacterial infection. Nat Commun 2019; 10:629. [PMID: 30733448 PMCID: PMC6367392 DOI: 10.1038/s41467-019-08504-7] [Citation(s) in RCA: 85] [Impact Index Per Article: 14.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2018] [Accepted: 01/10/2019] [Indexed: 01/18/2023] Open
Abstract
Persistent infections require bacteria to evolve from their naïve colonization state by optimizing fitness in the host via simultaneous adaptation of multiple traits, which can obscure evolutionary trends and complicate infection management. Accordingly, here we screen 8 infection-relevant phenotypes of 443 longitudinal Pseudomonas aeruginosa isolates from 39 young cystic fibrosis patients over 10 years. Using statistical modeling, we map evolutionary trajectories and identify trait correlations accounting for patient-specific influences. By integrating previous genetic analyses of 474 isolates, we provide a window into early adaptation to the host, finding: (1) a 2–3 year timeline of rapid adaptation after colonization, (2) variant “naïve” and “adapted” states reflecting discordance between phenotypic and genetic adaptation, (3) adaptive trajectories leading to persistent infection via three distinct evolutionary modes, and (4) new associations between phenotypes and pathoadaptive mutations. Ultimately, we effectively deconvolute complex trait adaptation, offering a framework for evolutionary studies and precision medicine in clinical microbiology. The pathogen Pseudomonas aeruginosa undergoes complex trait adaptation within cystic fibrosis patients. Here, Bartell, Sommer, and colleagues use statistical modeling of longitudinal isolates to characterize the joint genetic and phenotypic evolutionary trajectories of P. aeruginosa within hosts.
Collapse
Affiliation(s)
- Jennifer A Bartell
- The Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, 2800, Kgs. Lyngby, Denmark.
| | - Lea M Sommer
- Department of Clinical Microbiology, Rigshospitalet, 2100, Copenhagen Ø, Denmark.
| | - Janus A J Haagensen
- The Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, 2800, Kgs. Lyngby, Denmark
| | - Anne Loch
- The Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, 2800, Kgs. Lyngby, Denmark
| | - Rocio Espinosa
- The Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, 2800, Kgs. Lyngby, Denmark
| | - Søren Molin
- The Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, 2800, Kgs. Lyngby, Denmark
| | - Helle Krogh Johansen
- Department of Clinical Microbiology, Rigshospitalet, 2100, Copenhagen Ø, Denmark.,Department of Clinical Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, 2200, Copenhagen N, Denmark
| |
Collapse
|
78
|
TesG is a type I secretion effector of Pseudomonas aeruginosa that suppresses the host immune response during chronic infection. Nat Microbiol 2019; 4:459-469. [PMID: 30617346 DOI: 10.1038/s41564-018-0322-4] [Citation(s) in RCA: 41] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2017] [Accepted: 11/16/2018] [Indexed: 02/05/2023]
Abstract
Pseudomonas aeruginosa is a versatile Gram-negative pathogen with intricate intracellular regulatory networks that enable it to adapt to and flourish in a variety of biotic and abiotic habitats. However, the mechanism permitting the persistent survival of P. aeruginosa within host tissues and causing chronic symptoms still remains largely elusive. By using in situ RNA sequencing, here we show that P. aeruginosa adopts different metabolic pathways and virulence repertoires to dominate the progression of acute and chronic lung infections. Notably, a virulence factor named TesG, which is controlled by the vital quorum-sensing system and secreted by the downstream type I secretion system, can suppress the host inflammatory response and facilitate the development of chronic lung infection. Mechanically, TesG can enter the intracellular compartment of macrophages through clathrin-mediated endocytosis, competitively inhibit the activity of eukaryotic small GTPase and thus suppress subsequent neutrophil influx, cell cytoskeletal rearrangement of macrophages and the secretion of cytokines and chemokines. Therefore, the identification of TesG in this study reveals a type I secretion apparatus of P. aeruginosa that functions during the host-pathogen interaction, and may open an avenue for the further mechanistic study of chronic respiratory diseases and the development of antibacterial therapy.
Collapse
|
79
|
Kenawy A, Dailin DJ, Abo-Zaid GA, Malek RA, Ambehabati KK, Zakaria KHN, Sayyed RZ, El Enshasy HA. Biosynthesis of Antibiotics by PGPR and Their Roles in Biocontrol of Plant Diseases. PLANT GROWTH PROMOTING RHIZOBACTERIA FOR SUSTAINABLE STRESS MANAGEMENT 2019:1-35. [DOI: 10.1007/978-981-13-6986-5_1] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/02/2023]
|
80
|
Gomes MC, Tasrini Y, Subramoni S, Agnoli K, Feliciano JR, Eberl L, Sokol P, O’Callaghan D, Vergunst AC. The afc antifungal activity cluster, which is under tight regulatory control of ShvR, is essential for transition from intracellular persistence of Burkholderia cenocepacia to acute pro-inflammatory infection. PLoS Pathog 2018; 14:e1007473. [PMID: 30513124 PMCID: PMC6301696 DOI: 10.1371/journal.ppat.1007473] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2018] [Revised: 12/20/2018] [Accepted: 11/19/2018] [Indexed: 01/22/2023] Open
Abstract
The opportunistic pathogen Burkholderia cenocepacia is particularly life-threatening for cystic fibrosis (CF) patients. Chronic lung infections with these bacteria can rapidly develop into fatal pulmonary necrosis and septicaemia. We have recently shown that macrophages are a critical site for replication of B. cenocepacia K56-2 and the induction of fatal pro-inflammatory responses using a zebrafish infection model. Here, we show that ShvR, a LysR-type transcriptional regulator that is important for biofilm formation, rough colony morphotype and inflammation in a rat lung infection model, is also required for the induction of fatal pro-inflammatory responses in zebrafish larvae. ShvR was not essential, however, for bacterial survival and replication in macrophages. Temporal, rhamnose-induced restoration of shvR expression in the shvR mutant during intramacrophage stages unequivocally demonstrated a key role for ShvR in transition from intracellular persistence to acute fatal pro-inflammatory disease. ShvR has been previously shown to tightly control the expression of the adjacent afc gene cluster, which specifies the synthesis of a lipopeptide with antifungal activity. Mutation of afcE, encoding an acyl-CoA dehydrogenase, has been shown to give similar phenotypes as the shvR mutant. We found that, like shvR, afcE is also critical for the switch from intracellular persistence to fatal infection in zebrafish. The closely related B. cenocepacia H111 has been shown to be less virulent than K56-2 in several infection models, including Galleria mellonella and rats. Interestingly, constitutive expression of shvR in H111 increased virulence in zebrafish larvae to almost K56-2 levels in a manner that absolutely required afc. These data confirm a critical role for afc in acute virulence caused by B. cenocepacia that depends on strain-specific regulatory control by ShvR. We propose that ShvR and AFC are important virulence factors of the more virulent Bcc species, either through pro-inflammatory effects of the lipopeptide AFC, or through AFC-dependent membrane properties.
