51
|
Gibson DA, Esnal-Zufiaurre A, Bajo-Santos C, Collins F, Critchley HOD, Saunders PTK. Profiling the expression and function of oestrogen receptor isoform ER46 in human endometrial tissues and uterine natural killer cells. Hum Reprod 2021; 35:641-651. [PMID: 32108901 PMCID: PMC7105323 DOI: 10.1093/humrep/dez306] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2019] [Revised: 12/16/2019] [Indexed: 12/12/2022] Open
Abstract
STUDY QUESTION Does the oestrogen receptor isoform, ER46, contribute to regulation of endometrial function? SUMMARY ANSWER ER46 is expressed in endometrial tissues, is the predominant ER isoform in first trimester decidua and is localised to the cell membrane of uterine natural killer (uNK) cells where activation of ER46 increases cell motility. WHAT IS KNOWN ALREADY Oestrogens acting via their cognate receptors are essential regulators of endometrial function and play key roles in establishment of pregnancy. ER46 is a 46-kDa truncated isoform of full length ERα (ER66, encoded by ESR1) that contains both ligand- and DNA-binding domains. Expression of ER46 in the human endometrium has not been investigated previously. ER46 is located at the cell membrane of peripheral blood leukocytes and mediates rapid responses to oestrogens. uNK cells are a phenotypically distinct (CD56brightCD16-) population of tissue-resident immune cells that regulate vascular remodelling within the endometrium and decidua. We have shown that oestrogens stimulate rapid increases in uNK cell motility. Previous characterisation of uNK cells suggests they are ER66-negative, but expression of ER46 has not been characterised. We hypothesise that uNK cells express ER46 and that rapid responses to oestrogens are mediated via this receptor. STUDY DESIGN, SIZE, DURATION This laboratory-based study used primary human endometrial (n = 24) and decidual tissue biopsies (n = 30) as well as uNK cells which were freshly isolated from first trimester human decidua (n = 18). PARTICIPANTS/MATERIALS, SETTING, METHODS Primary human endometrial and first trimester decidual tissue biopsies were collected using methods approved by the local institutional ethics committee (LREC/05/51104/12 and LREC/10/51402/59). The expression of ERs (ER66, ER46 and ERβ) was assessed by quantitative PCR, western blot and immunohistochemistry. uNK cells were isolated from first-trimester human decidua by magnetic bead sorting. Cell motility of uNK cells was measured by live cell imaging: cells were treated with 17β-oestradiol conjugated to bovine serum albumin (E2-BSA, 10 nM equivalent), the ERβ-selective agonist 2,3-bis(4-hydroxyphenyl)-propionitrile (DPN; 10 nM) or dimethylsulphoxide vehicle control. MAIN RESULTS AND THE ROLE OF CHANCE ER46 was detected in proliferative and secretory phase tissues by western blot and was the predominant ER isoform in first-trimester decidua samples. Immunohistochemistry revealed that ER46 was co-localised with ER66 in cell nuclei during the proliferative phase but detected in both the cytoplasm and cell membrane of stromal cells in the secretory phase and in decidua. Triple immunofluorescence staining of decidua tissues identified expression of ER46 in the cell membrane of CD56-positive uNK cells which were otherwise ER66-negative. Profiling of isolated uNK cells confirmed expression of ER46 by quantitative PCR and western blot and localised ER46 protein to the cell membrane by immunocytochemistry. Functional analysis of isolated uNK cells using live cell imaging demonstrated that activation of ER46 with E2-BSA significantly increased uNK cell motility. LARGE SCALE DATA N/A. LIMITATIONS, REASONS FOR CAUTION Expression pattern in endometrial tissue was only determined using samples from proliferative and secretory phases. Assessment of first trimester decidua samples was from a range of gestational ages, which may have precluded insights into gestation-specific changes in these tissues. Our results are based on in vitro responses of primary human cells and we cannot be certain that similar mechanisms occur in situ. WIDER IMPLICATIONS OF THE FINDINGS E2 is an essential regulator of reproductive competence. This study provides the first evidence for expression of ER46 in the human endometrium and decidua of early pregnancy. We describe a mechanism for regulating the function of human uNK cells via expression of ER46 and demonstrate that selective targeting with E2-BSA regulates uNK cell motility. These novel findings identify a role for ER46 in the human endometrium and provide unique insight into the importance of membrane-initiated signalling in modulating the impact of E2 on uNK cell function in women. Given the importance of uNK cells to regulating vascular remodelling in early pregnancy and the potential for selective targeting of ER46, this may be an attractive future therapeutic target in the treatment of reproductive disorders. STUDY FUNDING/COMPETING INTEREST(S) These studies were supported by Medical Research Council (MRC) Programme Grants G1100356/1 and MR/N024524/1 to PTKS. H.O.D.C. was supported by MRC grant G1002033. The authors declare no competing interests related to the published work.
Collapse
Affiliation(s)
- Douglas A Gibson
- Centre for Inflammation Research, University of Edinburgh, Edinburgh, UK
| | | | - Cristina Bajo-Santos
- Department of Cancer Research Latvian Biomedical Research and Study Centre, Riga, Latvia
| | - Frances Collins
- Centre for Inflammation Research, University of Edinburgh, Edinburgh, UK
| | | | | |
Collapse
|
52
|
Carruba G. Estrogens in Hepatocellular Carcinoma: Friends or Foes? Cancers (Basel) 2021; 13:cancers13092085. [PMID: 33925807 PMCID: PMC8123464 DOI: 10.3390/cancers13092085] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2021] [Revised: 04/22/2021] [Accepted: 04/23/2021] [Indexed: 01/06/2023] Open
Abstract
Simple Summary Today, we know that estrogen hormones are required for the development and function of many organs, such as the liver, in both males and females. However, in some circumstances, estrogen excess may be implicated in the appearance of various chronic diseases, including cancer. This review will inspect the results of several studies to better understand the mechanisms responsible for estrogens to change from protective into harmful hormones in human liver. Abstract Estrogens are recognized as key players in physiological regulation of various, classical and non-classical, target organs, and tissues, including liver development, homeostasis, and function. On the other hand, multiple, though dispersed, experimental evidence is highly suggestive for the implication of estrogen in development and progression of hepatocellular carcinoma. In this paper, data from our own studies and the current literature are reviewed to help understanding this apparent discrepancy.
Collapse
Affiliation(s)
- Giuseppe Carruba
- Servizio di Internazionalizzazione e Ricerca Sanitaria (SIRS), Azienda di Rilievo Nazionale e di Alta Specializzazione (ARNAS)-Civico, Di Cristina, Benfratelli-Palermo, Piazza N. Leotta 2, 90127 Palermo, Italy
| |
Collapse
|
53
|
Collins JM, Wang D. Co-expression of drug metabolizing cytochrome P450 enzymes and estrogen receptor alpha (ESR1) in human liver: racial differences and the regulatory role of ESR1. Drug Metab Pers Ther 2021; 36:205-214. [PMID: 33823094 DOI: 10.1515/dmpt-2020-0160] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2020] [Accepted: 01/03/2021] [Indexed: 12/20/2022]
Abstract
OBJECTIVES The function and expression of cytochrome P450 (CYP) drug metabolizing enzymes is highly variable, greatly affecting drug exposure, and therapeutic outcomes. The expression of these enzymes is known to be controlled by many transcription factors (TFs), including ligand-free estrogen receptor alpha (ESR1, in the absence of estrogen). However, the relationship between the expression of ESR1, other TFs, and CYP enzymes in human liver is still unclear. METHODS Using real-time PCR, we quantified the mRNA levels of 12 CYP enzymes and nine TFs in 246 human liver samples from European American (EA, n = 133) and African American (AA, n = 113) donors. RESULTS Our results showed higher expression levels of ESR1 and six CYP enzymes in EA than in AA. Partial least square regression analysis showed that ESR1 is the top-ranking TF associating with the expression of eight CYP enzymes, six of which showed racial difference in expression. Conversely, four CYP enzymes without racial difference in expression did not have ESR1 as a top-ranking TF. These results indicate that ESR1 may contribute to variation in CYP enzyme expression between these two ancestral backgrounds. CONCLUSIONS These results are consistent with our previous study showing ESR1 as a master regulator for the expression of several CYP enzymes. Therefore, factors affecting ESR1 expression may have broad influence on drug metabolism through altered expression of CYP enzymes.
Collapse
Affiliation(s)
- Joseph M Collins
- Department of Pharmacotherapy and Translational Research, Center for Pharmacogenomics, College of Pharmacy, University of Florida, Gainesville, FL, USA
| | - Danxin Wang
- Department of Pharmacotherapy and Translational Research, Center for Pharmacogenomics, College of Pharmacy, University of Florida, Gainesville, FL, USA
| |
Collapse
|
54
|
Sexual hormones and diabetes: The impact of estradiol in pancreatic β cell. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2021. [PMID: 33832654 DOI: 10.1016/bs.ircmb.2021.02.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/13/2023]
Abstract
Diabetes is one of the most prevalent metabolic diseases and its incidence is increasing throughout the world. Data from World Health Organization (WHO) point-out that diabetes is a major cause of blindness, kidney failure, heart attacks, stroke and lower limb amputation and estimated 1.6 million deaths were directly caused by it in 2016. Population studies show that the incidence of this disease increases in women after menopause, when the production of estrogen is decreasing in them. Knowing the impact that estrogenic signaling has on insulin-secreting β cells is key to prevention and design of new therapeutic targets. This chapter explores the role of estrogen and their receptors in the regulation of insulin secretion and biosynthesis, proliferation, regeneration and survival in pancreatic β cells. In addition, delves into the genetic animal models developed and its application for the specific study of the different estrogen signaling pathways. Finally, discusses the impact of menopause and hormone replacement therapy on pancreatic β cell function.
Collapse
|
55
|
Lv Y, Ma X, Du Y, Feng J. Understanding Patterns of Brain Metastasis in Triple-Negative Breast Cancer and Exploring Potential Therapeutic Targets. Onco Targets Ther 2021; 14:589-607. [PMID: 33519208 PMCID: PMC7837592 DOI: 10.2147/ott.s293685] [Citation(s) in RCA: 44] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2020] [Accepted: 01/06/2021] [Indexed: 12/13/2022] Open
Abstract
Triple-negative breast cancer (TNBC) is a highly malignant subtype of breast cancer. High invasiveness and heterogeneity, as well as a lack of drug targets, are the main factors leading to poor prognosis. Brain metastasis (BM) is a serious event threatening the life of breast cancer patients, especially those with TNBC. Compared with that for hormone receptor-positive and HER2-positive breast cancers, TNBC-derived BM (TNBCBM) occurs earlier and more frequently, and has a worse prognosis. There is no standard treatment for BM to date, and one is urgently required. In this review, we discuss the current knowledge regarding the developmental patterns of TNBCBM, focusing on the key events in BM formation. Specifically, we consider (i) the nature and function of TNBC cells; (ii) how TNBC cells cross the blood–brain barrier and form a fenestrated, more permeable blood–tumor barrier; (iii) the biological characteristics of TNBCBM; and (iv) the infiltration and colonization of the central nervous system (CNS) by TNBC cells, including the establishment of premetastatic niches, immunosurveillance escape, and metabolic adaptations. We also discuss putative therapeutic targets and precision therapy with the greatest potential to treat TNBCBM, and summarize the relevant completed and ongoing clinical trials. These findings may provide new insights into the prevention and treatment of BM in TNBC patients.
Collapse
Affiliation(s)
- Yan Lv
- The Affiliated Cancer Hospital of Nanjing Medical University, Jiangsu Cancer Hospital, Jiangsu Institute of Cancer Research, Nanjing 210009, People's Republic of China
| | - Xiao Ma
- Department of General Surgery, The Affiliated Zhongda Hospital of Southeast University, Nanjing 210009, People's Republic of China
| | - Yuxin Du
- The Affiliated Cancer Hospital of Nanjing Medical University, Jiangsu Cancer Hospital, Jiangsu Institute of Cancer Research, Nanjing 210009, People's Republic of China
| | - Jifeng Feng
- The Affiliated Cancer Hospital of Nanjing Medical University, Jiangsu Cancer Hospital, Jiangsu Institute of Cancer Research, Nanjing 210009, People's Republic of China
| |
Collapse
|
56
|
Mahboobifard F, Dargahi L, Jorjani M, Ramezani Tehrani F, Pourgholami MH. The role of ERα36 in cell type-specific functions of estrogen and cancer development. Pharmacol Res 2021; 163:105307. [PMID: 33246174 DOI: 10.1016/j.phrs.2020.105307] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/10/2020] [Revised: 11/05/2020] [Accepted: 11/09/2020] [Indexed: 02/07/2023]
|
57
|
Zheng S, Wu L, Fan C, Lin J, Zhang Y, Simoncini T, Fu X. The role of Gα protein signaling in the membrane estrogen receptor-mediated signaling. Gynecol Endocrinol 2021; 37:2-9. [PMID: 33412963 DOI: 10.1080/09513590.2020.1851674] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Estrogens exert rapid, extranuclear effects by their action on the plasma membrane estrogen receptors (mERs). Gα protein associated with the cell membrane is involved in many important processes regulated by estrogens. However, the Gα's role in the mER-mediated signaling and the signaling pathways involved are poorly understood. This review aims to outline the Gα's role in the mER-mediated signaling. Immunoblotting, immunofluorescence, co-immunoprecipitation, and RNA interference were carried out using vascular endothelial cells (ECs) and human breast carcinoma cell lines as experimental models. Electrophysiology and immunocytochemistry were carried out using guinea pigs as animal models. Recent advances suggest that the signaling of mERα through Gα is required for vascular EC migration or endothelial H2S release, while Gα13 is involved in estrogen-induced breast cancer cell invasion. Besides, the Gαq-coupled PLC-PKC-PKA pathway is critical for the neural regulation of energy homeostasis. This review summarizes the contributions of Gα to mER-mediated signaling, including cardiovascular protection, breast cancer metastasis, neural regulation of homeostatic functions, and osteogenesis.
Collapse
Affiliation(s)
- Shuhui Zheng
- Research Center for Translational Medicine, The First Affiliated Hospital, Sun Yat-Sen University, Guangzhou, China
| | - Lin Wu
- Department of Cardiology, The Third Affiliated Hospital of Sun Yat-Sen University, Guangzhou, China
| | - Chao Fan
- Department of Gynecology and Obstetrics, The Sixth Affiliated Hospital, Key Laboratory of Cardiovascular Diseases, School of Basic Medical Sciences, Guangzhou Medical University, Guangzhou, China
- Guangzhou Institute of Cardiovascular Disease, Guangdong Key Laboratory of Vascular Diseases, State Key Laboratory of Respiratory Disease, the Second Affiliated Hospital, Guangzhou Medical University, Guangzhou, Guangdong, P.R. China
| | - Jingxia Lin
- Department of Blood Transfusion, The First Affiliated Hospital, Sun Yat-Sen University, Guangzhou, China
| | - Yaxing Zhang
- Department of Traditional Chinese Medicine, The Third Affiliated Hospital, Sun Yat-Sen University, Guangzhou, China
| | - Tommaso Simoncini
- Molecular and Cellular Gynecological Endocrinology Laboratory (MCGEL), Department of Reproductive Medicine and Child Development, University of Pisa, Pisa, Italy
| | - Xiaodong Fu
- Department of Gynecology and Obstetrics, The Sixth Affiliated Hospital, Key Laboratory of Cardiovascular Diseases, School of Basic Medical Sciences, Guangzhou Medical University, Guangzhou, China
- Guangzhou Institute of Cardiovascular Disease, Guangdong Key Laboratory of Vascular Diseases, State Key Laboratory of Respiratory Disease, the Second Affiliated Hospital, Guangzhou Medical University, Guangzhou, Guangdong, P.R. China
| |
Collapse
|
58
|
Guo Y, Wu G, Yi J, Yang Q, Jiang W, Lin S, Yang X, Cai X, Mao L. Anti-Hepatocellular Carcinoma Effect and Molecular Mechanism of the Estrogen Signaling Pathway. Front Oncol 2021; 11:763539. [PMID: 35096574 PMCID: PMC8789654 DOI: 10.3389/fonc.2021.763539] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2021] [Accepted: 12/14/2021] [Indexed: 12/18/2022] Open
Abstract
There are significant gender differences in the incidence and mortality of hepatocellular carcinoma (HCC). Compared with men, the incidence and mortality of HCC in women are relatively low. The estrogen signaling pathway, composed of estrogen and estrogen receptors, has been postulated to have a protective effect on the occurrence and development of HCC. There have been multiple studies that have supported anti-HCC effects of the estrogen signaling pathways, including direct and indirect pathways such as genomic pathways, rapid transduction pathways, non-coding RNA, tumor microenvironment, estrogen metabolites, and inhibition of hepatitis infection and replication. Based on the evidence of an anti-HCC effect of the estrogen signaling pathway, a number of strategies have been investigated to determine the potential therapeutic effect. These have included estrogen replacement therapy, targeting the estrogen receptor, key molecules, inflammatory mediators, and regulatory pathways of the estrogen signaling pathway. In this review, we have systematically summarized the latest developments in the complex functions and molecular mechanisms of the estrogen signaling pathway in liver cancer. Furthermore, we have highlighted the potential targets of treatment strategies based on the estrogen signaling pathway in the treatment of liver cancer and the principal obstacles currently encountered for future investigation.
