51
|
Kato Y. Tight Translational Control Using Site-Specific Unnatural Amino Acid Incorporation with Positive Feedback Gene Circuits. ACS Synth Biol 2018; 7:1956-1963. [PMID: 29979867 DOI: 10.1021/acssynbio.8b00204] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Tight regulatory system for gene expression, which is ideally controlled by unnatural and bio-orthogonal substances, is a keystone for successful construction of synthetic gene circuits. Here, we present a widely applicable approach to construct tight protein translational switches using site-specific unnatural amino acid (Uaa) incorporation systems. As a key mechanism to obtain excellent tightness, we installed gene circuits for positive feedback derepression. This mechanism dramatically suppressed leakage translation in the absence of the Uaa. In a translational switch with the feedback circuit in Escherichia coli, a 1.4 × 103 ON/OFF ratio was achieved which was 3 × 102-fold greater than that of the parent system and was comparable to that of the well-known tight expression system using the araBAD promoter and the araC regulator. This method offers an avenue for generation of novel tight genetic switches from over a hundred site-specific unnatural amino acid incorporation systems which have already been established. These tight translational switches will facilitate the development of fine gene control systems in synthetic biology, especially for Uaa-auxotrophy-based biological containments and live attenuated vaccines.
Collapse
Affiliation(s)
- Yusuke Kato
- Division of Biotechnology, Institute of Agrobiological Sciences, National Agriculture and Food Research Organization (NARO), Oowashi 1-2, Tsukuba, Ibaraki 305-8634, Japan
| |
Collapse
|
52
|
Weaver JB, Boxer SG. Genetic Code Expansion in Rhodobacter sphaeroides to Incorporate Noncanonical Amino Acids into Photosynthetic Reaction Centers. ACS Synth Biol 2018; 7:1618-1628. [PMID: 29763307 DOI: 10.1021/acssynbio.8b00100] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Photosynthetic reaction centers (RCs) are the membrane proteins responsible for the initial charge separation steps central to photosynthesis. As a complex and spectroscopically complicated membrane protein, the RC (and other associated photosynthetic proteins) would benefit greatly from the insight offered by site-specifically encoded noncanonical amino acids in the form of probes and an increased chemical range in key amino acid analogues. Toward that goal, we developed a method to transfer amber codon suppression machinery developed for E. coli into the model bacterium needed to produce RCs, Rhodobacter sphaeroides. Plasmids were developed and optimized to incorporate 3-chlorotyrosine, 3-bromotyrosine, and 3-iodotyrosine into RCs. Multiple challenges involving yield and orthogonality were overcome to implement amber suppression in R. sphaeroides, providing insights into the hurdles that can be involved in host transfer of amber suppression systems from E. coli. In the process of verifying noncanonical amino acid incorporation, characterization of this membrane protein via mass spectrometry (which has been difficult previously) was substantially improved. Importantly, the ability to incorporate noncanonical amino acids in R. sphaeroides expands research capabilities in the photosynthetic field.
Collapse
Affiliation(s)
- Jared Bryce Weaver
- Department of Chemistry, Stanford University, Stanford, California 94305, United States
| | - Steven G. Boxer
- Department of Chemistry, Stanford University, Stanford, California 94305, United States
| |
Collapse
|
53
|
Willis JCW, Chin JW. Mutually orthogonal pyrrolysyl-tRNA synthetase/tRNA pairs. Nat Chem 2018; 10:831-837. [PMID: 29807989 DOI: 10.1038/s41557-018-0052-5] [Citation(s) in RCA: 138] [Impact Index Per Article: 19.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2018] [Accepted: 03/28/2018] [Indexed: 11/09/2022]
Abstract
Genetically encoding distinct non-canonical amino acids (ncAAs) into proteins synthesized in cells requires mutually orthogonal aminoacyl-tRNA synthetase (aaRS)/tRNA pairs. The pyrrolysyl-tRNA synthetase/PyltRNA pair from Methanosarcina mazei (Mm) has been engineered to incorporate diverse ncAAs and is commonly considered an ideal pair for genetic code expansion. However, finding new aaRS/tRNA pairs that share the advantages of the MmPylRS/MmPyltRNA pair and are orthogonal to both endogenous aaRS/tRNA pairs and the MmPylRS/MmPyltRNA pair has proved challenging. Here we demonstrate that several ΔNPylRS/PyltRNACUA pairs, in which PylRS lacks an N-terminal domain, are active, orthogonal and efficiently incorporate ncAAs in Escherichia coli. We create new PylRS/PyltRNA pairs that are mutually orthogonal to the MmPylRS/MmPyltRNA pair and show that transplanting mutations that reprogram the ncAA specificity of MmPylRS into the new PylRS reprograms its substrate specificity. Finally, we show that distinct PylRS/PyltRNA-derived pairs can function in the same cell, decode distinct codons and incorporate distinct ncAAs.
Collapse
Affiliation(s)
- Julian C W Willis
- Medical Research Council Laboratory of Molecular Biology, Cambridge, UK
| | - Jason W Chin
- Medical Research Council Laboratory of Molecular Biology, Cambridge, UK.
| |
Collapse
|
54
|
Abstract
Chemical aminoacylation of orthogonal tRNA allows for the genetic encoding of a wide range of synthetic amino acids without the need to evolve specific aminoacyl-tRNA synthetases. This method, when paired with protein expression in the Xenopus laevis oocyte expression system, can extract atomic scale functional data from a protein structure to advance the study of membrane proteins. The utility of the method depends on the orthogonality of the tRNA species used to deliver the amino acid. Here, we report that the pyrrolysyl tRNA (pylT) from Methanosarcina barkeri fusaro is orthogonal and highly competent for genetic code expansion experiments in the Xenopus oocyte. The data show that pylT is amendable to chemical acylation in vitro; it is then used to rescue a cytoplasmic site within a voltage-gated sodium channel. Further, the high fidelity of the pylT is demonstrated via encoding of lysine within the selectivity filter of the sodium channel, where sodium ion recognition by the distal amine of this side-chain is essential. Thus, pylT is an appropriate tRNA species for delivery of amino acids via nonsense suppression in the Xenopus oocyte. It may prove useful in experimental contexts wherein reacylation of suppressor tRNAs have been observed.
Collapse
|
55
|
Venkat S, Sturges J, Stahman A, Gregory C, Gan Q, Fan C. Genetically Incorporating Two Distinct Post-translational Modifications into One Protein Simultaneously. ACS Synth Biol 2018; 7:689-695. [PMID: 29301074 DOI: 10.1021/acssynbio.7b00408] [Citation(s) in RCA: 46] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Post-translational modifications (PTMs) play important roles in regulating a variety of biological processes. To facilitate PTM studies, the genetic code expansion strategy has been utilized to cotranslationally incorporate individual PTMs such as acetylation and phosphorylation into proteins at specific sites. However, recent studies have demonstrated that PTMs actually work together to regulate protein functions and structures. Thus, simultaneous incorporation of multiple distinct PTMs into one protein is highly desirable. In this study, we utilized the genetic incorporation systems of phosphoserine and acetyllysine to install both phosphorylation and acetylation into target proteins simultaneously in Escherichia coli. And we used this system to study the effect of coexisting acetylation and phosphorylation on malate dehydrogenase, demonstrating a practical application of this system in biochemical studies. Furthermore, we tested the mutual orthogonality of three widely used genetic incorporation systems, indicating the possibility of incorporating three distinct PTMs into one protein simultaneously.
Collapse
Affiliation(s)
- Sumana Venkat
- Department
of Chemistry and Biochemistry, ‡Cell and Molecular Biology Program, and §Department of
Biological Sciences, University of Arkansas, Fayetteville, Arkansas 72701, United States
| | - Jourdan Sturges
- Department
of Chemistry and Biochemistry, ‡Cell and Molecular Biology Program, and §Department of
Biological Sciences, University of Arkansas, Fayetteville, Arkansas 72701, United States
| | - Alleigh Stahman
- Department
of Chemistry and Biochemistry, ‡Cell and Molecular Biology Program, and §Department of
Biological Sciences, University of Arkansas, Fayetteville, Arkansas 72701, United States
| | - Caroline Gregory
- Department
of Chemistry and Biochemistry, ‡Cell and Molecular Biology Program, and §Department of
Biological Sciences, University of Arkansas, Fayetteville, Arkansas 72701, United States
| | - Qinglei Gan
- Department
of Chemistry and Biochemistry, ‡Cell and Molecular Biology Program, and §Department of
Biological Sciences, University of Arkansas, Fayetteville, Arkansas 72701, United States
| | - Chenguang Fan
- Department
of Chemistry and Biochemistry, ‡Cell and Molecular Biology Program, and §Department of
Biological Sciences, University of Arkansas, Fayetteville, Arkansas 72701, United States
| |
Collapse
|
56
|
Abstract
Inhibition of tRNA aminoacylation has proven to be an effective antimicrobial strategy, impeding an essential step of protein synthesis. Mupirocin, the well-known selective inhibitor of bacterial isoleucyl-tRNA synthetase, is one of three aminoacylation inhibitors now approved for human or animal use. However, design of novel aminoacylation inhibitors is complicated by the steadfast requirement to avoid off-target inhibition of protein synthesis in human cells. Here we review available data regarding known aminoacylation inhibitors as well as key amino-acid residues in aminoacyl-tRNA synthetases (aaRSs) and nucleotides in tRNA that determine the specificity and strength of the aaRS-tRNA interaction. Unlike most ligand-protein interactions, the aaRS-tRNA recognition interaction represents coevolution of both the tRNA and aaRS structures to conserve the specificity of aminoacylation. This property means that many determinants of tRNA recognition in pathogens have diverged from those of humans-a phenomenon that provides a valuable source of data for antimicrobial drug development.