Collapse
Affiliation(s)
| | - Yara Tasrini
- VBMI, INSERM, Université de Montpellier, Nîmes, France
| | - Sujatha Subramoni
- Department of Microbiology, Immunology, and Infectious Diseases, University of Calgary, Calgary, Canada
| | - Kirsty Agnoli
- Department of Plant and Microbial Biology, University of Zürich, Zürich, Switzerland
| | | | - Leo Eberl
- Department of Plant and Microbial Biology, University of Zürich, Zürich, Switzerland
| | - Pamela Sokol
- Department of Microbiology, Immunology, and Infectious Diseases, University of Calgary, Calgary, Canada
| | | | | |
Collapse
|
81
|
Zhao K, Du L, Lin J, Yuan Y, Wang X, Yue B, Wang X, Guo Y, Chu Y, Zhou Y. Pseudomonas aeruginosa Quorum-Sensing and Type VI Secretion System Can Direct Interspecific Coexistence During Evolution. Front Microbiol 2018; 9:2287. [PMID: 30364310 PMCID: PMC6193480 DOI: 10.3389/fmicb.2018.02287] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2018] [Accepted: 09/07/2018] [Indexed: 11/13/2022] Open
Abstract
It is reported that a wide range of bacterial infections are polymicrobial, and the members in a local microcommunity can influence the growth of neighbors through physical and chemical interactions. Pseudomonas aeruginosa is an important opportunistic pathogen that normally causes a variety of acute and chronic infections, and clinical evidences suggest that P. aeruginosa can be frequently coisolated with other pathogens from the patients with chronic infections. However, the interspecific interaction and the coexisting mechanism of P. aeruginosa with coinfecting bacterial species during evolution still remain largely unclear. In this study, the relationships of P. aeruginosa with other Gram-positive (Staphylococcus aureus) and Gram-negative (Klebsiella pneumoniae) are investigated by using a series of on-plate proximity assay, in vitro coevolution assay, and RNA-sequencing. We find that although the development of a quorum-sensing system contributes P. aeruginosa a significant growth advantage to compete with S. aureus and K. pneumoniae, the quorum-sensing regulation of P. aeruginosa will be decreased during evolution and thus provides a basis for the formation of interspecific coexistence. The results of comparative transcriptomic analyses suggest that the persistent survival of S. aureus in the microcommunity has no significant effect on the intracellular transcriptional pattern of P. aeruginosa, while a more detailed competition happens between P. aeruginosa and K. pneumoniae. Specifically, the population of P. aeruginosa with decreased quorum-sensing regulation can still restrict the proportion increase of K. pneumoniae by enhancing the type VI secretion system-elicited cell aggressivity during further coevolution. These findings provide a general explanation for the formation of a dynamic stable microcommunity consisting of more than two bacterial species, and may contribute to the development of population biology and clinical therapy.
Collapse
Affiliation(s)
- Kelei Zhao
- Antibiotics Research and Re-evaluation Key Laboratory of Sichuan Province, Sichuan Industrial Institute of Antibiotics, Chengdu University, Chengdu, China
| | - Lianming Du
- Institute for Advanced Study, Chengdu University, Chengdu, China
| | - Jiafu Lin
- Antibiotics Research and Re-evaluation Key Laboratory of Sichuan Province, Sichuan Industrial Institute of Antibiotics, Chengdu University, Chengdu, China
| | - Yang Yuan
- Antibiotics Research and Re-evaluation Key Laboratory of Sichuan Province, Sichuan Industrial Institute of Antibiotics, Chengdu University, Chengdu, China
| | - Xiwei Wang
- Antibiotics Research and Re-evaluation Key Laboratory of Sichuan Province, Sichuan Industrial Institute of Antibiotics, Chengdu University, Chengdu, China
| | - Bisong Yue
- Key Laboratory of Bio-Resources and Eco-Environment (Ministry of Education), College of Life Sciences, Sichuan University, Chengdu, China
| | - Xinrong Wang
- Antibiotics Research and Re-evaluation Key Laboratory of Sichuan Province, Sichuan Industrial Institute of Antibiotics, Chengdu University, Chengdu, China
| | - Yidong Guo
- Antibiotics Research and Re-evaluation Key Laboratory of Sichuan Province, Sichuan Industrial Institute of Antibiotics, Chengdu University, Chengdu, China
| | - Yiwen Chu
- Antibiotics Research and Re-evaluation Key Laboratory of Sichuan Province, Sichuan Industrial Institute of Antibiotics, Chengdu University, Chengdu, China
| | - Yingshun Zhou
- Department of Pathogenic Biology, College of Preclinical Medicine, Southwest Medical University, Luzhou, China
| |
Collapse
|
82
|
Janssen KH, Diaz MR, Gode CJ, Wolfgang MC, Yahr TL. RsmV, a Small Noncoding Regulatory RNA in Pseudomonas aeruginosa That Sequesters RsmA and RsmF from Target mRNAs. J Bacteriol 2018; 200:e00277-18. [PMID: 29866805 PMCID: PMC6060366 DOI: 10.1128/jb.00277-18] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2018] [Accepted: 05/29/2018] [Indexed: 12/13/2022] Open
Abstract
The Gram-negative opportunistic pathogen Pseudomonas aeruginosa has distinct genetic programs that favor either acute or chronic virulence gene expression. Acute virulence is associated with twitching and swimming motility, expression of a type III secretion system (T3SS), and the absence of alginate, Psl, or Pel polysaccharide production. Traits associated with chronic infection include growth as a biofilm, reduced motility, and expression of a type VI secretion system (T6SS). The Rsm posttranscriptional regulatory system plays important roles in the inverse control of phenotypes associated with acute and chronic virulence. RsmA and RsmF are RNA-binding proteins that interact with target mRNAs to control gene expression at the posttranscriptional level. Previous work found that RsmA activity is controlled by at least three small, noncoding regulatory RNAs (RsmW, RsmY, and RsmZ). In this study, we took an in silico approach to identify additional small RNAs (sRNAs) that might function in the sequestration of RsmA and/or RsmF (RsmA/RsmF) and identified RsmV, a 192-nucleotide (nt) transcript with four predicted RsmA/RsmF consensus binding sites. RsmV is capable of sequestering RsmA and RsmF in vivo to activate translation of tssA1, a component of the T6SS, and to inhibit T3SS gene expression. Each of the predicted RsmA/RsmF consensus binding sites contributes to RsmV activity. Electrophoretic mobility shifts assays show that RsmF binds RsmV with >10-fold higher affinity than RsmY and RsmZ. Gene expression studies revealed that the temporal expression pattern of RsmV differs from those of RsmW, RsmY, and RsmZ. These findings suggest that each sRNA may play a distinct role in controlling RsmA and RsmF activity.IMPORTANCE The members of the CsrA/RsmA family of RNA-binding proteins play important roles in posttranscriptional control of gene expression. The activity of CsrA/RsmA proteins is controlled by small noncoding RNAs that function as decoys to sequester CsrA/RsmA from target mRNAs. Pseudomonas aeruginosa has two CsrA family proteins (RsmA and RsmF) and at least four sequestering sRNAs (RsmV [identified in this study], RsmW, RsmY, and RsmZ) that control RsmA/RsmF activity. RsmY and RsmZ are the primary sRNAs that sequester RsmA/RsmF, and RsmV and RsmW appear to play smaller roles. Differences in the temporal and absolute expression levels of the sRNAs and in their binding affinities for RsmA/RsmF may provide a mechanism of fine-tuning the output of the Rsm system in response to environmental cues.
