51
|
An ancient family of lytic polysaccharide monooxygenases with roles in arthropod development and biomass digestion. Nat Commun 2018; 9:756. [PMID: 29472725 PMCID: PMC5823890 DOI: 10.1038/s41467-018-03142-x] [Citation(s) in RCA: 173] [Impact Index Per Article: 24.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2017] [Accepted: 01/22/2018] [Indexed: 02/02/2023] Open
Abstract
Thermobia domestica belongs to an ancient group of insects and has a remarkable ability to digest crystalline cellulose without microbial assistance. By investigating the digestive proteome of Thermobia, we have identified over 20 members of an uncharacterized family of lytic polysaccharide monooxygenases (LPMOs). We show that this LPMO family spans across several clades of the Tree of Life, is of ancient origin, and was recruited by early arthropods with possible roles in remodeling endogenous chitin scaffolds during development and metamorphosis. Based on our in-depth characterization of Thermobia's LPMOs, we propose that diversification of these enzymes toward cellulose digestion might have endowed ancestral insects with an effective biochemical apparatus for biomass degradation, allowing the early colonization of land during the Paleozoic Era. The vital role of LPMOs in modern agricultural pests and disease vectors offers new opportunities to help tackle global challenges in food security and the control of infectious diseases.
Collapse
|
52
|
Masson V, Arafah K, Voisin S, Bulet P. Comparative Proteomics Studies of Insect Cuticle by Tandem Mass Spectrometry: Application of a Novel Proteomics Approach to the Pea Aphid Cuticular Proteins. Proteomics 2018; 18. [DOI: 10.1002/pmic.201700368] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2017] [Revised: 12/21/2017] [Indexed: 12/13/2022]
Affiliation(s)
| | | | | | - Philippe Bulet
- Platform BioPark Archamps; Archamps France
- Institute for Advanced Biosciences; CR Inserm U1209; CNRS UMR 5309; University of Grenoble-Alpes; Grenoble France
| |
Collapse
|
53
|
Transcriptomic Analysis of Octanoic Acid Response in Drosophila sechellia Using RNA-Sequencing. G3-GENES GENOMES GENETICS 2017; 7:3867-3873. [PMID: 29021218 PMCID: PMC5714484 DOI: 10.1534/g3.117.300297] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
The dietary specialist fruit fly Drosophila sechellia has evolved to specialize on the toxic fruit of its host plant Morinda citrifolia. Toxicity of Morinda fruit is primarily due to high levels of octanoic acid (OA). Using RNA interference (RNAi), prior work found that knockdown of Osiris family genes Osiris 6 (Osi6), Osi7, and Osi8 led to increased susceptibility to OA in adult D. melanogaster flies, likely representing genes underlying a Quantitative Trait Locus (QTL) for OA resistance in D. sechellia. While genes in this major effect locus are beginning to be revealed, prior work has shown at least five regions of the genome contribute to OA resistance. Here, we identify new candidate OA resistance genes by performing differential gene expression analysis using RNA-sequencing (RNA-seq) on control and OA-exposed D. sechellia flies. We found 104 significantly differentially expressed genes with annotated orthologs in D. melanogaster, including six Osiris gene family members, consistent with previous functional studies and gene expression analyses. Gene ontology (GO) term enrichment showed significant enrichment for cuticle development in upregulated genes and significant enrichment of immune and defense responses in downregulated genes, suggesting important aspects of the physiology of D. sechellia that may play a role in OA resistance. In addition, we identified five candidate OA resistance genes that potentially underlie QTL peaks outside of the major effect region, representing promising new candidate genes for future functional studies.
Collapse
|
54
|
Jan S, Liu S, Hafeez M, Zhang X, Dawar FU, Guo J, Gao C, Wang M. Isolation and functional identification of three cuticle protein genes during metamorphosis of the beet armyworm, Spodoptera exigua. Sci Rep 2017; 7:16061. [PMID: 29167522 PMCID: PMC5700046 DOI: 10.1038/s41598-017-16435-w] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2017] [Accepted: 11/13/2017] [Indexed: 11/29/2022] Open
Abstract
The beet armyworm, Spodoptera exigua (Hubner), is one of the major crop pests and is a target for current pest control approaches using insecticides. In this study three cuticular protein genes CPG316, CPG860 and CPG4855 have been cloned from 0 h pupal integument of S. exigua through race PCR Strategy. The deduced amino acid sequences were found to contain the RR-2 consensus region of other insect cuticular proteins and construct phylogenetic trees for each protein. Using quantitative RT-PCR, the developmental expression of the three genes through several larval and the early pupal stages was studied. All three genes contribute to the endocuticle although CPG316 may have a different role from the other two genes. All three newly isolated genes were analyzed and their functions were determined by using direct injection of the dsRNA into early 5th instar larvae. All genes are expressed in the larvae and early pupae but in different patterns. Furthermore, phenotypic results show that these genes have differing effects on the development of cuticle, its flexibility and a big role in metamorphosis in both larval and pupal stages.
Collapse
Affiliation(s)
- Saad Jan
- College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, Hubei, 430070, People's Republic of China
| | - Sisi Liu
- College of Science, Huazhong Agricultural University, Wuhan, Hubei, 430070, People's Republic of China.
| | - Muhammad Hafeez
- College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, Hubei, 430070, People's Republic of China
| | - Xiangmei Zhang
- College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, Hubei, 430070, People's Republic of China
| | - Farman Ullah Dawar
- College of Fisheries, Huazhong Agricultural University, Wuhan, Hubei, 430070, People's Republic of China
| | - Jiyun Guo
- College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, Hubei, 430070, People's Republic of China
| | - Chao Gao
- College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, Hubei, 430070, People's Republic of China
| | - Mo Wang
- College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, Hubei, 430070, People's Republic of China.
| |
Collapse
|
55
|
Body Shape and Coloration of Silkworm Larvae Are Influenced by a Novel Cuticular Protein. Genetics 2017; 207:1053-1066. [PMID: 28923848 DOI: 10.1534/genetics.117.300300] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2017] [Accepted: 09/15/2017] [Indexed: 11/18/2022] Open
Abstract
The genetic basis of body shape and coloration patterns on caterpillars is often assumed to be regulated separately, but it is possible that common molecules affect both types of trait simultaneously. Here we examine the genetic basis of a spontaneous cuticle defect in silkworm, where larvae exhibit a bamboo-like body shape and decreased pigmentation. We performed linkage mapping and mutation screening to determine the gene product that affects body shape and coloration simultaneously. In these mutant larvae we identified a null mutation in BmorCPH24, a gene encoding a cuticular protein with low complexity sequence. Spatiotemporal expression analyses showed that BmorCPH24 is expressed in the larval epidermis postecdysis. RNAi-mediated knockdown and CRISPR/Cas9-mediated knockout of BmorCPH24 produced the abnormal body shape and the inhibited pigment typical of the mutant phenotype. In addition, our results showed that BmorCPH24 may be involved in the synthesis of endocuticle and its disruption-induced apoptosis of epidermal cells that accompanied the reduced expression of R&R-type larval cuticle protein genes and pigmentation gene Wnt1 Strikingly, BmorCPH24, a fast-evolving gene, has evolved a new function responsible for the assembly of silkworm larval cuticle and has evolved to be an indispensable factor maintaining the larval body shape and its coloration pattern. This is the first study to identify a molecule whose pleiotropic function affects the development of body shape and color patterns in insect larvae.
Collapse
|
56
|
Berdan EL, Finck J, Johnston PR, Waurick I, Mazzoni CJ, Mayer F. Transcriptome profiling of ontogeny in the acridid grasshopper Chorthippus biguttulus. PLoS One 2017; 12:e0177367. [PMID: 28520760 PMCID: PMC5435247 DOI: 10.1371/journal.pone.0177367] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2016] [Accepted: 04/19/2017] [Indexed: 12/03/2022] Open
Abstract
Acridid grasshoppers (Orthoptera:Acrididae) are widely used model organisms for developmental, evolutionary, and neurobiological research. Although there has been recent influx of orthopteran transcriptomic resources, many use pooled ontogenetic stages obscuring information about changes in gene expression during development. Here we developed a de novo transcriptome spanning 7 stages in the life cycle of the acridid grasshopper Chorthippus biguttulus. Samples from different stages encompassing embryonic development through adults were used for transcriptomic profiling, revealing patterns of differential gene expression that highlight processes in the different life stages. These patterns were validated with semi-quantitative RT-PCR. Embryonic development showed a strongly differentiated expression pattern compared to all of the other stages and genes upregulated in this stage were involved in signaling, cellular differentiation, and organ development. Our study is one of the first to examine gene expression during post-embryonic development in a hemimetabolous insect and we found that only the fourth and fifth instars had clusters of genes upregulated during these stages. These genes are involved in various processes ranging from synthesis of biogenic amines to chitin binding. These observations indicate that post-embryonic ontogeny is not a continuous process and that some instars are differentiated. Finally, genes upregulated in the imago were generally involved in aging and immunity. Our study highlights the importance of looking at ontogeny as a whole and indicates promising directions for future research in orthopteran development.
Collapse
Affiliation(s)
- Emma L. Berdan
- Museum für Naturkunde Berlin, Leibniz Institute for Evolution and Biodiversity Science, Berlin, Germany
| | - Jonas Finck
- Museum für Naturkunde Berlin, Leibniz Institute for Evolution and Biodiversity Science, Berlin, Germany
- Behavioural Physiology, Department of Biology, Humboldt-Universität zu Berlin, Berlin, Germany
| | | | - Isabelle Waurick
- Museum für Naturkunde Berlin, Leibniz Institute for Evolution and Biodiversity Science, Berlin, Germany
| | - Camila J. Mazzoni
- Berlin Center for Genomics in Biodiversity Research, Berlin, Germany
- Leibniz-Institut für Zoo- und Wildtierforschung (IZW), Berlin, Germany
| | - Frieder Mayer
- Museum für Naturkunde Berlin, Leibniz Institute for Evolution and Biodiversity Science, Berlin, Germany
- Berlin-Brandenburg Institute of Advanced Biodiversity Research (BBIB), Berlin, Germany
| |
Collapse
|
57
|
Zhao X, Gou X, Qin Z, Li D, Wang Y, Ma E, Li S, Zhang J. Identification and expression of cuticular protein genes based on Locusta migratoria transcriptome. Sci Rep 2017; 7:45462. [PMID: 28368027 PMCID: PMC5377371 DOI: 10.1038/srep45462] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2016] [Accepted: 02/13/2017] [Indexed: 11/29/2022] Open
Abstract
Many types of cuticular proteins are found in a single insect species, and their number and features are very diversified among insects. The cuticle matrix consists of many different proteins that confer the physical properties of the exoskeleton. However, the number and properties of cuticle proteins in Locusta migratoria remain unclear. In the present study, Illumina sequencing and de novo assembly were combined to characterize the transcriptome of L. migratoria. Eighty-one cuticular protein genes were identified and divided into five groups: the CPR family (51), Tweedle (2), CPF/CPFLs (9), CPAP family (9), and other genes (10). Based on the expression patterns in different tissues and stages, most of the genes as a test were distributed in the integument, pronotum and wings, and expressed in selected stages with different patterns. The results showed no obvious correlation between the expression patterns and the conservative motifs. Additionally, each cluster displayed a different expression pattern that may possess a different function in the cuticle. Furthermore, the complexity of the large variety of genes displayed differential expression during the molting cycle may be associated with cuticle formation and may provide insights into the gene networks related to cuticle formation.