Collapse
Affiliation(s)
- Joanne M Ho
- a Department of BioSciences , Rice University , Houston , TX , United States
| | | | - Dieter Söll
- c Departments of Molecular Biophysics & Biochemistry , Yale University , New Haven , CT , United States.,d Department of Chemistry , Yale University , New Haven , CT , United States
| | | |
Collapse
|
57
|
Sharma V, Zeng Y, Wang WW, Qiao Y, Kurra Y, Liu WR. Evolving the N-Terminal Domain of Pyrrolysyl-tRNA Synthetase for Improved Incorporation of Noncanonical Amino Acids. Chembiochem 2017; 19:26-30. [PMID: 29096043 DOI: 10.1002/cbic.201700268] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2017] [Indexed: 11/10/2022]
Abstract
By evolving the N-terminal domain of Methanosarcina mazei pyrrolysyl-tRNA synthetase (PylRS) that directly interacts with tRNAPyl , a mutant clone displaying improved amber-suppression efficiency for the genetic incorporation of Nϵ -(tert-butoxycarbonyl)-l-lysine threefold more than the wild type was identified. The identified mutations were R19H/H29R/T122S. Direct transfer of these mutations to two other PylRS mutants that were previously evolved for the genetic incorporation of Nϵ -acetyl-l-lysine and Nϵ -(4-azidobenzoxycarbonyl)-l-δ,ϵ-dehydrolysine also improved the incorporation efficiency of these two noncanonical amino acids. As the three identified mutations were found in the N-terminal domain of PylRS that was separated from its catalytic domain for charging tRNAPyl with a noncanonical amino acid, they could potentially be introduced to all other PylRS mutants to improve the incorporation efficiency of their corresponding noncanonical amino acids. Therefore, it represents a general strategy to optimize the pyrrolysine incorporation system-based noncanonical amino-acid mutagenesis.
Collapse
Affiliation(s)
- Vangmayee Sharma
- Department of Chemistry, Texas A&M University, College Station, TX, 77843, USA
| | - Yu Zeng
- Department of Chemistry, Texas A&M University, College Station, TX, 77843, USA
| | - W Wesley Wang
- Department of Chemistry, Texas A&M University, College Station, TX, 77843, USA
| | - Yuchen Qiao
- Department of Chemistry, Texas A&M University, College Station, TX, 77843, USA
| | - Yadagiri Kurra
- Department of Chemistry, Texas A&M University, College Station, TX, 77843, USA
| | - Wenshe R Liu
- Department of Chemistry, Texas A&M University, College Station, TX, 77843, USA
| |
Collapse
|
58
|
Suzuki T, Miller C, Guo LT, Ho JML, Bryson DI, Wang YS, Liu DR, Söll D. Crystal structures reveal an elusive functional domain of pyrrolysyl-tRNA synthetase. Nat Chem Biol 2017; 13:1261-1266. [PMID: 29035363 PMCID: PMC5698177 DOI: 10.1038/nchembio.2497] [Citation(s) in RCA: 83] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2017] [Accepted: 09/13/2017] [Indexed: 11/16/2022]
Abstract
Pyrrolysyl-tRNA synthetase (PylRS) is a major tool in genetic code expansion with non-canonical amino acids, yet understanding of its structure and activity is incomplete. Here we describe the crystal structure of the previously uncharacterized essential N-terminal domain of this unique enzyme in complex with tRNAPyl. This structure explains why PylRS remains orthogonal in a broad range of organisms, from bacteria to humans. The structure also illustrates why tRNAPyl recognition by PylRS is anticodon-independent; the anticodon does not contact the enzyme. Using standard microbiological culture equipment, we then established a new method for laboratory evolution – a non-continuous counterpart of the previously developed phage-assisted continuous evolution. With this method, we evolved novel PylRS variants with enhanced activity and amino acid specificity. We finally employed an evolved PylRS variant to determine its N-terminal domain structure and show how its mutations improve PylRS activity in the genetic encoding of a non-canonical amino acid.
Collapse
Affiliation(s)
- Tateki Suzuki
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, Connecticut, USA
| | - Corwin Miller
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, Connecticut, USA
| | - Li-Tao Guo
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, Connecticut, USA
| | - Joanne M L Ho
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, Connecticut, USA
| | - David I Bryson
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, Massachusetts, USA
| | - Yane-Shih Wang
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, Connecticut, USA
| | - David R Liu
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, Massachusetts, USA.,Howard Hughes Medical Institute, Cambridge, Massachusetts, USA.,Broad Institute of Harvard and MIT, Cambridge, Massachusetts, USA
| | - Dieter Söll
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, Connecticut, USA.,Department of Chemistry, Yale University, New Haven, Connecticut, USA
| |
Collapse
|
59
|
Liu K, Enns B, Evans B, Wang N, Shang X, Sittiwong W, Dussault PH, Guo J. A genetically encoded cyclobutene probe for labelling of live cells. Chem Commun (Camb) 2017; 53:10604-10607. [PMID: 28902227 PMCID: PMC5648060 DOI: 10.1039/c7cc05580c] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
We have identified an aminoacyl-tRNA synthetase/tRNA pair for the efficient and site-specific incorporation of a cyclobutene-containing amino acid into proteins in response to an amber nonsense codon. Fast and fluorescent labeling of purified proteins and intact proteins in live cells was demonstrated using the inverse electron demand Diels-Alder reaction with a tetrazine.
Collapse
Affiliation(s)
- K Liu
- Department of Chemistry, University of Nebraska-Lincoln, Lincoln, Nebraska 68588, USA.
| | | | | | | | | | | | | | | |
Collapse
|
60
|
Abstract
Pyrrolysine is the 22nd proteinogenic amino acid encoded into proteins in response to amber (TAG) codons in a small number of archaea and bacteria. The incorporation of pyrrolysine is facilitated by a specialized aminoacyl-tRNA synthetase (PylRS) and its cognate tRNA (tRNAPyl). The secondary structure of tRNAPyl contains several unique features not found in canonical tRNAs. Numerous studies have demonstrated that the PylRS/tRNAPyl pair from archaea is orthogonal in E. coli and eukaryotic hosts, which has led to the widespread use of this pair for the genetic incorporation of non-canonical amino acids. In this brief review we examine the work that has been done to elucidate the structure of tRNAPyl, its interaction with PylRS, and survey recent progress on the use of tRNAPyl as a tool for genetic code expansion.
Collapse
Affiliation(s)
- Jeffery M Tharp
- a Department of Chemistry , Texas A&M University , College Station , TX , USA
| | - Andreas Ehnbom
- a Department of Chemistry , Texas A&M University , College Station , TX , USA
| | - Wenshe R Liu
- a Department of Chemistry , Texas A&M University , College Station , TX , USA
| |
Collapse
|
61
|
Park SH, Kwon JS, Lee BS, Park JH, Lee BK, Yun JH, Lee BY, Kim JH, Min BH, Yoo TH, Kim MS. BMP2-modified injectable hydrogel for osteogenic differentiation of human periodontal ligament stem cells. Sci Rep 2017; 7:6603. [PMID: 28747761 PMCID: PMC5529463 DOI: 10.1038/s41598-017-06911-8] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2017] [Accepted: 06/19/2017] [Indexed: 12/22/2022] Open
Abstract
This is the first report on the development of a covalently bone morphogenetic protein-2 (BMP2)-immobilized hydrogel that is suitable for osteogenic differentiation of human periodontal ligament stem cells (hPLSCs). O-propargyl-tyrosine (OpgY) was site-specifically incorporated into BMP2 to prepare BMP2-OpgY with an alkyne group. The engineered BMP2-OpgY exhibited osteogenic characteristics after in vitro osteogenic differentiation of hPLSCs, indicating the osteogenic ability of BMP2-OpgY. A methoxy polyethylene glycol-(polycaprolactone-(N3)) block copolymer (MC-N3) was prepared as an injectable in situ-forming hydrogel. BMP2 covalently immobilized on an MC hydrogel (MC-BMP2) was prepared quantitatively by a simple biorthogonal reaction between alkyne groups on BMP2-OpgY and azide groups on MC-N3 via a Cu(I)-catalyzed click reaction. The hPLSCs-loaded MC-BMP2 formed a hydrogel almost immediately upon injection into animals. In vivo osteogenic differentiation of hPLSCs in the MC-BMP2 formulation was confirmed by histological staining and gene expression analyses. Histological staining of hPLSC-loaded MC-BMP2 implants showed evidence of mineralized calcium deposits, whereas hPLSC-loaded MC-Cl or BMP2-OpgY mixed with MC-Cl, implants showed no mineral deposits. Additionally, MC-BMP2 induced higher levels of osteogenic gene expression in hPLSCs than in other groups. In conclusion, BMP2-OpgY covalently immobilized on MC-BMP2 induced osteogenic differentiation of hPLSCs as a noninvasive method for bone tissue engineering.
Collapse
Affiliation(s)
- Seung Hun Park
- Department of Molecular Science and Technology, Ajou University, Suwon, 443-749, Korea
| | - Jin Seon Kwon
- Department of Molecular Science and Technology, Ajou University, Suwon, 443-749, Korea
| | - Byeong Sung Lee
- Department of Molecular Science and Technology, Ajou University, Suwon, 443-749, Korea
| | - Ji Hoon Park
- Department of Molecular Science and Technology, Ajou University, Suwon, 443-749, Korea
| | - Bo Keun Lee
- Department of Molecular Science and Technology, Ajou University, Suwon, 443-749, Korea
| | - Jeong-Ho Yun
- Department of Periodontology, School of Dentistry and Institute of Oral Bioscience, Chonbuk National University, Jeonju, 561-712, Korea
| | - Bun Yeoul Lee
- Department of Molecular Science and Technology, Ajou University, Suwon, 443-749, Korea
| | - Jae Ho Kim
- Department of Molecular Science and Technology, Ajou University, Suwon, 443-749, Korea
| | - Byoung Hyun Min
- Department of Molecular Science and Technology, Ajou University, Suwon, 443-749, Korea
| | - Tae Hyeon Yoo
- Department of Molecular Science and Technology, Ajou University, Suwon, 443-749, Korea.
| | - Moon Suk Kim
- Department of Molecular Science and Technology, Ajou University, Suwon, 443-749, Korea.
| |
Collapse
|
62
|
Kipper K, Lundius EG, Ćurić V, Nikić I, Wiessler M, Lemke EA, Elf J. Application of Noncanonical Amino Acids for Protein Labeling in a Genomically Recoded Escherichia coli. ACS Synth Biol 2017; 6:233-255. [PMID: 27775882 DOI: 10.1021/acssynbio.6b00138] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Small synthetic fluorophores are in many ways superior to fluorescent proteins as labels for imaging. A major challenge is to use them for a protein-specific labeling in living cells. Here, we report on our use of noncanonical amino acids that are genetically encoded via the pyrrolysyl-tRNA/pyrrolysyl-RNA synthetase pair at artificially introduced TAG codons in a recoded E. coli strain. The strain is lacking endogenous TAG codons and the TAG-specific release factor RF1. The amino acids contain bioorthogonal groups that can be clicked to externally supplied dyes, thus enabling protein-specific labeling in live cells. We find that the noncanonical amino acid incorporation into the target protein is robust for diverse amino acids and that the usefulness of the recoded E. coli strain mainly derives from the absence of release factor RF1. However, the membrane permeable dyes display high nonspecific binding in intracellular environment and the electroporation of hydrophilic nonmembrane permeable dyes severely impairs growth of the recoded strain. In contrast, proteins exposed on the outer membrane of E. coli can be labeled with hydrophilic dyes with a high specificity as demonstrated by labeling of the osmoporin OmpC. Here, labeling can be made sufficiently specific to enable single molecule studies as exemplified by OmpC single particle tracking.
