51
|
Horstick EJ, Bayleyen Y, Sinclair JL, Burgess HA. Search strategy is regulated by somatostatin signaling and deep brain photoreceptors in zebrafish. BMC Biol 2017; 15:4. [PMID: 28122559 PMCID: PMC5267475 DOI: 10.1186/s12915-016-0346-2] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2016] [Accepted: 12/22/2016] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Animals use sensory cues to efficiently locate resources, but when sensory information is insufficient, they may rely on internally coded search strategies. Despite the importance of search behavior, there is limited understanding of the underlying neural mechanisms in vertebrates. RESULTS Here, we report that loss of illumination initiates sophisticated light-search behavior in larval zebrafish. Using three-dimensional tracking, we show that at the onset of darkness larvae swim in a helical trajectory that is spatially restricted in the horizontal plane, before gradually transitioning to an outward movement profile. Local and outward swim patterns display characteristic features of area-restricted and roaming search strategies, differentially enhancing phototaxis to nearby and remote sources of light. Retinal signaling is only required to initiate area-restricted search, implying that photoreceptors within the brain drive the transition to the roaming search state. Supporting this, orthopediaA mutant larvae manifest impaired transition to roaming search, a phenotype which is recapitulated by loss of the non-visual opsin opn4a and somatostatin signaling. CONCLUSION These findings define distinct neuronal pathways for area-restricted and roaming search behaviors and clarify how internal drives promote goal-directed activity.
Collapse
Affiliation(s)
- Eric J Horstick
- Division of Developmental Biology, Eunice Kennedy Shriver National Institute of Child Health and Human Development, Bethesda, MD, 20892, USA.
| | - Yared Bayleyen
- Division of Developmental Biology, Eunice Kennedy Shriver National Institute of Child Health and Human Development, Bethesda, MD, 20892, USA
| | - Jennifer L Sinclair
- Division of Developmental Biology, Eunice Kennedy Shriver National Institute of Child Health and Human Development, Bethesda, MD, 20892, USA
| | - Harold A Burgess
- Division of Developmental Biology, Eunice Kennedy Shriver National Institute of Child Health and Human Development, Bethesda, MD, 20892, USA.
| |
Collapse
|
52
|
Nüßer LK, Skulovich O, Hartmann S, Seiler TB, Cofalla C, Schuettrumpf H, Hollert H, Salomons E, Ostfeld A. A sensitive biomarker for the detection of aquatic contamination based on behavioral assays using zebrafish larvae. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2016; 133:271-280. [PMID: 27479771 DOI: 10.1016/j.ecoenv.2016.07.033] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/14/2016] [Revised: 07/21/2016] [Accepted: 07/22/2016] [Indexed: 06/06/2023]
Abstract
An effective biological early warning system for the detection of water contamination should employ undemanding species that rapidly react to the presence of contaminants in their environment. The demonstrated reaction should be comprehensible and unambiguously evidential of the contamination event. This study utilized 96h post fertilization zebrafish larvae and tested their behavioral response to acute exposure to low concentrations of cadmium chloride (CdCl2) (5.0, 2.5, 1.25, 0.625mg/L) and permethrin (0.05, 0.029, 0.017, 0.01μg/L). We hypothesize that the number of larvae that show advanced trajectories in a group corresponds with water contamination, as the latter triggers avoidance behavior in the organisms. The proportion of advanced trajectories in the control and treated groups during the first minute of darkness was designated as a segregation parameter. It was parametrized and a threshold value was set using one CdCl2 trial and then applied to the remaining CdCl2 and permethrin replicates. For all cases, the method allowed distinguishing between the control and treated groups within two cycles of light: dark. The calculated parameter was statistically significantly different between the treated and control groups, except for the lowest CdCl2 concentration (0.625mg/L) in one replicate. This proof-of-concept study shows the potential of the proposed methodology for utilization as part of a multispecies biomonitoring system.