Collapse
Affiliation(s)
- Xiaoming Zhao
- Research Institute of Applied Biology, Shanxi University, Taiyuan, Shanxi 030006, China
| | - Xin Gou
- Research Institute of Applied Biology, Shanxi University, Taiyuan, Shanxi 030006, China.,College of Life Science, Shanxi University, Taiyuan, Shanxi 030006, China
| | - Zhongyu Qin
- Research Institute of Applied Biology, Shanxi University, Taiyuan, Shanxi 030006, China.,College of Life Science, Shanxi University, Taiyuan, Shanxi 030006, China
| | - Daqi Li
- Research Institute of Applied Biology, Shanxi University, Taiyuan, Shanxi 030006, China
| | - Yan Wang
- Research Institute of Applied Biology, Shanxi University, Taiyuan, Shanxi 030006, China.,College of Life Science, Shanxi University, Taiyuan, Shanxi 030006, China
| | - Enbo Ma
- Research Institute of Applied Biology, Shanxi University, Taiyuan, Shanxi 030006, China
| | - Sheng Li
- Guangzhou Key Laboratory of Insect Development Regulation and Application Research, Institute of Insect Sciences and School of Life Sciences, South China Normal University, Guangzhou 510631, China
| | - Jianzhen Zhang
- Research Institute of Applied Biology, Shanxi University, Taiyuan, Shanxi 030006, China
| |
Collapse
|
58
|
Yang CH, Yang PC, Zhang SF, Shi ZY, Kang L, Zhang AB. Identification, expression pattern, and feature analysis of cuticular protein genes in the pine moth Dendrolimus punctatus (Lepidoptera: Lasiocampidae). INSECT BIOCHEMISTRY AND MOLECULAR BIOLOGY 2017; 83:94-106. [PMID: 28284855 DOI: 10.1016/j.ibmb.2017.03.003] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/04/2016] [Revised: 01/19/2017] [Accepted: 03/06/2017] [Indexed: 06/06/2023]
Abstract
Cuticular proteins (CPs) are vital components of the insects' cuticle that support movement and protect insect from adverse environmental conditions. The CPs exist in a large number and diversiform structures, thus, the accurate annotation is the first step to interpreting their roles in insect growth. The rapid development of sequencing technology has simplified the access to the information on protein sequences, especially for non-model species. Dendrolimus punctatus is a Lepidopteran defoliator, and its periodic outbreaks cause severe damage to the coniferous forests. The transcriptome of D. punctatus integrating the whole developmental periods are available for the potential investigation of CPs. In this study, we identified 216 CPs from D. punctatus, including 147 from CPR family, 4 from TWDL family, 3 from CPF/CPFL families, 22 from CPAP families, 8 low complexity proteins, 1 CPCPC and 31 from other CP families. The putative CPs were compared with homologs in other species such as Bombyx mori, Manduca sexta and Drosophila melanogaster. We further identified five co-orthologous groups have highly similar sequences of CRPs in nine lepidopteran species, which exclusively presented in RR-2 subfamily rather than RR-1. We inferred that in Lepidoptera the difference in RR-2 numbers was maintained by homologs in co-orthologous groups, coincided with observation in Drosophila and Anopheles that gene cluster was the model and source for the expansion of RR-2 genes. In combination with the variation of members in each CP family among different species, these results indicated the evolution of CPs was highly correlated to the adaptation of insect to environment. Furthermore, we compared the amino acid composition of the different types CPRs, and examined the expression patterns of CP genes in various developmental stages. The comprehensive overview of CPs from our study provides an insight into their evolution and the association between them and insect development.
Collapse
Affiliation(s)
- Cong-Hui Yang
- College of Life Sciences, Capital Normal University, Beijing, 100048, China
| | - Peng-Cheng Yang
- Beijing Institutes of Life Science, Chinese Academy of Sciences, Beijing, 100101, China
| | - Su-Fang Zhang
- Key Laboratory of Forest Protection, Research Institute of Forest Ecology, Environment and Protection, Chinese Academy of Forestry, State Forestry Administration, Beijing, 100091, China
| | - Zhi-Yong Shi
- College of Life Sciences, Capital Normal University, Beijing, 100048, China
| | - Le Kang
- Beijing Institutes of Life Science, Chinese Academy of Sciences, Beijing, 100101, China; State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, China
| | - Ai-Bing Zhang
- College of Life Sciences, Capital Normal University, Beijing, 100048, China.
| |
Collapse
|
59
|
Tajiri R. Cuticle itself as a central and dynamic player in shaping cuticle. CURRENT OPINION IN INSECT SCIENCE 2017; 19:30-35. [PMID: 28521940 DOI: 10.1016/j.cois.2016.10.009] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/20/2016] [Revised: 10/24/2016] [Accepted: 10/27/2016] [Indexed: 06/07/2023]
Abstract
The wide variety of external morphologies has underlain the evolutionary success of insects. The insect exoskeleton, or cuticle, which covers the entire body and constitutes the external morphology, is extracellular matrix produced by the epidermis. How is cuticle shaped during development? Past studies have mainly focused on patterning, differentiation and morphogenesis of the epidermis. Recently, however, it is becoming clear that cuticle itself plays important and active roles in regulation of cuticle shape. Studies in the past several years show that pre-existing cuticle can influence shaping of new cuticle, and cuticle can sculpt its own shape through its material property. In this review, I summarize recent advances and discuss future prospects.
Collapse
Affiliation(s)
- Reiko Tajiri
- Department of Integrated Biosciences, Graduate School of Frontier Sciences, The University of Tokyo, Bioscience Building 501, 5-1-5 Kashiwa-no-ha, Kashiwa-shi, Chiba 277-8562, Japan.
| |
Collapse
|
60
|
Mechanical Control of Whole Body Shape by a Single Cuticular Protein Obstructor-E in Drosophila melanogaster. PLoS Genet 2017; 13:e1006548. [PMID: 28076349 PMCID: PMC5226733 DOI: 10.1371/journal.pgen.1006548] [Citation(s) in RCA: 51] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2016] [Accepted: 12/20/2016] [Indexed: 12/03/2022] Open
Abstract
Body shapes are much more variable than body plans. One way to alter body shapes independently of body plans would be to mechanically deform bodies. To what extent body shapes are regulated physically, or molecules involved in physical control of morphogenesis, remain elusive. During fly metamorphosis, the cuticle (exoskeleton) covering the larval body contracts longitudinally and expands laterally to become the ellipsoidal pupal case (puparium). Here we show that Drosophila melanogaster Obstructor-E (Obst-E) is a protein constituent of the larval cuticle that confers the oriented contractility/expandability. In the absence of obst-E function, the larval cuticle fails to undergo metamorphic shape change and finally becomes a twiggy puparium. We present results indicating that Obst-E regulates the arrangement of chitin, a long-chain polysaccharide and a central component of the insect cuticle, and directs the formation of supracellular ridges on the larval cuticle. We further show that Obst-E is locally required for the oriented shape change of the cuticle during metamorphosis, which is associated with changes in the morphology of those ridges. Thus, Obst-E dramatically affects the body shape in a direct, physical manner by controlling the mechanical property of the exoskeleton. Shapes of objects, living or not, should depend on their material properties and forces acting on them. Mechanical processes that create whole body shapes of multicellular organisms, or genes that regulate such processes, are largely unknown. Insect bodies are coated by cuticle, a matrix composed of proteins and the polysaccharide chitin. We show that, during metamorphosis of the fruit fly Drosophila melanogaster, the cuticle covering the long and thin larva (maggot) undergoes longitudinal contraction and lateral expansion to become the short and stout puparium covering the pupa. Furthermore, we identify a single protein component of the larval cuticle that confers the oriented contractility/expandability, thereby determining the pupal body shape in a mechanical manner.
Collapse
|
61
|
Costa CP, Elias-Neto M, Falcon T, Dallacqua RP, Martins JR, Bitondi MMG. RNAi-Mediated Functional Analysis of Bursicon Genes Related to Adult Cuticle Formation and Tanning in the Honeybee, Apis mellifera. PLoS One 2016; 11:e0167421. [PMID: 27907116 PMCID: PMC5132263 DOI: 10.1371/journal.pone.0167421] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2016] [Accepted: 11/14/2016] [Indexed: 11/18/2022] Open
Abstract
Bursicon is a heterodimeric neurohormone that acts through a G protein-coupled receptor named rickets (rk), thus inducing an increase in cAMP and the activation of tyrosine hydroxylase, the rate-limiting enzyme in the cuticular tanning pathway. In insects, the role of bursicon in the post-ecdysial tanning of the adult cuticle and wing expansion is well characterized. Here we investigated the roles of the genes encoding the bursicon subunits during the adult cuticle development in the honeybee, Apis mellifera. RNAi-mediated knockdown of AmBurs α and AmBurs β bursicon genes prevented the complete formation and tanning (melanization/sclerotization) of the adult cuticle. A thinner, much less tanned cuticle was produced, and ecdysis toward adult stage was impaired. Consistent with these results, the knockdown of bursicon transcripts also interfered in the expression of genes encoding its receptor, AmRk, structural cuticular proteins, and enzymes in the melanization/sclerotization pathway, thus evidencing roles for bursicon in adult cuticle formation and tanning. Moreover, the expression of AmBurs α, AmBurs β and AmRk is contingent on the declining ecdysteroid titer that triggers the onset of adult cuticle synthesis and deposition. The search for transcripts of AmBurs α, AmBurs β and candidate targets in RNA-seq libraries prepared with brains and integuments strengthened our data on transcript quantification through RT-qPCR. Together, our results support our premise that bursicon has roles in adult cuticle formation and tanning, and are in agreement with other recent studies pointing for roles during the pharate-adult stage, in addition to the classical post-ecdysial ones.
Collapse
Affiliation(s)
- Claudinéia Pereira Costa
- Departamento de Genética; Faculdade de Medicina de Ribeirão Preto; Universidade de São Paulo; Ribeirão Preto, SP, Brazil
- Departamento de Biologia; Faculdade de Filosofia, Ciências e Letras de Ribeirão Preto; Universidade de São Paulo; Ribeirão Preto, SP, Brazil
| | - Moysés Elias-Neto
- Departamento de Biologia; Faculdade de Filosofia, Ciências e Letras de Ribeirão Preto; Universidade de São Paulo; Ribeirão Preto, SP, Brazil
| | - Tiago Falcon
- Departamento de Genética; Faculdade de Medicina de Ribeirão Preto; Universidade de São Paulo; Ribeirão Preto, SP, Brazil
| | - Rodrigo Pires Dallacqua
- Centro de Ciências Biológicas e da Saúde; Universidade Federal de Mato Grosso do Sul; Campo Grande, MS, Brazil
| | - Juliana Ramos Martins
- Departamento de Genética; Faculdade de Medicina de Ribeirão Preto; Universidade de São Paulo; Ribeirão Preto, SP, Brazil
| | - Marcia Maria Gentile Bitondi
- Departamento de Biologia; Faculdade de Filosofia, Ciências e Letras de Ribeirão Preto; Universidade de São Paulo; Ribeirão Preto, SP, Brazil
- * E-mail:
| |
Collapse
|
62
|
Cloud-Richardson KM, Smith BR, Macdonald SJ. Genetic dissection of intraspecific variation in a male-specific sexual trait in Drosophila melanogaster. Heredity (Edinb) 2016; 117:417-426. [PMID: 27530909 PMCID: PMC5117841 DOI: 10.1038/hdy.2016.63] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2016] [Revised: 06/07/2016] [Accepted: 06/22/2016] [Indexed: 01/06/2023] Open
Abstract
An open question in evolutionary biology is the relationship between standing variation for a trait and the variation that leads to interspecific divergence. By identifying loci underlying phenotypic variation in intra- and interspecific crosses we can determine the extent to which polymorphism and divergence are controlled by the same genomic regions. Sexual traits provide abundant examples of morphological and behavioral diversity within and among species, and here we leverage variation in the Drosophila sex comb to address this question. The sex comb is an array of modified bristles or ‘teeth' present on the male forelegs of several Drosophilid species. Males use the comb to grasp females during copulation, and ablation experiments have shown that males lacking comb teeth typically fail to mate. We measured tooth number in >700 genotypes derived from a multiparental advanced-intercross population, mapping three moderate-effect loci contributing to trait heritability. Two quantitative trait loci (QTLs) coincide with previously identified intra- and interspecific sex comb QTL, but such overlap can be explained by chance alone, in part because of the broad swathes of the genome implicated by earlier, low-resolution QTL scans. Our mapped QTL regions encompass 70–124 genes, but do not include those genes known to be involved in developmental specification of the comb. Nonetheless, we identified plausible candidates within all QTL intervals, and used RNA interference to validate effects at four loci. Notably, TweedleS expression knockdown substantially reduces tooth number. The genes we highlight are strong candidates to harbor segregating, functional variants contributing to sex comb tooth number.