Collapse
Affiliation(s)
- Kalle Kipper
- Department
of Molecular and Cell Biology, Science for Life Laboratory, Uppsala University, Se-751 24 Uppsala, Sweden
| | - Ebba G. Lundius
- Department
of Molecular and Cell Biology, Science for Life Laboratory, Uppsala University, Se-751 24 Uppsala, Sweden
| | - Vladimir Ćurić
- Department
of Molecular and Cell Biology, Science for Life Laboratory, Uppsala University, Se-751 24 Uppsala, Sweden
| | - Ivana Nikić
- Structural
and Computational Biology Unit, Cell Biology and Biophysics Unit, European Molecular Biology Laboratory (EMBL), Heidelberg, 69117, Germany
| | - Manfred Wiessler
- Biological
Chemistry, Deutsche Krebsforschungszentrum, Heidelberg, 69120, Germany
| | - Edward A. Lemke
- Structural
and Computational Biology Unit, Cell Biology and Biophysics Unit, European Molecular Biology Laboratory (EMBL), Heidelberg, 69117, Germany
| | - Johan Elf
- Department
of Molecular and Cell Biology, Science for Life Laboratory, Uppsala University, Se-751 24 Uppsala, Sweden
| |
Collapse
|
63
|
Lee BS, Kim S, Ko BJ, Yoo TH. An efficient system for incorporation of unnatural amino acids in response to the four-base codon AGGA in Escherichia coli. Biochim Biophys Acta Gen Subj 2017; 1861:3016-3023. [PMID: 28212794 DOI: 10.1016/j.bbagen.2017.02.017] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2016] [Revised: 02/08/2017] [Accepted: 02/09/2017] [Indexed: 01/21/2023]
Abstract
BACKGROUND Adding new amino acids to the set of building blocks for protein synthesis expands the scope of protein engineering, and orthogonal pairs of tRNA and aminoacyl-tRNA synthetase have been developed for incorporating unnatural amino acids (UAAs) into proteins. While diverse systems have been developed to incorporate UAAs in response to the amber codon, less research has been focused on four-base codons despites their advantages. In this study, we report an efficient method to incorporate UAA in response to an AGGA codon in Escherichia coli. RESULTS The Methanococcus jannaschii tyrosyl-tRNA synthetase-tRNACUA(MjTyrRS-MjtRNACUA) orthogonal pair has been engineered to incorporate diverse UAAs in response to the amber codon. To apply the engineered MjTyrRS enzymes for UAAs to a four-base codon suppression, we developed an MjTyrRS-MjtRNAUCCU pair system that enabled incorporation of UAAs in response to the AGGA codon in E. coli. Using this system, we demonstrated that several UAAs could be incorporated quantitatively in the AGGA site. In addition, multiple AGGA codons were successfully suppressed in an E. coli strain when the endogenous tRNACCUArg gene was knocked out. CONCLUSION An efficient system was developed for the incorporation of UAAs in response to the AGGA four-base codon in E. coli, and the method was successfully demonstrated for several UAAs and for multiple AGGA sites. GENERAL SIGNIFICANCE The developed system can expand the repertoire of protein engineering tools based on amino acid analogues in combination with other UAA incorporation methods. This article is part of a Special Issue entitled "Biochemistry of Synthetic Biology - Recent Developments" Guest Editor: Dr. Ilka Heinemann and Dr. Patrick O'Donoghue.
Collapse
Affiliation(s)
- Byeong Sung Lee
- Department of Molecular Science and Technology, Ajou University, 206 World cup-ro, Yeongtong-gu, Suwon 16499, Republic of Korea
| | - Suyeon Kim
- Department of Molecular Science and Technology, Ajou University, 206 World cup-ro, Yeongtong-gu, Suwon 16499, Republic of Korea
| | - Byoung Joon Ko
- New Drug Development Center, Osong Medical Innovative Foundation, 123, Osongsaengmyeong-ro, Osong-eup, Cheongju 28160, Republic of Korea
| | - Tae Hyeon Yoo
- Department of Molecular Science and Technology, Ajou University, 206 World cup-ro, Yeongtong-gu, Suwon 16499, Republic of Korea; Department of Applied Chemistry and Biological Engineering, Ajou University, 206 World cup-ro, Yeongtong-gu, Suwon 16499, Republic of Korea.
| |
Collapse
|
64
|
Gan R, Perez JG, Carlson ED, Ntai I, Isaacs FJ, Kelleher NL, Jewett MC. Translation system engineering in Escherichia coli enhances non-canonical amino acid incorporation into proteins. Biotechnol Bioeng 2017; 114:1074-1086. [PMID: 27987323 DOI: 10.1002/bit.26239] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2016] [Revised: 10/28/2016] [Accepted: 12/13/2016] [Indexed: 01/15/2023]
Abstract
The ability to site-specifically incorporate non-canonical amino acids (ncAAs) into proteins has made possible the study of protein structure and function in fundamentally new ways, as well as the bio synthesis of unnatural polymers. However, the task of site-specifically incorporating multiple ncAAs into proteins with high purity and yield continues to present a challenge. At the heart of this challenge lies the lower efficiency of engineered orthogonal translation system components compared to their natural counterparts (e.g., translation elements that specifically use a ncAA and do not interact with the cell's natural translation apparatus). Here, we show that evolving and tuning expression levels of multiple components of an engineered translation system together as a whole enhances ncAA incorporation efficiency. Specifically, we increase protein yield when incorporating multiple p-azido-phenylalanine(pAzF) residues into proteins by (i) evolving the Methanocaldococcus jannaschii p-azido-phenylalanyl-tRNA synthetase anti-codon binding domain, (ii) evolving the elongation factor Tu amino acid-binding pocket, and (iii) tuning the expression of evolved translation machinery components in a single vector. Use of the evolved translation machinery in a genomically recoded organism lacking release factor one enabled enhanced multi-site ncAA incorporation into proteins. We anticipate that our approach to orthogonal translation system development will accelerate and expand our ability to site-specifically incorporate multiple ncAAs into proteins and biopolymers, advancing new horizons for synthetic and chemical biotechnology. Biotechnol. Bioeng. 2017;114: 1074-1086. © 2016 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Rui Gan
- Department of Chemical and Biological Engineering, Northwestern University, 2145 Sheridan Road, Evanston, Illinois, 60208-3120
| | - Jessica G Perez
- Department of Chemical and Biological Engineering, Northwestern University, 2145 Sheridan Road, Evanston, Illinois, 60208-3120
| | - Erik D Carlson
- Department of Chemical and Biological Engineering, Northwestern University, 2145 Sheridan Road, Evanston, Illinois, 60208-3120
| | - Ioanna Ntai
- Department of Chemistry, Northwestern University, 2145 Sheridan Road, Evanston, Illinois, 60208-3120.,Chemistry of Life Processes Institute, Northwestern University, 2145 Sheridan Road, Evanston, Illinois, 60208
| | - Farren J Isaacs
- Systems Biology Institute, Yale University, West Haven, Connecticut.,Department of Molecular, Cellular and Developmental Biology, Yale University, New Haven, Connecticut
| | - Neil L Kelleher
- Department of Chemistry, Northwestern University, 2145 Sheridan Road, Evanston, Illinois, 60208-3120.,Chemistry of Life Processes Institute, Northwestern University, 2145 Sheridan Road, Evanston, Illinois, 60208.,Department of Molecular Biosciences, Northwestern University, Evanston, Illinois
| | - Michael C Jewett
- Department of Chemical and Biological Engineering, Northwestern University, 2145 Sheridan Road, Evanston, Illinois, 60208-3120.,Chemistry of Life Processes Institute, Northwestern University, 2145 Sheridan Road, Evanston, Illinois, 60208.,Interdisciplinary Biological Sciences Program, Northwestern University, 2145 Sheridan Road, Evanston, Illinois, 60208-0001.,Northwestern Institute on Complex Systems, Northwestern University, 2145 Sheridan Road, Evanston, Illinois, 60208.,Simpson Querry Institute, Northwestern University, 2145 Sheridan Road, Evanston, Illinois, 60208
| |
Collapse
|
65
|
Ravasco JMJM, Monteiro CM, Trindade AF. Cyclopropenes: a new tool for the study of biological systems. Org Chem Front 2017. [DOI: 10.1039/c7qo00054e] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Cyclopropenes have become an important mini-tag tool in chemical biology, participating in fast inverse electron demand Diels–Alder and photoclick reactions in biological settings.