Collapse
Affiliation(s)
- Kayley H Janssen
- Department of Microbiology and Immunology, University of Iowa, Iowa City, Iowa, USA
| | - Manisha R Diaz
- Department of Microbiology and Immunology, University of Iowa, Iowa City, Iowa, USA
| | - Cindy J Gode
- Cystic Fibrosis/Pulmonary Research and Treatment Center, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | - Matthew C Wolfgang
- Department of Microbiology and Immunology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
- Cystic Fibrosis/Pulmonary Research and Treatment Center, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | - Timothy L Yahr
- Department of Microbiology and Immunology, University of Iowa, Iowa City, Iowa, USA
| |
Collapse
|
83
|
Discovery of Calcium as a Biofilm-Promoting Signal for Vibrio fischeri Reveals New Phenotypes and Underlying Regulatory Complexity. J Bacteriol 2018; 200:JB.00016-18. [PMID: 29463601 DOI: 10.1128/jb.00016-18] [Citation(s) in RCA: 43] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2018] [Accepted: 02/09/2018] [Indexed: 11/20/2022] Open
Abstract
Vibrio fischeri uses biofilm formation to promote symbiotic colonization of its squid host, Euprymna scolopes Control over biofilm formation is exerted at the level of transcription of the symbiosis polysaccharide (syp) locus by a complex set of two-component regulators. Biofilm formation can be induced by overproduction of the sensor kinase RscS, which requires the activities of the hybrid sensor kinase SypF and the response regulator SypG and is negatively regulated by the sensor kinase BinK. Here, we identify calcium as a signal that promotes biofilm formation by biofilm-competent strains under conditions in which biofilms are not typically observed (growth with shaking). This was true for RscS-overproducing cells as well as for strains in which only the negative regulator binK was deleted. The latter results provided, for the first time, an opportunity to induce and evaluate biofilm formation without regulator overexpression. Using these conditions, we determined that calcium induces both syp-dependent and bacterial cellulose synthesis (bcs)-dependent biofilms at the level of transcription of these loci. The calcium-induced biofilms were dependent on SypF, but SypF's Hpt domain was sufficient for biofilm formation. These data suggested the involvement of another sensor kinase(s) and led to the discovery that both RscS and a previously uncharacterized sensor kinase, HahK, functioned in this pathway. Together, the data presented here reveal both a new signal and biofilm phenotype produced by V. fischeri cells, the coordinate production of two polysaccharides involved in distinct biofilm behaviors, and a new regulator that contributes to control over these processes.IMPORTANCE Biofilms, or communities of surface-attached microorganisms adherent via a matrix that typically includes polysaccharides, are highly resistant to environmental stresses and are thus problematic in the clinic and important to study. Vibrio fischeri forms biofilms to colonize its symbiotic host, making this organism useful for studying biofilms. Biofilm formation depends on the syp polysaccharide locus and its regulators. Here, we identify a signal, calcium, that induces both SYP-PS and cellulose-dependent biofilms. We also identify a new syp regulator, the sensor kinase HahK, and discover a mutant phenotype for the sensor kinase RscS. This work thus reveals a specific biofilm-inducing signal that coordinately controls two polysaccharides, identifies a new regulator, and clarifies the regulatory control over biofilm formation by V. fischeri.
Collapse
|
84
|
Francis VI, Waters EM, Finton-James SE, Gori A, Kadioglu A, Brown AR, Porter SL. Multiple communication mechanisms between sensor kinases are crucial for virulence in Pseudomonas aeruginosa. Nat Commun 2018; 9:2219. [PMID: 29880803 PMCID: PMC5992135 DOI: 10.1038/s41467-018-04640-8] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2018] [Accepted: 05/14/2018] [Indexed: 12/16/2022] Open
Abstract
Bacteria and many non-metazoan Eukaryotes respond to stresses and threats using two-component systems (TCSs) comprising sensor kinases (SKs) and response regulators (RRs). Multikinase networks, where multiple SKs work together, detect and integrate different signals to control important lifestyle decisions such as sporulation and virulence. Here, we study interactions between two SKs from Pseudomonas aeruginosa, GacS and RetS, which control the switch between acute and chronic virulence. We demonstrate three mechanisms by which RetS attenuates GacS signalling: RetS takes phosphoryl groups from GacS-P; RetS has transmitter phosphatase activity against the receiver domain of GacS-P; and RetS inhibits GacS autophosphorylation. These mechanisms play important roles in vivo and during infection, and exemplify an unprecedented degree of signal processing by SKs that may be exploited in other multikinase networks.