Collapse
Affiliation(s)
- Yusheng Guo
- Scientific Research Center, The First Affiliated Hospital of Guangdong Pharmaceutical University, Guangzhou, China
| | - Guohui Wu
- Scientific Research Center, The First Affiliated Hospital of Guangdong Pharmaceutical University, Guangzhou, China
| | - Junrong Yi
- Scientific Research Center, The First Affiliated Hospital of Guangdong Pharmaceutical University, Guangzhou, China
| | - Qin Yang
- Nephrology Department, The First Affiliated Hospital of Guangdong Pharmaceutical University, Guangzhou, China
| | - Wengong Jiang
- Nephrology Department, The First Affiliated Hospital of Guangdong Pharmaceutical University, Guangzhou, China
| | - Shaoqiang Lin
- Scientific Research Center, The First Affiliated Hospital of Guangdong Pharmaceutical University, Guangzhou, China
| | - Xiaorong Yang
- Clinical Laboratory, The First Affiliated Hospital of Guangdong Pharmaceutical University, Guangzhou, China
- *Correspondence: Liufeng Mao, ; Xiangsheng Cai, ; Xiaorong Yang,
| | - Xiangsheng Cai
- Center for Medical Experiments, University of Chinese Academy of Science-Shenzhen Hospital, Shenzhen, China
- *Correspondence: Liufeng Mao, ; Xiangsheng Cai, ; Xiaorong Yang,
| | - Liufeng Mao
- Scientific Research Center, The First Affiliated Hospital of Guangdong Pharmaceutical University, Guangzhou, China
- *Correspondence: Liufeng Mao, ; Xiangsheng Cai, ; Xiaorong Yang,
| |
Collapse
|
59
|
Involvement of the MEN1 Gene in Hormone-Related Cancers: Clues from Molecular Studies, Mouse Models, and Patient Investigations. ENDOCRINES 2020. [DOI: 10.3390/endocrines1020007] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
MEN1 mutation predisposes patients to multiple endocrine neoplasia type 1 (MEN1), a genetic syndrome associated with the predominant co-occurrence of endocrine tumors. Intriguingly, recent evidence has suggested that MEN1 could also be involved in the development of breast and prostate cancers, two major hormone-related cancers. The first clues as to its possible role arose from the identification of the physical and functional interactions between the menin protein, encoded by MEN1, and estrogen receptor α and androgen receptor. In parallel, our team observed that aged heterozygous Men1 mutant mice developed cancerous lesions in mammary glands of female and in the prostate of male mutant mice at low frequencies, in addition to endocrine tumors. Finally, observations made both in MEN1 patients and in sporadic breast and prostate cancers further confirmed the role played by menin in these two cancers. In this review, we present the currently available data concerning the complex and multifaceted involvement of MEN1 in these two types of hormone-dependent cancers.
Collapse
|
60
|
Chimento A, De Luca A, Nocito MC, Avena P, La Padula D, Zavaglia L, Pezzi V. Role of GPER-Mediated Signaling in Testicular Functions and Tumorigenesis. Cells 2020; 9:cells9092115. [PMID: 32957524 PMCID: PMC7563107 DOI: 10.3390/cells9092115] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2020] [Revised: 09/15/2020] [Accepted: 09/15/2020] [Indexed: 12/11/2022] Open
Abstract
Estrogen signaling plays important roles in testicular functions and tumorigenesis. Fifteen years ago, it was discovered that a member of the G protein-coupled receptor family, GPR30, which binds also with high affinity to estradiol and is responsible, in part, for the rapid non-genomic actions of estrogens. GPR30, renamed as GPER, was detected in several tissues including germ cells (spermatogonia, spermatocytes, spermatids) and somatic cells (Sertoli and Leydig cells). In our previous review published in 2014, we summarized studies that evidenced a role of GPER signaling in mediating estrogen action during spermatogenesis and testis development. In addition, we evidenced that GPER seems to be involved in modulating estrogen-dependent testicular cancer cell growth; however, the effects on cell survival and proliferation depend on specific cell type. In this review, we update the knowledge obtained in the last years on GPER roles in regulating physiological functions of testicular cells and its involvement in neoplastic transformation of both germ and somatic cells. In particular, we will focus our attention on crosstalk among GPER signaling, classical estrogen receptors and other nuclear receptors involved in testis physiology regulation.
Collapse
Affiliation(s)
- Adele Chimento
- Correspondence: (A.C.); (V.P.); Tel.: +39-0984-493184 (A.C.); +39-0984-493148 (V.P.)
| | | | | | | | | | | | - Vincenzo Pezzi
- Correspondence: (A.C.); (V.P.); Tel.: +39-0984-493184 (A.C.); +39-0984-493148 (V.P.)
| |
Collapse
|
61
|
Chen B, Ye P, Chen Y, Liu T, Cha JH, Yan X, Yang WH. Involvement of the Estrogen and Progesterone Axis in Cancer Stemness: Elucidating Molecular Mechanisms and Clinical Significance. Front Oncol 2020; 10:1657. [PMID: 33014829 PMCID: PMC7498570 DOI: 10.3389/fonc.2020.01657] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2020] [Accepted: 07/28/2020] [Indexed: 12/21/2022] Open
Abstract
Estrogen and progesterone regulate the growth and development of human tissues, including the reproductive system and breasts, through estrogen and progesterone receptors, respectively. These receptors are also important indicators for the clinical prognosis of breast cancer and various reproductive cancers. Many studies have reported that cancer stem cells (CSCs) play a key role in tumor initiation, progression, metastasis, and recurrence. Although the role of estrogen and progesterone in human organs and various cancers has been studied, the molecular mechanisms underlying the action of these hormones on CSCs remain unclear. Therefore, further elucidation of the effects of estrogen and progesterone on CSCs should provide a new direction for developing pertinent therapies. In this review, we summarize the current knowledge on the estrogen and progesterone axis involved in cancer stemness and discuss potential therapeutic strategies to inhibit CSCs by targeting relevant pathways.
Collapse
Affiliation(s)
- Bi Chen
- Affiliated Cancer Hospital and Institute of Guangzhou Medical University, Guangzhou, China
| | - Peng Ye
- Affiliated Cancer Hospital and Institute of Guangzhou Medical University, Guangzhou, China
| | - Yeh Chen
- Institute of New Drug Development, China Medical University, Taichung, Taiwan
| | - Tong Liu
- Department of Breast Surgery, Harbin Medical University Cancer Hospital, Harbin, China.,The Institute of Cancer Prevention and Treatment, Harbin Medical University, Harbin, China
| | - Jong-Ho Cha
- Department of Biomedical Sciences, College of Medicine, Inha University, Incheon, South Korea
| | - Xiuwen Yan
- Affiliated Cancer Hospital and Institute of Guangzhou Medical University, Guangzhou, China
| | - Wen-Hao Yang
- Affiliated Cancer Hospital and Institute of Guangzhou Medical University, Guangzhou, China.,Graduate Institute of Biomedical Sciences, China Medical University, Taichung, Taiwan
| |
Collapse
|
62
|
Dees S, Pontiggia L, Jasmin JF, Sotgia F, Lisanti MP, Mercier I. Essential role of STAT5a in DCIS formation and invasion following estrogen treatment. Aging (Albany NY) 2020; 12:15104-15120. [PMID: 32633727 PMCID: PMC7425506 DOI: 10.18632/aging.103586] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2019] [Accepted: 06/10/2020] [Indexed: 11/25/2022]
Abstract
Ductal carcinoma in situ (DCIS) is one of the earliest stages of breast cancer (BCa). The mechanisms by which DCIS lesions progress to an invasive state while others remain indolent are yet to be fully characterized and both diagnosis and treatment of this pre-invasive disease could benefit from better understanding the pathways involved. While a decreased expression of Caveolin-1 (Cav-1) in the tumor microenvironment of patients with DCIS breast cancer was linked to progression to invasive breast cancer (IBC), the downstream effector(s) contributing to this process remain elusive. The current report shows elevated expression of Signal Transducer and Activator of Transcription 5a (STAT5a) within the DCIS-like lesions in Cav-1 KO mice following estrogen treatment and inhibition of STAT5a expression prevented the formation of these mammary lesions. In addition, STAT5a overexpression in a human DCIS cell line (MCF10DCIS.com) promoted their invasion, a process accelerated by estrogen treatment and associated with increased levels of the matrix metalloproteinase-9 (MMP-9) precursor. In sum, our results demonstrate a novel regulatory axis (Cav-1♦STAT5a♦MMP-9) in DCIS that is fully activated by the presence of estrogen. Our sudies suggest to further study phosphorylated STAT5a (Y694) as a potential biomarker to guide and predict outcome of DCIS patient population.
Collapse
Affiliation(s)
- Sundee Dees
- Department of Pharmaceutical Sciences, Philadelphia College of Pharmacy, University of the Sciences, Philadelphia, PA, USA
| | - Laura Pontiggia
- Department of Mathematics, Physics and Statistics, Misher College of Arts and Sciences, University of the Sciences, Philadelphia, PA, USA
| | - Jean-Francois Jasmin
- Department of Pharmaceutical Sciences, Philadelphia College of Pharmacy, University of the Sciences, Philadelphia, PA, USA
| | - Federica Sotgia
- Translational Medicine, School of Science, Engineering and Environment (SEE), Biomedical Research Centre (BRC), University of Salford, Greater Manchester, United Kingdom
| | - Michael P. Lisanti
- Translational Medicine, School of Science, Engineering and Environment (SEE), Biomedical Research Centre (BRC), University of Salford, Greater Manchester, United Kingdom
| | - Isabelle Mercier
- Department of Pharmaceutical Sciences, Philadelphia College of Pharmacy, University of the Sciences, Philadelphia, PA, USA
- Program in Personalized Medicine and Targeted Therapeutics, University of the Sciences, Philadelphia, PA, USA
| |
Collapse
|
63
|
Ferraz da Costa DC, Pereira Rangel L, Quarti J, Santos RA, Silva JL, Fialho E. Bioactive Compounds and Metabolites from Grapes and Red Wine in Breast Cancer Chemoprevention and Therapy. Molecules 2020; 25:E3531. [PMID: 32752302 PMCID: PMC7436232 DOI: 10.3390/molecules25153531] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2020] [Revised: 07/17/2020] [Accepted: 07/28/2020] [Indexed: 02/06/2023] Open
Abstract
Phytochemicals and their metabolites are not considered essential nutrients in humans, although an increasing number of well-conducted studies are linking their higher intake with a lower incidence of non-communicable diseases, including cancer. This review summarizes the current findings concerning the molecular mechanisms of bioactive compounds from grapes and red wine and their metabolites on breast cancer-the most commonly occurring cancer in women-chemoprevention and treatment. Flavonoid compounds like flavonols, monomeric catechins, proanthocyanidins, anthocyanins, anthocyanidins and non-flavonoid phenolic compounds, such as resveratrol, as well as their metabolites, are discussed with respect to structure and metabolism/bioavailability. In addition, a broad discussion regarding in vitro, in vivo and clinical trials about the chemoprevention and therapy using these molecules is presented.
Collapse
Affiliation(s)
- Danielly C. Ferraz da Costa
- Departamento de Nutrição Básica e Experimental, Instituto de Nutrição, Universidade do Estado do Rio de Janeiro, Rio de Janeiro 20550-013, Brazil; (D.C.F.d.C.); (R.A.S.)
| | - Luciana Pereira Rangel
- Faculdade de Farmácia, Universidade Federal do Rio de Janeiro, Rio de Janeiro 21941-902, Brazil;
| | - Julia Quarti
- Departamento de Nutrição Básica e Experimental, Instituto de Nutrição Josué de Castro, Universidade Federal do Rio de Janeiro, Rio de Janeiro 21941-902, Brazil;
| | - Ronimara A. Santos
- Departamento de Nutrição Básica e Experimental, Instituto de Nutrição, Universidade do Estado do Rio de Janeiro, Rio de Janeiro 20550-013, Brazil; (D.C.F.d.C.); (R.A.S.)
| | - Jerson L. Silva
- Programa de Biologia Estrutural, Instituto de Bioquímica Médica Leopoldo de Meis, Instituto Nacional de Ciência e Tecnologia de Biologia Estrutural e Bioimagem, Universidade Federal do Rio de Janeiro, Rio de Janeiro 21941-902, Brazil
| | - Eliane Fialho
- Departamento de Nutrição Básica e Experimental, Instituto de Nutrição Josué de Castro, Universidade Federal do Rio de Janeiro, Rio de Janeiro 21941-902, Brazil;
| |
Collapse
|
64
|
Niwa T, Takanobu J, Suzuki K, Sato Y, Yamaguchi Y, Hayashi SI. Characterization of a membrane-associated estrogen receptor in breast cancer cells and its contribution to hormone therapy resistance using a novel selective ligand. J Steroid Biochem Mol Biol 2020; 201:105671. [PMID: 32289430 DOI: 10.1016/j.jsbmb.2020.105671] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/27/2020] [Revised: 03/23/2020] [Accepted: 04/03/2020] [Indexed: 11/24/2022]
Abstract
The estrogen receptor (ER) plays a role in the progression of hormone-dependent breast cancer and is a hormone therapy target. Estrogen acts as a transcription factor (genomic action) and also produces a quick non-genomic reaction through intracellular signaling pathways. The membrane associated ER (mER) may regulate both these signals and hormone therapy resistance. However, the details remain unclear because a reliable method to distinguish the signals induced by the estradiol (E2)-mER and E2-nuclear ER complex has not been established. In the present study, we prepared the novel ligand Qdot-6-E2, selective for mER, by coupling E2 with insoluble quantum dot nano-beads. We investigated the characteristics of mER signaling pathways and its contribution to hormone therapy resistance using different cell lines including estrogen depletion resistant (EDR) cells with different mechanisms. Qdot-6-E2 stimulated proliferation of nuclear ER-positive cells, but nuclear ER-negative cells showed no response. In addition, Qdot-6-E2 indirectly activated nuclear ER and increased mRNA expression of target genes. We confirmed that E2 was not dissociated from Qdot-6-E2 using a mammalian one-hybrid assay. We visually demonstrated that Qdot-6-E2 acts from the outside of cells. The gene expression profile induced by Qdot-6-E2-mER was different from that induced by E2-nuclear ER. The effect of anti-ER antibody, the GFP-ER fusion protein localization, and the effect of palmitoyl acyltransferase inhibitor also indicated the existence of mER. Regarding intracellular phosphorylation signaling pathways, the MAPK (Erk 1/2) and the PI3K/Akt pathways were both activated by Qdot-6-E2. In EDR cells, only nuclear ER-positive cells showed increased cell proliferation with increased localization of ERα to the membrane fraction. These findings suggested that Qdot-6-E2 reacts with ERα surrounding the cell membrane and that mER signals help the cells to survive under estrogen-depleted conditions by re-localizing the ER to use trace amounts of E2 more effectively. We expect that Qdot-6-E2 is a useful tool for studying the mER.
Collapse
Affiliation(s)
- Toshifumi Niwa
- Department of Molecular and Functional Dynamics, Graduate School of Medicine, Tohoku University, Aoba-ku, Sendai, Miyagi, 980-8575, Japan.
| | - Junko Takanobu
- Department of Molecular and Functional Dynamics, Graduate School of Medicine, Tohoku University, Aoba-ku, Sendai, Miyagi, 980-8575, Japan
| | - Kanae Suzuki
- Department of Molecular and Functional Dynamics, Graduate School of Medicine, Tohoku University, Aoba-ku, Sendai, Miyagi, 980-8575, Japan
| | - Yuta Sato
- Department of Molecular and Functional Dynamics, Graduate School of Medicine, Tohoku University, Aoba-ku, Sendai, Miyagi, 980-8575, Japan
| | - Yuri Yamaguchi
- Research Institute for Clinical Oncology, Saitama Cancer Center, Saitama, Japan
| | - Shin-Ichi Hayashi
- Department of Molecular and Functional Dynamics, Graduate School of Medicine, Tohoku University, Aoba-ku, Sendai, Miyagi, 980-8575, Japan
| |
Collapse
|
65
|
Estrogen Receptors and Estrogen-Induced Uterine Vasodilation in Pregnancy. Int J Mol Sci 2020; 21:ijms21124349. [PMID: 32570961 PMCID: PMC7352873 DOI: 10.3390/ijms21124349] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2020] [Revised: 06/10/2020] [Accepted: 06/15/2020] [Indexed: 12/16/2022] Open
Abstract
Normal pregnancy is associated with dramatic increases in uterine blood flow to facilitate the bidirectional maternal–fetal exchanges of respiratory gases and to provide sole nutrient support for fetal growth and survival. The mechanism(s) underlying pregnancy-associated uterine vasodilation remain incompletely understood, but this is associated with elevated estrogens, which stimulate specific estrogen receptor (ER)-dependent vasodilator production in the uterine artery (UA). The classical ERs (ERα and ERβ) and the plasma-bound G protein-coupled ER (GPR30/GPER) are expressed in UA endothelial cells and smooth muscle cells, mediating the vasodilatory effects of estrogens through genomic and/or nongenomic pathways that are likely epigenetically modified. The activation of these three ERs by estrogens enhances the endothelial production of nitric oxide (NO), which has been shown to play a key role in uterine vasodilation during pregnancy. However, the local blockade of NO biosynthesis only partially attenuates estrogen-induced and pregnancy-associated uterine vasodilation, suggesting that mechanisms other than NO exist to mediate uterine vasodilation. In this review, we summarize the literature on the role of NO in ER-mediated mechanisms controlling estrogen-induced and pregnancy-associated uterine vasodilation and our recent work on a “new” UA vasodilator hydrogen sulfide (H2S) that has dramatically changed our view of how estrogens regulate uterine vasodilation in pregnancy.