Collapse
Affiliation(s)
- João M. J. M. Ravasco
- Instituto de Investigação do Medicamento (iMed.ULisboa)
- Faculdade de Farmácia
- Universidade de Lisboa
- 1649-003 Lisboa
- Portugal
| | - Carlos M. Monteiro
- Instituto de Investigação do Medicamento (iMed.ULisboa)
- Faculdade de Farmácia
- Universidade de Lisboa
- 1649-003 Lisboa
- Portugal
| | - Alexandre F. Trindade
- Instituto de Investigação do Medicamento (iMed.ULisboa)
- Faculdade de Farmácia
- Universidade de Lisboa
- 1649-003 Lisboa
- Portugal
| |
Collapse
|
66
|
Crnković A, Suzuki T, Söll D, Reynolds NM. Pyrrolysyl-tRNA synthetase, an aminoacyl-tRNA synthetase for genetic code expansion. CROAT CHEM ACTA 2016; 89:163-174. [PMID: 28239189 PMCID: PMC5321558 DOI: 10.5562/cca2825] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Genetic code expansion (GCE) has become a central topic of synthetic biology. GCE relies on engineered aminoacyl-tRNA synthetases (aaRSs) and a cognate tRNA species to allow codon reassignment by co-translational insertion of non-canonical amino acids (ncAAs) into proteins. Introduction of such amino acids increases the chemical diversity of recombinant proteins endowing them with novel properties. Such proteins serve in sophisticated biochemical and biophysical studies both in vitro and in vivo, they may become unique biomaterials or therapeutic agents, and they afford metabolic dependence of genetically modified organisms for biocontainment purposes. In the Methanosarcinaceae the incorporation of the 22nd genetically encoded amino acid, pyrrolysine (Pyl), is facilitated by pyrrolysyl-tRNA synthetase (PylRS) and the cognate UAG-recognizing tRNAPyl. This unique aaRS•tRNA pair functions as an orthogonal translation system (OTS) in most model organisms. The facile directed evolution of the large PylRS active site to accommodate many ncAAs, and the enzyme's anticodon-blind specific recognition of the cognate tRNAPyl make this system highly amenable for GCE purposes. The remarkable polyspecificity of PylRS has been exploited to incorporate >100 different ncAAs into proteins. Here we review the Pyl-OT system and selected GCE applications to examine the properties of an effective OTS.
Collapse
Affiliation(s)
- Ana Crnković
- Department of Molecular Biophysics & Biochemistry, Yale University, New Haven, CT 06520-8114, USA
| | - Tateki Suzuki
- Department of Molecular Biophysics & Biochemistry, Yale University, New Haven, CT 06520-8114, USA
| | - Dieter Söll
- Department of Molecular Biophysics & Biochemistry, Yale University, New Haven, CT 06520-8114, USA
- Department of Chemistry, Yale University, New Haven, CT 06520-8114, USA
| | - Noah M. Reynolds
- Department of Molecular Biophysics & Biochemistry, Yale University, New Haven, CT 06520-8114, USA
| |
Collapse
|
67
|
Cohen S, Arbely E. Single-Plasmid-Based System for Efficient Noncanonical Amino Acid Mutagenesis in Cultured Mammalian Cells. Chembiochem 2016; 17:1008-11. [PMID: 27120490 DOI: 10.1002/cbic.201500681] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2015] [Indexed: 12/24/2022]
Abstract
We describe a new expression system for efficient non-canonical amino acid mutagenesis in cultured mammalian cells by using the pyrrolysine tRNA synthetase/tRNACUA (Pyl) pair. A significant improvement in the incorporation of non-canonical amino acids into proteins was obtained by combining all the required genetic components into a single and compact vector that can be efficiently delivered to different mammalian cell lines by conventional transfection reagents.
Collapse
Affiliation(s)
- Sarit Cohen
- Department of Chemistry, The National Institute for Biotechnology in the Negev, Ben-Gurion University of the Negev, Beer-Sheva, 84105, Israel
| | - Eyal Arbely
- Department of Chemistry, The National Institute for Biotechnology in the Negev, Ben-Gurion University of the Negev, Beer-Sheva, 84105, Israel. .,Department of Life-Sciences, Ben-Gurion University of the Negev, Beer-Sheva, 84105, Israel.
| |
Collapse
|
68
|
Ho JM, Reynolds NM, Rivera K, Connolly M, Guo LT, Ling J, Pappin DJ, Church GM, Söll D. Efficient Reassignment of a Frequent Serine Codon in Wild-Type Escherichia coli. ACS Synth Biol 2016; 5:163-71. [PMID: 26544153 DOI: 10.1021/acssynbio.5b00197] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Expansion of the genetic code through engineering the translation machinery has greatly increased the chemical repertoire of the proteome. This has been accomplished mainly by read-through of UAG or UGA stop codons by the noncanonical aminoacyl-tRNA of choice. While stop codon read-through involves competition with the translation release factors, sense codon reassignment entails competition with a large pool of endogenous tRNAs. We used an engineered pyrrolysyl-tRNA synthetase to incorporate 3-iodo-l-phenylalanine (3-I-Phe) at a number of different serine and leucine codons in wild-type Escherichia coli. Quantitative LC-MS/MS measurements of amino acid incorporation yields carried out in a selected reaction monitoring experiment revealed that the 3-I-Phe abundance at the Ser208AGU codon in superfolder GFP was 65 ± 17%. This method also allowed quantification of other amino acids (serine, 33 ± 17%; phenylalanine, 1 ± 1%; threonine, 1 ± 1%) that compete with 3-I-Phe at both the aminoacylation and decoding steps of translation for incorporation at the same codon position. Reassignments of different serine (AGU, AGC, UCG) and leucine (CUG) codons with the matching tRNA(Pyl) anticodon variants were met with varying success, and our findings provide a guideline for the choice of sense codons to be reassigned. Our results indicate that the 3-iodo-l-phenylalanyl-tRNA synthetase (IFRS)/tRNA(Pyl) pair can efficiently outcompete the cellular machinery to reassign select sense codons in wild-type E. coli.
Collapse
Affiliation(s)
- Joanne M. Ho
- Department
of Genetics, Harvard Medical School, Boston, Massachusetts 02115, United States
| | | | - Keith Rivera
- Cold Spring Harbor Laboratory, Cold
Spring Harbor, New York 11724, United States
| | - Morgan Connolly
- Cold Spring Harbor Laboratory, Cold
Spring Harbor, New York 11724, United States
| | | | | | - Darryl J. Pappin
- Cold Spring Harbor Laboratory, Cold
Spring Harbor, New York 11724, United States
| | - George M. Church
- Department
of Genetics, Harvard Medical School, Boston, Massachusetts 02115, United States
| | | |
Collapse
|
69
|
Ling J, O'Donoghue P, Söll D. Genetic code flexibility in microorganisms: novel mechanisms and impact on physiology. Nat Rev Microbiol 2015; 13:707-721. [PMID: 26411296 DOI: 10.1038/nrmicro3568] [Citation(s) in RCA: 100] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
The genetic code, initially thought to be universal and immutable, is now known to contain many variations, including biased codon usage, codon reassignment, ambiguous decoding and recoding. As a result of recent advances in the areas of genome sequencing, biochemistry, bioinformatics and structural biology, our understanding of genetic code flexibility has advanced substantially in the past decade. In this Review, we highlight the prevalence, evolution and mechanistic basis of genetic code variations in microorganisms, and we discuss how this flexibility of the genetic code affects microbial physiology.
Collapse
Affiliation(s)
- Jiqiang Ling
- Department of Microbiology and Molecular Genetics, University of Texas Health Science Center, Houston, Texas 77030, USA
| | - Patrick O'Donoghue
- Department of Biochemistry, The University of Western Ontario, London, Ontario N6A 5C1, Canada.,Department of Chemistry, The University of Western Ontario, London, Ontario N6A 5C1, Canada
| | - Dieter Söll
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, Connecticut 06520-8114, USA.,Department of Chemistry, Yale University, New Haven, Connecticut 06520-8114, USA
| |
Collapse
|
70
|
Fan C, Xiong H, Reynolds NM, Söll D. Rationally evolving tRNAPyl for efficient incorporation of noncanonical amino acids. Nucleic Acids Res 2015; 43:e156. [PMID: 26250114 PMCID: PMC4678846 DOI: 10.1093/nar/gkv800] [Citation(s) in RCA: 91] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2015] [Accepted: 07/27/2015] [Indexed: 12/29/2022] Open
Abstract
Genetic encoding of noncanonical amino acids (ncAAs) into proteins is a powerful approach to study protein functions. Pyrrolysyl-tRNA synthetase (PylRS), a polyspecific aminoacyl-tRNA synthetase in wide use, has facilitated incorporation of a large number of different ncAAs into proteins to date. To make this process more efficient, we rationally evolved tRNAPyl to create tRNAPyl-opt with six nucleotide changes. This improved tRNA was tested as substrate for wild-type PylRS as well as three characterized PylRS variants (Nϵ-acetyllysyl-tRNA synthetase [AcKRS], 3-iodo-phenylalanyl-tRNA synthetase [IFRS], a broad specific PylRS variant [PylRS-AA]) to incorporate ncAAs at UAG codons in super-folder green fluorescence protein (sfGFP). tRNAPyl-opt facilitated a 5-fold increase in AcK incorporation into two positions of sfGFP simultaneously. In addition, AcK incorporation into two target proteins (Escherichia coli malate dehydrogenase and human histone H3) caused homogenous acetylation at multiple lysine residues in high yield. Using tRNAPyl-opt with PylRS and various PylRS variants facilitated efficient incorporation of six other ncAAs into sfGFP. Kinetic analyses revealed that the mutations in tRNAPyl-opt had no significant effect on the catalytic efficiency and substrate binding of PylRS enzymes. Thus tRNAPyl-opt should be an excellent replacement of wild-type tRNAPyl for future ncAA incorporation by PylRS enzymes.