Collapse
Affiliation(s)
- Vanessa I Francis
- Biosciences, Geoffrey Pope Building, College of Life and Environmental Sciences, University of Exeter, Exeter, EX4 4QD, UK
| | - Elaine M Waters
- Department of Clinical Infection, Microbiology and Immunology, Institute of Infection and Global Health, University of Liverpool, Liverpool, L69 7BE, UK
| | - Sutharsan E Finton-James
- Biosciences, Geoffrey Pope Building, College of Life and Environmental Sciences, University of Exeter, Exeter, EX4 4QD, UK
| | - Andrea Gori
- Biosciences, Geoffrey Pope Building, College of Life and Environmental Sciences, University of Exeter, Exeter, EX4 4QD, UK
| | - Aras Kadioglu
- Department of Clinical Infection, Microbiology and Immunology, Institute of Infection and Global Health, University of Liverpool, Liverpool, L69 7BE, UK
| | - Alan R Brown
- Biosciences, Geoffrey Pope Building, College of Life and Environmental Sciences, University of Exeter, Exeter, EX4 4QD, UK
| | - Steven L Porter
- Biosciences, Geoffrey Pope Building, College of Life and Environmental Sciences, University of Exeter, Exeter, EX4 4QD, UK.
| |
Collapse
|
85
|
Functional Analyses of the RsmY and RsmZ Small Noncoding Regulatory RNAs in Pseudomonas aeruginosa. J Bacteriol 2018; 200:JB.00736-17. [PMID: 29463606 DOI: 10.1128/jb.00736-17] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2017] [Accepted: 02/14/2018] [Indexed: 11/20/2022] Open
Abstract
Pseudomonas aeruginosa is a Gram-negative opportunistic pathogen with distinct acute and chronic virulence phenotypes. Whereas acute virulence is typically associated with expression of a type III secretion system (T3SS), chronic virulence is characterized by biofilm formation. Many of the phenotypes associated with acute and chronic virulence are inversely regulated by RsmA and RsmF. RsmA and RsmF are both members of the CsrA family of RNA-binding proteins and regulate protein synthesis at the posttranscriptional level. RsmA activity is controlled by two small noncoding regulatory RNAs (RsmY and RsmZ). Bioinformatic analyses suggest that RsmY and RsmZ each have 3 or 4 putative RsmA binding sites. Each predicted binding site contains a GGA sequence presented in the loop portion of a stem-loop structure. RsmY and RsmZ regulate RsmA, and possibly RsmF, by sequestering these proteins from target mRNAs. In this study, we used selective 2'-hydroxyl acylation analyzed by primer extension and mutational profiling (SHAPE-MaP) chemistry to determine the secondary structures of RsmY and RsmZ and functional assays to characterize the contribution of each GGA site to RsmY/RsmZ activity. Our data indicate that RsmA has two preferential binding sites on RsmY and RsmZ, while RsmF has one preferential binding site on RsmY and two sites on RsmZ. Despite RsmF and RsmA sharing a common consensus site, RsmF binding properties are more restrictive than those of RsmA.IMPORTANCE CsrA homologs are present in many bacteria. The opportunistic pathogen Pseudomonas aeruginosa uses RsmA and RsmF to inversely regulate factors associated with acute and chronic virulence phenotypes. RsmA has an affinity for RsmY and RsmZ higher than that of RsmF. The goal of this study was to understand the differential binding properties of RsmA and RsmF by using the RsmY and RsmZ regulatory small RNAs (sRNAs) as a model. Mutagenesis of the predicted RsmA/RsmF binding sites on RsmY and RsmZ revealed similarities in the sites required to control RsmA and RsmF activity in vivo Whereas binding by RsmA was relatively tolerant of binding site mutations, RsmF was sensitive to disruption to all but two of the sites, further demonstrating that the requirements for RsmF binding activity in vivo and in vitro are more stringent than those for RsmA.
Collapse
|
86
|
Grenga L, Little RH, Malone JG. Quick change: post-transcriptional regulation in Pseudomonas. FEMS Microbiol Lett 2018; 364:3866594. [PMID: 28605536 PMCID: PMC5812540 DOI: 10.1093/femsle/fnx125] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2017] [Accepted: 06/09/2017] [Indexed: 01/06/2023] Open
Abstract
Pseudomonas species have evolved dynamic and intricate regulatory networks to fine-tune gene expression, with complex regulation occurring at every stage in the processing of genetic information. This approach enables Pseudomonas to generate precise individual responses to the environment in order to improve their fitness and resource economy. The weak correlations we observe between RNA and protein abundance highlight the significant regulatory contribution of a series of intersecting post-transcriptional pathways, influencing mRNA stability, translational activity and ribosome function, to Pseudomonas environmental responses. This review examines our current understanding of three major post-transcriptional regulatory systems in Pseudomonas spp.; Gac/Rsm, Hfq and RimK, and presents an overview of new research frontiers, emerging genome-wide methodologies, and their potential for the study of global regulatory responses in Pseudomonas.
Collapse
Affiliation(s)
- Lucia Grenga
- John Innes Centre, Norwich Research Park, Colney Lane, Norwich NR4 7UH, UK.,University of East Anglia, Norwich Research Park, Norwich, NR4 7TJ, UK
| | - Richard H Little
- John Innes Centre, Norwich Research Park, Colney Lane, Norwich NR4 7UH, UK
| | - Jacob G Malone
- John Innes Centre, Norwich Research Park, Colney Lane, Norwich NR4 7UH, UK.,University of East Anglia, Norwich Research Park, Norwich, NR4 7TJ, UK
| |
Collapse
|
87
|
Chourashi R, Das S, Dhar D, Okamoto K, Mukhopadhyay AK, Chatterjee NS. Chitin-induced T6SS in Vibrio cholerae is dependent on ChiS activation. MICROBIOLOGY-SGM 2018; 164:751-763. [PMID: 29633936 DOI: 10.1099/mic.0.000656] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Vibrio cholerae regularly colonizes the chitinous exoskeleton of crustacean shells in the aquatic region. The type 6 secretion system (T6SS) in V. cholerae is an interbacterial killing device. This system is thought to provide a competitive advantage to V. cholerae in a polymicrobial community of the aquatic region under nutrient-poor conditions. V. cholerae chitin sensing is known to be initiated by the activation of a two-component sensor histidine kinase ChiS in the presence of GlcNAc2 (N,N'-diacetylchitobiose) residues generated by the action of chitinases on chitin. It is known that T6SS in V. cholerae is generally induced by chitin. However, the effect of ChiS activation on T6SS is unknown. Here, we found that ChiS inactivation resulted in impaired bacterial killing and reduced expression of T6SS genes. Active ChiS positively affected T6SS-mediated natural transformation in V. cholerae. ChiS depletion or inactivation also resulted in reduced colonization on insoluble chitin surfaces. Therefore, we have shown that V. cholerae colonization on chitinous surfaces activates ChiS, which promotes T6SS-dependent bacterial killing and horizontal gene transfer. We also highlight the importance of chitinases in T6SS upregulation.