Collapse
|
66
|
Yin L, Duan JJ, Bian XW, Yu SC. Triple-negative breast cancer molecular subtyping and treatment progress. Breast Cancer Res 2020; 22:61. [PMID: 32517735 PMCID: PMC7285581 DOI: 10.1186/s13058-020-01296-5] [Citation(s) in RCA: 1337] [Impact Index Per Article: 267.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2019] [Accepted: 05/14/2020] [Indexed: 12/18/2022] Open
Abstract
Triple-negative breast cancer (TNBC), a specific subtype of breast cancer that does not express estrogen receptor (ER), progesterone receptor (PR), or human epidermal growth factor receptor 2 (HER-2), has clinical features that include high invasiveness, high metastatic potential, proneness to relapse, and poor prognosis. Because TNBC tumors lack ER, PR, and HER2 expression, they are not sensitive to endocrine therapy or HER2 treatment, and standardized TNBC treatment regimens are still lacking. Therefore, development of new TNBC treatment strategies has become an urgent clinical need. By summarizing existing treatment regimens, therapeutic drugs, and their efficacy for different TNBC subtypes and reviewing some new preclinical studies and targeted treatment regimens for TNBC, this paper aims to provide new ideas for TNBC treatment.
Collapse
Affiliation(s)
- Li Yin
- Department of Stem Cell and Regenerative Medicine, Southwest Hospital, Third Military Medical University (Army Medical University), ChongQing, 400038, China.,Institute of Pathology and Southwest Cancer Center, Southwest Hospital, Third Military Medical University (Army Medical University), ChongQing, 400038, China.,Key Laboratory of Cancer Immunopathology, Ministry of Education, ChongQing, 400038, China
| | - Jiang-Jie Duan
- Department of Stem Cell and Regenerative Medicine, Southwest Hospital, Third Military Medical University (Army Medical University), ChongQing, 400038, China.,Institute of Pathology and Southwest Cancer Center, Southwest Hospital, Third Military Medical University (Army Medical University), ChongQing, 400038, China.,Key Laboratory of Cancer Immunopathology, Ministry of Education, ChongQing, 400038, China
| | - Xiu-Wu Bian
- Institute of Pathology and Southwest Cancer Center, Southwest Hospital, Third Military Medical University (Army Medical University), ChongQing, 400038, China.,Key Laboratory of Cancer Immunopathology, Ministry of Education, ChongQing, 400038, China
| | - Shi-Cang Yu
- Department of Stem Cell and Regenerative Medicine, Southwest Hospital, Third Military Medical University (Army Medical University), ChongQing, 400038, China. .,Institute of Pathology and Southwest Cancer Center, Southwest Hospital, Third Military Medical University (Army Medical University), ChongQing, 400038, China. .,Key Laboratory of Cancer Immunopathology, Ministry of Education, ChongQing, 400038, China.
| |
Collapse
|
67
|
Thiebaut C, Konan HP, Guerquin MJ, Chesnel A, Livera G, Le Romancer M, Dumond H. The Role of ERα36 in Development and Tumor Malignancy. Int J Mol Sci 2020; 21:E4116. [PMID: 32526980 PMCID: PMC7312586 DOI: 10.3390/ijms21114116] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2020] [Revised: 06/03/2020] [Accepted: 06/04/2020] [Indexed: 02/06/2023] Open
Abstract
Estrogen nuclear receptors, represented by the canonical forms ERα66 and ERβ1, are the main mediators of the estrogen-dependent pathophysiology in mammals. However, numerous isoforms have been identified, stimulating unconventional estrogen response pathways leading to complex cellular and tissue responses. The estrogen receptor variant, ERα36, was cloned in 2005 and is mainly described in the literature to be involved in the progression of mammary tumors and in the acquired resistance to anti-estrogen drugs, such as tamoxifen. In this review, we will first specify the place that ERα36 currently occupies within the diversity of nuclear and membrane estrogen receptors. We will then report recent data on the impact of ERα36 expression and/or activity in normal breast and testicular cells, but also in different types of tumors including mammary tumors, highlighting why ERα36 can now be considered as a marker of malignancy. Finally, we will explain how studying the regulation of ERα36 expression could provide new clues to counteract resistance to cancer treatments in hormone-sensitive tumors.
Collapse
Affiliation(s)
- Charlène Thiebaut
- Université de Lorraine, CNRS, CRAN, F-54000 Nancy, France; (C.T.); (A.C.)
| | - Henri-Philippe Konan
- Université de Lyon, F-69000 Lyon, France; (H.-P.K.); (M.L.R.)
- INSERM U1052, Centre de Recherche en Cancérologie de Lyon, F-69000 Lyon, France
- CNRS UMR5286, Centre de Recherche en Cancérologie de Lyon, F-69000 Lyon, France
| | - Marie-Justine Guerquin
- Laboratory of Development of the Gonads, UMRE008 Genetic Stability Stem Cells and Radiation, Université de Paris, Université Paris Saclay, CEA, F-92265 Fontenay aux Roses, France; (M.-J.G.); (G.L.)
| | - Amand Chesnel
- Université de Lorraine, CNRS, CRAN, F-54000 Nancy, France; (C.T.); (A.C.)
| | - Gabriel Livera
- Laboratory of Development of the Gonads, UMRE008 Genetic Stability Stem Cells and Radiation, Université de Paris, Université Paris Saclay, CEA, F-92265 Fontenay aux Roses, France; (M.-J.G.); (G.L.)
| | - Muriel Le Romancer
- Université de Lyon, F-69000 Lyon, France; (H.-P.K.); (M.L.R.)
- INSERM U1052, Centre de Recherche en Cancérologie de Lyon, F-69000 Lyon, France
- CNRS UMR5286, Centre de Recherche en Cancérologie de Lyon, F-69000 Lyon, France
| | - Hélène Dumond
- Université de Lorraine, CNRS, CRAN, F-54000 Nancy, France; (C.T.); (A.C.)
| |
Collapse
|
68
|
Mahboobifard F, Bidari-Zerehpoosh F, Davoudi Z, Panahi M, Dargahi L, Pourgholami MH, Sharifi G, Izadi N, Jorjani M. Expression patterns of ERα66 and its novel variant isoform ERα36 in lactotroph pituitary adenomas and associations with clinicopathological characteristics. Pituitary 2020; 23:232-245. [PMID: 32026205 DOI: 10.1007/s11102-020-01029-z] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
PURPOSE The regulatory effects of estradiol on pituitary homeostasis have been well documented. However, the expression patterns of ERα66 and ERα36 and their correlations with the clinical course of postoperative prolactinoma tumors remain unclear. METHODS The expression of ERα36, ERα66, Ki67, p53, and CD31 were determined by immunohistochemistry in 62 prolactinoma patients. Snap-frozen tumors and normal pituitaries were also examined by western blotting for estrogen receptor detection. RESULTS A broad expression of ERα36 was identified in normal pituitaries. The median scores of ERα36 and ERα66 expression were 8 and 6 in normal pituitaries and 4 and 0 in tumors, respectively. Four phenotypes of ERα36 and ERα66 expression were explored in tumors with regard to sex, invasiveness, dopamine resistance, and recurrence. Low ERα36 expression was associated with tumor invasion and increased Ki67. Low ERα66 expression was associated with tumor invasion, dopamine-agonist resistance, and enhanced tumor size. Multivariable logistic regression analysis showed that low ERα36 expression is an independent risk factor for invasiveness. The significant inverse association of ERα66 with invasiveness, dopamine resistance, and tumor size remained significant after adjustment for sex as a potential confounder. After controlling for sex, the low ERα66/low ERα36 phenotype was 6.24 times more prevalent in invasive tumors than in noninvasive tumors. Although the decreasing trend of CD31 expression from surrounding nontumoral lactotroph adenomas to tumors was similar to that of the estrogen receptors, a significant correlation was not observed here. CONCLUSION The decreasing trends of ERα36 and ERα66 expression from normal pituitaries to tumors are associated with aggressive clinical behavior.
Collapse
Affiliation(s)
- Fatemeh Mahboobifard
- Department of Pharmacology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Farahnaz Bidari-Zerehpoosh
- Department of Pathology, Loghman Hakim Hospital, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Zahra Davoudi
- Skull Base Research Center, Loghman Hakim Hospital, Shahid Beheshti University of Medical Science, Tehran, Iran
| | - Mahshid Panahi
- Department of Pathology, Firoozgar Hospital, Iran University of Medical Sciences, Tehran, Iran
| | - Leila Dargahi
- Neuroscience Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mohammad H Pourgholami
- Department of Physiology, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran
| | - Gieve Sharifi
- Department of Neurosurgery, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Neda Izadi
- Department of Epidemiology, School of Public Health and Safety, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Masoumeh Jorjani
- Department of Pharmacology and Neurobiology Research Center, School of Medicine, Shahid Beheshti University of Medical Sciences, Velenjak, Tehran, Iran.
| |
Collapse
|
69
|
Konan HP, Kassem L, Omarjee S, Surmieliova-Garnès A, Jacquemetton J, Cascales E, Rezza A, Trédan O, Treilleux I, Poulard C, Le Romancer M. ERα-36 regulates progesterone receptor activity in breast cancer. Breast Cancer Res 2020; 22:50. [PMID: 32429997 PMCID: PMC7238515 DOI: 10.1186/s13058-020-01278-7] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2019] [Accepted: 04/13/2020] [Indexed: 01/12/2023] Open
Abstract
Background Alterations in estrogen and progesterone signaling, via their respective receptors, estrogen receptor alpha (ERα) and progesterone receptor (PR), respectively, are largely involved in the development of breast cancer (BC). The recent identification of ERα-36, a splice variant of ERα, has uncovered a new facet of this pathology. Although ERα-36 expression is associated with poor prognosis, metastasis development, and resistance to treatment, its predictive value has so far not been associated with a BC subtype and its mechanisms of action remain understudied. Methods To study ERα-36 expression in BC specimens, we performed immunochemical experiments. Next, the role of ERα-36 in progesterone signaling was investigated by generating KO clones using the CRISPR/CAS9 technology. PR signaling was also assessed by proximity ligation assay, Western blotting, RT-QPCR, and ChIP experiments. Finally, proliferation assays were performed with the IncuCyte technology and migration experiments using scratch assays. Results Here, we demonstrate that ERα-36 expression at the plasma membrane is correlated with a reduced disease-free survival in a cohort of 160 BC patients, particularly in PR-positive tumors, suggesting a crosstalk between ERα-36 and PR. Indeed, we show that ERα-36 interacts constitutively with PR in the nucleus of tumor cells. Moreover, it regulates PR expression and phosphorylation on key residues, impacting the biological effects of progesterone. Conclusions ERα-36 is thus a regulator of PR signaling, interfering with its transcriptional activity and progesterone-induced anti-proliferative effects as well as migratory capacity. Hence, ERα-36 may constitute a new prognostic marker as well as a potential target in PR-positive BC.
Collapse
Affiliation(s)
- Henri-Philippe Konan
- Université de Lyon, F-69000, Lyon, France.,Inserm U1052, Centre de Recherche en Cancérologie de Lyon, Centre Léon Bérard, Bâtiment D, 28 rue Laennec, 69373 Lyon Cedex 08, F-69000, Lyon, France.,CNRS UMR5286, Centre de Recherche en Cancérologie de Lyon, F-69000, Lyon, France
| | - Loay Kassem
- Clinical Oncology Department, Faculty of Medicine, Cairo University, Cairo, Egypt
| | - Soleilmane Omarjee
- Université de Lyon, F-69000, Lyon, France.,Inserm U1052, Centre de Recherche en Cancérologie de Lyon, Centre Léon Bérard, Bâtiment D, 28 rue Laennec, 69373 Lyon Cedex 08, F-69000, Lyon, France.,CNRS UMR5286, Centre de Recherche en Cancérologie de Lyon, F-69000, Lyon, France.,Cancer Research UK, Cambridge Institute, University of Cambridge, Cambridge, CB2 0RE, UK
| | - Ausra Surmieliova-Garnès
- Université de Lyon, F-69000, Lyon, France.,Inserm U1052, Centre de Recherche en Cancérologie de Lyon, Centre Léon Bérard, Bâtiment D, 28 rue Laennec, 69373 Lyon Cedex 08, F-69000, Lyon, France.,CNRS UMR5286, Centre de Recherche en Cancérologie de Lyon, F-69000, Lyon, France
| | - Julien Jacquemetton
- Université de Lyon, F-69000, Lyon, France.,Inserm U1052, Centre de Recherche en Cancérologie de Lyon, Centre Léon Bérard, Bâtiment D, 28 rue Laennec, 69373 Lyon Cedex 08, F-69000, Lyon, France.,CNRS UMR5286, Centre de Recherche en Cancérologie de Lyon, F-69000, Lyon, France
| | | | | | - Olivier Trédan
- Université de Lyon, F-69000, Lyon, France.,Inserm U1052, Centre de Recherche en Cancérologie de Lyon, Centre Léon Bérard, Bâtiment D, 28 rue Laennec, 69373 Lyon Cedex 08, F-69000, Lyon, France.,CNRS UMR5286, Centre de Recherche en Cancérologie de Lyon, F-69000, Lyon, France.,Medical Oncology Department, Centre Léon Bérard, F-69000, Lyon, France
| | - Isabelle Treilleux
- Université de Lyon, F-69000, Lyon, France.,Inserm U1052, Centre de Recherche en Cancérologie de Lyon, Centre Léon Bérard, Bâtiment D, 28 rue Laennec, 69373 Lyon Cedex 08, F-69000, Lyon, France.,CNRS UMR5286, Centre de Recherche en Cancérologie de Lyon, F-69000, Lyon, France.,Pathology Department, Centre Léon Bérard, F-69000, Lyon, France
| | - Coralie Poulard
- Université de Lyon, F-69000, Lyon, France.,Inserm U1052, Centre de Recherche en Cancérologie de Lyon, Centre Léon Bérard, Bâtiment D, 28 rue Laennec, 69373 Lyon Cedex 08, F-69000, Lyon, France.,CNRS UMR5286, Centre de Recherche en Cancérologie de Lyon, F-69000, Lyon, France
| | - Muriel Le Romancer
- Université de Lyon, F-69000, Lyon, France. .,Inserm U1052, Centre de Recherche en Cancérologie de Lyon, Centre Léon Bérard, Bâtiment D, 28 rue Laennec, 69373 Lyon Cedex 08, F-69000, Lyon, France. .,CNRS UMR5286, Centre de Recherche en Cancérologie de Lyon, F-69000, Lyon, France.
| |
Collapse
|
70
|
Sex Hormone-Dependent Physiology and Diseases of Liver. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2020; 17:ijerph17082620. [PMID: 32290381 PMCID: PMC7216036 DOI: 10.3390/ijerph17082620] [Citation(s) in RCA: 99] [Impact Index Per Article: 19.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/03/2020] [Revised: 04/04/2020] [Accepted: 04/07/2020] [Indexed: 12/12/2022]
Abstract
Sexual dimorphism is associated not only with somatic and behavioral differences between men and women, but also with physiological differences reflected in organ metabolism. Genes regulated by sex hormones differ in expression in various tissues, which is especially important in the case of liver metabolism, with the liver being a target organ for sex hormones as its cells express estrogen receptors (ERs: ERα, also known as ESR1 or NR3A; ERβ; GPER (G protein-coupled ER, also known as GPR 30)) and the androgen receptor (AR) in both men and women. Differences in sex hormone levels and sex hormone-specific gene expression are mentioned as some of the main variations in causes of the incidence of hepatic diseases; for example, hepatocellular carcinoma (HCC) is more common in men, while women have an increased risk of autoimmune liver disease and show more acute liver failure symptoms in alcoholic liver disease. In non-alcoholic fatty liver disease (NAFLD), the distinction is less pronounced, but increased incidences are suggested among men and postmenopausal women, probably due to an increased tendency towards visceral fat accumulation.