Collapse
Affiliation(s)
| | - B R Smith
- Department of Molecular Biosciences, University of Kansas, Lawrence, KS, USA
| | - S J Macdonald
- Department of Molecular Biosciences, University of Kansas, Lawrence, KS, USA.,Center for Computational Biology, University of Kansas, Lawrence, KS, USA
| |
Collapse
|
63
|
Song TQ, Yang ML, Wang YL, Liu Q, Wang HM, Zhang J, Li T. Cuticular protein LmTwdl1 is involved in molt development of the migratory locust. INSECT SCIENCE 2016; 23:520-530. [PMID: 27430427 DOI: 10.1111/1744-7917.12342] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Revised: 03/12/2016] [Accepted: 03/22/2016] [Indexed: 06/06/2023]
Abstract
The cuticle, an essential structure for insects, is produced from cuticular proteins and chitin via a series of biochemical reactions. Tweedle genes are important members of the cuticular protein family and have four conserved motifs binding to chitin. Tweedle family genes have been found to play a profound effect on cuticle development. Here, we report that the cuticular protein gene LmTwdl1 of Locusta migratoria belongs to the Tweedle family. In situ hybridization showed that LmTwdl1 is localized to epidermal cells of the cuticle. The expression patterns of LmTwdl1 showed low expression in the cuticle during the early and middle stages of the fifth-instar nymphs; in contrast, its expression rapidly increased in the late stages of fifth-instar nymphs. We performed RNA interference to examine the function of LmTwdl1 in locusts. Silencing of LmTwdl1 resulted in high mortality during the molting process before the next stage. Also, the epicuticle of nymphs failed to molt, tended to be thinner and the arrangement of chitin in the procuticle appeared to be disordered compare to the control group. These results demonstrate that LmTwdl1 plays a critical role in molting, which contributes to a better understanding of the distinct functions of the Tweedle family in locusts.
Collapse
Affiliation(s)
- Tian-Qi Song
- Research Institute of Applied Biology, Shanxi University, Taiyuan and State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
| | - Mei-Ling Yang
- Research Institute of Applied Biology, Shanxi University, Taiyuan and State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
| | - Yan-Li Wang
- Research Institute of Applied Biology, Shanxi University, Taiyuan and State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
| | - Qing Liu
- Research Institute of Applied Biology, Shanxi University, Taiyuan and State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
| | - Hui-Min Wang
- Beijing Institutes of Life Science, Chinese Academy of Sciences, Beijing, China
| | - Jie Zhang
- Beijing Institutes of Life Science, Chinese Academy of Sciences, Beijing, China
| | - Tao Li
- Research Institute of Applied Biology, Shanxi University, Taiyuan and State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
64
|
Comparative analysis of the integument transcriptomes of the black dilute mutant and the wild-type silkworm Bombyx mori. Sci Rep 2016; 6:26114. [PMID: 27193628 PMCID: PMC4872147 DOI: 10.1038/srep26114] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2016] [Accepted: 04/27/2016] [Indexed: 11/21/2022] Open
Abstract
The insect cuticle is a critical protective shell that is composed predominantly of chitin and various cuticular proteins and pigments. Indeed, insects often change their surface pigment patterns in response to selective pressures, such as threats from predators, sexual selection and environmental changes. However, the molecular mechanisms underlying the construction of the epidermis and its pigmentation patterns are not fully understood. Among Lepidoptera, the silkworm is a favorable model for color pattern research. The black dilute (bd) mutant of silkworm is the result of a spontaneous mutation; the larval body color is notably melanized. We performed integument transcriptome sequencing of the wild-type strain Dazao and the mutant strains +/bd and bd/bd. In these experiments, during an early stage of the fourth molt, a stage at which approximately 51% of genes were expressed genome wide (RPKM ≥1) in each strain. A total of 254 novel transcripts were characterized using Cuffcompare and BLAST analyses. Comparison of the transcriptome data revealed 28 differentially expressed genes (DEGs) that may contribute to bd larval melanism, including 15 cuticular protein genes that were remarkably highly expressed in the bd/bd mutant. We suggest that these significantly up-regulated cuticular proteins may promote melanism in silkworm larvae.
Collapse
|
65
|
Shahin R, Iwanaga M, Kawasaki H. Cuticular protein and transcription factor genes expressed during prepupal-pupal transition and by ecdysone pulse treatment in wing discs of Bombyx mori. INSECT MOLECULAR BIOLOGY 2016; 25:138-152. [PMID: 26748620 DOI: 10.1111/imb.12207] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
We aimed to understand the underlying mechanism that regulates successively expressed cuticular protein (CP) genes around pupation in Bombyx mori. Quantitative PCR was conducted to clarify the expression profile of CP genes and ecdysone-responsive transcription factor (ERTF) genes around pupation. Ecdysone pulse treatment was also conducted to compare the developmental profiles and the ecdysone induction of the CP and ERTF genes. Fifty-two CP genes (RR-1 13, RR-2 18, CPG 8, CPT 3, CPFL 2, CPH 8) in wing discs of B. mori were examined. Different expression profiles were found, which suggests the existence of a mechanism that regulates CP genes. We divided the genes into five groups according to their peak stages of expression. RR-2 genes were expressed until the day of pupation and RR-1 genes were expressed before and after pupation and for longer than RR-2 genes; this suggests different construction of exo- and endocuticular layers. CPG, CPT, CPFL and CPH genes were expressed before and after pupation, which implies their involvement in both cuticular layers. Expression profiles of ERTFs corresponded with previous reports. Ecdysone pulse treatment showed that the induction of CP and ERTF genes in vitro reflected developmental expression, from which we speculated that ERTFs regulate CP gene expression around pupation.
Collapse
Affiliation(s)
- R Shahin
- Faculty of Agriculture, Utsunomiya University, Utsunomiya, Tochigi, Japan
- United Graduate School of Agricultural Science, Tokyo University of Agriculture and Technology, Fuchu, Tokyo, Japan
| | - M Iwanaga
- Faculty of Agriculture, Utsunomiya University, Utsunomiya, Tochigi, Japan
| | - H Kawasaki
- Faculty of Agriculture, Utsunomiya University, Utsunomiya, Tochigi, Japan
| |
Collapse
|
66
|
Chang H, Cheng T, Wu Y, Hu W, Long R, Liu C, Zhao P, Xia Q. Transcriptomic Analysis of the Anterior Silk Gland in the Domestic Silkworm (Bombyx mori) - Insight into the Mechanism of Silk Formation and Spinning. PLoS One 2015; 10:e0139424. [PMID: 26418001 PMCID: PMC4587926 DOI: 10.1371/journal.pone.0139424] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2015] [Accepted: 09/14/2015] [Indexed: 01/08/2023] Open
Abstract
Silk proteins are synthesized in the middle and posterior silk glands of silkworms, then transit into the anterior of the silk gland, where the silk fibers are produced, stored and processed. The mechanism of formation and spinning of the silk fibers has not been fully elucidated, and transcriptome analyses specific to the anterior silk gland have not been reported. In the present study, we explored gene expression profiles in five regions of silk gland samples using the RNA-Seq method. As a result, there were 959,979,570 raw reads obtained, of which 583,068,172 reads were mapped to the silkworm genome. A total of 7419 genes were found to be expressed in terms of reads per kilobase of exon model per million mapped reads ≥ 5 in at least one sample. The gene numbers and expression levels of the expressed genes differed between these regions. The differentially expressed genes were analyzed, and 282 genes were detected as up-regulated in the anterior silk gland, compared with the other parts. Functions of these genes were addressed using the gene ontology and Kyoto Encyclopedia of Genes and Genomes databases, and seven key pathways were enriched. It suggested that the ion transportation, energy metabolism, protease inhibitors and cuticle proteins played essential roles in the process of silk formation and spinning in the anterior silk gland. In addition, 210 genes were found differently expressed between males and females, which should help to elucidate the mechanism of the quality difference in silk fibers from male and female silkworms.
Collapse
Affiliation(s)
- Huaipu Chang
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Beibei, Chongqing, China
- College of Biotechnology, Southwest University, Beibei, Chongqing, China
| | - Tingcai Cheng
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Beibei, Chongqing, China
| | - Yuqian Wu
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Beibei, Chongqing, China
| | - Wenbo Hu
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Beibei, Chongqing, China
| | - Renwen Long
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Beibei, Chongqing, China
| | - Chun Liu
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Beibei, Chongqing, China
| | - Ping Zhao
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Beibei, Chongqing, China
| | - Qingyou Xia
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Beibei, Chongqing, China
- * E-mail:
| |
Collapse
|
67
|
Dittmer NT, Tetreau G, Cao X, Jiang H, Wang P, Kanost MR. Annotation and expression analysis of cuticular proteins from the tobacco hornworm, Manduca sexta. INSECT BIOCHEMISTRY AND MOLECULAR BIOLOGY 2015; 62:100-13. [PMID: 25576653 PMCID: PMC4476932 DOI: 10.1016/j.ibmb.2014.12.010] [Citation(s) in RCA: 55] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/25/2014] [Revised: 12/19/2014] [Accepted: 12/29/2014] [Indexed: 05/06/2023]
Abstract
The insect cuticle is a unique material that covers the exterior of the animal as well as lining the foregut, hindgut, and tracheae. It offers protection from predators and desiccation, defines body shape, and serves as an attachment site for internal organs and muscle. It has demonstrated remarkable variations in hardness, flexibility and elasticity, all the while being light weight, which allows for ease of movement and flight. It is composed primarily of chitin, proteins, catecholamines, and lipids. Proteomic analyses of cuticle from different life stages and species of insects has allowed for a more detailed examination of the protein content and how it relates to cuticle mechanical properties. It is now recognized that several groups of cuticular proteins exist and that they can be classified according to conserved amino acid sequence motifs. We have annotated the genome of the tobacco hornworm, Manduca sexta, for genes that encode putative cuticular proteins that belong to seven different groups: proteins with a Rebers and Riddiford motif (CPR), proteins analogous to peritrophins (CPAP), proteins with a tweedle motif (CPT), proteins with a 44 amino acid motif (CPF), proteins that are CPF-like (CPFL), proteins with an 18 amino acid motif (18 aa), and proteins with two to three copies of a C-X5-C motif (CPCFC). In total we annotated 248 genes, of which 207 belong to the CPR family, the most for any insect genome annotated to date. Additionally, we discovered new members of the CPAP family and determined that orthologous genes are present in other insects. We established orthology between the M. sexta and Bombyx mori genes and identified duplication events that occurred after separation of the two species. Finally, we utilized 52 RNAseq libraries to ascertain gene expression profiles that revealed commonalities and differences between different tissues and developmental stages.