Collapse
Affiliation(s)
- Rhishita Chourashi
- Division of Biochemistry, National Institute of Cholera and Enteric Diseases, Kolkata 700010, India
| | - Suman Das
- Division of Biochemistry, National Institute of Cholera and Enteric Diseases, Kolkata 700010, India
| | - Debarpan Dhar
- Division of Clinical Medicine, National Institute of Cholera and Enteric Diseases, Kolkata 700010, India
| | - Keinosuke Okamoto
- Collaborative Research Center of Okayama University for Infectious Diseases at NICED, Kolkata, India
| | - Asish K Mukhopadhyay
- Division of Bacteriology, National Institute of Cholera and Enteric Diseases, Kolkata 700010, India
| | | |
Collapse
|
88
|
Smirnova AV, Dunfield PF. Differential Transcriptional Activation of Genes Encoding Soluble Methane Monooxygenase in a Facultative Versus an Obligate Methanotroph. Microorganisms 2018; 6:microorganisms6010020. [PMID: 29509697 PMCID: PMC5874634 DOI: 10.3390/microorganisms6010020] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2018] [Revised: 02/28/2018] [Accepted: 03/01/2018] [Indexed: 12/24/2022] Open
Abstract
Methanotrophs are a specialized group of bacteria that can utilize methane (CH4) as a sole energy source. A key enzyme responsible for methane oxidation is methane monooxygenase (MMO), of either a soluble, cytoplasmic type (sMMO), or a particulate, membrane-bound type (pMMO). Methylocellasilvestris BL2 and Methyloferulastellata AR4 are closely related methanotroph species that oxidize methane via sMMO only. However, Methyloferulastellata is an obligate methanotroph, while Methylocellasilvestris is a facultative methanotroph able to grow on several multicarbon substrates in addition to methane. We constructed transcriptional fusions of the mmo promoters of Methyloferulastellata and Methylocellasilvestris to a promoterless gfp in order to compare their transcriptional regulation in response to different growth substrates, in the genetic background of both organisms. The following patterns were observed: (1) The mmo promoter of the facultative methanotroph Methylocella silvestris was either transcriptionally downregulated or repressed by any growth substrate other than methane in the genetic background of Methylocellasilvetris; (2) Growth on methane alone upregulated the mmo promoter of Methylocellasilvetris in its native background but not in the obligate methanotroph Methyloferulastellata; (3) The mmo promoter of Methyloferulastellata was constitutive in both organisms regardless of the growth substrate, but with much lower promoter activity than the mmo promoter of Methylocellasilvetris. These results support a conclusion that a different mode of transcriptional regulation of sMMO contributes to the facultative lifestyle of Methylocellasilvetris compared to the obligate methanotroph Methyloferulastellata.
Collapse
Affiliation(s)
- Angela V Smirnova
- Department of Biological Sciences, University of Calgary, 2500 University Drive NW, Calgary, AB T2N 1N4, Canada.
| | - Peter F Dunfield
- Department of Biological Sciences, University of Calgary, 2500 University Drive NW, Calgary, AB T2N 1N4, Canada.
| |
Collapse
|
89
|
Abstract
Microbial biofilms can colonize medical devices and human tissues, and their role in microbial pathogenesis is now well established. Not only are biofilms ubiquitous in natural and human-made environments, but they are also estimated to be associated with approximately two-thirds of nosocomial infections. This multicellular aggregated form of microbial growth confers a remarkable resistance to killing by antimicrobials and host defenses, leading biofilms to cause a wide range of subacute or chronic infections that are difficult to eradicate. We have gained tremendous knowledge on the molecular, genetic, microbiological, and biophysical processes involved in biofilm formation. These insights now shape our understanding, diagnosis, and management of many infectious diseases and direct the development of novel antimicrobial therapies that target biofilms. Bacterial and fungal biofilms play an important role in a range of diseases in pulmonary and critical care medicine, most importantly catheter-associated infections, ventilator-associated pneumonia, chronic Pseudomonas aeruginosa infections in cystic fibrosis lung disease, and Aspergillus fumigatus pulmonary infections.
Collapse
|
90
|
Francis VI, Stevenson EC, Porter SL. Two-component systems required for virulence in Pseudomonas aeruginosa. FEMS Microbiol Lett 2018; 364:3828290. [PMID: 28510688 PMCID: PMC5812489 DOI: 10.1093/femsle/fnx104] [Citation(s) in RCA: 124] [Impact Index Per Article: 17.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2017] [Accepted: 05/15/2017] [Indexed: 11/13/2022] Open
Abstract
Pseudomonas aeruginosa is a versatile opportunistic pathogen capable of infecting a broad range of hosts, in addition to thriving in a broad range of environmental conditions outside of hosts. With this versatility comes the need to tightly regulate its genome to optimise its gene expression and behaviour to the prevailing conditions. Two-component systems (TCSs) comprising sensor kinases and response regulators play a major role in this regulation. This minireview discusses the growing number of TCSs that have been implicated in the virulence of P. aeruginosa, with a special focus on the emerging theme of multikinase networks, which are networks comprising multiple sensor kinases working together, sensing and integrating multiple signals to decide upon the best response. The networks covered in depth regulate processes such as the switch between acute and chronic virulence (GacS network), the Cup fimbriae (Roc network and Rcs/Pvr network), the aminoarabinose modification of lipopolysaccharide (a network involving the PhoQP and PmrBA TCSs), twitching motility and virulence (a network formed from the Chp chemosensory pathway and the FimS/AlgR TCS), and biofilm formation (Wsp chemosensory pathway). In addition, we highlight the important interfaces between these systems and secondary messenger signals such as cAMP and c-di-GMP.