Collapse
|
71
|
Yin L, Qi XW, Liu XZ, Yang ZY, Cai RL, Cui HJ, Chen L, Yu SC. Icaritin enhances the efficacy of cetuximab against triple-negative breast cancer cells. Oncol Lett 2020; 19:3950-3958. [PMID: 32382339 PMCID: PMC7202296 DOI: 10.3892/ol.2020.11496] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2019] [Accepted: 11/29/2019] [Indexed: 12/17/2022] Open
Abstract
Triple-negative breast cancer (TNBC) has a greater risk of recurrence and metastasis along with a worse prognosis compared with other subtypes of breast cancer. Studies have revealed that mitogenic estrogen signaling is involved in the malignant proliferation of TNBC cells through a novel variant of the estrogen receptor, estrogen receptor α-36 (ER-α36). The results of the present study demonstrated that knockdown of ER-α36 expression in TNBC cells using short hairpin RNA inhibited rapid estrogen signaling bypass activation of the PI3K/AKT signaling pathway. Moreover, the ER-α36 modulator icaritin inhibited the proliferation of TNBC cells both in vitro and in vivo. Here, it was revealed that the combination of icaritin and cetuximab, a therapeutic epidermal growth factor receptor (EGFR) neutralizing antibody, induced apoptosis and inhibited cell proliferation synergistically in TNBC cells. The results of the present study improved the understanding of the underlying mechanisms of TNBC progression and supported the therapeutic potential of combined treatment targeting the ER-α36 and EGFR.
Collapse
Affiliation(s)
- Li Yin
- Department of Stem Cell and Regenerative Medicine, Institute of Pathology and Southwest Cancer Center, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing 400038, P.R. China.,Key Laboratory of Cancer Immunopathology, Ministry of Education, Chongqing 400038, P.R. China
| | - Xiao-Wei Qi
- Breast Disease Center, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing 400038, P.R. China
| | - Xun-Zhou Liu
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing 400715, P.R. China
| | - Ze-Yu Yang
- Department of Stem Cell and Regenerative Medicine, Institute of Pathology and Southwest Cancer Center, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing 400038, P.R. China.,Key Laboratory of Cancer Immunopathology, Ministry of Education, Chongqing 400038, P.R. China
| | - Rui-Li Cai
- Department of Stem Cell and Regenerative Medicine, Institute of Pathology and Southwest Cancer Center, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing 400038, P.R. China.,Key Laboratory of Cancer Immunopathology, Ministry of Education, Chongqing 400038, P.R. China
| | - Hong-Juan Cui
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing 400715, P.R. China
| | - Li Chen
- Breast Disease Center, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing 400038, P.R. China.,State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing 400715, P.R. China
| | - Shi-Cang Yu
- Department of Stem Cell and Regenerative Medicine, Institute of Pathology and Southwest Cancer Center, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing 400038, P.R. China.,Key Laboratory of Cancer Immunopathology, Ministry of Education, Chongqing 400038, P.R. China.,State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing 400715, P.R. China
| |
Collapse
|
72
|
Li G, Zhang J, Xu Z, Li Z. ERα36 as a Potential Therapeutic Target for Tamoxifen-Resistant Breast Cancer Cell Line Through EGFR/ERK Signaling Pathway. Cancer Manag Res 2020; 12:265-275. [PMID: 32021441 PMCID: PMC6969677 DOI: 10.2147/cmar.s226410] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2019] [Accepted: 12/16/2019] [Indexed: 01/08/2023] Open
Abstract
Background Acquired tamoxifen resistance is one of the major barriers to the successful treatment of breast cancer. Recently, overexpression of ERα36 was demonstrated to be a potential mechanism for the generation of acquired tamoxifen resistance. This study aims to evaluate the possibility of ERα36 being a therapeutic target for tamoxifen-resistant breast cancer. Methods A tamoxifen-resistant cell subline (MCF-7/TAM) was established by culturing MCF-7 cells in medium plus 1 μM tamoxifen over 6 months. Colony-forming assay was used to determine the sensitivity of MCF-7/TAM cells to tamoxifen. Stable transfection was used to knockdown ERα36 expression in MCF-7/TAM cells. MTT assay and Transwell migration assay were used to assess the in vitro proliferation and migration, respectively. Nude mouse tumorigenicity assay was used to evaluate in vivo tumorigenicity. Western blot analysis and quantitative real-time PCR (qRT-PCR) were used to examine the expression of ERα36, ERα, EGFR and phosphorylated ERK1/2. The dual-luciferase reporter assay was used to determine the effect of ERα36 on the activity of EGFR-promotor. Results MCF-7/TAM cells possessed greatly increased ERα36 expression and EGFR expression and exhibited significantly increased in vitro proliferation and migration ability, as well as increased in vivo tumor growth ability, compared to parental MCF-7 cells. Knockdown of ERα36 expression inhibited in vitro proliferation and migration, as well as in vivo tumor growth ability of MCF-7/TAM cells. ERα36 regulated EGFR expression at the transcriptional level, and knockdown of ERα36 in MCF-7/TAM cells downregulated EGFR expression and then blocked EGFR/ERK signaling pathway. Conclusion Knockdown of ERα36 inhibits the growth of MCF-7/TAM cells in vitro and in vivo by blocking EGFR/ERK signaling pathway. ERα36 may be a candidate therapeutic target for the treatment of tamoxifen-resistant breast cancer.
Collapse
Affiliation(s)
- Guangliang Li
- Institute of Cancer Research and Basic Medicine (ICBM), Chinese Academy of Sciences, Department of Medical Oncology (Breast), Cancer Hospital of University of Chinese Academy of Sciences, Zhejiang Cancer Hospital, Hangzhou, Zhejiang, 310022, People's Republic of China
| | - Jing Zhang
- Department of Surgical Oncology, The 1st Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang 310003, People's Republic of China
| | - Zhenzhen Xu
- Department of Surgical Oncology, The 1st Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang 310003, People's Republic of China
| | - Zhongqi Li
- Department of Surgical Oncology, The 1st Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang 310003, People's Republic of China
| |
Collapse
|
73
|
Abstract
One of the hallmarks of hormone receptor (HR)-positive breast cancer is its dependence on the phosphatidylinositol-3-kinase (PI3K) pathway. Here, we review the epidemiologic, functional, and pharmacologic interactions between oncogenic PI3K and the estrogen receptor (ER). We discuss the epidemiology of PI3K pathway alterations, mechanisms of resistance to PI3K inhibitors, and the current mechanistic landscape of crosstalk between PI3K and ER, which provide the rationale for dual ER and PI3K inhibition and is now a standard of care in the treatment of ER+ PIK3CA-mutant metastatic breast cancer. We outline newer studies in this field that delineate the clinically relevant overlaps between PI3K and parallel signaling pathways, insulin signaling, and ER epigenetic modifiers. We also identify several caveats with the current data and propose new strategies to overcome these bottlenecks.
Collapse
Affiliation(s)
- N Vasan
- Human Oncology and Pathogenesis Program, New York, USA
- Departments of Medicine, New York, USA
| | - E Toska
- Human Oncology and Pathogenesis Program, New York, USA
| | - M Scaltriti
- Human Oncology and Pathogenesis Program, New York, USA
- Departments of Pathology, Memorial Sloan Kettering Cancer Center, New York, USA
| |
Collapse
|
74
|
Verma A, Schwartz N, Cohen DJ, Boyan BD, Schwartz Z. Estrogen signaling and estrogen receptors as prognostic indicators in laryngeal cancer. Steroids 2019; 152:108498. [PMID: 31539535 DOI: 10.1016/j.steroids.2019.108498] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/18/2019] [Revised: 09/03/2019] [Accepted: 09/09/2019] [Indexed: 12/26/2022]
Abstract
Laryngeal squamous cell carcinoma (LSCC) has been shown to respond to 17β-estradiol. However, the presence and characterization of estrogen receptors (ER) and other sex hormone receptors in LSCC are still being determined. Sex hormone receptors and the way sex hormones impact LSCC tumors are important for understanding which patients would benefit from hormone therapies, such as anti-estrogen therapies. This information also has prognostic value, as there may be a correlation between ER profiles and LSCC aggression. Recent work by our team and others has shown that the canonical ER, estrogen receptor α (ERα), and its splice variant ERα36, are important modulators of estrogen signaling in LSCC. This review describes some common 17β-estradiol signaling pathways, and explains how these signaling pathways might control LSCC tumor growth. We also show that loss of ERα, but not ERα36, imbues LSCC with enhanced aggression, a pattern which has previously only been observed in breast cancer. We make a case for using ERα as a tumorigenic modulator and pathogenic marker in LSCC on par with the use of ERα as a prognostic marker in breast cancer.
Collapse
Affiliation(s)
- Anjali Verma
- Department of Biomedical Engineering, Virginia Commonwealth University, Richmond, VA, USA
| | - Nofrat Schwartz
- Department of Otolaryngology, Meir Hospital, Kfar Saba, Israel; Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel; Department of Otolaryngology - Head and Neck Surgery and Neurosurgery, University of North Carolina School of Medicine, Chapel Hill, NC, USA
| | - D Joshua Cohen
- Department of Biomedical Engineering, Virginia Commonwealth University, Richmond, VA, USA
| | - Barbara D Boyan
- Department of Biomedical Engineering, Virginia Commonwealth University, Richmond, VA, USA; Department of Biomedical Engineering, Georgia Institute of Technology, Atlanta, GA, USA
| | - Zvi Schwartz
- Department of Biomedical Engineering, Virginia Commonwealth University, Richmond, VA, USA; Department of Periodontics, University of Texas Health Science Center at San Antonio, San Antonio, TX, USA.
| |
Collapse
|
75
|
Giovannelli P, Di Donato M, Galasso G, Di Zazzo E, Medici N, Bilancio A, Migliaccio A, Castoria G. Breast cancer stem cells: The role of sex steroid receptors. World J Stem Cells 2019; 11:594-603. [PMID: 31616537 PMCID: PMC6789191 DOI: 10.4252/wjsc.v11.i9.594] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/27/2019] [Revised: 05/06/2019] [Accepted: 08/21/2019] [Indexed: 02/06/2023] Open
Abstract
Breast cancer (BC) is the most common cancer among women, and current available therapies often have high success rates. Nevertheless, BC might acquire drug resistance and sometimes relapse. Current knowledge about the most aggressive forms of BC points to the role of specific cells with stem properties located within BC, the so-called “BC stem cells” (BCSCs). The role of BCSCs in cancer formation, growth, invasiveness, therapy resistance and tumor recurrence is becoming increasingly clear. The growth and metastatic properties of BCSCs are regulated by different pathways, which are only partially known. Sex steroid receptors (SSRs), which are involved in BC etiology and progression, promote BCSC proliferation, dedifferentiation and migration. However, in the literature, there is incomplete information about their roles. Particularly, there are contrasting conclusions about the expression and role of the classical BC hormonal biomarkers, such as estrogen receptor alpha (ERα), together with scant, albeit promising information concerning ER beta (ERβ) and androgen receptor (AR) properties that control different transduction pathways in BCSCs. In this review, we will discuss the role that SRs expressed in BCSCs play to BC progression and recurrence and how these findings have opened new therapeutic possibilities.
Collapse
Affiliation(s)
- Pia Giovannelli
- Department of Precision Medicine, University of Campania “L. Vanvitelli”, Naples 80138, Italy
| | - Marzia Di Donato
- Department of Precision Medicine, University of Campania “L. Vanvitelli”, Naples 80138, Italy
| | - Giovanni Galasso
- Department of Precision Medicine, University of Campania “L. Vanvitelli”, Naples 80138, Italy
| | - Erika Di Zazzo
- Department of Precision Medicine, University of Campania “L. Vanvitelli”, Naples 80138, Italy
| | - Nicola Medici
- Department of Precision Medicine, University of Campania “L. Vanvitelli”, Naples 80138, Italy
| | - Antonio Bilancio
- Department of Precision Medicine, University of Campania “L. Vanvitelli”, Naples 80138, Italy
| | - Antimo Migliaccio
- Department of Precision Medicine, University of Campania “L. Vanvitelli”, Naples 80138, Italy
| | - Gabriella Castoria
- Department of Precision Medicine, University of Campania “L. Vanvitelli”, Naples 80138, Italy
| |
Collapse
|
76
|
Xiang Y, Li JP, Guo W, Wang DQ, Yao A, Zhang HM, Huang F, Li HH, Dai ZT, Zhang ZJ, Li H, Tan Y, Chen K, Bao LY, Liao XH. Novel interactions between ERα-36 and STAT3 mediate breast cancer cell migration. Cell Commun Signal 2019; 17:93. [PMID: 31409371 PMCID: PMC6693284 DOI: 10.1186/s12964-019-0409-4] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2019] [Accepted: 08/01/2019] [Indexed: 12/12/2022] Open
Abstract
Background Breast cancer is the leading cause of cancer death in women worldwide which is closely related to metastasis. But the exact molecular mechanism of ERα-36 and STAT3 on metastasis is still not fully understood. Methods MCF-7 and MDA-MB-231 human breast cancer cell lines and MCF-10A were overexpressioned or knockdown ERα-36 and STAT3 and tested for migration, invasion and proliferation assays. Direct interaction of STAT3 and ERα-36 were analyzed by coimmunoprecipitation assays. The effect of STAT3 and ERα-36 on MMP2/9 expression was analyzed by qPCR and western blotting. STAT3 phospholyation and acetylation by ERα-36 and p300 were observed and quantified by coimmunoprecipitation assays and western blotting. Results Cross-talk between ERα-36 and STAT3 was demonstrated to mediate through a direct physical association between the two proteins. Furthermore, the interaction between ERα-36 and STAT3 was demonstrated to give rise to functional changes in their signaling events. Both MMP2 and MMP9 expression require the binding of the newly identified protein complex, ERα-36-STAT3, to its promoter, the second phase, which is more robust, depends on ERα-mediated recruitment of p300 onto the complex and the subsequent acetylation of STAT3. In addition, STAT3 is tyrosine-phosphorylated in a biphasic manner, and the late phase requires ERα-36-mediated p300-dependent acetylation. Furthermore, interference with acetylation of STAT3 by overexpression of acetylation null STAT3 mutant led to the loss of MMP2 and MMP9 expression. ChIP analysis and reporter gene assays revealed that ERα-36-STAT3 complex binding to the MMP2 and MMP9 promoter led to an enhanceosome formation and facilitated MMP2 and MMP9 expression. Conclusions Our studies demonstrate for the first time that the function of MMP2 and MMP9 in breast cancer cell migration, which is mediated by interactions between ERα-36 and STAT3.
Collapse
Affiliation(s)
- Yuan Xiang
- Institute of Biology and Medicine, Wuhan University of Science and Technology, Wuhan, Hubei, 430081, China
| | - Jia Peng Li
- Institute of Biology and Medicine, Wuhan University of Science and Technology, Wuhan, Hubei, 430081, China
| | - Wei Guo
- Shenzhen Ritzcon Biological Technology Co., LTD, Shenzhen, Guangdong, 518000, China
| | | | - Ao Yao
- Institute of Biology and Medicine, Wuhan University of Science and Technology, Wuhan, Hubei, 430081, China
| | - Hui-Min Zhang
- Institute of Biology and Medicine, Wuhan University of Science and Technology, Wuhan, Hubei, 430081, China
| | - Feng Huang
- Institute of Biology and Medicine, Wuhan University of Science and Technology, Wuhan, Hubei, 430081, China
| | - Han-Han Li
- Institute of Biology and Medicine, Wuhan University of Science and Technology, Wuhan, Hubei, 430081, China
| | - Zhou-Tong Dai
- Institute of Biology and Medicine, Wuhan University of Science and Technology, Wuhan, Hubei, 430081, China
| | - Zi-Jiang Zhang
- Institute of Biology and Medicine, Wuhan University of Science and Technology, Wuhan, Hubei, 430081, China
| | - Hui Li
- Institute of Biology and Medicine, Wuhan University of Science and Technology, Wuhan, Hubei, 430081, China
| | - Yao Tan
- The Affiliated Tumor Hospital of Xinjiang Medical University, Uygur Autonomous Region, Urumqi, Xinjiang, 830011, China
| | - Kun Chen
- College of Pharmaceutical, Liaocheng University, Liaocheng, Shandong, 252000, China
| | - Le-Yuan Bao
- Institute of Biology and Medicine, Wuhan University of Science and Technology, Wuhan, Hubei, 430081, China.
| | - Xing-Hua Liao
- Institute of Biology and Medicine, Wuhan University of Science and Technology, Wuhan, Hubei, 430081, China. .,Shenzhen Ritzcon Biological Technology Co., LTD, Shenzhen, Guangdong, 518000, China.
| |
Collapse
|
77
|
Poulard C, Jacquemetton J, Trédan O, Cohen PA, Vendrell J, Ghayad SE, Treilleux I, Marangoni E, Le Romancer M. Oestrogen Non-Genomic Signalling is Activated in Tamoxifen-Resistant Breast Cancer. Int J Mol Sci 2019; 20:ijms20112773. [PMID: 31195751 PMCID: PMC6600329 DOI: 10.3390/ijms20112773] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2019] [Revised: 05/31/2019] [Accepted: 05/31/2019] [Indexed: 01/03/2023] Open
Abstract
Endocrine therapies targeting oestrogen signalling have significantly improved breast cancer management. However, their efficacy is limited by intrinsic and acquired resistance to treatment, which remains a major challenge for oestrogen receptor α (ERα)-positive tumours. Though many studies using in vitro models of endocrine resistance have identified putative actors of resistance, no consensus has been reached. We demonstrated previously that oestrogen non-genomic signalling, characterized by the formation of the ERα/Src/PI3K complex, is activated in aggressive breast cancers (BC). We wondered herein whether the activation of this pathway is also involved in resistance to endocrine therapies. We studied the interactions between ERα and Src or PI3K by proximity ligation assay (PLA) in in-vitro and in-vivo endocrine therapy-resistant breast cancer models. We reveal an increase in ERα/Src and ERα/PI3K interactions in patient-derived xenografts (PDXs) with acquired resistance to tamoxifen, as well as in tamoxifen-resistant MCF-7 cells compared to parental counterparts. Moreover, no interactions were observed in breast cancer cells resistant to other endocrine therapies. Finally, the use of a peptide inhibiting the ERα–Src interaction partially restored tamoxifen sensitivity in resistant cells, suggesting that such components could constitute promising targets to circumvent resistance to tamoxifen in BC.