Collapse
Affiliation(s)
- Leonie K Nüßer
- Institute of for Environmental Research, RWTH Aachen University, Worringerweg 1, 52074 Aachen, Germany
| | - Olya Skulovich
- Faculty of Civil and Environmental Engineering, The Technion - IIT, Haifa 32000, Israel
| | - Sarah Hartmann
- Research Group of Ecology and Behavioral Biology, Institute of Biology, Department of Chemistry and Biology, University of Siegen, Adolf-Reichwein-Str. 2, 57068 Siegen, Germany
| | - Thomas-Benjamin Seiler
- Institute of for Environmental Research, RWTH Aachen University, Worringerweg 1, 52074 Aachen, Germany
| | - Catrina Cofalla
- Institute of Hydraulic Engineering and Water Resources Management, RWTH Aachen University, Mies-van-der-Rohe-Straße 17, 52056 Aachen, Germany
| | - Holger Schuettrumpf
- Institute of Hydraulic Engineering and Water Resources Management, RWTH Aachen University, Mies-van-der-Rohe-Straße 17, 52056 Aachen, Germany
| | - Henner Hollert
- Institute of for Environmental Research, RWTH Aachen University, Worringerweg 1, 52074 Aachen, Germany
| | - Elad Salomons
- OptiWater, 6 Amikam Israel St., Haifa 3438561, Israel. http://www.optiwater.com
| | - Avi Ostfeld
- Faculty of Civil and Environmental Engineering, The Technion - IIT, Haifa 32000, Israel.
| |
Collapse
|
53
|
Pita D, Collignon B, Halloy J, Fernández-Juricic E. Collective behaviour in vertebrates: a sensory perspective. ROYAL SOCIETY OPEN SCIENCE 2016; 3:160377. [PMID: 28018616 PMCID: PMC5180114 DOI: 10.1098/rsos.160377] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/26/2016] [Accepted: 10/19/2016] [Indexed: 05/06/2023]
Abstract
Collective behaviour models can predict behaviours of schools, flocks, and herds. However, in many cases, these models make biologically unrealistic assumptions in terms of the sensory capabilities of the organism, which are applied across different species. We explored how sensitive collective behaviour models are to these sensory assumptions. Specifically, we used parameters reflecting the visual coverage and visual acuity that determine the spatial range over which an individual can detect and interact with conspecifics. Using metric and topological collective behaviour models, we compared the classic sensory parameters, typically used to model birds and fish, with a set of realistic sensory parameters obtained through physiological measurements. Compared with the classic sensory assumptions, the realistic assumptions increased perceptual ranges, which led to fewer groups and larger group sizes in all species, and higher polarity values and slightly shorter neighbour distances in the fish species. Overall, classic visual sensory assumptions are not representative of many species showing collective behaviour and constrain unrealistically their perceptual ranges. More importantly, caution must be exercised when empirically testing the predictions of these models in terms of choosing the model species, making realistic predictions, and interpreting the results.
Collapse
Affiliation(s)
- Diana Pita
- Department of Biological Sciences, Purdue University, West Lafayette, IN, USA
| | - Bertrand Collignon
- Université Paris Diderot, Sorbonne Paris Cité, LIED, UMR 8236, 75013 Paris, France
| | - José Halloy
- Université Paris Diderot, Sorbonne Paris Cité, LIED, UMR 8236, 75013 Paris, France
| | | |
Collapse
|
54
|
Horstick EJ, Mueller T, Burgess HA. Motivated state control in larval zebrafish: behavioral paradigms and anatomical substrates. J Neurogenet 2016; 30:122-32. [PMID: 27293113 DOI: 10.1080/01677063.2016.1177048] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
Over the course of each day, animals prioritize different objectives. Immediate goals may reflect fluctuating internal homeostatic demands, prompting individuals to seek out energy supplies or warmth. At other times, the environment may present temporary challenges or opportunities. Homeostatic demands and environmental signals often elicit persistent changes in an animal's behavior to meet needs and challenges over extended periods of time. These changes reflect the underlying motivational state of the animal. The larval zebrafish has been established as an effective genetically tractable vertebrate system to study neural circuits for sensory-motor reflexes. Fewer studies have exploited zebrafish to study brain circuits that control motivated behavior. In part this is because appropriate conceptual frameworks, anatomical knowledge, and behavioral paradigms are not yet well established. This review sketches a general conceptual framework for studying motivated state control in animal models, how this applies to larval zebrafish, and the current knowledge on neuroanatomical substrates for state control in this model.