Collapse
Affiliation(s)
- Vanessa I Francis
- Biosciences, Geoffrey Pope Building, College of Life and Environmental Sciences, University of Exeter, Exeter EX 4QD, UK
| | - Emma C Stevenson
- Biosciences, Geoffrey Pope Building, College of Life and Environmental Sciences, University of Exeter, Exeter EX 4QD, UK
| | - Steven L Porter
- Biosciences, Geoffrey Pope Building, College of Life and Environmental Sciences, University of Exeter, Exeter EX 4QD, UK
| |
Collapse
|
91
|
Pseudomonas aeruginosa Magnesium Transporter MgtE Inhibits Type III Secretion System Gene Expression by Stimulating rsmYZ Transcription. J Bacteriol 2017; 199:JB.00268-17. [PMID: 28847924 DOI: 10.1128/jb.00268-17] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2017] [Accepted: 08/23/2017] [Indexed: 11/20/2022] Open
Abstract
Pseudomonas aeruginosa causes numerous acute and chronic opportunistic infections in humans. One of its most formidable weapons is a type III secretion system (T3SS), which injects powerful toxins directly into host cells. The toxins lead to cell dysfunction and, ultimately, cell death. Identification of regulatory pathways that control T3SS gene expression may lead to the discovery of novel therapeutics to treat P. aeruginosa infections. In a previous study, we found that expression of the magnesium transporter gene mgtE inhibits T3SS gene transcription. MgtE-dependent inhibition appeared to interfere with the synthesis or function of the master T3SS transcriptional activator ExsA, although the exact mechanism was unclear. We now demonstrate that mgtE expression acts through the GacAS two-component system to activate rsmY and rsmZ transcription. This event ultimately leads to inhibition of exsA translation. This inhibitory effect is specific to exsA as translation of other genes in the exsCEBA operon is not inhibited by mgtE Moreover, our data reveal that MgtE acts solely through this pathway to regulate T3SS gene transcription. Our study reveals an important mechanism that may allow P. aeruginosa to fine-tune T3SS activity in response to certain environmental stimuli.IMPORTANCE The type III secretion system (T3SS) is a critical virulence factor utilized by numerous Gram-negative bacteria, including Pseudomonas aeruginosa, to intoxicate and kill host cells. Elucidating T3SS regulatory mechanisms may uncover targets for novel anti-P. aeruginosa therapeutics and provide deeper understanding of bacterial pathogenesis. We previously found that the magnesium transporter MgtE inhibits T3SS gene transcription in P. aeruginosa In this study, we describe the mechanism of MgtE-dependent inhibition of the T3SS. Our report also illustrates how MgtE might respond to environmental cues, such as magnesium levels, to fine-tune T3SS gene expression.
Collapse
|
92
|
Shopera T, Henson WR, Moon TS. Dynamics of sequestration-based gene regulatory cascades. Nucleic Acids Res 2017; 45:7515-7526. [PMID: 28525642 PMCID: PMC5499576 DOI: 10.1093/nar/gkx465] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2016] [Accepted: 05/10/2017] [Indexed: 12/21/2022] Open
Abstract
Gene regulatory cascades are ubiquitous in biology. Because regulatory cascades are integrated within complex networks, their quantitative analysis is challenging in native systems. Synthetic biologists have gained quantitative insights into the properties of regulatory cascades by building simple circuits, but sequestration-based regulatory cascades remain relatively unexplored. Particularly, it remains unclear how the cascade components collectively control the output dynamics. Here, we report the construction and quantitative analysis of the longest sequestration-based cascade in Escherichia coli. This cascade consists of four Pseudomonas aeruginosa protein regulators (ExsADCE) that sequester their partner. Our computational analysis showed that the output dynamics are controlled in a complex way by the concentration of the unbounded transcriptional activator ExsA. By systematically varying the cascade length and the synthesis rate of each regulator, we experimentally verified the computational prediction that ExsC plays a role in rapid circuit responses by sequestering the anti-activator ExsD, while ExsD increases response times by decreasing the free ExsA concentration. In contrast, when additional ExsD was introduced to the cascade via indirect negative feedback, the response time was significantly reduced. Sequestration-based regulatory cascades with negative feedback are often found in biology, and thus our finding provides insights into the dynamics of this recurring motif.
Collapse
Affiliation(s)
- Tatenda Shopera
- Department of Energy, Environmental and Chemical Engineering, Washington University in St. Louis, St. Louis, MO, 63130, USA
| | - William R Henson
- Department of Energy, Environmental and Chemical Engineering, Washington University in St. Louis, St. Louis, MO, 63130, USA
| | - Tae Seok Moon
- Department of Energy, Environmental and Chemical Engineering, Washington University in St. Louis, St. Louis, MO, 63130, USA
| |
Collapse
|
93
|
Hosseinkhan N, Mousavian Z, Masoudi-Nejad A. Comparison of gene co-expression networks in Pseudomonas aeruginosa and Staphylococcus aureus reveals conservation in some aspects of virulence. Gene 2017; 639:1-10. [PMID: 28987343 DOI: 10.1016/j.gene.2017.10.005] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2017] [Revised: 09/23/2017] [Accepted: 10/03/2017] [Indexed: 12/13/2022]
Abstract
Pseudomonas aeruginosa and Staphylococcus aureus are two evolutionary distant bacterial species that are frequently isolated from persistent infections such as chronic infectious wounds and severe lung infections in cystic fibrosis patients. To the best of our knowledge no comprehensive genome scale co-expression study has been already conducted on these two species and in most cases only the expression of very few genes has been the subject of investigation. In this study, in order to investigate the level of expressional conservation between these two species, using heterogeneous gene expression datasets the weighted gene co-expression network analysis (WGCNA) approach was applied to study both single and cross species genome scale co-expression patterns of these two species. Single species co-expression network analysis revealed that in P. aeruginosa, genes involved in quorum sensing (QS), iron uptake, nitrate respiration and type III secretion systems and in S. aureus, genes associated with the regulation of carbon metabolism, fatty acid-phospholipids metabolism and proteolysis represent considerable co-expression across a variety of experimental conditions. Moreover, the comparison of gene co-expression networks between P. aeruginosa and S. aureus was led to the identification of four co-expressed gene modules in both species totally consisting of 318 genes. Several genes related to two component signal transduction systems, small colony variants (SCVs) morphotype and protein complexes were found in the detected modules. We believe that targeting the key players among the identified co-expressed orthologous genes will be a potential intervention strategy to control refractory co-infections caused by these two bacterial species.