Collapse
Affiliation(s)
- Coralie Poulard
- Université de Lyon, F-69000 Lyon, France.
- Inserm U1052, Centre de Recherche en Cancérologie de Lyon, F-69000 Lyon, France.
- CNRS UMR5286, Centre de Recherche en Cancérologie de Lyon, F-69000 Lyon, France.
| | - Julien Jacquemetton
- Université de Lyon, F-69000 Lyon, France.
- Inserm U1052, Centre de Recherche en Cancérologie de Lyon, F-69000 Lyon, France.
- CNRS UMR5286, Centre de Recherche en Cancérologie de Lyon, F-69000 Lyon, France.
| | - Olivier Trédan
- Université de Lyon, F-69000 Lyon, France.
- Inserm U1052, Centre de Recherche en Cancérologie de Lyon, F-69000 Lyon, France.
- CNRS UMR5286, Centre de Recherche en Cancérologie de Lyon, F-69000 Lyon, France.
- Centre Léon Bérard, Medical Oncology Department, F-69000 Lyon, France.
| | - Pascale A Cohen
- Université de Lyon, F-69000 Lyon, France.
- Inserm U1052, Centre de Recherche en Cancérologie de Lyon, F-69000 Lyon, France.
- CNRS UMR5286, Centre de Recherche en Cancérologie de Lyon, F-69000 Lyon, France.
| | - Julie Vendrell
- Université de Lyon, F-69000 Lyon, France.
- Inserm U1052, Centre de Recherche en Cancérologie de Lyon, F-69000 Lyon, France.
- CNRS UMR5286, Centre de Recherche en Cancérologie de Lyon, F-69000 Lyon, France.
- Solid Tumor Laboratory, Department of Pathology and Oncobiology, CHU Montpellier, 34000 Montpellier, France.
| | - Sandra E Ghayad
- Université de Lyon, F-69000 Lyon, France.
- Inserm U1052, Centre de Recherche en Cancérologie de Lyon, F-69000 Lyon, France.
- CNRS UMR5286, Centre de Recherche en Cancérologie de Lyon, F-69000 Lyon, France.
- Department of Biology, Faculty of Science II, EDST, Lebanese University, Fanar 90656, Lebanon.
| | - Isabelle Treilleux
- Université de Lyon, F-69000 Lyon, France.
- Inserm U1052, Centre de Recherche en Cancérologie de Lyon, F-69000 Lyon, France.
- CNRS UMR5286, Centre de Recherche en Cancérologie de Lyon, F-69000 Lyon, France.
- Centre Léon Bérard, Pathology Department, F-69000 Lyon, France.
| | | | - Muriel Le Romancer
- Université de Lyon, F-69000 Lyon, France.
- Inserm U1052, Centre de Recherche en Cancérologie de Lyon, F-69000 Lyon, France.
- CNRS UMR5286, Centre de Recherche en Cancérologie de Lyon, F-69000 Lyon, France.
| |
Collapse
|
78
|
Thiebaut C, Chesnel A, Merlin JL, Chesnel M, Leroux A, Harlé A, Dumond H. Dual Epigenetic Regulation of ERα36 Expression in Breast Cancer Cells. Int J Mol Sci 2019; 20:ijms20112637. [PMID: 31146345 PMCID: PMC6600239 DOI: 10.3390/ijms20112637] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2019] [Revised: 05/24/2019] [Accepted: 05/27/2019] [Indexed: 02/07/2023] Open
Abstract
Breast cancer remains the major cause of cancer-induced morbidity and mortality in women. Among the different molecular subtypes, luminal tumors yet considered of good prognosis often develop acquired resistance to endocrine therapy. Recently, misregulation of ERα36 was reported to play a crucial role in this process. High expression of this ERα isoform was associated to preneoplastic phenotype in mammary epithelial cells, disease progression, and enhanced resistance to therapeutic agents in breast tumors. In this study, we identified two mechanisms that could together contribute to ERα36 expression regulation. We first focused on hsa-miR-136-5p, an ERα36 3’UTR-targeting microRNA, the expression of which inversely correlated to the ERα36 one in breast cancer cells. Transfection of hsa-miR136-5p mimic in MCF-7 cells resulted in downregulation of ERα36. Moreover, the demethylating agent decitabine was able to stimulate hsa-miR-136-5p endogenous expression, thus indirectly decreasing ERα36 expression and counteracting tamoxifen-dependent stimulation. The methylation status of ERα36 promoter also directly modulated its expression level, as demonstrated after decitabine treatment of breast cancer cell and confirmed in a set of tumor samples. Taken together, these results open the way to a direct and an indirect ERα36 epigenetic modulation by decitabine as a promising clinical strategy to counteract acquired resistance to treatment and prevent relapse.
Collapse
Affiliation(s)
| | - Amand Chesnel
- Université de Lorraine, CNRS, CRAN, F-54000 Nancy, France.
| | - Jean-Louis Merlin
- Université de Lorraine, CNRS, CRAN, Institut de Cancérologie de Lorraine, F-54000 Nancy, France.
| | - Maelle Chesnel
- Université de Lorraine, CNRS, CRAN, F-54000 Nancy, France.
| | - Agnès Leroux
- Institut de Cancérologie de Lorraine, F-54000 Nancy, France.
| | - Alexandre Harlé
- Université de Lorraine, CNRS, CRAN, Institut de Cancérologie de Lorraine, F-54000 Nancy, France.
| | - Hélène Dumond
- Université de Lorraine, CNRS, CRAN, F-54000 Nancy, France.
| |
Collapse
|
79
|
Hu B, Yan W, Wang M, Cui X, Hu Y, Chen Q, Zhang Y, Qi X, Jiang J. Huaier polysaccharide inhibits the stem-like characteristics of ERα-36 high triple negative breast cancer cells via inactivation of the ERα-36 signaling pathway. Int J Biol Sci 2019; 15:1358-1367. [PMID: 31337967 PMCID: PMC6643138 DOI: 10.7150/ijbs.27360] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2018] [Accepted: 04/14/2019] [Indexed: 01/05/2023] Open
Abstract
Triple negative breast cancer (TNBC) is a highly aggressive cancer and lack of targeting therapies. It is believed that the breast cancer stem cells (BCSCs) are responsible for the aggressive characteristics of TNBC. Hence, developing BCSC-targeting agents may provide new therapeutic strategies for the patients. Huaier polysaccharide (HP), an active ingredient extracted from the mushroom Trametes robiniophila Murr, has been widely used in clinical anti-cancer treatments in China. Here we demonstrated that HP could target BCSCs in TNBC cells, resulting in decreased mammosphere formation, downregulated expression of stem-related genes and reduced proportion of aldehyde dehydrogenase positive cells in vitro, and inhibited xenograft tumor formation in vivo. Mechanically, HP markedly reduced the expression of estrogen receptor α-36 (ERα-36), a recently identified subtype of estrogen receptor α, and attenuated ERα-36-mediated activation of AKT/β-catenin signaling in ERα-36high TNBC cells. This study provides a new insight into the mechanism of HP on BCSC-targeting therapy and new ideas for comprehensive treatment strategies for TNBC.
Collapse
Affiliation(s)
- Baoquan Hu
- Breast Disease Center, Southwest Hospital, Army Medical University (Third Military Medical University), Chongqing 400038, China
| | - Wenting Yan
- Breast Disease Center, Southwest Hospital, Army Medical University (Third Military Medical University), Chongqing 400038, China
| | - Minghao Wang
- Breast Disease Center, Southwest Hospital, Army Medical University (Third Military Medical University), Chongqing 400038, China
| | - Xiang Cui
- Breast Disease Center, Southwest Hospital, Army Medical University (Third Military Medical University), Chongqing 400038, China
| | - Ying Hu
- Breast Disease Center, Southwest Hospital, Army Medical University (Third Military Medical University), Chongqing 400038, China
| | - Qingqiu Chen
- Breast Disease Center, Southwest Hospital, Army Medical University (Third Military Medical University), Chongqing 400038, China
| | - Yi Zhang
- Breast Disease Center, Southwest Hospital, Army Medical University (Third Military Medical University), Chongqing 400038, China
| | - Xiaowei Qi
- Breast Disease Center, Southwest Hospital, Army Medical University (Third Military Medical University), Chongqing 400038, China
| | - Jun Jiang
- Breast Disease Center, Southwest Hospital, Army Medical University (Third Military Medical University), Chongqing 400038, China
| |
Collapse
|
80
|
Estrogen receptor variants in ER-positive basal-type breast cancers responding to therapy like ER-negative breast cancers. NPJ Breast Cancer 2019; 5:15. [PMID: 31016233 PMCID: PMC6472385 DOI: 10.1038/s41523-019-0109-7] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2018] [Accepted: 03/22/2019] [Indexed: 01/05/2023] Open
Abstract
Immunohistochemically ER-positive HER2-negative (ER+HER2−) breast cancers are classified clinically as Luminal-type. We showed previously that molecular subtyping using the 80-gene signature (80-GS) reclassified a subset of ER+HER2− tumors to molecular Basal-type. We report here that molecular reclassification is associated with expression of dominant-negative ER variants and evaluate response to neoadjuvant therapy and outcome in the prospective neoadjuvant NBRST study (NCT01479101). The 80-GS reclassified 91 of 694 (13.1%) immunohistochemically Luminal-type tumors to molecular Basal-type. Importantly, all 91 discordant tumors were classified as high-risk, whereas only 66.9% of ER+/Luminal-type tumors were classified at high-risk for disease recurrence (i.e., Luminal B) (P < 0.001). ER variant mRNA (ER∆3, ER∆7, and ERα-36) analysis performed on 84 ER+/Basal tumors and 48 ER+/Luminal B control tumors revealed that total ER mRNA was significantly lower in ER+/Basal tumors. The relative expression of ER∆7/total ER was significantly higher in ER+/Basal tumors compared to ER+/Luminal B tumors (P < 0.001). ER+/Basal patients had similar pathological complete response (pCR) rates following neoadjuvant chemotherapy as ER−/Basal patients (34.3 vs. 37.6%), and much higher than ER+/Luminal A or B patients (2.3 and 5.8%, respectively). Furthermore, 3-year distant metastasis-free interval (DMFI) for ER+/Basal patients was 65.8%, significantly lower than 96.3 and 88.9% for ER+/Luminal A and B patients, respectively, (log-rank P < 0.001). Significantly lower total ER mRNA and increased relative ER∆7 dominant-negative variant expression provides a rationale why ER+/Basal breast cancers are molecularly ER-negative. Identification of this substantial subset of patients is clinically relevant because of the higher pCR rate to neoadjuvant chemotherapy and correlation with clinical outcome.
Collapse
|
81
|
Nagel A, Szade J, Iliszko M, Elzanowska J, Welnicka-Jaskiewicz M, Skokowski J, Stasilojc G, Bigda J, Sadej R, Zaczek A, Markiewicz A. Clinical and Biological Significance of ESR1 Gene Alteration and Estrogen Receptors Isoforms Expression in Breast Cancer Patients. Int J Mol Sci 2019; 20:ijms20081881. [PMID: 30995757 PMCID: PMC6514554 DOI: 10.3390/ijms20081881] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2019] [Revised: 04/11/2019] [Accepted: 04/12/2019] [Indexed: 12/20/2022] Open
Abstract
The amplification of estrogen receptor alpha (ERα) encoded by the ESR1 gene has been described as having a prognostic role in breast cancer patients. However, increased dosage of the ESR1 gene (tested by real-time PCR) is also observed in ER-negative breast cancers, which might suggest the expression of alternative isoforms of ERα (other than classical ERα of 66 kDa). In the current work, we have investigated the ESR1 gene dosage in 402 primary breast cancer patients as well as the expression of ERα isoforms—ERα66 and ERα36—on mRNA and protein levels. The obtained results were correlated with clinicopathological data of the patients. Results showed that increased ESR1 gene dosage is not related to ESR1 gene amplification measured by fluorescent in situ hybridization (FISH), but it correlates with the decreased expression of ERα66 isoform (p = 0.01). Interestingly, the short ER isoform ERα36 was expressed in samples with increased ESR1 gene dosage, suggesting that genomic aberration might influence the expression of that particular isoform. Similarly to ESR1 increased gene dosage, high ERα36 expression was linked with the decreased disease-free survival of the patients (p = 0.05), which was independent of the status of the classical ERα66 level in breast tumors.
Collapse
Affiliation(s)
- Anna Nagel
- Department of Medical Biotechnology, Intercollegiate Faculty of Biotechnology, University of Gdansk and Medical University of Gdansk, 80-211 Gdansk, Poland.
| | - Jolanta Szade
- Department of Pathology, Medical University of Gdansk, 80-210 Gdansk, Poland.
| | - Mariola Iliszko
- Department of Biology and Genetics, Medical University of Gdansk, 80-211 Gdansk, Poland.
| | - Julia Elzanowska
- Department of Medical Biotechnology, Intercollegiate Faculty of Biotechnology, University of Gdansk and Medical University of Gdansk, 80-211 Gdansk, Poland.
| | | | - Jaroslaw Skokowski
- Department of Oncology and Radiotherapy, Medical University of Gdansk, 80-210 Gdansk, Poland.
- Department of Medical Laboratory Diagnostics -Biobank, Medical University of Gdansk, Gdansk, 80-210 Gdansk, Poland.
- Biobanking and Biomolecular Resources Research Infrastructure (BBMRI.PL), 80-210 Gdansk, Poland.
| | - Grzegorz Stasilojc
- Department of Medical Biotechnology, Intercollegiate Faculty of Biotechnology, University of Gdansk and Medical University of Gdansk, 80-211 Gdansk, Poland.
| | - Jacek Bigda
- Department of Medical Biotechnology, Intercollegiate Faculty of Biotechnology, University of Gdansk and Medical University of Gdansk, 80-211 Gdansk, Poland.
| | - Rafal Sadej
- Department of Medical Biotechnology, Intercollegiate Faculty of Biotechnology, University of Gdansk and Medical University of Gdansk, 80-211 Gdansk, Poland.
| | - Anna Zaczek
- Department of Medical Biotechnology, Intercollegiate Faculty of Biotechnology, University of Gdansk and Medical University of Gdansk, 80-211 Gdansk, Poland.
| | - Aleksandra Markiewicz
- Department of Medical Biotechnology, Intercollegiate Faculty of Biotechnology, University of Gdansk and Medical University of Gdansk, 80-211 Gdansk, Poland.
| |
Collapse
|
82
|
Burgdorf T, Piersma AH, Landsiedel R, Clewell R, Kleinstreuer N, Oelgeschläger M, Desprez B, Kienhuis A, Bos P, de Vries R, de Wit L, Seidle T, Scheel J, Schönfelder G, van Benthem J, Vinggaard AM, Eskes C, Ezendam J. Workshop on the validation and regulatory acceptance of innovative 3R approaches in regulatory toxicology - Evolution versus revolution. Toxicol In Vitro 2019; 59:1-11. [PMID: 30946968 DOI: 10.1016/j.tiv.2019.03.039] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2019] [Revised: 03/28/2019] [Accepted: 03/28/2019] [Indexed: 12/21/2022]
Abstract
At a joint workshop organized by RIVM and BfR, international experts from governmental institutes, regulatory agencies, industry, academia and animal welfare organizations discussed and provided recommendations for the development, validation and implementation of innovative 3R approaches in regulatory toxicology. In particular, an evolutionary improvement of our current approach of test method validation in the context of defined approaches or integrated testing strategies was discussed together with a revolutionary approach based on a comprehensive description of the physiological responses of the human body to chemical exposure and the subsequent definition of relevant and predictive in vitro, in chemico or in silico methods. A more comprehensive evaluation of biological relevance, scientific validity and regulatory purpose of new test methods and assessment strategies together with case studies that provide practical experience with new approaches were discussed as essential steps to build up the necessary confidence to facilitate regulatory acceptance.