Collapse
Affiliation(s)
- Eric J Horstick
- a Division of Developmental Biology , Eunice Kennedy Shriver National Institute of Child Health and Human Development , Bethesda , MD , USA
| | - Thomas Mueller
- b Division of Biology , Kansas State University , Manhattan , KS , USA
| | - Harold A Burgess
- a Division of Developmental Biology , Eunice Kennedy Shriver National Institute of Child Health and Human Development , Bethesda , MD , USA
| |
Collapse
|
55
|
|
56
|
A Naturally-Derived Compound Schisandrin B Enhanced Light Sensation in the pde6c Zebrafish Model of Retinal Degeneration. PLoS One 2016; 11:e0149663. [PMID: 26930483 PMCID: PMC4773124 DOI: 10.1371/journal.pone.0149663] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2015] [Accepted: 02/03/2016] [Indexed: 11/19/2022] Open
Abstract
Retinal degeneration is often progressive. This feature has provided a therapeutic window for intervention that may extend functional vision in patients. Even though this approach is feasible, few promising drug candidates are available. The scarcity of new drugs has motivated research to discover novel compounds through different sources. One such example is Schisandrin B (SchB), an active component isolated from the five-flavor fruit (Fructus Schisandrae) that is postulated in traditional Chinese medicines to exert prophylactic visual benefit. This SchB benefit was investigated in this study in pde6cw59, a zebrafish retinal-degeneration model. In this model, the pde6c gene (phosphodiesterase 6C, cGMP-specific, cone, alpha prime) carried a mutation which caused cone degeneration. This altered the local environment and caused the bystander rods to degenerate too. To test SchB on the pde6cw59 mutants, a treatment concentration was first determined that would not cause morphological defects, and would initiate known physiological response. Then, the mutants were treated with the optimized SchB concentration before the appearance of retinal degeneration at 3 days postfertilization (dpf). The light sensation of animals was evaluated at 6 dpf by the visual motor response (VMR), a visual startle that could be initiated by drastic light onset and offset. The results show that the VMR of pde6cw59 mutants towards light onset was enhanced by the SchB treatment, and that the initial phase of the enhancement was primarily mediated through the mutants’ eyes. Further immunostaining analysis indicates that the treatment specifically reduced the size of the abnormally large rods. These observations implicate an interesting hypothesis: that the morphologically-improved rods drive the observed VMR enhancement. Together, these investigations have identified a possible visual benefit of SchB on retinal degeneration, a benefit that can potentially be further developed to extend functional vision in patients.
Collapse
|
57
|
Samuel A, Rubinstein AM, Azar TT, Ben-Moshe Livne Z, Kim SH, Inbal A. Six3 regulates optic nerve development via multiple mechanisms. Sci Rep 2016; 6:20267. [PMID: 26822689 PMCID: PMC4731751 DOI: 10.1038/srep20267] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2015] [Accepted: 12/30/2015] [Indexed: 12/05/2022] Open
Abstract
Malformations of the optic nerve lead to reduced vision or even blindness. During optic nerve development, retinal ganglion cell (RGC) axons navigate across the retina, exit the eye to the optic stalk (OS), and cross the diencephalon midline at the optic chiasm en route to their brain targets. Many signalling molecules have been implicated in guiding various steps of optic nerve pathfinding, however much less is known about transcription factors regulating this process. Here we show that in zebrafish, reduced function of transcription factor Six3 results in optic nerve hypoplasia and a wide repertoire of RGC axon pathfinding errors. These abnormalities are caused by multiple mechanisms, including abnormal eye and OS patterning and morphogenesis, abnormal expression of signalling molecules both in RGCs and in their environment and anatomical deficiency in the diencephalic preoptic area, where the optic chiasm normally forms. Our findings reveal new roles for Six3 in eye development and are consistent with known phenotypes of reduced SIX3 function in humans. Hence, the new zebrafish model for Six3 loss of function furthers our understanding of the mechanisms governing optic nerve development and Six3-mediated eye and forebrain malformations.