Collapse
Affiliation(s)
- Chenguang Fan
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, CT 06520-8144, USA
| | - Hai Xiong
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, CT 06520-8144, USA
| | - Noah M Reynolds
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, CT 06520-8144, USA
| | - Dieter Söll
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, CT 06520-8144, USA Department of Chemistry, Yale University, New Haven, CT 06520-8144, USA
| |
Collapse
|
71
|
Mustoe AM, Liu X, Lin PJ, Al-Hashimi HM, Fierke CA, Brooks CL. Noncanonical secondary structure stabilizes mitochondrial tRNA(Ser(UCN)) by reducing the entropic cost of tertiary folding. J Am Chem Soc 2015; 137:3592-9. [PMID: 25705930 PMCID: PMC4399864 DOI: 10.1021/ja5130308] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Mammalian mitochondrial tRNA(Ser(UCN)) (mt-tRNA(Ser)) and pyrrolysine tRNA (tRNA(Pyl)) fold to near-canonical three-dimensional structures despite having noncanonical secondary structures with shortened interhelical loops that disrupt the conserved tRNA tertiary interaction network. How these noncanonical tRNAs compensate for their loss of tertiary interactions remains unclear. Furthermore, in human mt-tRNA(Ser), lengthening the variable loop by the 7472insC mutation reduces mt-tRNA(Ser) concentration in vivo through poorly understood mechanisms and is strongly associated with diseases such as deafness and epilepsy. Using simulations of the TOPRNA coarse-grained model, we show that increased topological constraints encoded by the unique secondary structure of wild-type mt-tRNA(Ser) decrease the entropic cost of folding by ∼2.5 kcal/mol compared to canonical tRNA, offsetting its loss of tertiary interactions. Further simulations show that the pathogenic 7472insC mutation disrupts topological constraints and hence destabilizes the mutant mt-tRNA(Ser) by ∼0.6 kcal/mol relative to wild-type. UV melting experiments confirm that insertion mutations lower mt-tRNA(Ser) melting temperature by 6-9 °C and increase the folding free energy by 0.8-1.7 kcal/mol in a largely sequence- and salt-independent manner, in quantitative agreement with our simulation predictions. Our results show that topological constraints provide a quantitative framework for describing key aspects of RNA folding behavior and also provide the first evidence of a pathogenic mutation that is due to disruption of topological constraints.
Collapse
Affiliation(s)
- Anthony M. Mustoe
- Department of Biophysics, University of Michigan, Ann Arbor, MI 48109-1055, USA
| | - Xin Liu
- Department of Chemistry, University of Michigan, Ann Arbor, MI 48109-1055, USA
| | - Paul J. Lin
- Department of Chemistry, University of Michigan, Ann Arbor, MI 48109-1055, USA
| | - Hashim M. Al-Hashimi
- Departments of Biochemistry and Chemistry, Duke University School of Medicine, Durham, NC, 27710, USA
| | - Carol A. Fierke
- Department of Biophysics, University of Michigan, Ann Arbor, MI 48109-1055, USA
- Department of Chemistry, University of Michigan, Ann Arbor, MI 48109-1055, USA
- Department of Biological Chemistry, University of Michigan, Ann Arbor, MI 48109-1055, USA
| | - Charles L. Brooks
- Department of Biophysics, University of Michigan, Ann Arbor, MI 48109-1055, USA
- Department of Chemistry, University of Michigan, Ann Arbor, MI 48109-1055, USA
| |
Collapse
|
72
|
Reducing the genetic code induces massive rearrangement of the proteome. Proc Natl Acad Sci U S A 2014; 111:17206-11. [PMID: 25404328 DOI: 10.1073/pnas.1420193111] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Expanding the genetic code is an important aim of synthetic biology, but some organisms developed naturally expanded genetic codes long ago over the course of evolution. Less than 1% of all sequenced genomes encode an operon that reassigns the stop codon UAG to pyrrolysine (Pyl), a genetic code variant that results from the biosynthesis of Pyl-tRNA(Pyl). To understand the selective advantage of genetically encoding more than 20 amino acids, we constructed a markerless tRNA(Pyl) deletion strain of Methanosarcina acetivorans (ΔpylT) that cannot decode UAG as Pyl or grow on trimethylamine. Phenotypic defects in the ΔpylT strain were evident in minimal medium containing methanol. Proteomic analyses of wild type (WT) M. acetivorans and ΔpylT cells identified 841 proteins from >7,000 significant peptides detected by MS/MS. Protein production from UAG-containing mRNAs was verified for 19 proteins. Translation of UAG codons was verified by MS/MS for eight proteins, including identification of a Pyl residue in PylB, which catalyzes the first step of Pyl biosynthesis. Deletion of tRNA(Pyl) globally altered the proteome, leading to >300 differentially abundant proteins. Reduction of the genetic code from 21 to 20 amino acids led to significant down-regulation in translation initiation factors, amino acid metabolism, and methanogenesis from methanol, which was offset by a compensatory (100-fold) up-regulation in dimethyl sulfide metabolic enzymes. The data show how a natural proteome adapts to genetic code reduction and indicate that the selective value of an expanded genetic code is related to carbon source range and metabolic efficiency.
Collapse
|
73
|
Abstract
Pyrrolysyl-tRNA synthetase (PylRS) and its cognate tRNA(Pyl) have emerged as ideal translation components for genetic code innovation. Variants of the enzyme facilitate the incorporation >100 noncanonical amino acids (ncAAs) into proteins. PylRS variants were previously selected to acylate N(ε)-acetyl-Lys (AcK) onto tRNA(Pyl). Here, we examine an N(ε)-acetyl-lysyl-tRNA synthetase (AcKRS), which is polyspecific (i.e., active with a broad range of ncAAs) and 30-fold more efficient with Phe derivatives than it is with AcK. Structural and biochemical data reveal the molecular basis of polyspecificity in AcKRS and in a PylRS variant [iodo-phenylalanyl-tRNA synthetase (IFRS)] that displays both enhanced activity and substrate promiscuity over a chemical library of 313 ncAAs. IFRS, a product of directed evolution, has distinct binding modes for different ncAAs. These data indicate that in vivo selections do not produce optimally specific tRNA synthetases and suggest that translation fidelity will become an increasingly dominant factor in expanding the genetic code far beyond 20 amino acids.
Collapse
|
74
|
Yanagisawa T, Umehara T, Sakamoto K, Yokoyama S. Expanded Genetic Code Technologies for Incorporating Modified Lysine at Multiple Sites. Chembiochem 2014; 15:2181-7. [DOI: 10.1002/cbic.201402266] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2014] [Indexed: 01/08/2023]
|
75
|
Meng L, Wang Z, Zhang J, Zhou M, Wu W. Low Energy Conformations and Gas-Phase Acidity and Basicity of Pyrrolysine. J Phys Chem A 2014; 118:7085-95. [DOI: 10.1021/jp503444h] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Affiliation(s)
- Lingbiao Meng
- Research Center of Laser
Fusion, China Academy of Engineering Physics, Mianyang 621900, China
| | - Zhuo Wang
- Research Center of Laser
Fusion, China Academy of Engineering Physics, Mianyang 621900, China
| | - Jicheng Zhang
- Research Center of Laser
Fusion, China Academy of Engineering Physics, Mianyang 621900, China
| | - Minjie Zhou
- Research Center of Laser
Fusion, China Academy of Engineering Physics, Mianyang 621900, China
| | - Weidong Wu
- Research Center of Laser
Fusion, China Academy of Engineering Physics, Mianyang 621900, China
| |
Collapse
|
76
|
Yanagisawa T, Takahashi M, Mukai T, Sato S, Wakamori M, Shirouzu M, Sakamoto K, Umehara T, Yokoyama S. Multiple Site-Specific Installations ofNε-Monomethyl-L-Lysine into Histone Proteins by Cell-Based and Cell-Free Protein Synthesis. Chembiochem 2014; 15:1830-8. [DOI: 10.1002/cbic.201402291] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2014] [Indexed: 12/12/2022]
|
77
|
Zeng Y, Wang W, Liu WR. Towards reassigning the rare AGG codon in Escherichia coli. Chembiochem 2014; 15:1750-4. [PMID: 25044341 DOI: 10.1002/cbic.201400075] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2014] [Indexed: 11/09/2022]
Abstract
The rare AGG codon in Escherichia coli has been reassigned to code non-canonical amino acids (ncAAs) by using the PylRS-tRNA(Pyl)(CCU) pair. When N(ε) -alloc-lysine was used as a PylRS substrate, almost quantitative occupancy of N(ε) -alloc-lysine at an AGG codon site was achieved in minimal medium. ncAAs can be potentially incorporated at the AGG codon with varying efficiencies, depending on their activities towards corresponding enzymes. As AGG is a sense codon, the approach reported here resolves the typical low ncAA incorporation issue that has been associated with ncAA mutagenesis and therefore allows bulk preparation of proteins with site-selectively incorporated ncAAs for applications such as therapeutic protein production.
Collapse
Affiliation(s)
- Yu Zeng
- Department of Chemistry, Texas A&M University, College Station, TX 77843 (USA)
| | | | | |
Collapse
|
78
|
Elliott TS, Townsley FM, Bianco A, Ernst RJ, Sachdeva A, Elsässer SJ, Davis L, Lang K, Pisa R, Greiss S, Lilley KS, Chin JW. Proteome labeling and protein identification in specific tissues and at specific developmental stages in an animal. Nat Biotechnol 2014; 32:465-72. [PMID: 24727715 PMCID: PMC4107302 DOI: 10.1038/nbt.2860] [Citation(s) in RCA: 144] [Impact Index Per Article: 13.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2013] [Accepted: 02/26/2014] [Indexed: 01/01/2023]
Abstract
Identifying the proteins synthesized at specific times in cells of interest in an animal will facilitate the study of cellular functions and dynamic processes. Here we introduce stochastic orthogonal recoding of translation with chemoselective modification (SORT-M) to address this challenge. SORT-M involves modifying cells to express an orthogonal aminoacyl-tRNA synthetase/tRNA pair to enable the incorporation of chemically modifiable analogs of amino acids at diverse sense codons in cells in rich media. We apply SORT-M to Drosophila melanogaster fed standard food to label and image proteins in specific tissues at precise developmental stages with diverse chemistries, including cyclopropene-tetrazine inverse electron demand Diels-Alder cycloaddition reactions. We also use SORT-M to identify proteins synthesized in germ cells of the fly ovary without dissection. SORT-M will facilitate the definition of proteins synthesized in specific sets of cells to study development, and learning and memory in flies, and may be extended to other animals.