Collapse
Affiliation(s)
- T Burgdorf
- German Centre for the Protection of Laboratory Animals (Bf3R), German Federal Institute for Risk Assessment, Berlin, Germany
| | - A H Piersma
- National Institute for Public Health and the Environment (RIVM), Center for Health Protection, Bilthoven, Netherlands; Institute for Risk Assessment Sciences, Utrecht University, Netherlands
| | | | - R Clewell
- 21(st) Century Tox Consulting, Chapel Hill, NC 27515, USA
| | | | - M Oelgeschläger
- German Centre for the Protection of Laboratory Animals (Bf3R), German Federal Institute for Risk Assessment, Berlin, Germany.
| | | | - A Kienhuis
- National Institute for Public Health and the Environment (RIVM), Center for Health Protection, Bilthoven, Netherlands
| | - P Bos
- National Institute for Public Health and the Environment (RIVM), Centre for Nutrition, Prevention and Health Services, Bilthoven, Netherlands
| | - R de Vries
- Evidence-based Toxicology Collaboration, Johns Hopkins Bloomberg School of Public Health, Baltimore, USA & SYRCLE, Department for Health Evidence, Radboud Institute for Health Sciences, Radboudumc, Nijmegen, the Netherlands
| | - L de Wit
- National Institute for Public Health and the Environment (RIVM), Centre for Nutrition, Prevention and Health Services, Bilthoven, Netherlands
| | - T Seidle
- Humane Society International, Toronto, Canada
| | - J Scheel
- Evonik Performance Materials GmbH, Darmstadt, Germany
| | - G Schönfelder
- German Centre for the Protection of Laboratory Animals (Bf3R), German Federal Institute for Risk Assessment, Berlin, Germany; Charité Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health
| | - J van Benthem
- National Institute for Public Health and the Environment (RIVM), Center for Health Protection, Bilthoven, Netherlands
| | - A M Vinggaard
- National Food Institute, Technical University of Denmark, Kemitorvet building 202, DK-2800 Kgs.Lyngby, Denmark
| | - C Eskes
- Swiss 3R Competence Centre (3RCC), Switzerland
| | - J Ezendam
- National Institute for Public Health and the Environment (RIVM), Center for Health Protection, Bilthoven, Netherlands
| |
Collapse
|
83
|
Yu L, Das P, Vall AJ, Yan Y, Gao X, Sifre MI, Bortner CD, Castro L, Kissling GE, Moore AB, Dixon D. Bisphenol A induces human uterine leiomyoma cell proliferation through membrane-associated ERα36 via nongenomic signaling pathways. Mol Cell Endocrinol 2019; 484:59-68. [PMID: 30615907 PMCID: PMC6450385 DOI: 10.1016/j.mce.2019.01.001] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/28/2018] [Revised: 01/03/2019] [Accepted: 01/03/2019] [Indexed: 11/17/2022]
Abstract
The role of ERα36 in regulating BPA's effects and its potential as a risk factor for human uterine fibroids were evaluated. BPA at low concentrations (10-6 μM - 10 μM) increased proliferation by facilitating progression of hormonally regulated, immortalized human uterine leiomyoma (ht-UtLM; fibroid) cells from G0-G1 into S phase of the cell cycle; whereas, higher concentrations (100 μM-200 μM) decreased growth. BPA upregulated ERα36 gene and protein expression, and induced increased SOS1 and Grb2 protein expression, both of which are mediators of the MAPKp44/42/ERK1/2 pathway. EGFR (pEGFR), Ras, and MAPKp44/42 were phosphorylated with concurrent Src activation in ht-UtLM cells within 10 min of BPA exposure. BPA enhanced colocalization of phosphorylated Src (pSrc) to ERα36 and coimmunoprecipitation of pSrc with pEGFR. Silencing ERα36 with siERα36 abolished the above effects. BPA induced proliferation in ht-UtLM cells through membrane-associated ERα36 with activation of Src, EGFR, Ras, and MAPK nongenomic signaling pathways.
Collapse
Affiliation(s)
- Linda Yu
- Molecular Pathogenesis Group, National Toxicology Program Laboratory (NTPL), Division of the NTP (DNTP), Research Triangle Park, NC, 27709, USA
| | - Parikshit Das
- Molecular Pathogenesis Group, National Toxicology Program Laboratory (NTPL), Division of the NTP (DNTP), Research Triangle Park, NC, 27709, USA
| | - Alejandra J Vall
- Molecular Pathogenesis Group, National Toxicology Program Laboratory (NTPL), Division of the NTP (DNTP), Research Triangle Park, NC, 27709, USA
| | - Yitang Yan
- Molecular Pathogenesis Group, National Toxicology Program Laboratory (NTPL), Division of the NTP (DNTP), Research Triangle Park, NC, 27709, USA
| | - Xioahua Gao
- Molecular Pathogenesis Group, National Toxicology Program Laboratory (NTPL), Division of the NTP (DNTP), Research Triangle Park, NC, 27709, USA
| | - Maria I Sifre
- Flow Cytometry Center, Signal Transduction Laboratory, Research Triangle Park, NC, 27709, USA
| | - Carl D Bortner
- Flow Cytometry Center, Signal Transduction Laboratory, Research Triangle Park, NC, 27709, USA
| | - Lysandra Castro
- Molecular Pathogenesis Group, National Toxicology Program Laboratory (NTPL), Division of the NTP (DNTP), Research Triangle Park, NC, 27709, USA
| | - Grace E Kissling
- Biostatistics and Computational Biology Branch, National Institute of Environmental Health Sciences (NIEHS), National Institutes of Health (NIH), Department of Health and Human Services (HHS), Research Triangle Park, NC, 27709, USA
| | - Alicia B Moore
- Molecular Pathogenesis Group, National Toxicology Program Laboratory (NTPL), Division of the NTP (DNTP), Research Triangle Park, NC, 27709, USA
| | - Darlene Dixon
- Molecular Pathogenesis Group, National Toxicology Program Laboratory (NTPL), Division of the NTP (DNTP), Research Triangle Park, NC, 27709, USA.
| |
Collapse
|
84
|
Porsch M, Özdemir E, Wisniewski M, Graf S, Bull F, Hoffmann K, Ignatov A, Haybaeck J, Grosse I, Kalinski T, Nass N. Time resolved gene expression analysis during tamoxifen adaption of MCF-7 cells identifies long non-coding RNAs with prognostic impact. RNA Biol 2019; 16:661-674. [PMID: 30760083 DOI: 10.1080/15476286.2019.1581597] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/09/2023] Open
Abstract
Acquired tamoxifen resistance is a persistent problem for the treatment of estrogen receptor positive, premenopausal breast cancer patients and predictive biomarkers are still elusive. We here analyzed gene expression changes in a cellular model to identify early and late changes upon tamoxifen exposure and thereby novel prognostic biomarkers. Estrogen receptor positive MCF-7 cells were incubated with 4OH-tamoxifen (10 nM) and gene expression analyzed by array hybridization during 12 weeks. Array results were confirmed by nCounter- and qRT-PCR technique. Pathway enrichment analysis revealed that early responses concerned mainly amine synthesis and NRF2-related signaling and evolved into a stable gene expression pattern within 4 weeks characterized by changes in glucuronidation-, estrogen metabolism-, nuclear receptor- and interferon signaling pathways. As a large number of long non coding RNAs was subject to regulation, we investigated 5 of these (linc01213, linc00632 linc0992, LOC101929547 and XR_133213) in more detail. From these, only linc01213 was upregulated but all were less abundant in estrogen-receptor negative cell lines (MDA-MB 231, SKBR-3 and UACC3199). In a web-based survival analysis linc01213 and linc00632 turned out to have prognostic impact. Linc01213 was investigated further by plasmid-mediated over-expression as well as siRNA down-regulation in MCF-7 cells. Nevertheless, this had no effect on proliferation or expression of tamoxifen regulated genes, but migration was increased. In conclusion, the cellular model identified a set of lincRNAs with prognostic relevance for breast cancer. One of these, linc01213 although regulated by 4OH-tamoxifen, is not a central regulator of tamoxifen adaption, but interferes with the regulation of migration.
Collapse
Affiliation(s)
- Martin Porsch
- a Insitute of Computer Science , Martin Luther University Halle-Wittenberg , Halle , Germany.,b Institute of Human Genetics , Martin Luther University Halle-Wittenberg , Halle , Germany.,c German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig , Leipzig , Germany
| | - Esra Özdemir
- d Institute of Pathology, Otto von Guericke University Magdeburg , Magdeburg , Germany
| | - Martin Wisniewski
- d Institute of Pathology, Otto von Guericke University Magdeburg , Magdeburg , Germany
| | - Sebastian Graf
- a Insitute of Computer Science , Martin Luther University Halle-Wittenberg , Halle , Germany
| | - Fabian Bull
- a Insitute of Computer Science , Martin Luther University Halle-Wittenberg , Halle , Germany.,b Institute of Human Genetics , Martin Luther University Halle-Wittenberg , Halle , Germany.,c German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig , Leipzig , Germany
| | - Katrin Hoffmann
- b Institute of Human Genetics , Martin Luther University Halle-Wittenberg , Halle , Germany
| | - Atanas Ignatov
- e Department of Obstetrics and Gynecology , Otto von Guericke University Magdeburg , Magdeburg , Germany
| | - Johannes Haybaeck
- d Institute of Pathology, Otto von Guericke University Magdeburg , Magdeburg , Germany.,f Diagnostic and Research Institute of Pathology , Diagnostic and Research Center for Molecular BioMedicine, Medical University of Graz , Graz , Austria.,g Department of Pathology , Medical University of Innsbruck , Innsbruck , Austria
| | - Ivo Grosse
- a Insitute of Computer Science , Martin Luther University Halle-Wittenberg , Halle , Germany.,c German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig , Leipzig , Germany
| | - Thomas Kalinski
- d Institute of Pathology, Otto von Guericke University Magdeburg , Magdeburg , Germany
| | - Norbert Nass
- d Institute of Pathology, Otto von Guericke University Magdeburg , Magdeburg , Germany
| |
Collapse
|
85
|
Schwartz N, Verma A, Muktipaty C, Bivens C, Schwartz Z, Boyan BD. Estradiol receptor profile and estrogen responsiveness in laryngeal cancer and clinical outcomes. Steroids 2019; 142:34-42. [PMID: 29274403 DOI: 10.1016/j.steroids.2017.11.012] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/26/2017] [Revised: 11/20/2017] [Accepted: 11/22/2017] [Indexed: 12/24/2022]
Abstract
There is growing evidence that laryngeal cancers are responsive to sex hormones, specifically 17β-estradiol (E2), despite controversy regarding the presence and characterization of E2 receptors (ER). Determination of sex hormone responsiveness impacts the prognosis of laryngeal cancer patients and the treatment modalities implemented by their clinicians. Discovery of membrane-associated steroid hormone receptors and rapid membrane signaling opened the possibility that cancers previously labeled 'non-hormone dependent' and 'ER negative' might in fact be susceptible to the effects of E2 via these membrane receptors. ERα66 and ERβ, the classical nuclear receptors, are present in the membranes of different cancer cells via a mechanism referred to as trafficking. Novel splice variants of these traditional receptors, a key example being ERα36, have also been found in the caveolae of cancer cells. Previous work demonstrated that ERα36 has a role in the tumorigenesis of laryngeal cancer, enhancing both proliferation and the anti-apoptotic effect of E2 against chemotherapeutics. The present study showed that expression of different membrane ERs in laryngeal cancer is not uniform, which may result in differential and even antagonistic responses to E2. E2 had protective or deleterious effects in different cancer cell lines, stimulating proliferation and conferring anti-apoptotic potential to the cancer cells according to their receptor profile. These findings stress the importance of establishing the molecular and clinical characterization of the specific laryngeal tumor in order to tailor treatment accordingly, thus optimizing care while reducing adverse effects for individual patients.
Collapse
Affiliation(s)
- Nofrat Schwartz
- Department of Otolaryngology Head and Neck Surgery, Meir Medical Center, Kfar Saba, Israel; Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Anjali Verma
- Department of Biomedical Engineering, Virginia Commonwealth University, Richmond, VA 23284, United States
| | - Chandana Muktipaty
- Department of Biomedical Engineering, Virginia Commonwealth University, Richmond, VA 23284, United States
| | - Caroline Bivens
- Department of Biomedical Engineering, Virginia Commonwealth University, Richmond, VA 23284, United States
| | - Zvi Schwartz
- Department of Biomedical Engineering, Virginia Commonwealth University, Richmond, VA 23284, United States; Department of Periodontics, University of Texas Health Science Center at San Antonio, San Antonio, TX, United States
| | - Barbara D Boyan
- Department of Biomedical Engineering, Virginia Commonwealth University, Richmond, VA 23284, United States; Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology, Atlanta, GA, United States.
| |
Collapse
|
86
|
Sosa LDV, Petiti JP, Picech F, Chumpen S, Nicola JP, Perez P, De Paul A, Valdez-Taubas J, Gutierrez S, Torres AI. The ERα membrane pool modulates the proliferation of pituitary tumours. J Endocrinol 2019; 240:229-241. [PMID: 30400032 DOI: 10.1530/joe-18-0418] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/26/2018] [Accepted: 10/31/2018] [Indexed: 01/22/2023]
Abstract
The molecular mechanisms underlying the ERα nuclear/cytoplasmic pool that modulates pituitary cell proliferation have been widely described, but it is still not clear how ERα is targeted to the plasma membrane. The aim of this study was to analyse ERα palmitoylation and the plasma membrane ERα (mERα) pool, and their participation in E2-triggered membrane-initiated signalling in normal and pituitary tumour cell growth. Cell cultures were prepared from anterior pituitaries of female Wistar rats and tumour GH3 cells, and treated with 10 nM of oestradiol (E2). The basal expression of ERα was higher in tumour GH3 than in normal pituitary cells. Full-length palmitoylated ERα was observed in normal and pituitary tumour cells, demonstrating that E2 stimulation increased both, ERα in plasma membrane and ERα and caveolin-1 interaction after short-term treatment. In addition, the Dhhc7 and Dhhc21 palmitoylases were negatively regulated after sustained stimulation of E2 for 3 h. Although the uptake of BrdU into the nucleus in normal pituitary cells was not modified by E2, a significant increase in the GH3 tumoural cell, as well as ERK1/2 activation, with this effect being mimicked by PPT, a selective antagonist of ERα. These proliferative effects were blocked by ICI 182780 and the global inhibitor of palmitoylation. These findings indicate that ERα palmitoylation modulated the mERα pool and consequently the ERK1/2 pathway, thereby contributing to pituitary tumour cell proliferation. These results suggest that the plasma membrane ERα pool might be related to the proliferative behaviour of prolactinoma and may be a marker of pituitary tumour growth.
Collapse
Affiliation(s)
- Liliana Del V Sosa
- Universidad Nacional de Córdoba, Facultad de Ciencias Médicas, Centro de Microscopía Electrónica - Consejo Nacional de Investigaciones Científicas Técnicas (CONICET) Instituto de Investigaciones en Ciencias de la Salud, Córdoba, Argentina
| | - Juan P Petiti
- Universidad Nacional de Córdoba, Facultad de Ciencias Médicas, Centro de Microscopía Electrónica - Consejo Nacional de Investigaciones Científicas Técnicas (CONICET) Instituto de Investigaciones en Ciencias de la Salud, Córdoba, Argentina
| | - Florencia Picech
- Universidad Nacional de Córdoba, Facultad de Ciencias Médicas, Centro de Microscopía Electrónica - Consejo Nacional de Investigaciones Científicas Técnicas (CONICET) Instituto de Investigaciones en Ciencias de la Salud, Córdoba, Argentina
| | - Sabrina Chumpen
- Universidad Nacional de Córdoba, Facultad de Ciencias Químicas, CIQUIBIC-CONICET, Cordoba, Argentina
| | - Juan P Nicola
- Universidad Nacional de Córdoba, Facultad de Ciencias Químicas, CIBICI-CONICET, Cordoba, Argentina
| | - Pablo Perez
- Universidad Nacional de Córdoba, Facultad de Ciencias Médicas, Centro de Microscopía Electrónica - Consejo Nacional de Investigaciones Científicas Técnicas (CONICET) Instituto de Investigaciones en Ciencias de la Salud, Córdoba, Argentina
| | - Ana De Paul
- Universidad Nacional de Córdoba, Facultad de Ciencias Médicas, Centro de Microscopía Electrónica - Consejo Nacional de Investigaciones Científicas Técnicas (CONICET) Instituto de Investigaciones en Ciencias de la Salud, Córdoba, Argentina
| | - Javier Valdez-Taubas
- Universidad Nacional de Córdoba, Facultad de Ciencias Químicas, CIQUIBIC-CONICET, Cordoba, Argentina
| | - Silvina Gutierrez
- Universidad Nacional de Córdoba, Facultad de Ciencias Médicas, Centro de Microscopía Electrónica - Consejo Nacional de Investigaciones Científicas Técnicas (CONICET) Instituto de Investigaciones en Ciencias de la Salud, Córdoba, Argentina
| | - Alicia I Torres
- Universidad Nacional de Córdoba, Facultad de Ciencias Médicas, Centro de Microscopía Electrónica - Consejo Nacional de Investigaciones Científicas Técnicas (CONICET) Instituto de Investigaciones en Ciencias de la Salud, Córdoba, Argentina
| |
Collapse
|
87
|
Pelekanou V, Anastasiou E, Bakogeorgou E, Notas G, Kampa M, Garcia-Milian R, Lavredaki K, Moustou E, Chinari G, Arapantoni P, O'Grady A, Georgoulias V, Tsapis A, Stathopoulos EN, Castanas E. Estrogen receptor-alpha isoforms are the main estrogen receptors expressed in non-small cell lung carcinoma. Steroids 2019; 142:65-76. [PMID: 29454903 DOI: 10.1016/j.steroids.2018.01.008] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/07/2017] [Revised: 11/21/2017] [Accepted: 01/18/2018] [Indexed: 01/10/2023]
Abstract
The expression profile of estrogen receptors (ER) in Non-Small Cell Lung Carcinoma (NSCLC) remains contradictory. Here we investigated protein and transcriptome expression of ERα wild type and variants. Tissue Micro-Arrays of 200 cases of NSCLC (paired tumor/non-tumor) were assayed by immunohistochemistry using a panel of ERα antibodies targeting different epitopes (HC20, 6F11, 1D5, ERα36 and ERα17p). ERβ epitopes were also examined for comparison. In parallel we conducted a probe-set mapping (Affymetrix HGU133 plus 2 chip) meta-analysis of 12 NSCLC tumor public transcriptomic studies (1418 cases) and 39 NSCLC cell lines. Finally, we have investigated early transcriptional effects of 17β-estradiol, 17β-estradiol-BSA, tamoxifen and their combination in two NSCLC cell lines (A549, H520). ERα transcript and protein detection in NSCLC specimens and cell lines suggests that extranuclear ERα variants, like ERα36, prevail, while wild-type ERα66 is minimally expressed. In non-tumor lung, the wild-type ERα66 is quasi-absent. The combined evaluation of ERα isoform staining intensity and subcellular localization with sex, can discriminate NSCLC subtypes and normal lung. Overall ERα transcription decreases in NSCLC. ERα expression is sex-related in non-tumor tissue, but in NSCLC it is exclusively correlating with tumor histologic subtype. ERα isoform protein expression is higher than ERβ. ERα isoforms are functional and display specific early transcriptional effects following steroid treatment. In conclusion, our data show a wide extranuclear ERα-variant expression in normal lung and NSCLC that is not reported by routine pathology ER evaluation criteria, limited in the nuclear wild type receptor.