Collapse
Affiliation(s)
- Anat Samuel
- Department of Medical Neurobiology, Institute for Medical Research - Israel-Canada, The Hebrew University-Hadassah Medical School, Jerusalem, Israel
| | - Ariel M. Rubinstein
- Department of Medical Neurobiology, Institute for Medical Research - Israel-Canada, The Hebrew University-Hadassah Medical School, Jerusalem, Israel
| | - Tehila T. Azar
- Department of Medical Neurobiology, Institute for Medical Research - Israel-Canada, The Hebrew University-Hadassah Medical School, Jerusalem, Israel
| | - Zohar Ben-Moshe Livne
- Department of Neurobiology, The George S. Wise Faculty of Life Sciences and Sagol School of Neuroscience, Tel Aviv University, Tel Aviv, Israel
| | - Seok-Hyung Kim
- Department of Biological Sciences, Vanderbilt University, Nashville, Tennessee, USA
| | - Adi Inbal
- Department of Medical Neurobiology, Institute for Medical Research - Israel-Canada, The Hebrew University-Hadassah Medical School, Jerusalem, Israel
| |
Collapse
|
58
|
|
59
|
Gao Y, Zhang G, Jelfs B, Carmer R, Venkatraman P, Ghadami M, Brown SA, Pang CP, Leung YF, Chan RHM, Zhang M. Computational classification of different wild-type zebrafish strains based on their variation in light-induced locomotor response. Comput Biol Med 2015; 69:1-9. [PMID: 26688204 DOI: 10.1016/j.compbiomed.2015.11.012] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2015] [Revised: 11/17/2015] [Accepted: 11/18/2015] [Indexed: 11/24/2022]
Abstract
Zebrafish larvae display a rapid and characteristic swimming behaviour after abrupt light onset or offset. This light-induced locomotor response (LLR) has been widely used for behavioural research and drug screening. However, the locomotor responses have long been shown to be different between different wild-type (WT) strains. Thus, it is critical to define the differences in the WT LLR to facilitate accurate interpretation of behavioural data. In this investigation, we used support vector machine (SVM) models to classify LLR data collected from three WT strains: AB, TL and TLAB (a hybrid of AB and TL), during early embryogenesis, from 3 to 9 days post-fertilisation (dpf). We analysed both the complete dataset and a subset of the data during the first 30after light change. This initial period of activity is substantially driven by vision, and is also known as the visual motor response (VMR). The analyses have resulted in three major conclusions: First, the LLR is different between the three WT strains, and at different developmental stages. Second, the distinguishable information in the VMR is comparable to, if not better than, the full dataset for classification purposes. Third, the distinguishable information of WT strains in the light-onset response differs from that in the light-offset response. While the classification accuracies were higher for the light-offset than light-onset response when using the complete LLR dataset, a reverse trend was observed when using a shorter VMR dataset. Together, our results indicate that one should use caution when extrapolating interpretations of LLR/VMR obtained from one WT strain to another.
Collapse
Affiliation(s)
- Yuan Gao
- Department of Electronic Engineering, City University of Hong Kong, Tat Chee Avenue, Kowloon, Hong Kong
| | - Gaonan Zhang
- Department of Biological Sciences, Purdue University, 915W. State Street, West Lafayette, IN 47907, USA
| | - Beth Jelfs
- Department of Electronic Engineering, City University of Hong Kong, Tat Chee Avenue, Kowloon, Hong Kong
| | - Robert Carmer
- Department of Electronic Engineering, City University of Hong Kong, Tat Chee Avenue, Kowloon, Hong Kong; Department of Statistics, Purdue University, 250N. University Street, West Lafayette, IN 47907, USA
| | - Prahatha Venkatraman
- Department of Biological Sciences, Purdue University, 915W. State Street, West Lafayette, IN 47907, USA
| | - Mohammad Ghadami
- Department of Electronic Engineering, City University of Hong Kong, Tat Chee Avenue, Kowloon, Hong Kong
| | - Skye A Brown
- Department of Biological Sciences, Purdue University, 915W. State Street, West Lafayette, IN 47907, USA
| | - Chi Pui Pang
- Department of Ophthalmology and Visual Sciences, Chinese University of Hong Kong, Hong Kong
| | - Yuk Fai Leung
- Department of Biological Sciences, Purdue University, 915W. State Street, West Lafayette, IN 47907, USA; Department of Biochemistry and Molecular Biology, Indiana University School of Medicine-Lafayette, 625 Harrison Street, West Lafayette, IN 47907, USA.