Collapse
Affiliation(s)
- Neal T Dittmer
- Department of Biochemistry and Molecular Biophysics, 141 Chalmers Hall, Kansas State University, Manhattan, KS 66506, USA.
| | - Guillaume Tetreau
- Department of Entomology, Cornell University, New York State Agricultural Experiment Station, Geneva, NY 14456, USA
| | - Xiaolong Cao
- Department of Biochemistry and Molecular Biology, Oklahoma State University, Stillwater, OK 74078, USA
| | - Haobo Jiang
- Department of Entomology and Plant Pathology, Oklahoma State University, Stillwater, OK 74078, USA
| | - Ping Wang
- Department of Entomology, Cornell University, New York State Agricultural Experiment Station, Geneva, NY 14456, USA
| | - Michael R Kanost
- Department of Biochemistry and Molecular Biophysics, 141 Chalmers Hall, Kansas State University, Manhattan, KS 66506, USA
| |
Collapse
|
68
|
Liang J, Wang T, Xiang Z, He N. Tweedle cuticular protein BmCPT1 is involved in innate immunity by participating in recognition of Escherichia coli. INSECT BIOCHEMISTRY AND MOLECULAR BIOLOGY 2015; 58:76-88. [PMID: 25449127 DOI: 10.1016/j.ibmb.2014.11.004] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/13/2014] [Revised: 11/11/2014] [Accepted: 11/11/2014] [Indexed: 06/04/2023]
Abstract
Bombyx mori, a lepidopteran insect, is one of the earliest models for pattern recognition of Gram-negative bacteria, which may induce the IMD pathway for production of antibacterial peptides. So far, several recognition proteins have been reported in B. mori. However, the connection between pattern recognition of Gram negative bacteria and activation of BmRelish1, a transcription factor controlled by the IMD pathway remains largely unknown. In the present study, we identify BmCPT1, a cuticle protein bearing a Tweedle domain. Its gene expression is co-regulated by NF-kappaB and juvenile hormone signals. BmCPT1 is induced by Escherichia coli in fat bodies and hemocytes, but is constitutively expressed in the epidermis. In vitro binding assays indicate that BmCPT1 protein recognizes and binds to E. coli peptidoglycan. Post-transcriptionally modified BmCPT1 in the hemolymph binds to E. coli cells through interactions with peptidoglycan recognition protein-5 (BmPGRP5) and lipopolysaccharide binding protein (BmLBP). Transgenic overexpression of BmCPT1 causes the upregulated expression of BmRelish1 and clear induction of two gloverin genes. Therefore, BmCPT1 may work along with BmPGRP-S5 and BmLBP to recognize E. coli in the hemolymph and indirectly activate BmRelish1 to induce antimicrobial peptide synthesis.
Collapse
Affiliation(s)
- Jiubo Liang
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Beibei, Chongqing 400715, China.
| | - Ting Wang
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Beibei, Chongqing 400715, China.
| | - Zhonghuai Xiang
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Beibei, Chongqing 400715, China.
| | - Ningjia He
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Beibei, Chongqing 400715, China.
| |
Collapse
|
69
|
Krishnan R, Kumar V, Ananth V, Singh S, Nair AS, Dhar PK. Computational identification of novel microRNAs and their targets in the malarial vector, Anopheles stephensi. SYSTEMS AND SYNTHETIC BIOLOGY 2015; 9:11-7. [PMID: 25972985 DOI: 10.1007/s11693-014-9159-1] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/30/2014] [Revised: 12/10/2014] [Accepted: 12/15/2014] [Indexed: 11/28/2022]
Abstract
MicroRNAs are a ~22 nucleotide small non-coding RNAs found in animals, plants and viruses. They regulate key cellular processes by enhancing, degrading or silencing protein coding targets. Currently most of the data on miRNA is available from Drosophila . Given their important post-transcriptional role in several organisms, there is a need to understand the miRNA mediated processes in normal and abnormal conditions. Here we report four novel microRNAs ast - mir - 2502, ast - mir - 2559, ast - mir - 3868 and ast - mir - 9891 in Anopheles stephensi identified from a set of 3,052 transcriptome sequences, showing average minimum free energy of -31.8 kcal/mol of duplex formation with mRNA indicating their functional relevance. Phylogenetic study shows conservation of sequence signatures within the Class Insecta. Furthermore, 26 potential targets of these four miRNAs have been predicted that play an important role in the mosquito life-cycle. This work leads to novel leads and experimental possibilities for improved understanding of gene regulatory processes in mosquito.
Collapse
Affiliation(s)
- Remya Krishnan
- Department of Computational Biology and Bioinformatics, University of Kerala, Trivandrum, Kerala India
| | - Vinod Kumar
- Department of Computational Biology and Bioinformatics, University of Kerala, Trivandrum, Kerala India
| | - Vivek Ananth
- Synthetic Biology Group, Department of Life Sciences, School of Natural Sciences, Shiv Nadar University, Greater Noida, U.P. India
| | - Shailja Singh
- Synthetic Biology Group, Department of Life Sciences, School of Natural Sciences, Shiv Nadar University, Greater Noida, U.P. India ; Department of Parasitology and Mycology, Institut Pasteur, Paris, France
| | - Achuthsankar S Nair
- Department of Computational Biology and Bioinformatics, University of Kerala, Trivandrum, Kerala India
| | - Pawan K Dhar
- Department of Computational Biology and Bioinformatics, University of Kerala, Trivandrum, Kerala India ; Synthetic Biology Group, Department of Life Sciences, School of Natural Sciences, Shiv Nadar University, Greater Noida, U.P. India
| |
Collapse
|
70
|
Ioannidou ZS, Theodoropoulou MC, Papandreou NC, Willis JH, Hamodrakas SJ. CutProtFam-Pred: detection and classification of putative structural cuticular proteins from sequence alone, based on profile hidden Markov models. INSECT BIOCHEMISTRY AND MOLECULAR BIOLOGY 2014; 52:51-9. [PMID: 24978609 PMCID: PMC4143468 DOI: 10.1016/j.ibmb.2014.06.004] [Citation(s) in RCA: 92] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/21/2014] [Revised: 06/10/2014] [Accepted: 06/12/2014] [Indexed: 05/03/2023]
Abstract
The arthropod cuticle is a composite, bipartite system, made of chitin filaments embedded in a proteinaceous matrix. The physical properties of cuticle are determined by the structure and the interactions of its two major components, cuticular proteins (CPs) and chitin. The proteinaceous matrix consists mainly of structural cuticular proteins. The majority of the structural proteins that have been described to date belong to the CPR family, and they are identified by the conserved R&R region (Rebers and Riddiford Consensus). Two major subfamilies of the CPR family RR-1 and RR-2, have also been identified from conservation at sequence level and some correlation with the cuticle type. Recently, several novel families, also containing characteristic conserved regions, have been described. The package HMMER v3.0 (http://hmmer.janelia.org/) was used to build characteristic profile Hidden Markov Models based on the characteristic regions for 8 of these families, (CPF, CPAP3, CPAP1, CPCFC, CPLCA, CPLCG, CPLCW, Tweedle). In brief, these families can be described as having: CPF (a conserved region with 44 amino acids); CPAP1 and CPAP-3 (analogous to peritrophins, with 1 and 3 chitin-binding domains, respectively); CPCFC (2 or 3 C-x(5)-C repeats); and four of five low complexity (LC) families, each with characteristic domains. Using these models, as well as the models previously created for the two major subfamilies of the CPR family, RR-1 and RR-2 (Karouzou et al., 2007), we developed CutProtFam-Pred, an on-line tool (http://bioinformatics.biol.uoa.gr/CutProtFam-Pred) that allows one to query sequences from proteomes or translated transcriptomes, for the accurate detection and classification of putative structural cuticular proteins. The tool has been applied successfully to diverse arthropod proteomes including a crustacean (Daphnia pulex) and a chelicerate (Tetranychus urticae), but at this taxonomic distance only CPRs and CPAPs were recovered.
Collapse
Affiliation(s)
- Zoi S Ioannidou
- Department of Cell Biology and Biophysics, Faculty of Biology, University of Athens, Panepistimiopolis, Athens 157 01, Greece
| | - Margarita C Theodoropoulou
- Department of Cell Biology and Biophysics, Faculty of Biology, University of Athens, Panepistimiopolis, Athens 157 01, Greece
| | - Nikos C Papandreou
- Department of Cell Biology and Biophysics, Faculty of Biology, University of Athens, Panepistimiopolis, Athens 157 01, Greece
| | - Judith H Willis
- Department of Cellular Biology, University of Georgia, Athens, GA 30602, USA
| | - Stavros J Hamodrakas
- Department of Cell Biology and Biophysics, Faculty of Biology, University of Athens, Panepistimiopolis, Athens 157 01, Greece.
| |
Collapse
|
71
|
Fukuoh A, Cannino G, Gerards M, Buckley S, Kazancioglu S, Scialo F, Lihavainen E, Ribeiro A, Dufour E, Jacobs HT. Screen for mitochondrial DNA copy number maintenance genes reveals essential role for ATP synthase. Mol Syst Biol 2014; 10:734. [PMID: 24952591 PMCID: PMC4265055 DOI: 10.15252/msb.20145117] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
The machinery of mitochondrial DNA (mtDNA) maintenance is only partially characterized and is of wide interest due to its involvement in disease. To identify novel components of this machinery, plus other cellular pathways required for mtDNA viability, we implemented a genome-wide RNAi screen in Drosophila S2 cells, assaying for loss of fluorescence of mtDNA nucleoids stained with the DNA-intercalating agent PicoGreen. In addition to previously characterized components of the mtDNA replication and transcription machineries, positives included many proteins of the cytosolic proteasome and ribosome (but not the mitoribosome), three proteins involved in vesicle transport, some other factors involved in mitochondrial biogenesis or nuclear gene expression, > 30 mainly uncharacterized proteins and most subunits of ATP synthase (but no other OXPHOS complex). ATP synthase knockdown precipitated a burst of mitochondrial ROS production, followed by copy number depletion involving increased mitochondrial turnover, not dependent on the canonical autophagy machinery. Our findings will inform future studies of the apparatus and regulation of mtDNA maintenance, and the role of mitochondrial bioenergetics and signaling in modulating mtDNA copy number.
Collapse
Affiliation(s)
- Atsushi Fukuoh
- BioMediTech and Tampere University Hospital, University of Tampere, Tampere, Finland Department of Clinical Chemistry and Laboratory Medicine, Kyushu University Graduate school of Medical Sciences, Fukuoka, Japan Department of Medical Laboratory Science, Junshin Gakuen University, Fukuoka, Japan
| | - Giuseppe Cannino
- BioMediTech and Tampere University Hospital, University of Tampere, Tampere, Finland
| | - Mike Gerards
- BioMediTech and Tampere University Hospital, University of Tampere, Tampere, Finland
| | - Suzanne Buckley
- BioMediTech and Tampere University Hospital, University of Tampere, Tampere, Finland
| | - Selena Kazancioglu
- BioMediTech and Tampere University Hospital, University of Tampere, Tampere, Finland
| | - Filippo Scialo
- BioMediTech and Tampere University Hospital, University of Tampere, Tampere, Finland
| | - Eero Lihavainen
- Department of Signal Processing, Tampere University of Technology, Tampere, Finland
| | - Andre Ribeiro
- Department of Signal Processing, Tampere University of Technology, Tampere, Finland
| | - Eric Dufour
- BioMediTech and Tampere University Hospital, University of Tampere, Tampere, Finland
| | - Howard T Jacobs
- BioMediTech and Tampere University Hospital, University of Tampere, Tampere, Finland Research Program of Molecular Neurology, University of Helsinki, Helsinki, Finland
| |
Collapse
|
72
|
Liu A, Zhang M, Kong L, Wu D, Weng X, Wang D, Zhao Y. Cloning and expression profiling of a cuticular protein gene in Daphnia carinata. Dev Genes Evol 2014; 224:129-35. [PMID: 24619580 DOI: 10.1007/s00427-014-0469-9] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2013] [Accepted: 02/07/2014] [Indexed: 11/30/2022]
Abstract
The cladoceran Daphnia carinata undergoes an unusual transition from asexual to sexual reproduction in response to environmental stimuli. Previously, a D. carinata cuticular protein (CP) was identified in an EST library. In this study, the full-length CP cDNA was cloned and sequenced (GenBank accession number: KF551931), and the expression levels in different reproductive states were assessed. Parthenogenetic and sexual female D. carinata were isolated, and CP expression was investigated using semiquantitative reverse transcription polymerase chain reaction (RT-PCR). CP was expressed during both reproductive stages, but expression was higher in sexual females. Cellular localization was also investigated using digoxin-labeled RNA probes in RNA whole-mount in situ hybridization assays, and CP was mainly expressed in the first pair of thoracic appendages, the surface of the head, shell spines, and other parts of the epidermis in parthenogenetic organisms. In contrast, CP expression was restricted to the thoracic appendages in sexual females.