Collapse
Affiliation(s)
- Vasiliki Pelekanou
- Laboratory of Pathology, School of Medicine, University of Crete, Heraklion, Greece; Laboratory of Experimental Endocrinology, School of Medicine, University of Crete, Heraklion Greece; Department of Pathology, Yale School of Medicine, New Haven, CT, United States.
| | - Eleftheria Anastasiou
- Laboratory of Experimental Endocrinology, School of Medicine, University of Crete, Heraklion Greece
| | - Efstathia Bakogeorgou
- Laboratory of Experimental Endocrinology, School of Medicine, University of Crete, Heraklion Greece
| | - George Notas
- Laboratory of Experimental Endocrinology, School of Medicine, University of Crete, Heraklion Greece
| | - Marilena Kampa
- Laboratory of Experimental Endocrinology, School of Medicine, University of Crete, Heraklion Greece
| | | | - Katerina Lavredaki
- Laboratory of Experimental Endocrinology, School of Medicine, University of Crete, Heraklion Greece
| | - Eleni Moustou
- Laboratory of Pathology, School of Medicine, University of Crete, Heraklion, Greece
| | | | | | - Anthony O'Grady
- Molecular Histopathology Laboratory, Dept. of Pathology, Royal College of Surgeons of Ireland (RCSI), Education & Research Centre, Dublin, Ireland; Beaumont Hospital, Dublin, Ireland
| | | | - Andreas Tsapis
- Laboratory of Experimental Endocrinology, School of Medicine, University of Crete, Heraklion Greece; INSERM U976, Hôpital Saint Louis, Paris, France; Université Paris Diderot, Paris, France
| | | | - Elias Castanas
- Laboratory of Experimental Endocrinology, School of Medicine, University of Crete, Heraklion Greece
| |
Collapse
|
88
|
Tarnow P, Tralau T, Luch A. Chemical activation of estrogen and aryl hydrocarbon receptor signaling pathways and their interaction in toxicology and metabolism. Expert Opin Drug Metab Toxicol 2019; 15:219-229. [PMID: 30644759 DOI: 10.1080/17425255.2019.1569627] [Citation(s) in RCA: 51] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
INTRODUCTION Estrogen receptors (ERs) and the arylhydrocarbon receptor (AHR) are ligand-activated transcription factors that regulate the expression of genes involved in many physiological processes. With both receptors binding a broad range of natural and anthropogenic ligands, they are molecular targets for many substances, raising concerns for possible health effects. Areas covered: This review shall give a brief overview on the physiological functions of both receptors including their underlying molecular mechanisms. It summarizes the interaction of the respective signaling pathways including impacts on metabolism of endogenous estrogens, transcriptional interference, inhibitory crosstalk, and proteasomal degradation. Also addressed are the AHR dependent formation of estrogenic metabolites from polycyclic aromatic hydrocarbons and the possible impact of the ER/AHR crosstalk in the context of drug metabolism. Expert opinion: Despite decade-long research, the physiological role of the AHR and ER as well as the implications of their complex mutual crosstalk remain to be determined as do resulting potential impacts on human health. With more and more endogenous AHR ligands being discovered, future research should hence systematically address the potential impact of such substances on estrogen signaling. The intimate link between these two pathways and the genes regulated therein bears the potential for impacts on drug metabolism and human health.
Collapse
Affiliation(s)
- Patrick Tarnow
- a Department of Chemical & Product Safety , German Federal Institute for Risk Assessment (BfR) , Berlin , Germany
| | - Tewes Tralau
- a Department of Chemical & Product Safety , German Federal Institute for Risk Assessment (BfR) , Berlin , Germany
| | - Andreas Luch
- a Department of Chemical & Product Safety , German Federal Institute for Risk Assessment (BfR) , Berlin , Germany
| |
Collapse
|
89
|
Qu C, Ma J, Zhang Y, Han C, Huang L, Shen L, Li H, Wang X, Liu J, Zou W. Estrogen receptor variant ER-α36 promotes tamoxifen agonist activity in glioblastoma cells. Cancer Sci 2019; 110:221-234. [PMID: 30417588 PMCID: PMC6317923 DOI: 10.1111/cas.13868] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2018] [Revised: 10/15/2018] [Accepted: 10/30/2018] [Indexed: 12/20/2022] Open
Abstract
Glioblastoma (GBM) is a highly infiltrative and malignant primary brain tumor. Despite aggressive therapy, patients with GBM have a dismal prognosis with median survival of approximately 1 year. Tamoxifen (TAM), a selective estrogen receptor modulator (SERM), has been used to treat GBM for many years. ER‐α36 is a novel variant of estrogen receptor‐alpha66 (ER‐α66) and can mediate cell proliferation through estrogen or anti‐estrogen signaling in different cancer cells. Previously, we found that ER‐α36 was highly expressed in GBM and was involved in the tamoxifen sensitivity of glioblastoma cells. However, the molecular mechanism responsible has not been well established. Here, we found that ER‐α36 is highly expressed in glioblastoma specimens. We further found that ER‐α36 knockdown increased sensitivity of glioblastoma U87 cells to TAM and decreased autophagy in these cells. However, ER‐α36 overexpression decreased TAM sensitivity and induced autophagy. We also established TAM‐resistant glioblastoma U251 cells by a long‐term culture in TAM‐containing medium and found that TAM‐resistant cells showed a six‐fold increase of ER‐α36 mRNA expression and elevated basal autophagy. ER‐α36 knockdown in these TAM‐resistant cells restored TAM sensitivity. In addition, we recapitulated the physiologically relevant tumor microenvironment in an integrated microfluidic device, and U87 cells were treated with a gradient of TAM. We found that ER‐α36 expression is consistent with autophagy protein P62 in a three‐dimensional microenvironment. In summary, these results indicate that ER‐α36 contributes to tamoxifen resistance in glioblastoma cells presumably through regulation of autophagy.
Collapse
Affiliation(s)
- Chao Qu
- College of Life Science, Liaoning Normal University, Dalian, China.,Regenerative Medicine Center, First Affiliated Hospital of Dalian Medical University, Dalian, China.,Department of Pharmacological and Toxicological Research Centre, No. 210 Hospital of Chinese People's Liberation Army, Dalian, China
| | - Jingyun Ma
- Regenerative Medicine Center, First Affiliated Hospital of Dalian Medical University, Dalian, China
| | - Yejun Zhang
- College of Life Science, Liaoning Normal University, Dalian, China
| | - Chao Han
- Regenerative Medicine Center, First Affiliated Hospital of Dalian Medical University, Dalian, China
| | - Liang Huang
- College of Life Science, Liaoning Normal University, Dalian, China
| | - Liming Shen
- Regenerative Medicine Center, First Affiliated Hospital of Dalian Medical University, Dalian, China
| | - Hongyan Li
- College of Life Science, Liaoning Normal University, Dalian, China
| | - Xiaobo Wang
- Department of Pharmacological and Toxicological Research Centre, No. 210 Hospital of Chinese People's Liberation Army, Dalian, China
| | - Jing Liu
- Regenerative Medicine Center, First Affiliated Hospital of Dalian Medical University, Dalian, China
| | - Wei Zou
- College of Life Science, Liaoning Normal University, Dalian, China
| |
Collapse
|
90
|
Sun JW, Collins JM, Ling D, Wang D. Highly Variable Expression of ESR1 Splice Variants in Human Liver: Implication in the Liver Gene Expression Regulation and Inter-Person Variability in Drug Metabolism and Liver Related Diseases. J Mol Genet Med 2019; 13:434. [PMID: 32457812 PMCID: PMC7249510] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Estrogen receptor alpha (ESR1) plays an important role in many tissues including the liver. Numerous alternative splice variants of ESR1 exist that encode ESR1 proteins with varying functions. We aim to study ESR1 genomic organization and its mRNA expression profile in human liver by incorporating information from literature and genomic databases (Ensembl, NCBI and GTEx), and employing a quantitative method to measure all known ESR1 mRNA splice variants in 36 human livers. We re-constructed ESR1 genomic organization map that contains 29 exons. ESR1 mRNA splice variants with varying 5' untranslated region (5'UTR) and/or missing each of eight coding exons are readily detectable in liver and other tissues. Moreover, we found extensive inter-individual variability in splice variant pattern of ESR1 transcripts. Specifically, ESR1 transcripts lacking first coding exon are the main transcripts in liver, which encode ESR1 proteins missing N-terminal 173 amino acids (for example, ERα46), reported previously to have either constitutive activity or dominant negative effects depending on cellular context. Moreover, some livers predominantly express ESR1 transcripts missing exon 10 or 16, encoding C-terminal truncated ESR1 proteins with varying ESR1 activities. Inter-person variability in ESR1 expression profile may contribute to inter-person variability in drug metabolism and susceptibility to liver related diseases.
Collapse
Affiliation(s)
- JW Sun
- Department of Biological Chemistry and Pharmacology, College of Medicine, The Ohio State University, Columbus, Ohio, USA
| | - JM Collins
- Department of Pharmacotherapy and Translational Research, Center for Pharmacogenomics, College of Pharmacy, University of Florida, Gainesville, Florida, USA
| | - D Ling
- Department of Pharmacotherapy and Translational Research, Center for Pharmacogenomics, College of Pharmacy, University of Florida, Gainesville, Florida, USA
| | - D Wang
- Department of Pharmacotherapy and Translational Research, Center for Pharmacogenomics, College of Pharmacy, University of Florida, Gainesville, Florida, USA,Corresponding author: Dr. Danxin Wang, Department of Pharmacotherapy and Translational Research, Center for Pharmacogenomics, College of Pharmacy, University of Florida, Gainesville, Florida-32610, USA, Tel: 352-273-7673;
| |
Collapse
|
91
|
Diaz Bessone MI, Gattas MJ, Laporte T, Tanaka M, Simian M. The Tumor Microenvironment as a Regulator of Endocrine Resistance in Breast Cancer. Front Endocrinol (Lausanne) 2019; 10:547. [PMID: 31440208 PMCID: PMC6694443 DOI: 10.3389/fendo.2019.00547] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/07/2019] [Accepted: 07/22/2019] [Indexed: 12/12/2022] Open
Abstract
Estrogen receptor positive breast neoplasias represent over 70% of diagnosed breast cancers. Depending on the stage at which the tumor is detected, HER2 status and genomic risk, endocrine therapy is combined with either radio, chemo and/or targeted therapy. A growing amount of evidence supports the notion that components of the tumor microenvironment play specific roles in response to treatment and that strategies targeting these key interactions with tumor cells could pave the way to a new generation of therapies. In this review, we analyze the evidence suggesting different components of the tumor microenvironment play a role in hormone receptor positive breast cancer progression. In particular we focus on the immune system, carcinoma associated fibroblasts and the extracellular matrix. Further insight into the cross talk between these constituents of the microenvironment and the tumor cells may lead to therapies that eliminate disseminated metastatic cells early on, and thus reduce distant disease relapse which is the leading cause of death for patients who are diagnosed with this illness.
Collapse
Affiliation(s)
- María Inés Diaz Bessone
- Laboratory of NanoBiology, Instituto de Nanosistemas, Universidad Nacional de San Martín, Buenos Aires, Argentina
| | - María José Gattas
- Laboratory of NanoBiology, Instituto de Nanosistemas, Universidad Nacional de San Martín, Buenos Aires, Argentina
| | - Tomás Laporte
- Laboratory of NanoBiology, Instituto de Nanosistemas, Universidad Nacional de San Martín, Buenos Aires, Argentina
| | - Max Tanaka
- Laboratory of NanoBiology, Instituto de Nanosistemas, Universidad Nacional de San Martín, Buenos Aires, Argentina
- Amsterdam UMC, VUmc School of Medical Sciences, University of Vrije, Amsterdam, Netherlands
| | - Marina Simian
- Laboratory of NanoBiology, Instituto de Nanosistemas, Universidad Nacional de San Martín, Buenos Aires, Argentina
- *Correspondence: Marina Simian
| |
Collapse
|
92
|
Rani A, Stebbing J, Giamas G, Murphy J. Endocrine Resistance in Hormone Receptor Positive Breast Cancer-From Mechanism to Therapy. Front Endocrinol (Lausanne) 2019; 10:245. [PMID: 31178825 PMCID: PMC6543000 DOI: 10.3389/fendo.2019.00245] [Citation(s) in RCA: 154] [Impact Index Per Article: 25.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/26/2018] [Accepted: 03/28/2019] [Indexed: 12/24/2022] Open
Abstract
The importance and role of the estrogen receptor (ER) pathway has been well-documented in both breast cancer (BC) development and progression. The treatment of choice in women with metastatic breast cancer (MBC) is classically divided into a variety of endocrine therapies, 3 of the most common being: selective estrogen receptor modulators (SERM), aromatase inhibitors (AI) and selective estrogen receptor down-regulators (SERD). In a proportion of patients, resistance develops to endocrine therapy due to a sophisticated and at times redundant interference, at the molecular level between the ER and growth factor. The progression to endocrine resistance is considered to be a gradual, step-wise process. Several mechanisms have been proposed but thus far none of them can be defined as the complete explanation behind the phenomenon of endocrine resistance. Although multiple cellular, molecular and immune mechanisms have been and are being extensively studied, their individual roles are often poorly understood. In this review, we summarize current progress in our understanding of ER biology and the molecular mechanisms that predispose and determine endocrine resistance in breast cancer patients.
Collapse
Affiliation(s)
- Aradhana Rani
- School of Life Sciences, University of Westminster, London, United Kingdom
- *Correspondence: Aradhana Rani
| | - Justin Stebbing
- Department of Surgery and Cancer, Imperial College London, London, United Kingdom
| | - Georgios Giamas
- Department of Biochemistry and Biomedicine, School of Life Sciences, University of Sussex, Brighton, United Kingdom
| | - John Murphy
- School of Life Sciences, University of Westminster, London, United Kingdom
| |
Collapse
|
93
|
Ranganathan P, Nadig N, Nambiar S. Non-canonical Estrogen Signaling in Endocrine Resistance. Front Endocrinol (Lausanne) 2019; 10:708. [PMID: 31749762 PMCID: PMC6843063 DOI: 10.3389/fendo.2019.00708] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/02/2019] [Accepted: 10/02/2019] [Indexed: 11/13/2022] Open
Abstract
Breast cancer is one of the leading causes of cancer related deaths in women worldwide. The disease is extremely heterogenous. A large percentage of the breast cancers are dependent on estrogen signaling and hence respond to endocrine therapies which essentially block the estrogen signaling. However, many of these tumors emerge as endocrine resistant tumors. Many mechanisms have been proposed to explain the emergence of endocrine resistance, which include mutations in the estrogen receptors, cross-talk with other signaling pathways, cancer stem cells etc. This review is focused on the role of non-canonical estrogen receptor signaling in endocrine resistance. Most of the therapeutics which are used currently are targeting the major receptor of estrogen namely ER-α. Last two decades has witnessed the discovery of alternate forms of ER-α, as well as other receptors for estrogen such as ERRgamma, GPER-1 as well as ER-β, which are activated not only by estrogen, but also by the therapeutic agents such as tamoxifen that are routinely used in treatment of breast cancer. However, when the alternate receptors are activated, they result in activation of membrane signaling which subsequently activates pathways such as MAPK and GPCR leading to cell-proliferation. This renders the anticipated anti-estrogenic effects of tamoxifen less effective or ineffective. Future research in this area has to focus on the alternate mechanisms and develop a combinatorial strategy, which can complement the existing therapeutics to get better outcome of endocrine therapies.