| | - Rosa H M Chan
- Department of Electronic Engineering, City University of Hong Kong, Tat Chee Avenue, Kowloon, Hong Kong.
| | - Mingzhi Zhang
- Joint Shantou International Eye Center, Shantou University & the Chinese University of Hong Kong, Shantou, China.
| |
Collapse
|
60
|
Faria M, Garcia-Reyero N, Padrós F, Babin PJ, Sebastián D, Cachot J, Prats E, Arick Ii M, Rial E, Knoll-Gellida A, Mathieu G, Le Bihanic F, Escalon BL, Zorzano A, Soares AMVM, Raldúa D. Zebrafish Models for Human Acute Organophosphorus Poisoning. Sci Rep 2015; 5:15591. [PMID: 26489395 PMCID: PMC4614985 DOI: 10.1038/srep15591] [Citation(s) in RCA: 60] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2015] [Accepted: 09/29/2015] [Indexed: 12/13/2022] Open
Abstract
Terrorist use of organophosphorus-based nerve agents and toxic industrial chemicals against civilian populations constitutes a real threat, as demonstrated by the terrorist attacks in Japan in the 1990 s or, even more recently, in the Syrian civil war. Thus, development of more effective countermeasures against acute organophosphorus poisoning is urgently needed. Here, we have generated and validated zebrafish models for mild, moderate and severe acute organophosphorus poisoning by exposing zebrafish larvae to different concentrations of the prototypic organophosphorus compound chlorpyrifos-oxon. Our results show that zebrafish models mimic most of the pathophysiological mechanisms behind this toxidrome in humans, including acetylcholinesterase inhibition, N-methyl-D-aspartate receptor activation, and calcium dysregulation as well as inflammatory and immune responses. The suitability of the zebrafish larvae to in vivo high-throughput screenings of small molecule libraries makes these models a valuable tool for identifying new drugs for multifunctional drug therapy against acute organophosphorus poisoning.
Collapse
Affiliation(s)
- Melissa Faria
- Department of Biology and CESAM, University of Aveiro, Portugal.,IDÆA-CSIC, Jordi Girona 18, 08034, Barcelona, Spain
| | - Natàlia Garcia-Reyero
- Environmental Laboratory, US Army Engineer Research and Development Center, Vicksburg, MS, USA.,Institute for Genomics, Biocomputing &Biotechnology (IGBB), Mississippi State University, Starkville, Mississippi, USA
| | - Francesc Padrós
- Pathological Diagnostic Service in Fish, Universitat Autònoma de Barcelona, 08190 Bellaterra, Spain
| | - Patrick J Babin
- Rare Diseases, Genetic and Metabolism (MRGM), Université de Bordeaux, EA 4576, F-3340 Talence, France
| | - David Sebastián
- Institute for Research in Biomedicine (IRB Barcelona), 08028 Barcelona, Spain.,Departament de Bioquímica i Biologia Molecular, Facultat de Biologia, Universitat de Barcelona, 08028 Barcelona, Spain.,Instituto de Salud Carlos III, Centro de Investigación Biomédica en Red de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM), 08017 Barcelona, Spain
| | - Jérôme Cachot
- EPOC, UMR CNRS 5805, Université de Bordeaux, 33405 Talence, France
| | - Eva Prats
- CID-CSIC, Jordi Girona 18, 08034, Barcelona, Spain
| | - Mark Arick Ii
- Institute for Genomics, Biocomputing & Biotechnology (IGBB), Mississippi State University, Starkville, Mississippi, USA
| | - Eduardo Rial
- Department of Cellular and Molecular Medicine, CIB-CSIC, Ramiro de Maetzu 9, 28040, Madrid, Spain
| | - Anja Knoll-Gellida
- Rare Diseases, Genetic and Metabolism (MRGM), Université de Bordeaux, EA 4576, F-3340 Talence, France
| | - Guilaine Mathieu
- Rare Diseases, Genetic and Metabolism (MRGM), Université de Bordeaux, EA 4576, F-3340 Talence, France
| | | | - B Lynn Escalon
- Environmental Laboratory, US Army Engineer Research and Development Center, Vicksburg, MS, USA
| | - Antonio Zorzano
- Institute for Research in Biomedicine (IRB Barcelona), 08028 Barcelona, Spain.,Departament de Bioquímica i Biologia Molecular, Facultat de Biologia, Universitat de Barcelona, 08028 Barcelona, Spain.,Instituto de Salud Carlos III, Centro de Investigación Biomédica en Red de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM), 08017 Barcelona, Spain