Collapse
Affiliation(s)
- Ajing Liu
- School of Life Science, East China Normal University, Dong-chuang Road, Shanghai, 200241, China
| | | | | | | | | | | | | |
Collapse
|
73
|
Mutation of a cuticular protein, BmorCPR2, alters larval body shape and adaptability in silkworm, Bombyx mori. Genetics 2014; 196:1103-15. [PMID: 24514903 DOI: 10.1534/genetics.113.158766] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
Cuticular proteins (CPs) are crucial components of the insect cuticle. Although numerous genes encoding cuticular proteins have been identified in known insect genomes to date, their functions in maintaining insect body shape and adaptability remain largely unknown. In the current study, positional cloning led to the identification of a gene encoding an RR1-type cuticular protein, BmorCPR2, highly expressed in larval chitin-rich tissues and at the mulberry leaf-eating stages, which is responsible for the silkworm stony mutant. In the Dazao-stony strain, the BmorCPR2 allele is a deletion mutation with significantly lower expression, compared to the wild-type Dazao strain. Dysfunctional BmorCPR2 in the stony mutant lost chitin binding ability, leading to reduced chitin content in larval cuticle, limitation of cuticle extension, abatement of cuticle tensile properties, and aberrant ratio between internodes and intersegmental folds. These variations induce a significant decrease in cuticle capacity to hold the growing internal organs in the larval development process, resulting in whole-body stiffness, tightness, and hardness, bulging intersegmental folds, and serious defects in larval adaptability. To our knowledge, this is the first study to report the corresponding phenotype of stony in insects caused by mutation of RR1-type cuticular protein. Our findings collectively shed light on the specific role of cuticular proteins in maintaining normal larval body shape and will aid in the development of pest control strategies for the management of Lepidoptera.
Collapse
|
74
|
Odman-Naresh J, Duevel M, Muthukrishnan S, Merzendorfer H. A lepidopteran-specific gene family encoding valine-rich midgut proteins. PLoS One 2013; 8:e82015. [PMID: 24312395 PMCID: PMC3843731 DOI: 10.1371/journal.pone.0082015] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2013] [Accepted: 10/28/2013] [Indexed: 12/27/2022] Open
Abstract
Many lepidopteran larvae are serious agricultural pests due to their feeding activity. Digestion of the plant diet occurs mainly in the midgut and is facilitated by the peritrophic matrix (PM), an extracellular sac-like structure, which lines the midgut epithelium and creates different digestive compartments. The PM is attracting increasing attention to control lepidopteran pests by interfering with this vital function. To identify novel PM components and thus potential targets for insecticides, we performed an immunoscreening with anti-PM antibodies using an expression library representing the larval midgut transcriptome of the tobacco hornworm, Manduca sexta. We identified three cDNAs encoding valine-rich midgut proteins of M. sexta (MsVmps), which appear to be loosely associated with the PM. They are members of a lepidopteran-specific family of nine VMP genes, which are exclusively expressed in larval stages in M. sexta. Most of the MsVMP transcripts are detected in the posterior midgut, with the highest levels observed for MsVMP1. To obtain further insight into Vmp function, we expressed MsVMP1 in insect cells and purified the recombinant protein. Lectin staining and glycosidase treatment indicated that MsVmp1 is highly O-glycosylated. In line with results from qPCR, immunoblots revealed that MsVmp1 amounts are highest in feeding larvae, while MsVmp1 is undetectable in starving and molting larvae. Finally using immunocytochemistry, we demonstrated that MsVmp1 localizes to the cytosol of columnar cells, which secrete MsVmp1 into the ectoperitrophic space in feeding larvae. In starving and molting larvae, MsVmp1 is found in the gut lumen, suggesting that the PM has increased its permeability. The present study demonstrates that lepidopteran species including many agricultural pests have evolved a set of unique proteins that are not found in any other taxon and thus may reflect an important adaptation in the highly specialized lepidopteran digestive tract facing particular immune challenges.
Collapse
Affiliation(s)
| | - Margret Duevel
- Department of Biology, Chemistry, University of Osnabrück, Osnabrück, Germany
| | - Subbaratnam Muthukrishnan
- Department of Biochemistry and Molecular Biophysics, Kansas State University, Manhattan, Kansas, United States of America
| | - Hans Merzendorfer
- Department of Biology, Chemistry, University of Osnabrück, Osnabrück, Germany
- * E-mail:
| |
Collapse
|
75
|
Golovnin AK, Dvoretsky EV, Kostyuchenko MV, Shamsutdinov MF, Georgiev PG, Melnikova LS. MOD(MDG4)-64.2 protein, isoform of MOD(MDG4) loci, directly interacts with the Tweedle protein family of Drosophila melanogaster. DOKL BIOCHEM BIOPHYS 2013; 452:225-8. [PMID: 24150578 DOI: 10.1134/s1607672913050013] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2013] [Indexed: 11/22/2022]
Affiliation(s)
- A K Golovnin
- Institute of Gene Biology, Russian Academy of Sciences, ul. Vavilova 34/5, Moscow, 119334, Russia
| | | | | | | | | | | |
Collapse
|
76
|
Soares MPM, Barchuk AR, Simões ACQ, Dos Santos Cristino A, de Paula Freitas FC, Canhos LL, Bitondi MMG. Genes involved in thoracic exoskeleton formation during the pupal-to-adult molt in a social insect model, Apis mellifera. BMC Genomics 2013; 14:576. [PMID: 23981317 PMCID: PMC3766229 DOI: 10.1186/1471-2164-14-576] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2013] [Accepted: 08/23/2013] [Indexed: 12/04/2022] Open
Abstract
Background The insect exoskeleton provides shape, waterproofing, and locomotion via attached somatic muscles. The exoskeleton is renewed during molting, a process regulated by ecdysteroid hormones. The holometabolous pupa transforms into an adult during the imaginal molt, when the epidermis synthe3sizes the definitive exoskeleton that then differentiates progressively. An important issue in insect development concerns how the exoskeletal regions are constructed to provide their morphological, physiological and mechanical functions. We used whole-genome oligonucleotide microarrays to screen for genes involved in exoskeletal formation in the honeybee thoracic dorsum. Our analysis included three sampling times during the pupal-to-adult molt, i.e., before, during and after the ecdysteroid-induced apolysis that triggers synthesis of the adult exoskeleton. Results Gene ontology annotation based on orthologous relationships with Drosophila melanogaster genes placed the honeybee differentially expressed genes (DEGs) into distinct categories of Biological Process and Molecular Function, depending on developmental time, revealing the functional elements required for adult exoskeleton formation. Of the 1,253 unique DEGs, 547 were upregulated in the thoracic dorsum after apolysis, suggesting induction by the ecdysteroid pulse. The upregulated gene set included 20 of the 47 cuticular protein (CP) genes that were previously identified in the honeybee genome, and three novel putative CP genes that do not belong to a known CP family. In situ hybridization showed that two of the novel genes were abundantly expressed in the epidermis during adult exoskeleton formation, strongly implicating them as genuine CP genes. Conserved sequence motifs identified the CP genes as members of the CPR, Tweedle, Apidermin, CPF, CPLCP1 and Analogous-to-Peritrophins families. Furthermore, 28 of the 36 muscle-related DEGs were upregulated during the de novo formation of striated fibers attached to the exoskeleton. A search for cis-regulatory motifs in the 5′-untranslated region of the DEGs revealed potential binding sites for known transcription factors. Construction of a regulatory network showed that various upregulated CP- and muscle-related genes (15 and 21 genes, respectively) share common elements, suggesting co-regulation during thoracic exoskeleton formation. Conclusions These findings help reveal molecular aspects of rigid thoracic exoskeleton formation during the ecdysteroid-coordinated pupal-to-adult molt in the honeybee.
Collapse
Affiliation(s)
- Michelle Prioli Miranda Soares
- Departamento de Biologia, Faculdade de Filosofia, Ciências e Letras de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, SP, Brasil.
| | | | | | | | | | | | | |
Collapse
|
77
|
Simplified Insertion of Transgenes Onto Balancer Chromosomes via Recombinase-Mediated Cassette Exchange. G3-GENES GENOMES GENETICS 2012; 2:551-3. [PMID: 22670225 PMCID: PMC3362938 DOI: 10.1534/g3.112.002097] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/01/2012] [Accepted: 03/02/2012] [Indexed: 11/26/2022]
Abstract
Balancer chromosomes are critical tools for Drosophila genetics. Many useful transgenes are inserted onto balancers using a random and inefficient process. Here we describe balancer chromosomes that can be directly targeted with transgenes of interest via recombinase-mediated cassette exchange (RMCE).
Collapse
|
78
|
The functions of grainy head-like proteins in animals and fungi and the evolution of apical extracellular barriers. PLoS One 2012; 7:e36254. [PMID: 22590528 PMCID: PMC3348937 DOI: 10.1371/journal.pone.0036254] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2011] [Accepted: 04/03/2012] [Indexed: 11/19/2022] Open
Abstract
The Grainy head (GRH) family of transcription factors are crucial for the development and repair of epidermal barriers in all animals in which they have been studied. This is a high-level functional conservation, as the known structural and enzymatic genes regulated by GRH proteins differ between species depending on the type of epidermal barrier being formed. Interestingly, members of the CP2 superfamily of transcription factors, which encompasses the GRH and LSF families in animals, are also found in fungi--organisms that lack epidermal tissues. To shed light on CP2 protein function in fungi, we characterized a Neurospora crassa mutant lacking the CP2 member we refer to as grainy head-like (grhl). We show that Neurospora GRHL has a DNA-binding specificity similar to that of animal GRH proteins and dissimilar to that of animal LSF proteins. Neurospora grhl mutants are defective in conidial-spore dispersal due to an inability to remodel the cell wall, and we show that grhl mutants and the long-known conidial separation-2 (csp-2) mutants are allelic. We then characterized the transcriptomes of both Neurospora grhl mutants and Drosophila grh mutant embryos to look for similarities in the affected genes. Neurospora grhl appears to play a role in the development and remodeling of the cell wall, as well as in the activation of genes involved in defense and virulence. Drosophila GRH is required to activate the expression of many genes involved in cuticular/epidermal-barrier formation. We also present evidence that GRH plays a role in adult antimicrobial defense. These results, along with previous studies of animal GRH proteins, suggest the fascinating possibility that the apical extracellular barriers of some animals and fungi might share an evolutionary connection, and that the formation of physical barriers in the last common ancestor was under the control of a transcriptional code that included GRH-like proteins.
Collapse
|
79
|
Petkau G, Wingen C, Jussen LCA, Radtke T, Behr M. Obstructor-A is required for epithelial extracellular matrix dynamics, exoskeleton function, and tubulogenesis. J Biol Chem 2012; 287:21396-405. [PMID: 22544743 DOI: 10.1074/jbc.m112.359984] [Citation(s) in RCA: 76] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
The epidermis and internal tubular organs, such as gut and lungs, are exposed to a hostile environment. They form an extracellular matrix to provide epithelial integrity and to prevent contact with pathogens and toxins. In arthropods, the cuticle protects, shapes, and enables the functioning of organs. During development, cuticle matrix is shielded from premature degradation; however, underlying molecular mechanisms are poorly understood. Previously, we identified the conserved obstructor multigene-family, which encodes chitin-binding proteins. Here we show that Obstructor-A is required for extracellular matrix dynamics in cuticle forming organs. Loss of obstructor-A causes severe defects during cuticle molting, wound protection, tube expansion and larval growth control. We found that Obstructor-A interacts and forms a core complex with the polysaccharide chitin, the cuticle modifier Knickkopf and the chitin deacetylase Serpentine. Knickkopf protects chitin from chitinase-dependent degradation and deacetylase enzymes ensure extracellular matrix maturation. We provide evidence that Obstructor-A is required to control the presence of Knickkopf and Serpentine in the extracellular matrix. We propose a model suggesting that Obstructor-A coordinates the core complex for extracellular matrix protection from premature degradation. This mechanism enables exoskeletal molting, tube expansion, and epithelial integrity. The evolutionary conservation suggests a common role of Obstructor-A and homologs in coordinating extracellular matrix protection in epithelial tissues of chitinous invertebrates.