Collapse
Affiliation(s)
- Thomas S Elliott
- 1] Medical Research Council Laboratory of Molecular Biology, Cambridge, England, UK. [2]
| | - Fiona M Townsley
- 1] Medical Research Council Laboratory of Molecular Biology, Cambridge, England, UK. [2]
| | - Ambra Bianco
- 1] Medical Research Council Laboratory of Molecular Biology, Cambridge, England, UK. [2]
| | - Russell J Ernst
- Medical Research Council Laboratory of Molecular Biology, Cambridge, England, UK
| | - Amit Sachdeva
- Medical Research Council Laboratory of Molecular Biology, Cambridge, England, UK
| | - Simon J Elsässer
- Medical Research Council Laboratory of Molecular Biology, Cambridge, England, UK
| | - Lloyd Davis
- Medical Research Council Laboratory of Molecular Biology, Cambridge, England, UK
| | - Kathrin Lang
- Medical Research Council Laboratory of Molecular Biology, Cambridge, England, UK
| | - Rudolf Pisa
- 1] Medical Research Council Laboratory of Molecular Biology, Cambridge, England, UK. [2] Department of Chemistry, University of Cambridge, Cambridge, England, UK
| | - Sebastian Greiss
- Medical Research Council Laboratory of Molecular Biology, Cambridge, England, UK
| | - Kathryn S Lilley
- Department of Biochemistry, University of Cambridge, Cambridge, England, UK
| | - Jason W Chin
- 1] Medical Research Council Laboratory of Molecular Biology, Cambridge, England, UK. [2] Department of Chemistry, University of Cambridge, Cambridge, England, UK
| |
Collapse
|
79
|
Optimized orthogonal translation of unnatural amino acids enables spontaneous protein double-labelling and FRET. Nat Chem 2014; 6:393-403. [PMID: 24755590 DOI: 10.1038/nchem.1919] [Citation(s) in RCA: 224] [Impact Index Per Article: 20.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2013] [Accepted: 03/12/2014] [Indexed: 12/13/2022]
Abstract
The ability to introduce different biophysical probes into defined positions in target proteins will provide powerful approaches for interrogating protein structure, function and dynamics. However, methods for site-specifically incorporating multiple distinct unnatural amino acids are hampered by their low efficiency. Here we provide a general solution to this challenge by developing an optimized orthogonal translation system that uses amber and evolved quadruplet-decoding transfer RNAs to encode numerous pairs of distinct unnatural amino acids into a single protein expressed in Escherichia coli with a substantial increase in efficiency over previous methods. We also provide a general strategy for labelling pairs of encoded unnatural amino acids with different probes via rapid and spontaneous reactions under physiological conditions. We demonstrate the utility of our approach by genetically directing the labelling of several pairs of sites in calmodulin with fluorophores and probing protein structure and dynamics by Förster resonance energy transfer.
Collapse
|
80
|
Wan W, Tharp JM, Liu WR. Pyrrolysyl-tRNA synthetase: an ordinary enzyme but an outstanding genetic code expansion tool. BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 2014; 1844:1059-70. [PMID: 24631543 DOI: 10.1016/j.bbapap.2014.03.002] [Citation(s) in RCA: 317] [Impact Index Per Article: 28.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/17/2014] [Revised: 03/01/2014] [Accepted: 03/05/2014] [Indexed: 11/16/2022]
Abstract
The genetic incorporation of the 22nd proteinogenic amino acid, pyrrolysine (Pyl) at amber codon is achieved by the action of pyrrolysyl-tRNA synthetase (PylRS) together with its cognate tRNA(Pyl). Unlike most aminoacyl-tRNA synthetases, PylRS displays high substrate side chain promiscuity, low selectivity toward its substrate α-amine, and low selectivity toward the anticodon of tRNA(Pyl). These unique but ordinary features of PylRS as an aminoacyl-tRNA synthetase allow the Pyl incorporation machinery to be easily engineered for the genetic incorporation of more than 100 non-canonical amino acids (NCAAs) or α-hydroxy acids into proteins at amber codon and the reassignment of other codons such as ochre UAA, opal UGA, and four-base AGGA codons to code NCAAs.
Collapse
Affiliation(s)
- Wei Wan
- Department of Chemistry, Texas A&M University, College Station, TX 77845, USA
| | - Jeffery M Tharp
- Department of Chemistry, Texas A&M University, College Station, TX 77845, USA
| | - Wenshe R Liu
- Department of Chemistry, Texas A&M University, College Station, TX 77845, USA.
| |
Collapse
|
81
|
Xiao H, Chatterjee A, Choi SH, Bajjuri KM, Sinha SC, Schultz PG. Genetic incorporation of multiple unnatural amino acids into proteins in mammalian cells. Angew Chem Int Ed Engl 2013; 52:14080-3. [PMID: 24353230 PMCID: PMC11360239 DOI: 10.1002/anie.201308137] [Citation(s) in RCA: 162] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2013] [Indexed: 08/31/2024]
Abstract
An enhanced suppression system enables the expression of proteins in mammalian cells incorporating one unnatural amino acid (UAA) into multiple sites, as well as two different UAAs into distinct sites in a protein of interest. The utility of this technology was demonstrated by generating a full-length antibody, site-specifically conjugated to a drug and a fluorophore, and characterizing its activity in vitro (see picture). Picture was cropped to fit the available space.
Collapse
Affiliation(s)
- Han Xiao
- Department of Chemistry and the Skaggs Institute for Chemical Biology, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, CA 92037 (USA) http://schultz.scripps.edu/
| | | | | | | | | | | |
Collapse
|
82
|
Xiao H, Chatterjee A, Choi SH, Bajjuri KM, Sinha SC, Schultz PG. Genetic Incorporation of Multiple Unnatural Amino Acids into Proteins in Mammalian Cells. Angew Chem Int Ed Engl 2013. [DOI: 10.1002/ange.201308137] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
83
|
Lacey VK, Louie GV, Noel JP, Wang L. Expanding the library and substrate diversity of the pyrrolysyl-tRNA synthetase to incorporate unnatural amino acids containing conjugated rings. Chembiochem 2013; 14:2100-5. [PMID: 24019075 DOI: 10.1002/cbic.201300400] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2013] [Indexed: 11/08/2022]
Abstract
Unnatural amino acids (UAAs) containing conjugated ring systems are of interest for their optical properties. Until now, such bulky and planar UAAs could not be incorporated into proteins using the pyrrolysyl tRNA/synthetase shuttling system. Using the "small-intelligent" approach to construct a highly diverse library, we evolved novel synthetases specific for two such UAAs and incorporated them into proteins in E. coli and mammalian cells.
Collapse
Affiliation(s)
- Vanessa K Lacey
- Jack H. Skirball Center for Chemical Biology & Proteomics, The Salk Institute for Biological Studies, 10010 N. Torrey Pines Road, La Jolla, CA 92037 (USA)
| | | | | | | |
Collapse
|
84
|
Krishnakumar R, Prat L, Aerni HR, Ling J, Merryman C, Glass JI, Rinehart J, Söll D. Transfer RNA misidentification scrambles sense codon recoding. Chembiochem 2013; 14:1967-72. [PMID: 24000185 DOI: 10.1002/cbic.201300444] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2013] [Indexed: 12/22/2022]
Abstract
Sense codon recoding is the basis for genetic code expansion with more than two different noncanonical amino acids. It requires an unused (or rarely used) codon, and an orthogonal tRNA synthetase:tRNA pair with the complementary anticodon. The Mycoplasma capricolum genome contains just six CGG arginine codons, without a dedicated tRNA(Arg). We wanted to reassign this codon to pyrrolysine by providing M. capricolum with pyrrolysyl-tRNA synthetase, a synthetic tRNA with a CCG anticodon (tRNA(Pyl)(CCG)), and the genes for pyrrolysine biosynthesis. Here we show that tRNA(Pyl)(CCG) is efficiently recognized by the endogenous arginyl-tRNA synthetase, presumably at the anticodon. Mass spectrometry revealed that in the presence of tRNA(Pyl)(CCG), CGG codons are translated as arginine. This result is not unexpected as most tRNA synthetases use the anticodon as a recognition element. The data suggest that tRNA misidentification by endogenous aminoacyl-tRNA synthetases needs to be overcome for sense codon recoding.
Collapse
Affiliation(s)
- Radha Krishnakumar
- Synthetic Biology and Bioenergy, J. Craig Venter Institute, 9704 Medical Center Drive, Rockville, MD 20850 (USA)
| | | | | | | | | | | | | | | |
Collapse
|
85
|
Niu W, Schultz PG, Guo J. An expanded genetic code in mammalian cells with a functional quadruplet codon. ACS Chem Biol 2013; 8:1640-5. [PMID: 23662731 DOI: 10.1021/cb4001662] [Citation(s) in RCA: 95] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
We have utilized in vitro evolution to identify tRNA variants with significantly enhanced activity for the incorporation of unnatural amino acids into proteins in response to a quadruplet codon in both bacterial and mammalian cells. This approach will facilitate the creation of an optimized and standardized system for the genetic incorporation of unnatural amino acids using quadruplet codons, which will allow the biosynthesis of biopolymers that contain multiple unnatural building blocks.