| | | | | |
Collapse
|
61
|
Liu Y, Carmer R, Zhang G, Venkatraman P, Brown SA, Pang CP, Zhang M, Ma P, Leung YF. Statistical Analysis of Zebrafish Locomotor Response. PLoS One 2015; 10:e0139521. [PMID: 26437184 PMCID: PMC4593604 DOI: 10.1371/journal.pone.0139521] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2015] [Accepted: 09/13/2015] [Indexed: 11/19/2022] Open
Abstract
Zebrafish larvae display rich locomotor behaviour upon external stimulation. The movement can be simultaneously tracked from many larvae arranged in multi-well plates. The resulting time-series locomotor data have been used to reveal new insights into neurobiology and pharmacology. However, the data are of large scale, and the corresponding locomotor behavior is affected by multiple factors. These issues pose a statistical challenge for comparing larval activities. To address this gap, this study has analyzed a visually-driven locomotor behaviour named the visual motor response (VMR) by the Hotelling's T-squared test. This test is congruent with comparing locomotor profiles from a time period. Different wild-type (WT) strains were compared using the test, which shows that they responded differently to light change at different developmental stages. The performance of this test was evaluated by a power analysis, which shows that the test was sensitive for detecting differences between experimental groups with sample numbers that were commonly used in various studies. In addition, this study investigated the effects of various factors that might affect the VMR by multivariate analysis of variance (MANOVA). The results indicate that the larval activity was generally affected by stage, light stimulus, their interaction, and location in the plate. Nonetheless, different factors affected larval activity differently over time, as indicated by a dynamical analysis of the activity at each second. Intriguingly, this analysis also shows that biological and technical repeats had negligible effect on larval activity. This finding is consistent with that from the Hotelling's T-squared test, and suggests that experimental repeats can be combined to enhance statistical power. Together, these investigations have established a statistical framework for analyzing VMR data, a framework that should be generally applicable to other locomotor data with similar structure.
Collapse
Affiliation(s)
- Yiwen Liu
- Department of Statistics, University of Georgia, Athens, Georgia, United States of America
| | - Robert Carmer
- Department of Biological Sciences, Purdue University, West Lafayette, Indiana, United States of America; Department of Statistics, Purdue University, West Lafayette, Indiana, United States of America
| | - Gaonan Zhang
- Department of Biological Sciences, Purdue University, West Lafayette, Indiana, United States of America
| | - Prahatha Venkatraman
- Department of Biological Sciences, Purdue University, West Lafayette, Indiana, United States of America
| | - Skye Ashton Brown
- Department of Biological Sciences, Purdue University, West Lafayette, Indiana, United States of America
| | - Chi-Pui Pang
- Department of Ophthalmology and Visual Sciences, Chinese University of Hong Kong, Hong Kong, China
| | - Mingzhi Zhang
- Joint Shantou International Eye Center, Shantou University & the Chinese University of Hong Kong, Shantou, China
| | - Ping Ma
- Department of Statistics, University of Georgia, Athens, Georgia, United States of America
| | - Yuk Fai Leung
- Department of Biological Sciences, Purdue University, West Lafayette, Indiana, United States of America; Department of Biochemistry and Molecular Biology, Indiana University School of Medicine Lafayette, West Lafayette, Indiana, United States of America
| |
Collapse
|
62
|
Jarema KA, Hunter DL, Shaffer RM, Behl M, Padilla S. Acute and developmental behavioral effects of flame retardants and related chemicals in zebrafish. Neurotoxicol Teratol 2015; 52:194-209. [PMID: 26348672 DOI: 10.1016/j.ntt.2015.08.010] [Citation(s) in RCA: 122] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2015] [Revised: 08/06/2015] [Accepted: 08/31/2015] [Indexed: 12/27/2022]