Collapse
Affiliation(s)
- Georg Petkau
- Life & Medical Sciences Institute, LIMES, Laboratory for Molecular Developmental Biology, University of Bonn, Carl-Troll-Strasse 31, 53115 Bonn, Germany
| | | | | | | | | |
Collapse
|
80
|
Shaik KS, Meyer F, Vázquez AV, Flötenmeyer M, Cerdán ME, Moussian B. δ-Aminolevulinate synthase is required for apical transcellular barrier formation in the skin of the Drosophila larva. Eur J Cell Biol 2012; 91:204-15. [PMID: 22293958 DOI: 10.1016/j.ejcb.2011.11.005] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2011] [Revised: 11/23/2011] [Accepted: 11/23/2011] [Indexed: 01/13/2023] Open
Abstract
Animals construct a layered skin to prevent dehydration and pathogen entrance. The barrier function of the skin relies on the extensive cross-linking of specialised components. In insects, for instance, epidermal cells produce an apical extracellular cuticle that consists of a network of proteins, chitin and lipids. We have identified mutations in the Drosophila gene coding for the δ-aminolevulinate synthase (Alas) that cause massive water loss. The cuticle of alas mutant larvae detaches from the epidermis and its basal region is frayed suggesting that an Alas dependent pathway is needed to organise the contact between the cuticle and the epidermis and anchor the cuticle to the apical surface of epidermal cells. Concomitantly, reduction of Alas function results in weakening of the extracellular dityrosines network in the cuticle, whereas glutamyl-lysine isopeptide bonds are not affected. The lateral septate junctions of epidermal cells that serve as a paracellular plug are intact, as well. Taken together, we hypothesise that Alas activity, which initiates heme biosynthesis in the mitochondrion, is needed for the formation of a dityrosine-based barrier that confers resistance to the internal hydrostatic pressure protecting both the cuticle from transcellular infiltration of body fluid and the animal from dehydration. We conclude that at least two modules--an apical protein-chitin lattice and the lateral septate junctions, act in parallel to ensure Drosophila skin impermeability.
Collapse
Affiliation(s)
- Khaleelulla Saheb Shaik
- Interfaculty Institute for Cell Biology, Section Animal Genetics, University of Tübingen, Tübingen, Germany
| | | | | | | | | | | |
Collapse
|
81
|
Pina C, Pignoni F. Tubby-RFP balancers for developmental analysis: FM7c 2xTb-RFP, CyO 2xTb-RFP, and TM3 2xTb-RFP. Genesis 2012; 50:119-23. [PMID: 21913310 DOI: 10.1002/dvg.20801] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2011] [Revised: 08/30/2011] [Accepted: 09/03/2011] [Indexed: 11/08/2022]
Abstract
We report here the construction of Tubby-RFP balancers for the X, 2nd and 3rd chromosomes of Drosophila melanogaster. The insertion of a 2xTb-RFP transgene on the FM7c, CyO, and TM3 balancer chromosomes introduces two easily scorable, dominant, developmental markers. The strong Tb phenotype is visible to the naked eye at the larval L2, L3, and pupal stages. The RFP associated with the cuticle is easily detected at all stages from late embryo to adult with the use of a fluorescence stereomicroscope. The FM7c Bar 2xTb-RFP, CyO Cy 2xTb-RFP, and TM3 Sb 2xTb-RFP balancers will greatly facilitate the analysis of lethals and other developmental mutants in L2/L3 larvae and pupae, but also provide coverage of other stages beginning in late embryogenesis through to the adult.
Collapse
Affiliation(s)
- Cara Pina
- Department of Ophthalmology, Center for Vision Research, SUNY Eye Institute, SUNY Upstate Medical University, Syracuse, New York 13210, USA
| | | |
Collapse
|
82
|
Dittmer NT, Hiromasa Y, Tomich JM, Lu N, Beeman RW, Kramer KJ, Kanost MR. Proteomic and Transcriptomic Analyses of Rigid and Membranous Cuticles and Epidermis from the Elytra and Hindwings of the Red Flour Beetle, Tribolium castaneum. J Proteome Res 2011; 11:269-78. [DOI: 10.1021/pr2009803] [Citation(s) in RCA: 62] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Affiliation(s)
- Neal T. Dittmer
- Department of Biochemistry and ‡Division of Biology, Kansas State University, Manhattan, Kansas 66506, United States, and §Center for Grain and Animal Health Research, Agricultural Research Service, United States Department of Agriculture, Manhattan, Kansas 66502, United States
| | - Yasuaki Hiromasa
- Department of Biochemistry and ‡Division of Biology, Kansas State University, Manhattan, Kansas 66506, United States, and §Center for Grain and Animal Health Research, Agricultural Research Service, United States Department of Agriculture, Manhattan, Kansas 66502, United States
| | - John M. Tomich
- Department of Biochemistry and ‡Division of Biology, Kansas State University, Manhattan, Kansas 66506, United States, and §Center for Grain and Animal Health Research, Agricultural Research Service, United States Department of Agriculture, Manhattan, Kansas 66502, United States
| | - Nanyan Lu
- Department of Biochemistry and ‡Division of Biology, Kansas State University, Manhattan, Kansas 66506, United States, and §Center for Grain and Animal Health Research, Agricultural Research Service, United States Department of Agriculture, Manhattan, Kansas 66502, United States
| | - Richard W. Beeman
- Department of Biochemistry and ‡Division of Biology, Kansas State University, Manhattan, Kansas 66506, United States, and §Center for Grain and Animal Health Research, Agricultural Research Service, United States Department of Agriculture, Manhattan, Kansas 66502, United States
| | - Karl J. Kramer
- Department of Biochemistry and ‡Division of Biology, Kansas State University, Manhattan, Kansas 66506, United States, and §Center for Grain and Animal Health Research, Agricultural Research Service, United States Department of Agriculture, Manhattan, Kansas 66502, United States
| | - Michael R. Kanost
- Department of Biochemistry and ‡Division of Biology, Kansas State University, Manhattan, Kansas 66506, United States, and §Center for Grain and Animal Health Research, Agricultural Research Service, United States Department of Agriculture, Manhattan, Kansas 66502, United States
| |
Collapse
|
83
|
Fu Q, Li P, Xu Y, Zhang S, Jia L, Zha X, Xiang Z, He N. Proteomic analysis of larval integument, trachea and adult scale from the silkworm, Bombyx mori. Proteomics 2011; 11:3761-7. [PMID: 21761556 DOI: 10.1002/pmic.201000506] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2010] [Revised: 06/15/2011] [Accepted: 06/22/2011] [Indexed: 11/08/2022]
Abstract
Multidimensional LC-tandem MS was used to investigate the protein compositions of three tissues of silkworm, Bombyx mori. A total of 162, 259, and 175 peptides from silkworm larval integument and trachea, and adult scale obtained by database search were matched to 48, 51, and 40 proteins, respectively. Forty-one cuticular proteins were identified from three tissues and covered all five cuticular protein families of silkworm. In the adult scale, all seven cuticular proteins were identified for the first time in the final pellet after SDS extraction. The majority of cuticular proteins were found in each tissue differentially, suggesting that tissue-specific cuticular proteins were involved in the building of the specialized tissues. Seventy-three non-cuticular proteins were also identified in this analysis mainly including muscular proteins, proteinases, inhibitors, transport proteins, and redox-related proteins.
Collapse
Affiliation(s)
- Qiang Fu
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Beibei, Chongqing, P. R. China
| | | | | | | | | | | | | | | |
Collapse
|
84
|
Lattao R, Bonaccorsi S, Guan X, Wasserman SA, Gatti M. Tubby-tagged balancers for the Drosophila X and second chromosomes. Fly (Austin) 2011; 5:369-70. [PMID: 21785267 DOI: 10.4161/fly.5.4.17283] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
We generated FM7a and CyO balancer chromosomes bearing a Tubby1 (Tb1) dominant transgene. Flies heterozygous for these FM7a and CyO derivatives exhibit a phenotype undistinguishable from that elicited by the Tb1 mutation associated with the TM6B balancer. We tested two of these Tb-bearing balancers (FM7-TbA and CyO-TbA) for more than 30 generations and found that the Tb1 transgene they carry is stable. Thus, these new Tb-tagged balancers are particularly useful for balancing lethal mutations and distinguish homozygous mutant larvae from their heterozygous siblings.
Collapse
Affiliation(s)
- Ramona Lattao
- Dipartimento di Biologia e Biotecnologie “Charles Darwin” and Istituto di Biologia e Patologia Molecolari del CNR, Sapienza, Università di Roma, Rome, Italy
| | | | | | | | | |
Collapse
|
85
|
Soares MPM, Silva-Torres FA, Elias-Neto M, Nunes FMF, Simões ZLP, Bitondi MMG. Ecdysteroid-dependent expression of the tweedle and peroxidase genes during adult cuticle formation in the honey bee, Apis mellifera. PLoS One 2011; 6:e20513. [PMID: 21655217 PMCID: PMC3105072 DOI: 10.1371/journal.pone.0020513] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2011] [Accepted: 05/02/2011] [Indexed: 12/16/2022] Open
Abstract
Cuticle renewal is a complex biological process that depends on the cross talk between hormone levels and gene expression. This study characterized the expression of two genes encoding cuticle proteins sharing the four conserved amino acid blocks of the Tweedle family, AmelTwdl1 and AmelTwdl2, and a gene encoding a cuticle peroxidase containing the Animal haem peroxidase domain, Ampxd, in the honey bee. Gene sequencing and annotation validated the formerly predicted tweedle genes, and revealed a novel gene, Ampxd, in the honey bee genome. Expression of these genes was studied in the context of the ecdysteroid-coordinated pupal-to-adult molt, and in different tissues. Higher transcript levels were detected in the integument after the ecdysteroid peak that induces apolysis, coinciding with the synthesis and deposition of the adult exoskeleton and its early differentiation. The effect of this hormone was confirmed in vivo by tying a ligature between the thorax and abdomen of early pupae to prevent the abdominal integument from coming in contact with ecdysteroids released from the prothoracic gland. This procedure impaired the natural increase in transcript levels in the abdominal integument. Both tweedle genes were expressed at higher levels in the empty gut than in the thoracic integument and trachea of pharate adults. In contrast, Ampxd transcripts were found in higher levels in the thoracic integument and trachea than in the gut. Together, the data strongly suggest that these three genes play roles in ecdysteroid-dependent exoskeleton construction and differentiation and also point to a possible role for the two tweedle genes in the formation of the cuticle (peritrophic membrane) that internally lines the gut.