Collapse
Affiliation(s)
- Wei Niu
- Department of Chemistry, University of Nebraska-Lincoln, Lincoln, Nebraska 68588,
United States
| | - Peter G. Schultz
- Department
of Chemistry, The Scripps Research Institute, La Jolla, California
92037, United States
| | - Jiantao Guo
- Department of Chemistry, University of Nebraska-Lincoln, Lincoln, Nebraska 68588,
United States
| |
Collapse
|
86
|
Chatterjee A, Sun SB, Furman JL, Xiao H, Schultz PG. A versatile platform for single- and multiple-unnatural amino acid mutagenesis in Escherichia coli. Biochemistry 2013; 52:1828-37. [PMID: 23379331 DOI: 10.1021/bi4000244] [Citation(s) in RCA: 251] [Impact Index Per Article: 20.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
To site-specifically incorporate an unnatural amino acid (UAA) into target proteins in Escherichia coli, we use a suppressor plasmid that provides an engineered suppressor tRNA and an aminoacyl-tRNA synthetase (aaRS) specific for the UAA of interest. The continuous drive to further improve UAA incorporation efficiency in E. coli has resulted in several generations of suppressor plasmids. Here we describe a new, highly efficient suppressor plasmid, pUltra, harboring a single copy each of the tRNA and aaRS expression cassettes that exhibits higher suppression activity than its predecessors. This system is able to efficiently incorporate up to three UAAs within the same protein at levels up to 30% of the level of wild-type protein expression. Its unique origin of replication (CloDF13) and antibiotic resistance marker (spectinomycin) allow pUltra to be used in conjunction with the previously reported pEVOL suppressor plasmid, each encoding a distinct tRNA/aaRS pair, to simultaneously insert two different UAAs into the same protein. We demonstrate the utility of this system by efficiently incorporating two bio-orthogonal UAAs containing keto and azido side chains into ketosteroid isomerase and subsequently derivatizing these amino acid residues with two distinct fluorophores, capable of Förster resonance energy transfer interaction. Finally, because of its minimal composition, two different tRNA/aaRS pairs were encoded in pUltra, allowing the generation of a single plasmid capable of dual suppression. The high suppression efficiency and the ability to harbor multiple tRNA/aaRS pairs make pUltra a useful system for conducting single- and multiple-UAA mutagenesis in E. coli.
Collapse
Affiliation(s)
- Abhishek Chatterjee
- Department of Chemistry and Skaggs Institute for Chemical Biology, The Scripps Research Institute , 10550 North Torrey Pines Road, La Jolla, California 92037, United States
| | | | | | | | | |
Collapse
|
87
|
Abstract
Despite the fact that the genetic code is known to vary between organisms in rare cases, it is believed that in the lifetime of a single cell the code is stable. We found Acetohalobium arabaticum cells grown on pyruvate genetically encode 20 amino acids, but in the presence of trimethylamine (TMA), A. arabaticum dynamically expands its genetic code to 21 amino acids including pyrrolysine (Pyl). A. arabaticum is the only known organism that modulates the size of its genetic code in response to its environment and energy source. The gene cassette pylTSBCD, required to biosynthesize and genetically encode UAG codons as Pyl, is present in the genomes of 24 anaerobic archaea and bacteria. Unlike archaeal Pyl-decoding organisms that constitutively encode Pyl, we observed that A. arabaticum controls Pyl encoding by down-regulating transcription of the entire Pyl operon under growth conditions lacking TMA, to the point where no detectable Pyl-tRNA(Pyl) is made in vivo. Pyl-decoding archaea adapted to an expanded genetic code by minimizing TAG codon frequency to typically ~5% of ORFs, whereas Pyl-decoding bacteria (~20% of ORFs contain in-frame TAGs) regulate Pyl-tRNA(Pyl) formation and translation of UAG by transcriptional deactivation of genes in the Pyl operon. We further demonstrate that Pyl encoding occurs in a bacterium that naturally encodes the Pyl operon, and identified Pyl residues by mass spectrometry in A. arabaticum proteins including two methylamine methyltransferases.
Collapse
|
88
|
O'Donoghue P, Prat L, Heinemann IU, Ling J, Odoi K, Liu WR, Söll D. Near-cognate suppression of amber, opal and quadruplet codons competes with aminoacyl-tRNAPyl for genetic code expansion. FEBS Lett 2012; 586:3931-7. [PMID: 23036644 DOI: 10.1016/j.febslet.2012.09.033] [Citation(s) in RCA: 66] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2012] [Revised: 09/19/2012] [Accepted: 09/20/2012] [Indexed: 10/27/2022]
Abstract
Over 300 amino acids are found in proteins in nature, yet typically only 20 are genetically encoded. Reassigning stop codons and use of quadruplet codons emerged as the main avenues for genetically encoding non-canonical amino acids (NCAAs). Canonical aminoacyl-tRNAs with near-cognate anticodons also read these codons to some extent. This background suppression leads to 'statistical protein' that contains some natural amino acid(s) at a site intended for NCAA. We characterize near-cognate suppression of amber, opal and a quadruplet codon in common Escherichia coli laboratory strains and find that the PylRS/tRNA(Pyl) orthogonal pair cannot completely outcompete contamination by natural amino acids.
Collapse
Affiliation(s)
- Patrick O'Donoghue
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, CT 06520, United States
| | | | | | | | | | | | | |
Collapse
|
89
|
Yu Z, Pan Y, Wang Z, Wang J, Lin Q. Genetically encoded cyclopropene directs rapid, photoclick-chemistry-mediated protein labeling in mammalian cells. Angew Chem Int Ed Engl 2012; 51:10600-4. [PMID: 22997015 DOI: 10.1002/anie.201205352] [Citation(s) in RCA: 176] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2012] [Revised: 08/21/2012] [Indexed: 12/21/2022]
Abstract
We just click: Genetic incorporation of a cyclopropene amino acid CpK (see scheme) site-specifically into proteins in E. coli and mammalian cells was achieved using an orthogonal aminoacyl-tRNA synthetase/tRNA(CUA) pair (CpKRS/MbtRNA(CUA)). Cyclopropene exhibited fast reaction kinetics in the photoclick reaction and allowed rapid (ca. 2 min) labeling of proteins.
Collapse
Affiliation(s)
- Zhipeng Yu
- Department of Chemistry, State University of New York at Buffalo, Buffalo, NY 14260, USA
| | | | | | | | | |
Collapse
|
90
|
Genetically Encoded Cyclopropene Directs Rapid, Photoclick-Chemistry-Mediated Protein Labeling in Mammalian Cells. Angew Chem Int Ed Engl 2012. [DOI: 10.1002/ange.201205352] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
91
|
Evolution of multiple, mutually orthogonal prolyl-tRNA synthetase/tRNA pairs for unnatural amino acid mutagenesis in Escherichia coli. Proc Natl Acad Sci U S A 2012; 109:14841-6. [PMID: 22927411 DOI: 10.1073/pnas.1212454109] [Citation(s) in RCA: 93] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The site-specific incorporation of unnatural amino acids (UAAs) into proteins in living cells relies on an engineered tRNA/aminoacyl-tRNA synthetase (tRNA/aaRS) pair, orthogonal to the host cell, to deliver the UAA of choice in response to a unique nonsense or frameshift codon. Here we report the generation of mutually orthogonal prolyl-tRNA/prolyl-tRNA synthase (ProRS) pairs derived from an archaebacterial ancestor for use in Escherichia coli. By reprogramming the anticodon-binding pocket of Pyrococcus horikoshii ProRS (PhProRS), we were able to identify synthetase variants that recognize engineered Archaeoglobus fulgidus prolyl-tRNAs (Af-tRNA(Pro)) with three different anticodons: CUA, AGGG, and CUAG. Several of these evolved PhProRSs show specificity toward a particular anticodon variant of Af-tRNA(Pro), whereas others are promiscuous. Further evolution of the Af-tRNA(Pro) led to a variant exhibiting significantly improved amber suppression efficiency. Availability of a prolyl-tRNA/aaRS pair should enable site-specific incorporation of proline analogs and other N-modified UAAs into proteins in E. coli. The evolution of mutually orthogonal prolyl-tRNA/ProRS pairs demonstrates the plasticity of the tRNA-aaRS interface and should facilitate the incorporation of multiple, distinct UAAs into proteins.
Collapse
|
92
|
Jiang R, Krzycki JA. PylSn and the homologous N-terminal domain of pyrrolysyl-tRNA synthetase bind the tRNA that is essential for the genetic encoding of pyrrolysine. J Biol Chem 2012; 287:32738-46. [PMID: 22851181 DOI: 10.1074/jbc.m112.396754] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Pyrrolysine is represented by an amber codon in genes encoding proteins such as the methylamine methyltransferases present in some Archaea and Bacteria. Pyrrolysyl-tRNA synthetase (PylRS) attaches pyrrolysine to the amber-suppressing tRNA(Pyl). Archaeal PylRS, encoded by pylS, has a catalytic C-terminal domain but an N-terminal region of unknown function and structure. In Bacteria, homologs of the N- and C-terminal regions of archaeal PylRS are respectively encoded by pylSn and pylSc. We show here that wild type PylS from Methanosarcina barkeri and PylSn from Desulfitobacterium hafniense bind tRNA(Pyl) in EMSA with apparent K(d) values of 0.12 and 0.13 μM, respectively. Truncation of the N-terminal region of PylS eliminated detectable tRNA(Pyl) binding as measured by EMSA, but not catalytic activity. A chimeric protein with PylSn fused to the N terminus of truncated PylS regained EMSA-detectable tRNA(Pyl) binding. PylSn did not bind other D. hafniense tRNAs, nor did the competition by the Escherichia coli tRNA pool interfere with tRNA(Pyl) binding. Further indicating the specificity of PylSn interaction with tRNA(Pyl), substitutions of conserved residues in tRNA(Pyl) in the variable loop, D stem, and T stem and loop had significant impact in binding, whereas those having base changes in the acceptor stem or anticodon stem and loop still retained the ability to complex with PylSn. PylSn and the N terminus of PylS comprise the protein superfamily TIGR03129. The members of this family are not similar to any known RNA-binding protein, but our results suggest their common function involves specific binding of tRNA(Pyl).