Collapse
Affiliation(s)
- Nazanin Hosseinkhan
- Basic and Molecular Epidemiology of Gastrointestinal Disorders Research Center, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Tehran, Iran; Laboratory of Systems Biology and Bioinformatics (LBB), Institute of Biochemistry and Biophysics, University of Tehran, Tehran, Iran.
| | - Zaynab Mousavian
- Department of Computer Science, School of Mathematics, Statistics, and Computer Science, University of Tehran, Tehran, Iran; Laboratory of Systems Biology and Bioinformatics (LBB), Institute of Biochemistry and Biophysics, University of Tehran, Tehran, Iran
| | - Ali Masoudi-Nejad
- Laboratory of Systems Biology and Bioinformatics (LBB), Institute of Biochemistry and Biophysics, University of Tehran, Tehran, Iran.
| |
Collapse
|
94
|
Wang Y, Li Y, Wang J, Wang X. FleQ regulates both the type VI secretion system and flagella inPseudomonas putida. Biotechnol Appl Biochem 2017; 65:419-427. [DOI: 10.1002/bab.1611] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2017] [Revised: 08/29/2017] [Accepted: 09/12/2017] [Indexed: 12/24/2022]
Affiliation(s)
- Yuzhou Wang
- School of BiotechnologyJiangnan University Wuxi People's Republic of China
| | - Ye Li
- State Key Laboratory of Food Science and TechnologyJiangnan University Wuxi People's Republic of China
| | - Jianli Wang
- School of BiotechnologyJiangnan University Wuxi People's Republic of China
| | - Xiaoyuan Wang
- State Key Laboratory of Food Science and TechnologyJiangnan University Wuxi People's Republic of China
- School of BiotechnologyJiangnan University Wuxi People's Republic of China
| |
Collapse
|
95
|
Biofilms: Survival and defense strategy for pathogens. Int J Med Microbiol 2017; 307:481-489. [PMID: 28950999 DOI: 10.1016/j.ijmm.2017.09.016] [Citation(s) in RCA: 210] [Impact Index Per Article: 26.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2017] [Revised: 09/11/2017] [Accepted: 09/19/2017] [Indexed: 01/20/2023] Open
Abstract
Studies on biofilm related infections are gaining prominence owing to their involvement in majority of clinical infections. Biofilm, considered as a generic mechanism for survival used by pathogenic as well as non-pathogenic microorganisms, involves surface attachment and growth of heterogeneous cells encapsulated within a matrix. The matrix provides ecological niche where partnership of cells endows a community like behaviour that not only enables the cohort to survive local microenvironment stress but also channelizes them to evolve, disseminate and cause resurgence of infections. In this mini-review we highlight the mechanisms used by microbes to develop and sustain biofilms, including the influence of the microbiota. Several strategies to target biofilms have been validated on certain groups of microorganisms and these basically target different stages in the life cycle of biofilm, however comprehensive methods to target microbial biofilms are relatively unknown. In the backdrop of recent reports suggesting that biofilms can harbour multiple species of organisms, we need to relook and devise newer strategies against biofilms. Effective anti-biofilm strategies cannot be confined to a single methodology that can disrupt one pathway but should simultaneously target the various routes adopted by the microorganisms for survival within their ecosystem. An overview of the currently available drugs, their mode of action, genomic targets and translational therapies against biofilm related infection are discussed.
Collapse
|
96
|
Jakobsen TH, Tolker-Nielsen T, Givskov M. Bacterial Biofilm Control by Perturbation of Bacterial Signaling Processes. Int J Mol Sci 2017; 18:ijms18091970. [PMID: 28902153 PMCID: PMC5618619 DOI: 10.3390/ijms18091970] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2017] [Revised: 09/06/2017] [Accepted: 09/07/2017] [Indexed: 01/20/2023] Open
Abstract
The development of effective strategies to combat biofilm infections by means of either mechanical or chemical approaches could dramatically change today’s treatment procedures for the benefit of thousands of patients. Remarkably, considering the increased focus on biofilms in general, there has still not been invented and/or developed any simple, efficient and reliable methods with which to “chemically” eradicate biofilm infections. This underlines the resilience of infective agents present as biofilms and it further emphasizes the insufficiency of today’s approaches used to combat chronic infections. A potential method for biofilm dismantling is chemical interception of regulatory processes that are specifically involved in the biofilm mode of life. In particular, bacterial cell to cell signaling called “Quorum Sensing” together with intracellular signaling by bis-(3′-5′)-cyclic-dimeric guanosine monophosphate (cyclic-di-GMP) have gained a lot of attention over the last two decades. More recently, regulatory processes governed by two component regulatory systems and small non-coding RNAs have been increasingly investigated. Here, we review novel findings and potentials of using small molecules to target and modulate these regulatory processes in the bacterium Pseudomonas aeruginosa to decrease its pathogenic potential.
Collapse
Affiliation(s)
- Tim Holm Jakobsen
- Costerton Biofilm Center, Department of Immunology and Microbiology, University of Copenhagen, 2200 Copenhagen, Denmark.
| | - Tim Tolker-Nielsen
- Costerton Biofilm Center, Department of Immunology and Microbiology, University of Copenhagen, 2200 Copenhagen, Denmark.
| | - Michael Givskov
- Costerton Biofilm Center, Department of Immunology and Microbiology, University of Copenhagen, 2200 Copenhagen, Denmark.
- Singapore Centre on Environmental Life Sciences Engineering, Nanyang Technological University, Singapore 637551, Singapore.
| |
Collapse
|
97
|
Ali-Ahmad A, Fadel F, Sebban-Kreuzer C, Ba M, Pélissier GD, Bornet O, Guerlesquin F, Bourne Y, Bordi C, Vincent F. Structural and functional insights into the periplasmic detector domain of the GacS histidine kinase controlling biofilm formation in Pseudomonas aeruginosa. Sci Rep 2017; 7:11262. [PMID: 28900144 PMCID: PMC5595915 DOI: 10.1038/s41598-017-11361-3] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2017] [Accepted: 08/17/2017] [Indexed: 11/15/2022] Open
Abstract
Pseudomonas aeruginosa is an opportunistic pathogenic bacterium responsible for both acute and chronic infections and has developed resistance mechanisms due to its ability to promote biofilm formation and evade host adaptive immune responses. Here, we investigate the functional role of the periplasmic detector domain (GacSPD) from the membrane-bound GacS histidine kinase, which is one of the key players for biofilm formation and coordination of bacterial lifestyles. A gacS mutant devoid of the periplasmic detector domain is severely defective in biofilm formation. Functional assays indicate that this effect is accompanied by concomitant changes in the expression of the two RsmY/Z small RNAs that control activation of GacA-regulated genes. The solution NMR structure of GacSPD reveals a distinct PDC/PAS α/β fold characterized by a three-stranded β-sheet flanked by α-helices and an atypical major loop. Point mutations in a putative ligand binding pocket lined by positively-charged residues originating primarily from the major loop impaired biofilm formation. These results demonstrate the functional role of GacSPD, evidence critical residues involved in GacS/GacA signal transduction system that regulates biofilm formation, and document the evolutionary diversity of the PDC/PAS domain fold in bacteria.