Collapse
Affiliation(s)
- Michelle P. M. Soares
- Departamento de Biologia, Faculdade de Filosofia, Ciências e Letras de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, São Paulo, Brazil
| | - Fernanda A. Silva-Torres
- Departamento de Biologia, Faculdade de Filosofia, Ciências e Letras de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, São Paulo, Brazil
| | - Moysés Elias-Neto
- Departamento de Biologia, Faculdade de Filosofia, Ciências e Letras de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, São Paulo, Brazil
| | - Francis M. F. Nunes
- Departamento de Biologia, Faculdade de Filosofia, Ciências e Letras de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, São Paulo, Brazil
| | - Zilá L. P. Simões
- Departamento de Biologia, Faculdade de Filosofia, Ciências e Letras de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, São Paulo, Brazil
| | - Márcia M. G. Bitondi
- Departamento de Biologia, Faculdade de Filosofia, Ciências e Letras de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, São Paulo, Brazil
| |
Collapse
|
86
|
Cornman RS. The distribution of GYR- and YLP-like motifs in Drosophila suggests a general role in cuticle assembly and other protein-protein interactions. PLoS One 2010; 5. [PMID: 20824096 PMCID: PMC2932725 DOI: 10.1371/journal.pone.0012536] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2010] [Accepted: 08/02/2010] [Indexed: 01/26/2023] Open
Abstract
Background Arthropod cuticle is composed predominantly of a self-assembling matrix of chitin and protein. Genes encoding structural cuticular proteins are remarkably abundant in arthropod genomes, yet there has been no systematic survey of conserved motifs across cuticular protein families. Methodology/Principal Findings Two short sequence motifs with conserved tyrosines were identified in Drosophila cuticular proteins that were similar to the GYR and YLP Interpro domains. These motifs were found in members of the CPR, Tweedle, CPF/CPFL, and (in Anopheles gambiae) CPLCG cuticular protein families, and the Dusky/Miniature family of cuticle-associated proteins. Tweedle proteins have a characteristic motif architecture that is shared with the Drosophila protein GCR1 and its orthologs in other species, suggesting that GCR1 is also cuticular. A resilin repeat, which has been shown to confer elasticity, matched one of the motifs; a number of other Drosophila proteins of unknown function exhibit a motif architecture similar to that of resilin. The motifs were also present in some proteins of the peritrophic matrix and the eggshell, suggesting molecular convergence among distinct extracellular matrices. More surprisingly, gene regulation, development, and proteolysis were statistically over-represented ontology terms for all non-cuticular matches in Drosophila. Searches against other arthropod genomes indicate that the motifs are taxonomically widespread. Conclusions This survey suggests a more general definition for GYR and YLP motifs and reveals their contribution to several types of extracellular matrix. They may define sites of protein interaction with DNA or other proteins, based on ontology analysis. These results can help guide experimental studies on the biochemistry of cuticle assembly.
Collapse
Affiliation(s)
- R Scott Cornman
- Department of Cellular Biology, University of Georgia, Athens, Georgia, United States of America.
| |
Collapse
|
87
|
Glasheen BM, Robbins RM, Piette C, Beitel GJ, Page-McCaw A. A matrix metalloproteinase mediates airway remodeling in Drosophila. Dev Biol 2010; 344:772-83. [PMID: 20513443 PMCID: PMC2914218 DOI: 10.1016/j.ydbio.2010.05.504] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2009] [Revised: 05/10/2010] [Accepted: 05/24/2010] [Indexed: 02/05/2023]
Abstract
Organ size typically increases dramatically during juvenile growth. This growth presents a fundamental tension, as organs need resiliency to resist stresses while still maintaining plasticity to accommodate growth. The extracellular matrix (ECM) is central to providing resiliency, but how ECM is remodeled to accommodate growth is poorly understood. We investigated remodeling of Drosophila respiratory tubes (tracheae) that elongate continually during larval growth, despite being lined with a rigid cuticular ECM. Cuticle is initially deposited with a characteristic pattern of repeating ridges and valleys known as taenidia. We find that for tubes to elongate, the extracellular protease Mmp1 is required for expansion of ECM between the taenidial ridges during each intermolt period. Mmp1 protein localizes in periodically spaced puncta that are in register with the taenidial spacing. Mmp1 also degrades old cuticle at molts, promotes apical membrane expansion in larval tracheae, and promotes tube elongation in embryonic tracheae. Whereas work in other developmental systems has demonstrated that MMPs are required for axial elongation occurring in localized growth zones, this study demonstrates that MMPs can also mediate interstitial matrix remodeling during growth of an organ system.
Collapse
Affiliation(s)
- Bernadette M. Glasheen
- Department of Biology and Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, Troy, NY 12180, USA
| | - Renée M. Robbins
- Department of Biochemistry, Molecular Biology and Cell Biology, Northwestern University, Evanston, IL 60208, USA
| | - Caitlin Piette
- Department of Biology and Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, Troy, NY 12180, USA
| | - Greg J. Beitel
- Department of Biochemistry, Molecular Biology and Cell Biology, Northwestern University, Evanston, IL 60208, USA
| | - Andrea Page-McCaw
- Department of Biology and Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, Troy, NY 12180, USA
| |
Collapse
|
88
|
Expression profile of cuticular genes of silkworm, Bombyx mori. BMC Genomics 2010; 11:173. [PMID: 20226095 PMCID: PMC2848646 DOI: 10.1186/1471-2164-11-173] [Citation(s) in RCA: 53] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2009] [Accepted: 03/15/2010] [Indexed: 11/16/2022] Open
Abstract
Background Insect cuticle plays essential roles in many physiological functions. During molting and metamorphosis tremendous changes occur in silkworm cuticle where multiple proteins exist and genes encoding them constitute about 1.5% of all Bombyx mori genes. Results In an effort to determine their expression profiles, a microarray-based investigation was carried out using mRNA collected from larvae to pupae. The results showed that a total of 6676 genes involved in various functions and physiological pathways were activated. The vast majority (93%) of cuticular protein genes were expressed in selected stages with varying expression patterns. There was no correlation between expression patterns and the presence of conserved motifs. Twenty-six RR genes distributed in chromosome 22 were co-expressed at the larval and wandering stages. The 2 kb upstream regions of these genes were further analyzed and three putative elements were identified. Conclusions Data from the present study provide, for the first time, a comprehensive expression profile of genes in silkworm epidermal tissues and evidence that putative elements exist to allow massive production of mRNAs from specific cuticular protein genes.
Collapse
|
89
|
Willis JH. Structural cuticular proteins from arthropods: annotation, nomenclature, and sequence characteristics in the genomics era. INSECT BIOCHEMISTRY AND MOLECULAR BIOLOGY 2010; 40:189-204. [PMID: 20171281 PMCID: PMC2872936 DOI: 10.1016/j.ibmb.2010.02.001] [Citation(s) in RCA: 211] [Impact Index Per Article: 14.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 12/07/2009] [Revised: 02/09/2010] [Accepted: 02/10/2010] [Indexed: 05/03/2023]
Abstract
The availability of whole genome sequences of several arthropods has provided new insights into structural cuticular proteins (CPs), in particular the distribution of different families, the recognition that these proteins may comprise almost 2% of the protein coding genes of some species, and the identification of features that should aid in the annotation of new genomes and EST libraries as they become available. Twelve CP families are described: CPR (named after the Rebers and Riddiford Consensus); CPF (named because it has a highly conserved region consisting of about forty-four amino acids); CPFL (like the CPFs in a conserved C-terminal region); the TWDL family, named after a picturesque phenotype of one mutant member; four families in addition to TWDL with a preponderance of low complexity sequence that are not member of the families listed above. These were named after particular diagnostic features as CPLCA, CPLCG, CPLCW, CPLCP. There are also CPG, a lepidopteran family with an abundance of glycines, the apidermin family, named after three proteins in Apis mellifera, and CPAP1 and CPAP3, named because they have features analogous to peritrophins, namely one or three chitin-binding domains. Also described are common motifs and features. Four unusual CPs are discussed in detail. Data that facilitated the analysis of sequence variation of single CP genes in natural populations are analyzed.
Collapse
Affiliation(s)
- Judith H Willis
- Department of Cellular Biology, University of Georgia, Athens, GA 30602, USA.
| |
Collapse
|
90
|
Tang L, Liang J, Zhan Z, Xiang Z, He N. Identification of the chitin-binding proteins from the larval proteins of silkworm, Bombyx mori. INSECT BIOCHEMISTRY AND MOLECULAR BIOLOGY 2010; 40:228-234. [PMID: 20149871 DOI: 10.1016/j.ibmb.2010.01.010] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/06/2009] [Revised: 01/18/2010] [Accepted: 01/29/2010] [Indexed: 05/28/2023]
Abstract
The silkworm is a model organism for Lepidoptera. Its cuticle is composed mainly of chitin and proteins, which plays essential roles in multiple physiological functions. The binding of proteins to chitin plays an important role for cuticle formation. In this research, a chitin-binding assay followed by a proteomics analysis was carried out using the proteins extracted from the 5th instar larval cuticles. As results, twenty-two proteins were identified including nine cuticular proteins, two lysozyme precursors, two proteins with chitin-binding-type 2 domains, and other proteins. A cuticular protein with the RR-1 consensus, BmorCPR56, and a silkworm Tweedle protein, BmorCPT1, were detected in the chitin-binding fraction for the first time and their chitin-binding activities were further confirmed in vitro. The results of this research increase our understanding of the structure of the silkworm larval cuticle.
Collapse
Affiliation(s)
- Liang Tang
- The Key Sericultural Laboratory of Agricultural Ministry, College of Biotechnology, Southwest University, Beibei, Chongqing 400715, China.
| | | | | | | | | |
Collapse
|
91
|
Cornman RS. Molecular evolution of Drosophila cuticular protein genes. PLoS One 2009; 4:e8345. [PMID: 20019874 PMCID: PMC2793513 DOI: 10.1371/journal.pone.0008345] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2009] [Accepted: 11/18/2009] [Indexed: 11/24/2022] Open
Abstract
Several multigene families have been described that together encode scores of structural cuticular proteins in Drosophila, although the functional significance of this diversity remains to be explored. Here I investigate the evolutionary histories of several multigene families (CPR, Tweedle, CPLCG, and CPF/CPFL) that vary in age, size, and sequence complexity, using sequenced Drosophila genomes and mosquito outgroups. My objective is to describe the rates and mechanisms of ‘cuticle-ome’ divergence, in order to identify conserved and rapidly evolving elements. I also investigate potential examples of interlocus gene conversion and concerted evolution within these families during Drosophila evolution. The absolute rate of change in gene number (per million years) is an order of magnitude lower for cuticular protein families within Drosophila than it is among Drosophila and the two mosquito taxa, implying that major transitions in the cuticle proteome have occurred at higher taxonomic levels. Several hotspots of intergenic conversion and/or gene turnover were identified, e.g. some gene pairs have independently undergone intergenic conversion within different lineages. Some gene conversion hotspots were characterized by conversion tracts initiating near nucleotide repeats within coding regions, and similar repeats were found within concertedly evolving cuticular protein genes in Anopheles gambiae. Rates of amino-acid substitution were generally severalfold higher along the branch connecting the Sophophora and Drosophila species groups, and 13 genes have Ka/Ks significantly greater than one along this branch, indicating adaptive divergence. Insect cuticular proteins appear to be a source of adaptive evolution within genera and, at higher taxonomic levels, subject to periods of gene-family expansion and contraction followed by quiescence. However, this relative stasis is belied by hotspots of molecular evolution, particularly concerted evolution, during the diversification of Drosophila. The prominent association between interlocus gene conversion and repeats within the coding sequence of interacting genes suggests that the latter promote strand exchange.
Collapse
Affiliation(s)
- R Scott Cornman
- Department of Cellular Biology, University of Georgia, Athens, Georgia, United States of America.
| |
Collapse
|
92
|
Cornman RS, Willis JH. Annotation and analysis of low-complexity protein families of Anopheles gambiae that are associated with cuticle. INSECT MOLECULAR BIOLOGY 2009; 18:607-22. [PMID: 19754739 PMCID: PMC3701952 DOI: 10.1111/j.1365-2583.2009.00902.x] [Citation(s) in RCA: 76] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
We have characterized four new families of homologous genes of the mosquito, Anopheles gambiae, all of which include members shown by previous work to be cuticular in nature. The CPLCG, CPLCW, CPLCP, and CPLCA families (where CPLC is 'cuticular protein of low complexity') encode proteins with a high proportion of low-complexity sequence. We have also annotated the An. gambiae Tweedle genes, a family of cuticular protein genes first described in Drosophila, and additional ungrouped An. gambiae cuticular proteins identified by proteomics. Our annotations reveal multiple gene-family expansions that are specific to Diptera or Culicidae. The CPLCG and CPLCW families occur within a large and dynamic tandem array on chromosome 3R that includes sets of concertedly evolving genes. Most gene families exhibit two or more different expression profiles during development.