Collapse
Affiliation(s)
- Ruisheng Jiang
- Ohio State Biochemistry Program, The Ohio State University, Columbus, Ohio 43210, USA
| | | |
Collapse
|
93
|
Martin F. Fifteen years of the yeast three-hybrid system: RNA-protein interactions under investigation. Methods 2012; 58:367-75. [PMID: 22841566 DOI: 10.1016/j.ymeth.2012.07.016] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2011] [Revised: 05/04/2012] [Accepted: 07/13/2012] [Indexed: 01/14/2023] Open
Abstract
In 1996, the Wickens and the Kuhl labs developed the yeast three-hybrid system independently. By expressing two chimeric proteins and one chimeric RNA molecule in Saccharomyces cerevisiae, this method allows in vivo monitoring of RNA-protein interactions by measuring the expression levels of HIS3 and LacZ reporter genes. Specific RNA targets have been used to characterize unknown RNA binding proteins. Previously described RNA binding proteins have also been used as bait to select new RNA targets. Finally, this method has been widely used to investigate or confirm previously suspected RNA-protein interactions. However, this method falls short in some aspects, such as RNA display and selection of false positive molecules. This review will summarize the results obtained with this method from the past 15years, as well as on recent efforts to improve its specificity.
Collapse
Affiliation(s)
- Franck Martin
- Architecture et Réactivité de l'ARN, Université de Strasbourg, CNRS, Institut de Biologie Moléculaire et Cellulaire, Strasbourg CEDEX, France.
| |
Collapse
|
94
|
Neumann H. Rewiring translation - Genetic code expansion and its applications. FEBS Lett 2012; 586:2057-64. [PMID: 22710184 DOI: 10.1016/j.febslet.2012.02.002] [Citation(s) in RCA: 67] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2011] [Revised: 02/02/2012] [Accepted: 02/02/2012] [Indexed: 12/19/2022]
Abstract
With few minor variations, the genetic code is universal to all forms of life on our planet. It is difficult to imagine that one day organisms might exist that use an entirely different code to translate the information of their genome. Recent developments in the field of synthetic biology, however, have opened the gate to their creation. The genetic code of several organisms has been expanded by the heterologous expression of evolved aminoacyl-tRNA synthetase/tRNA(CUA) pairs that mediate the incorporation of unnatural amino acids in response to amber codons. These UAAs introduce exciting new features into proteins, such as spectroscopic probes, UV-inducible crosslinkers, and functional groups for bioorthogonal conjugations or posttranslational modifications. Orthogonal ribosomes provide a parallel translational machinery in Escherichia coli that has lost its evolutionary constraints. Evolved variants of these ribosomes translate amber or quadruplet codons with massively enhanced efficiency. Here, I review these recent developments emphasizing their tremendous potential to facilitate biochemical and cell biological studies.
Collapse
Affiliation(s)
- Heinz Neumann
- Institute for Microbiology and Genetics, Justus-von-Liebig Weg 11, Georg-August University Göttingen, 37077 Göttingen, Germany.
| |
Collapse
|
95
|
Yanagisawa T, Hino N, Iraha F, Mukai T, Sakamoto K, Yokoyama S. Wide-range protein photo-crosslinking achieved by a genetically encoded Nε-(benzyloxycarbonyl)lysine derivative with a diazirinyl moiety. MOLECULAR BIOSYSTEMS 2012; 8:1131-5. [DOI: 10.1039/c2mb05321g] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
|
96
|
Takimoto JK, Dellas N, Noel JP, Wang L. Stereochemical basis for engineered pyrrolysyl-tRNA synthetase and the efficient in vivo incorporation of structurally divergent non-native amino acids. ACS Chem Biol 2011; 6:733-43. [PMID: 21545173 PMCID: PMC3137230 DOI: 10.1021/cb200057a] [Citation(s) in RCA: 87] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Unnatural amino acids (Uaas) can be translationally incorporated into proteins in vivo using evolved tRNA/aminoacyl-tRNA synthetase (RS) pairs, affording chemistries inaccessible when restricted to the 20 natural amino acids. To date, most evolved RSs aminoacylate Uaas chemically similar to the native substrate of the wild-type RS; these conservative changes limit the scope of Uaa applications. Here, we adapt Methanosarcina mazei PylRS to charge a noticeably disparate Uaa, O-methyl-l-tyrosine (Ome). In addition, the 1.75 Å X-ray crystal structure of the evolved PylRS complexed with Ome and a non-hydrolyzable ATP analogue reveals the stereochemical determinants for substrate selection. Catalytically synergistic active site mutations remodel the substrate-binding cavity, providing a shortened but wider active site. In particular, mutation of Asn346, a residue critical for specific selection and turnover of the Pyl chemical core, accommodates different side chains while the central role of Asn346 in aminoacylation is rescued through compensatory hydrogen bonding provided by A302T. This multifaceted analysis provides a new starting point for engineering PylRS to aminoacylate a significantly more diverse selection of Uaas than previously anticipated.
Collapse
Affiliation(s)
| | - Nikki Dellas
- The Jack H. Skirball Center for Chemical Biology & Proteomics
| | - Joseph P. Noel
- The Jack H. Skirball Center for Chemical Biology & Proteomics
- Howard Hughes Medical Institute, The Salk Institute for Biological Studies, 10010 North Torrey Pines Road, La Jolla, California 92037, United States
| | - Lei Wang
- The Jack H. Skirball Center for Chemical Biology & Proteomics
| |
Collapse
|
97
|
Fekner T, Chan MK. The pyrrolysine translational machinery as a genetic-code expansion tool. Curr Opin Chem Biol 2011; 15:387-91. [PMID: 21507706 PMCID: PMC3487393 DOI: 10.1016/j.cbpa.2011.03.007] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2011] [Revised: 03/14/2011] [Accepted: 03/15/2011] [Indexed: 11/20/2022]
Abstract
The discovery of pyrrolysine not only expanded the set of the known proteinogenic amino acids but also revealed unusual features of its encoding mechanism. The engagement of a canonical stop codon and a unique aminoacyl-tRNA synthetase-tRNA pair that can be used to accommodate a broad range of unnatural amino acids while maintaining strict orthogonality in a variety of prokaryotic and eukaryotic expression systems has proven an invaluable combination. Within a few years since its properties were elucidated, the pyrrolysine translational machinery has become a popular choice for the synthesis of recombinant proteins bearing a wide variety of otherwise hard-to-introduce functional groups. It is also central to the development of new synthetic strategies that rely on stop-codon suppression.
Collapse
Affiliation(s)
- Tomasz Fekner
- Department of Chemistry, The Ohio State University, 100 W 18th Ave., Columbus, OH 43210, USA
| | - Michael K. Chan
- Departments of Chemistry and Biochemistry, The Ohio State University, 484 W 12th Ave., Columbus, OH 43210, USA., Phone: (+1) 614 292 8375., Fax: (+1) 614 292 6773., Homepage: http://www.chemistry.ohio-state.edu/~chan/
| |
Collapse
|
98
|
Gaston MA, Jiang R, Krzycki JA. Functional context, biosynthesis, and genetic encoding of pyrrolysine. Curr Opin Microbiol 2011; 14:342-9. [PMID: 21550296 PMCID: PMC3119745 DOI: 10.1016/j.mib.2011.04.001] [Citation(s) in RCA: 69] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2011] [Revised: 04/01/2011] [Accepted: 04/06/2011] [Indexed: 01/14/2023]
Abstract
In Methanosarcina spp., amber codons in methylamine methyltransferase genes are translated as the 22nd amino acid, pyrrolysine. The responsible pyl genes plus amber-codon containing methyltransferase genes have been identified in four archaeal and five bacterial genera, including one human pathogen. In Escherichia coli, the recombinant pylBCD gene products biosynthesize pyrrolysine from two molecules of lysine and the pylTS gene products direct pyrrolysine incorporation into protein. In the proposed biosynthetic pathway, PylB forms methylornithine from lysine, which is joined to another lysine by PylC, and oxidized to pyrrolysine by PylD. Structures of the catalytic domain of pyrrolysyl-tRNA synthetase (archaeal PylS or bacterial PylSc) revealed binding sites for tRNAPyl and pyrrolysine. PylS and tRNAPyl are now being exploited as an orthogonal pair in recombinant systems for introduction of useful modified amino acids into proteins.
Collapse
Affiliation(s)
- Marsha A Gaston
- Department of Microbiology, 484 West 12th Avenue, The Ohio State University, Columbus, OH 43210, United States
| | | | | |
Collapse
|
99
|
Virdee S, Ye Y, Nguyen DP, Komander D, Chin JW. Engineered diubiquitin synthesis reveals Lys29-isopeptide specificity of an OTU deubiquitinase. Nat Chem Biol 2010; 6:750-7. [PMID: 20802491 DOI: 10.1038/nchembio.426] [Citation(s) in RCA: 263] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2010] [Accepted: 07/15/2010] [Indexed: 01/01/2023]
Abstract
Ubiquitination is a reversible post-translational modification that regulates a myriad of eukaryotic functions. Our ability to study the effects of ubiquitination is often limited by the inaccessibility of homogeneously ubiquitinated proteins. In particular, elucidating the roles of the so-called 'atypical' ubiquitin chains (chains other than Lys48- or Lys63-linked ubiquitin), which account for a large fraction of ubiquitin polymers, is challenging because the enzymes for their biosynthesis are unknown. Here we combine genetic code expansion, intein chemistry and chemoselective ligations to synthesize 'atypical' ubiquitin chains. We solve the crystal structure of Lys6-linked diubiquitin, which is distinct from that of structurally characterized ubiquitin chains, providing a molecular basis for the different biological functions this linkage may regulate. Moreover, we profile a panel containing 10% of the known human deubiquitinases on Lys6- and Lys29-linked ubiquitin and discover that TRABID cleaves the Lys29 linkage 40-fold more efficiently than the Lys63 linkage.
Collapse
Affiliation(s)
- Satpal Virdee
- Medical Research Council Laboratory of Molecular Biology, Cambridge, England, United Kingdom
| | | | | | | | | |
Collapse
|
100
|
Wan W, Huang Y, Wang Z, Russell WK, Pai PJ, Russell DH, Liu WR. A facile system for genetic incorporation of two different noncanonical amino acids into one protein in Escherichia coli. Angew Chem Int Ed Engl 2010; 49:3211-4. [PMID: 20340150 DOI: 10.1002/anie.201000465] [Citation(s) in RCA: 187] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Wei Wan
- Department of Chemistry, Texas A& M University, College Station, TX 77843, USA
| | | | | | | | | | | | | |
Collapse
|