Collapse
Affiliation(s)
| | - Firas Fadel
- CNRS, Aix Marseille Univ, AFMB, Marseille, France
- LISM, IMM, Aix-Marseille Univ and CNRS, Marseille, 13402, France
| | | | - Moly Ba
- LISM, IMM, Aix-Marseille Univ and CNRS, Marseille, 13402, France
| | | | - Olivier Bornet
- LISM, IMM, Aix-Marseille Univ and CNRS, Marseille, 13402, France
| | | | - Yves Bourne
- CNRS, Aix Marseille Univ, AFMB, Marseille, France
| | - Christophe Bordi
- LISM, IMM, Aix-Marseille Univ and CNRS, Marseille, 13402, France.
| | | |
Collapse
|
98
|
The Pseudomonas aeruginosa Two-Component Regulator AlgR Directly Activates rsmA Expression in a Phosphorylation-Independent Manner. J Bacteriol 2017; 199:JB.00048-17. [PMID: 28320883 DOI: 10.1128/jb.00048-17] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2017] [Accepted: 03/13/2017] [Indexed: 02/07/2023] Open
Abstract
Pseudomonas aeruginosa is an important pathogen of the immunocompromised, causing both acute and chronic infections. In cystic fibrosis (CF) patients, P. aeruginosa causes chronic disease. The impressive sensory network of P. aeruginosa allows the bacterium to sense and respond to a variety of stimuli found in diverse environments. Transcriptional regulators, including alternative sigma factors and response regulators, integrate signals changing gene expression, allowing P. aeruginosa to cause infection. The two-component transcriptional regulator AlgR is important in P. aeruginosa pathogenesis in both acute and chronic infections. In chronic infections, AlgR and the alternative sigma factor AlgU activate the genes responsible for alginate production. Previous work demonstrated that AlgU controls rsmA expression. RsmA is a posttranscriptional regulator that is antagonized by two small RNAs, RsmY and RsmZ. In this work, we demonstrate that AlgR directly activates rsmA expression from the same promoter as AlgU. In addition, phosphorylation was not necessary for AlgR activation of rsmA using algR and algZ mutant strains. AlgU and AlgR appear to affect the antagonizing small RNAs rsmY and rsmZ indirectly. RsmA was active in a mucA22 mutant strain using leader fusions of two RsmA targets, tssA1 and hcnA AlgU and AlgR were necessary for posttranscriptional regulation of tssA1 and hcnA Altogether, our work demonstrates that the alginate regulators AlgU and AlgR are important in the control of the RsmA posttranscriptional regulatory system. These findings suggest that RsmA plays an unknown role in mucoid strains due to AlgU and AlgR activities.IMPORTANCE P. aeruginosa infections are difficult to treat and frequently cause significant mortality in CF patients. Understanding the mechanisms of persistence is important. Our work has demonstrated that the alginate regulatory system also significantly impacts the posttranscriptional regulator system RsmA/Y/Z. We demonstrate that AlgR directly activates rsmA expression, and this impacts the RsmA regulon. This leads to the possibility that the RsmA/Y/Z system plays a role in helping P. aeruginosa persist during chronic infection. In addition, this furthers our understanding of the reach of the alginate regulators AlgU and AlgR.
Collapse
|
99
|
Taylor PK, Van Kessel ATM, Colavita A, Hancock REW, Mah TF. A novel small RNA is important for biofilm formation and pathogenicity in Pseudomonas aeruginosa. PLoS One 2017; 12:e0182582. [PMID: 28771593 PMCID: PMC5542712 DOI: 10.1371/journal.pone.0182582] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2017] [Accepted: 07/20/2017] [Indexed: 01/08/2023] Open
Abstract
The regulation of biofilm development requires multiple mechanisms and pathways, but it is not fully understood how these are integrated. Small RNA post-transcriptional regulators are a strong candidate as a regulatory mechanism of biofilm formation. More than 200 small RNAs in the P. aeruginosa genome have been characterized in the literature to date; however, little is known about their biological roles in the cell. Here we describe the identification of the novel regulatory small RNA, SrbA. This locus was up-regulated 45-fold in P. aeruginosa strain PA14 biofilm cultures. Loss of SrbA expression in a deletion strain resulted in a 66% reduction in biofilm mass. Furthermore, the mortality rate over 72 hours in C. elegans infections was reduced to 39% when infected with the srbA deletion strain compared to 78% mortality when infected with the parental wild-type P. aeruginosa strain. There was no significant effect on culture growth or adherence to surfaces with loss of SrbA expression. Also loss of SrbA expression had no effect on antibiotic resistance to ciprofloxacin, gentamicin, and tobramycin. We conclude that SrbA is important for biofilm formation and full pathogenicity of P. aeruginosa.
Collapse
Affiliation(s)
- Patrick K. Taylor
- Department of Biochemistry, Microbiology and Immunology, University of Ottawa, Ottawa, Ontario, Canada
| | - Antonius T. M. Van Kessel
- Department of Biochemistry, Microbiology and Immunology, University of Ottawa, Ottawa, Ontario, Canada
| | - Antonio Colavita
- Neuroscience Program, Ottawa Hospital Research Institute, Ottawa, Ontario, Canada
| | - Robert E. W. Hancock
- Department of Microbiology and Immunology, University of British Columbia, Vancouver, British Columbia, Canada
| | - Thien-Fah Mah
- Department of Biochemistry, Microbiology and Immunology, University of Ottawa, Ottawa, Ontario, Canada
| |
Collapse
|
100
|
Abstract
Bacterial type VI secretion systems (T6SSs) function as contractile nanomachines to puncture target cells and deliver lethal effectors. In the 10 years since the discovery of the T6SS, much has been learned about the structure and function of this versatile protein secretion apparatus. Most of the conserved protein components that comprise the T6SS apparatus itself have been identified and ascribed specific functions. In addition, numerous effector proteins that are translocated by the T6SS have been identified and characterized. These protein effectors usually represent toxic cargoes that are delivered by the attacker cell to a target cell. Researchers in the field are beginning to better understand the lifestyle or physiology that dictates when bacteria normally express their T6SS. In this article, we consider what is known about the structure and regulation of the T6SS, the numerous classes of antibacterial effector T6SS substrates, and how the action of the T6SS relates to a given lifestyle or behavior in certain bacteria.
Collapse
|