Collapse
Affiliation(s)
- R S Cornman
- Department of Cellular Biology, University of Georgia, Athens, GA, USA.
| | | |
Collapse
|
93
|
Costello JC, Dalkilic MM, Beason SM, Gehlhausen JR, Patwardhan R, Middha S, Eads BD, Andrews JR. Gene networks in Drosophila melanogaster: integrating experimental data to predict gene function. Genome Biol 2009; 10:R97. [PMID: 19758432 PMCID: PMC2768986 DOI: 10.1186/gb-2009-10-9-r97] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2009] [Revised: 08/17/2009] [Accepted: 09/16/2009] [Indexed: 12/27/2022] Open
Abstract
BACKGROUND Discovering the functions of all genes is a central goal of contemporary biomedical research. Despite considerable effort, we are still far from achieving this goal in any metazoan organism. Collectively, the growing body of high-throughput functional genomics data provides evidence of gene function, but remains difficult to interpret. RESULTS We constructed the first network of functional relationships for Drosophila melanogaster by integrating most of the available, comprehensive sets of genetic interaction, protein-protein interaction, and microarray expression data. The complete integrated network covers 85% of the currently known genes, which we refined to a high confidence network that includes 20,000 functional relationships among 5,021 genes. An analysis of the network revealed a remarkable concordance with prior knowledge. Using the network, we were able to infer a set of high-confidence Gene Ontology biological process annotations on 483 of the roughly 5,000 previously unannotated genes. We also show that this approach is a means of inferring annotations on a class of genes that cannot be annotated based solely on sequence similarity. Lastly, we demonstrate the utility of the network through reanalyzing gene expression data to both discover clusters of coregulated genes and compile a list of candidate genes related to specific biological processes. CONCLUSIONS Here we present the the first genome-wide functional gene network in D. melanogaster. The network enables the exploration, mining, and reanalysis of experimental data, as well as the interpretation of new data. The inferred annotations provide testable hypotheses of previously uncharacterized genes.
Collapse
Affiliation(s)
- James C Costello
- School of Informatics, Indiana University, E. Tenth St, Bloomington, Indiana 47408, USA
- Department of Biology, Indiana University, E. Third St, Bloomington, Indiana 47405, USA
| | - Mehmet M Dalkilic
- School of Informatics, Indiana University, E. Tenth St, Bloomington, Indiana 47408, USA
- Center for Genomics and Bioinformatics, Indiana University, E. Third St., Bloomington, Indiana 47405, USA
| | - Scott M Beason
- School of Informatics, Indiana University, E. Tenth St, Bloomington, Indiana 47408, USA
| | - Jeff R Gehlhausen
- School of Informatics, Indiana University, E. Tenth St, Bloomington, Indiana 47408, USA
| | - Rupali Patwardhan
- Center for Genomics and Bioinformatics, Indiana University, E. Third St., Bloomington, Indiana 47405, USA
- Current address: Department of Genome Sciences, University of Washington, NE Pacific St, Seattle, Washington 98195-5065, USA
| | - Sumit Middha
- Center for Genomics and Bioinformatics, Indiana University, E. Third St., Bloomington, Indiana 47405, USA
- Current address: Bioinformatics Core, Mayo Clinic, First St SW, Rochester, Minnesota 55905, USA
| | - Brian D Eads
- Department of Biology, Indiana University, E. Third St, Bloomington, Indiana 47405, USA
| | - Justen R Andrews
- School of Informatics, Indiana University, E. Tenth St, Bloomington, Indiana 47408, USA
- Department of Biology, Indiana University, E. Third St, Bloomington, Indiana 47405, USA
| |
Collapse
|
94
|
The International Silkworm Genome Consortium. The genome of a lepidopteran model insect, the silkworm Bombyx mori. INSECT BIOCHEMISTRY AND MOLECULAR BIOLOGY 2008; 38:1036-45. [PMID: 19121390 DOI: 10.1016/j.ibmb.2008.11.004] [Citation(s) in RCA: 498] [Impact Index Per Article: 29.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/27/2008] [Revised: 11/28/2008] [Accepted: 11/28/2008] [Indexed: 05/21/2023]
Abstract
Bombyx mori, the domesticated silkworm, is a major insect model for research, and the first lepidopteran for which draft genome sequences became available in 2004. Two independent data sets from whole-genome shotgun sequencing were merged and assembled together with newly obtained fosmid- and BAC-end sequences. The remarkably improved new assembly is presented here. The 8.5-fold sequence coverage of an estimated 432 Mb genome was assembled into scaffolds with an N50 size of approximately 3.7 Mb; the largest scaffold was 14.5 million base pairs. With help of a high-density SNP linkage map, we anchored 87% of the scaffold sequences to all 28 chromosomes. A particular feature was the high repetitive sequence content estimated to be 43.6% and that consisted mainly of transposable elements. We predicted 14,623 gene models based on a GLEAN-based algorithm, a more accurate prediction than the previous gene models for this species. Over three thousand silkworm genes have no homologs in other insect or vertebrate genomes. Some insights into gene evolution and into characteristic biological processes are presented here and in other papers in this issue. The massive silk production correlates with the existence of specific tRNA clusters, and of several sericin genes assembled in a cluster. The silkworm's adaptation to feeding on mulberry leaves, which contain toxic alkaloids, is likely linked to the presence of new-type sucrase genes, apparently acquired from bacteria. The silkworm genome also revealed the cascade of genes involved in the juvenile hormone biosynthesis pathway, and a large number of cuticular protein genes.
Collapse
|
95
|
Futahashi R, Okamoto S, Kawasaki H, Zhong YS, Iwanaga M, Mita K, Fujiwara H. Genome-wide identification of cuticular protein genes in the silkworm, Bombyx mori. INSECT BIOCHEMISTRY AND MOLECULAR BIOLOGY 2008; 38:1138-1146. [PMID: 19280704 DOI: 10.1016/j.ibmb.2008.05.007] [Citation(s) in RCA: 143] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
Abstract
Many kinds of cuticular proteins are found in a single insect species and their numbers and features are diversified among insects. Because there are so many cuticular proteins and so much sequence variation among them, an overview of cuticular protein gene is needed. Recently, a complete silkworm genome sequence was obtained through the integration of data from two whole genome sequence projects performed independently in 2004. To identify cuticular protein genes in the silkworm Bombyx mori exhaustively, we searched both the Bombyx whole genome sequence as well as various EST libraries, and found 220 putative cuticular protein genes. We also revised the annotation of the gene model, and named each identified cuticular protein based on its motif. The phylogenetic tree of cuticular protein genes among B. mori, Drosophila melanogaster, and Apis mellifera revealed that duplicate cuticular protein clusters have evolved independently among insects. Comparison of EST libraries and northern blot analyses showed that the tissue- and stage-specific expression of each gene was intricately regulated, even between adjacent genes in the same gene cluster. This study reveals many novel cuticular protein genes as well as insights into cuticular protein gene regulation.
Collapse
Affiliation(s)
- Ryo Futahashi
- Department of Integrated Biosciences, Graduate School of Frontier Sciences, The University of Tokyo, Kashiwa, Chiba, Japan
| | | | | | | | | | | | | |
Collapse
|
96
|
Okamoto S, Futahashi R, Kojima T, Mita K, Fujiwara H. Catalogue of epidermal genes: genes expressed in the epidermis during larval molt of the silkworm Bombyx mori. BMC Genomics 2008; 9:396. [PMID: 18721459 PMCID: PMC2542385 DOI: 10.1186/1471-2164-9-396] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2008] [Accepted: 08/22/2008] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND The insect cuticle is composed of various proteins and formed during the molt under hormonal regulation, although its precise composition and formation mechanism are largely unknown. The exhaustive catalogue of genes expressed in epidermis at the molt constitutes a massive amount of information from which to draw a complete picture of the molt and cuticle formation in insects. Therefore, we have catalogued a library of full-length cDNAs (designated epM) from epidermal cells during the last larval molt of Bombyx mori. RESULTS Of the 10,368 sequences in the library, we isolated 6,653 usable expressed sequence tags (ESTs), which were categorized into 1,451 nonredundant gene clusters. Seventy-one clusters were considered to be isoforms or premature forms of other clusters. Therefore, we have identified 1,380 putative genes. Of the 6,653 expressed sequences, 48% were derived from 92 cuticular protein genes (RR-1, 24; RR-2, 17; glycine-rich, 29; other classes, 22). A comparison of epM with another epidermal EST data set, epV3 (feeding stage: fifth instar, day 3), showed marked differences in cuticular protein gene. Various types of cuticular proteins are expressed in epM but virtually only RR-1 proteins were expressed in epV3. Cuticular protein genes expressed specifically in epidermis, with several types of expression patterns during the molt, suggest different types of responses to the ecdysteroid pulse. Compared with other Bombyx EST libraries, 13 genes were preferentially included in epM data set. We isolated 290 genes for proteins other than cuticular proteins, whose amino acid sequences retain putative signal peptides, suggesting that they play some role in cuticle formation or in other molting events. Several gene groups were also included in this data set: hormone metabolism, P450, modifier of cuticular protein structure, small-ligand-binding protein, transcription factor, and pigmentation genes. CONCLUSION We have identified 1,380 genes in epM data set and 13 preferentially expressed genes in epidermis at the molt. The comparison of the epM and other EST libraries clarified the totally different gene expression patterns in epidermis between the molting and feeding stages and many novel tissue- and stage-specifically expressed epidermal genes. These data should further our understanding of cuticle formation and the insect molt.
Collapse
Affiliation(s)
- Shun Okamoto
- Department of Integrated Biosciences, Graduate School of Frontier Sciences, The University of Tokyo, Kashiwa, Chiba 277-8562, Japan.
| | | | | | | | | |
Collapse
|
97
|
Havemann J, Müller U, Berger J, Schwarz H, Gerberding M, Moussian B. Cuticle differentiation in the embryo of the amphipod crustacean Parhyale hawaiensis. Cell Tissue Res 2008; 332:359-70. [PMID: 18293012 PMCID: PMC2757601 DOI: 10.1007/s00441-007-0571-7] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2007] [Accepted: 12/20/2007] [Indexed: 11/05/2022]
Abstract
The arthropod cuticle is a multilayered extracellular matrix produced by the epidermis during embryogenesis and moulting. Molecularly and histologically, cuticle differentiation has been extensively investigated in the embryo of the insect Drosophila melanogaster. To learn about the evolution of cuticle differentiation, we have studied the histology of cuticle differentiation during embryogenesis of the amphipod crustacean Parhyale hawaiensis, which had a common ancestor with Drosophila about 510 million years ago. The establishment of the layers of the Parhyale juvenile cuticle is largely governed by mechanisms observed in Drosophila, e.g. as in Drosophila, the synthesis and arrangement of chitin in the inner procuticle are separate processes. A major difference between the cuticle of Parhyale and Drosophila concerns the restructuring of the Parhyale dorsal epicuticle after deposition. In contrast to the uniform cuticle of the Drosophila larva, the Parhyale cuticle is subdivided into two regions, the ventral and the dorsal cuticles. Remarkably, the boundary between the ventral and dorsal cuticles is sharp suggesting active extracellular regionalisation. The present analysis of Parhyale cuticle differentiation should allow the characterisation of the cuticle-producing and -organising factors of Parhyale (by comparison with the branchiopod crustacean Daphnia pulex) in order to contribute to the elucidation of fundamental questions relevant to extracellular matrix organisation and differentiation.
Collapse
Affiliation(s)
- Johanna Havemann
- Max-Planck-Institut für Entwicklungsbiologie, Spemannstrasse 35, 72076 Tübingen, Germany
| | | | | | | | | | | |
Collapse
|