Collapse
|
94
|
Meroni SB, Galardo MN, Rindone G, Gorga A, Riera MF, Cigorraga SB. Molecular Mechanisms and Signaling Pathways Involved in Sertoli Cell Proliferation. Front Endocrinol (Lausanne) 2019; 10:224. [PMID: 31040821 PMCID: PMC6476933 DOI: 10.3389/fendo.2019.00224] [Citation(s) in RCA: 157] [Impact Index Per Article: 26.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/05/2019] [Accepted: 03/21/2019] [Indexed: 12/16/2022] Open
Abstract
Sertoli cells are somatic cells present in seminiferous tubules which have essential roles in regulating spermatogenesis. Considering that each Sertoli cell is able to support a limited number of germ cells, the final number of Sertoli cells reached during the proliferative period determines sperm production capacity. Only immature Sertoli cells, which have not established the blood-testis barrier, proliferate. A number of hormonal cues regulate Sertoli cell proliferation. Among them, FSH, the insulin family of growth factors, activin, and cytokines action must be highlighted. It has been demonstrated that cAMP/PKA, ERK1/2, PI3K/Akt, and mTORC1/p70SK6 pathways are the main signal transduction pathways involved in Sertoli cell proliferation. Additionally, c-Myc and hypoxia inducible factor are transcription factors which participate in the induction by FSH of various genes of relevance in cell cycle progression. Cessation of proliferation is a pre-requisite to Sertoli cell maturation accompanied by the establishment of the blood-testis barrier. With respect to this barrier, the participation of androgens, estrogens, thyroid hormones, retinoic acid and opioids has been reported. Additionally, two central enzymes that are involved in sensing cell energy status have been associated with the suppression of Sertoli cell proliferation, namely AMPK and Sirtuin 1 (SIRT1). Among the molecular mechanisms involved in the cessation of proliferation and in the maturation of Sertoli cells, it is worth mentioning the up-regulation of the cell cycle inhibitors p21Cip1, p27Kip, and p19INK4, and of the gap junction protein connexin 43. A decrease in Sertoli cell proliferation due to administration of certain therapeutic drugs and exposure to xenobiotic agents before puberty has been experimentally demonstrated. This review focuses on the hormones, locally produced factors, signal transduction pathways, and molecular mechanisms controlling Sertoli cell proliferation and maturation. The comprehension of how the final number of Sertoli cells in adulthood is established constitutes a pre-requisite to understand the underlying causes responsible for the progressive decrease in sperm production that has been observed during the last 50 years in humans.
Collapse
|
95
|
Sachdeva G, Desouza J, Gadkar S, Jagtap D. Size, site, and signaling: Three attributes of estrogen receptors. BIOMEDICAL RESEARCH JOURNAL 2019. [DOI: 10.4103/bmrj.bmrj_24_19] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022] Open
|
96
|
Groban L, Tran QK, Ferrario CM, Sun X, Cheng CP, Kitzman DW, Wang H, Lindsey SH. Female Heart Health: Is GPER the Missing Link? Front Endocrinol (Lausanne) 2019; 10:919. [PMID: 31993020 PMCID: PMC6970950 DOI: 10.3389/fendo.2019.00919] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/04/2019] [Accepted: 12/17/2019] [Indexed: 12/20/2022] Open
Abstract
The G Protein-Coupled Estrogen Receptor (GPER) is a novel membrane-bound receptor that mediates non-genomic actions of the primary female sex hormone 17β-estradiol. Studies over the past two decades have elucidated the beneficial actions of this receptor in a number of cardiometabolic diseases. This review will focus specifically on the cardiac actions of GPER, since this receptor is expressed in cardiomyocytes as well as other cells within the heart and most likely contributes to estrogen-induced cardioprotection. Studies outlining the impact of GPER on diastolic function, mitochondrial function, left ventricular stiffness, calcium dynamics, cardiac inflammation, and aortic distensibility are discussed. In addition, recent data using genetic mouse models with global or cardiomyocyte-specific GPER gene deletion are highlighted. Since estrogen loss due to menopause in combination with chronological aging contributes to unique aspects of cardiac dysfunction in women, this receptor may provide novel therapeutic effects. While clinical studies are still required to fully understand the potential for pharmacological targeting of this receptor in postmenopausal women, this review will summarize the evidence gathered thus far on its likely beneficial effects.
Collapse
Affiliation(s)
- Leanne Groban
- Department of Anesthesiology, Wake Forest School of Medicine, Winston Salem, NC, United States
- Department of Internal Medicine-Molecular Medicine, Wake Forest School of Medicine, Winston Salem, NC, United States
- *Correspondence: Leanne Groban
| | - Quang-Kim Tran
- Department of Physiology & Pharmacology, Des Moines University College of Osteopathic Medicine, Des Moines, IA, United States
| | - Carlos M. Ferrario
- Department of Surgery, Wake Forest School of Medicine, Winston Salem, NC, United States
- Department of Physiology-Pharmacology, Wake Forest School of Medicine, Winston Salem, NC, United States
| | - Xuming Sun
- Department of Anesthesiology, Wake Forest School of Medicine, Winston Salem, NC, United States
| | - Che Ping Cheng
- Department of Internal Medicine, Cardiovascular Medicine Section, Wake Forest School of Medicine, Winston Salem, NC, United States
| | - Dalane W. Kitzman
- Department of Internal Medicine, Cardiovascular Medicine Section, Wake Forest School of Medicine, Winston Salem, NC, United States
| | - Hao Wang
- Department of Anesthesiology, Wake Forest School of Medicine, Winston Salem, NC, United States
- Department of Internal Medicine-Molecular Medicine, Wake Forest School of Medicine, Winston Salem, NC, United States
| | - Sarah H. Lindsey
- Department of Pharmacology, Tulane University, New Orleans, LA, United States
| |
Collapse
|
97
|
Khariv V, Acioglu C, Ni L, Ratnayake A, Li L, Tao YX, Heary RF, Elkabes S. A link between plasma membrane calcium ATPase 2 (PMCA2), estrogen and estrogen receptor α signaling in mechanical pain. Sci Rep 2018; 8:17260. [PMID: 30467368 PMCID: PMC6250714 DOI: 10.1038/s41598-018-35263-0] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2018] [Accepted: 10/30/2018] [Indexed: 12/29/2022] Open
Abstract
Earlier studies on genetically modified mice indicated that plasma membrane calcium ATPase 2 (PMCA2), a calcium extrusion pump, plays a novel and sex-dependent role in mechanical pain responses: female, but not male, PMCA2+/− mice manifest increased mechanical pain compared to female PMCA2+/+ mice. The goal of the present studies was to determine the contribution of ovarian steroids to the genotype- and sex-dependent manifestation of mechanical pain in PMCA2+/+ versus PMCA2+/− mice. Ovariectomy increased mechanical pain sensitivity and 17β-estradiol (E2) replacement restored it to basal levels in PMCA2+/+ mice, but not in PMCA2+/− littermates. Intrathecal administration of an estrogen receptor alpha (ERα) agonist induced ERα signaling in the dorsal horn (DH) of female PMCA2+/+ mice, but was ineffective in PMCA2+/− mice. In male PMCA2+/+ and PMCA2+/− mice, E2 treatment following orchidectomy did not recapitulate the genotype-dependent differential pain responses observed in females and the agonist did not elicit ERα signaling. These findings establish a novel, female-specific link between PMCA2, ERα and mechanical pain. It is postulated that PMCA2 is essential for adequate ERα signaling in the female DH and that impaired ERα signaling in the female PMCA2+/− mice hinders the analgesic effects of E2 leading to increased sensitivity to mechanical stimuli.
Collapse
Affiliation(s)
- Veronika Khariv
- Department of Neurological Surgery, The Reynolds Family Spine Laboratory, New Jersey Medical School, Rutgers,The State University of New Jersey, Newark, NJ, 07103, USA.,The School of Graduate Studies, New Jersey Medical School, Rutgers, The State University of New Jersey, Newark, NJ, 07103, USA
| | - Cigdem Acioglu
- Department of Neurological Surgery, The Reynolds Family Spine Laboratory, New Jersey Medical School, Rutgers,The State University of New Jersey, Newark, NJ, 07103, USA
| | - Li Ni
- Department of Neurological Surgery, The Reynolds Family Spine Laboratory, New Jersey Medical School, Rutgers,The State University of New Jersey, Newark, NJ, 07103, USA
| | - Ayomi Ratnayake
- Department of Neurological Surgery, The Reynolds Family Spine Laboratory, New Jersey Medical School, Rutgers,The State University of New Jersey, Newark, NJ, 07103, USA
| | - Lun Li
- Department of Neurological Surgery, The Reynolds Family Spine Laboratory, New Jersey Medical School, Rutgers,The State University of New Jersey, Newark, NJ, 07103, USA.,The School of Graduate Studies, New Jersey Medical School, Rutgers, The State University of New Jersey, Newark, NJ, 07103, USA
| | - Yuan-Xiang Tao
- Department of Anesthesiology, New Jersey Medical School, Rutgers, The State University of New Jersey, Newark, NJ, 07103, USA
| | - Robert F Heary
- Department of Neurological Surgery, The Reynolds Family Spine Laboratory, New Jersey Medical School, Rutgers,The State University of New Jersey, Newark, NJ, 07103, USA
| | - Stella Elkabes
- Department of Neurological Surgery, The Reynolds Family Spine Laboratory, New Jersey Medical School, Rutgers,The State University of New Jersey, Newark, NJ, 07103, USA.
| |
Collapse
|
98
|
Szostakowska M, Trębińska-Stryjewska A, Grzybowska EA, Fabisiewicz A. Resistance to endocrine therapy in breast cancer: molecular mechanisms and future goals. Breast Cancer Res Treat 2018; 173:489-497. [PMID: 30382472 PMCID: PMC6394602 DOI: 10.1007/s10549-018-5023-4] [Citation(s) in RCA: 124] [Impact Index Per Article: 17.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2018] [Accepted: 10/20/2018] [Indexed: 02/06/2023]
Abstract
Introduction The majority of breast cancers (BCs) are characterized by the expression of estrogen receptor alpha (ERα+). ERα acts as ligand-dependent transcription factor for genes associated with cell survival, proliferation, and tumor growth. Thus, blocking the estrogen agonist effect on ERα is the main strategy in the treatment of ERα+ BCs. However, despite the development of targeted anti-estrogen therapies for ER+ BC, around 30–50% of early breast cancer patients will relapse. Acquired resistance to endocrine therapy is a great challenge in ER+ BC patient treatment. Discussion Anti-estrogen resistance is a consequence of molecular changes, which allow for tumor growth irrespective of estrogen presence. Those changes may be associated with ERα modifications either at the genetic, regulatory or protein level. Additionally, the activation of alternate growth pathways and/or cell survival mechanisms can lead to estrogen-independence and endocrine resistance. Conclusion This comprehensive review summarizes molecular mechanisms associated with resistance to anti-estrogen therapy, focusing on genetic alterations, stress responses, cell survival mechanisms, and cell reprogramming.
Collapse
Affiliation(s)
- Małgorzata Szostakowska
- Department of Molecular and Translational Oncology, The Maria Skłodowska-Curie Institute of Oncology, Roentgena 5, Warsaw, Poland
| | - Alicja Trębińska-Stryjewska
- Department of Molecular and Translational Oncology, The Maria Skłodowska-Curie Institute of Oncology, Roentgena 5, Warsaw, Poland
| | - Ewa Anna Grzybowska
- Department of Molecular and Translational Oncology, The Maria Skłodowska-Curie Institute of Oncology, Roentgena 5, Warsaw, Poland
| | - Anna Fabisiewicz
- Department of Molecular and Translational Oncology, The Maria Skłodowska-Curie Institute of Oncology, Roentgena 5, Warsaw, Poland.
| |
Collapse
|
99
|
Krivtsova O, Makarova A, Lazarevich N. Aberrant expression of alternative isoforms of transcription factors in hepatocellular carcinoma. World J Hepatol 2018; 10:645-661. [PMID: 30386458 PMCID: PMC6206146 DOI: 10.4254/wjh.v10.i10.645] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/20/2018] [Revised: 06/08/2018] [Accepted: 06/28/2018] [Indexed: 02/06/2023] Open
Abstract
Hepatocellular carcinoma (HCC) is one of the most prevalent malignancies worldwide and the second leading cause of death among all cancer types. Deregulation of the networks of tissue-specific transcription factors (TFs) observed in HCC leads to profound changes in the hepatic transcriptional program that facilitates tumor progression. In addition, recent reports suggest that substantial aberrations in the production of TF isoforms occur in HCC. In vitro experiments have identified distinct isoform-specific regulatory functions and related biological effects of liver-specific TFs that are implicated in carcinogenesis, which may be relevant for tumor progression and clinical outcome. This study reviews available data on the expression of isoforms of liver-specific and ubiquitous TFs in the liver and HCC and their effects, including HNF4α, C/EBPs, p73 and TCF7L2, and indicates that assessment of the ratio of isoforms and targeting specific TF variants may be beneficial for the prognosis and treatment of HCC.
Collapse
Affiliation(s)
- Olga Krivtsova
- Federal State Budgetary Institution, “N. N. Blokhin Medical Research Center of Oncology” of the Ministry of Health of the Russian Federation, Moscow 115478, Russian
- M. V. Lomonosov Moscow State University, Moscow 119991, Russian
| | - Anna Makarova
- Federal State Budgetary Institution, “N. N. Blokhin Medical Research Center of Oncology” of the Ministry of Health of the Russian Federation, Moscow 115478, Russian
| | - Natalia Lazarevich
- Federal State Budgetary Institution, “N. N. Blokhin Medical Research Center of Oncology” of the Ministry of Health of the Russian Federation, Moscow 115478, Russian
- M. V. Lomonosov Moscow State University, Moscow 119991, Russian
| |
Collapse
|
100
|
Maczis MA, Maceyka M, Waters MR, Newton J, Singh M, Rigsby MF, Turner TH, Alzubi MA, Harrell JC, Milstien S, Spiegel S. Sphingosine kinase 1 activation by estrogen receptor α36 contributes to tamoxifen resistance in breast cancer. J Lipid Res 2018; 59:2297-2307. [PMID: 30315000 DOI: 10.1194/jlr.m085191] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2018] [Revised: 10/04/2018] [Indexed: 01/01/2023] Open
Abstract
In breast cancer, 17β-estradiol (E2) plays critical roles mainly by binding to its canonical receptor, estrogen receptor (ER) α66, and eliciting genomic effects. E2 also triggers rapid, nongenomic responses. E2 activates sphingosine kinase 1 (SphK1), increasing sphingosine-1-phosphate (S1P) that binds to its receptors, leading to important breast cancer signaling. However, the E2 receptor responsible for SphK1 activation has not yet been identified. Here, we demonstrate in triple-negative breast cancer cells, which lack the canonical ERα66 but express the novel splice variant ERα36, that ERα36 is the receptor responsible for E2-induced activation of SphK1 and formation and secretion of S1P and dihydro-S1P, the ligands for S1PRs. Tamoxifen, the first-line endocrine therapy for breast cancer, is an antagonist of ERα66, but an agonist of ERα36, and, like E2, activates SphK1 and markedly increases secretion of S1P. A major problem with tamoxifen therapy is development of acquired resistance. We found that tamoxifen resistance correlated with increased SphK1 and ERα36 expression in tamoxifen-resistant breast cancer cells, in patient-derived xenografts, and in endocrine-resistant breast cancer patients. Our data also indicate that targeting this ERα36 and SphK1 axis may be a therapeutic option to circumvent endocrine resistance and improve patient outcome.
Collapse
Affiliation(s)
- Melissa A Maczis
- Department of Biochemistry and Molecular BiologyVirginia Commonwealth University School of Medicine, Richmond, VA 23298
| | - Michael Maceyka
- Department of Biochemistry and Molecular BiologyVirginia Commonwealth University School of Medicine, Richmond, VA 23298
| | - Michael R Waters
- Department of Biochemistry and Molecular BiologyVirginia Commonwealth University School of Medicine, Richmond, VA 23298
| | - Jason Newton
- Department of Biochemistry and Molecular BiologyVirginia Commonwealth University School of Medicine, Richmond, VA 23298
| | - Manjulata Singh
- Department of Biochemistry and Molecular BiologyVirginia Commonwealth University School of Medicine, Richmond, VA 23298
| | - Madisyn F Rigsby
- Department of Biochemistry and Molecular BiologyVirginia Commonwealth University School of Medicine, Richmond, VA 23298
| | - Tia H Turner
- Department of Pathology and the Massey Cancer Center, Virginia Commonwealth University School of Medicine, Richmond, VA 23298
| | - Mohammad A Alzubi
- Department of Pathology and the Massey Cancer Center, Virginia Commonwealth University School of Medicine, Richmond, VA 23298
| | - J Chuck Harrell
- Department of Pathology and the Massey Cancer Center, Virginia Commonwealth University School of Medicine, Richmond, VA 23298
| | - Sheldon Milstien
- Department of Biochemistry and Molecular BiologyVirginia Commonwealth University School of Medicine, Richmond, VA 23298
| | - Sarah Spiegel
- Department of Biochemistry and Molecular BiologyVirginia Commonwealth University School of Medicine, Richmond, VA 23298
| |
Collapse
|