Abstract
As polybrominated diphenyl ethers are phased out, numerous compounds are emerging as potential replacement flame retardants for use in consumer and electronic products. Little is known, however, about the neurobehavioral toxicity of these replacements. This study evaluated the neurobehavioral effects of acute or developmental exposure to t-butylphenyl diphenyl phosphate (BPDP), 2-ethylhexyl diphenyl phosphate (EHDP), isodecyl diphenyl phosphate (IDDP), isopropylated phenyl phosphate (IPP), tricresyl phosphate (TMPP; also abbreviated TCP), triphenyl phosphate (TPHP; also abbreviated TPP), tetrabromobisphenol A (TBBPA), tris (2-chloroethyl) phosphate (TCEP), tris (1,3-dichloroisopropyl) phosphate (TDCIPP; also abbreviated TDCPP), tri-o-cresyl phosphate (TOCP), and 2,2-,4,4'-tetrabromodiphenyl ether (BDE-47) in zebrafish (Danio rerio) larvae. Larvae (n≈24 per dose per compound) were exposed to test compounds (0.4-120 μM) at sub-teratogenic concentrations either developmentally or acutely, and locomotor activity was assessed at 6 days post fertilization. When given developmentally, all chemicals except BPDP, IDDP and TBBPA produced behavioral effects. When given acutely, all chemicals produced behavioral effects, with TPHP, TBBPA, EHDP, IPP, and BPDP eliciting the most effects at the most concentrations. The results indicate that these replacement flame retardants may have developmental or pharmacological effects on the vertebrate nervous system.
Collapse
Affiliation(s)
- Kimberly A Jarema
- Toxicology Assessment Division NHEERL, U.S. Environmental Protection Agency, Research Triangle Park, NC, USA
| | - Deborah L Hunter
- Integrated Systems Toxicology Division, NHEERL, U.S. Environmental Protection Agency, Research Triangle Park, NC, USA
| | - Rachel M Shaffer
- Integrated Systems Toxicology Division, NHEERL, U.S. Environmental Protection Agency, Research Triangle Park, NC, USA; Curriculum in Toxicology, University of North Carolina, School of Medicine, Chapel Hill, NC, USA
| | - Mamta Behl
- National Toxicology Program, National Institute of Environmental Health Sciences, Research Triangle Park, NC, USA
| | - Stephanie Padilla
- Integrated Systems Toxicology Division, NHEERL, U.S. Environmental Protection Agency, Research Triangle Park, NC, USA.
| |
Collapse
|
63
|
Moravec CE, Li E, Maaswinkel H, Kritzer MF, Weng W, Sirotkin HI. Rest mutant zebrafish swim erratically and display atypical spatial preferences. Behav Brain Res 2015; 284:238-48. [PMID: 25712696 DOI: 10.1016/j.bbr.2015.02.026] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2014] [Revised: 02/09/2015] [Accepted: 02/13/2015] [Indexed: 10/24/2022]
Abstract
The Rest/Nrsf transcriptional repressor modulates expression of a large set of neural specific genes. Many of these target genes have well characterized roles in nervous system processes including development, plasticity and synaptogenesis. However, the impact of Rest-mediated transcriptional regulation on behavior has been understudied due in part to the embryonic lethality of the mouse knockout. To investigate the requirement for Rest in behavior, we employed the zebrafish rest mutant to explore a range of behaviors in adults and larva. Adult rest mutants of both sexes showed abnormal behaviors in a novel environment including increased vertical swimming, erratic swimming patterns and a proclivity for the tank walls. Adult males also had diminished reproductive success. At 6 days post fertilization (dpf), rest mutant larva were hypoactive, but displayed normal evoked responses to light and sound stimuli. Overall, these results provide evidence that rest dysfunction produces atypical swimming patterns and preferences in adults, and reduced locomotor activity in larvae. This study provides the first behavioral analysis of rest mutants and reveals specific behaviors that are modulated by Rest.
Collapse
Affiliation(s)
- Cara E Moravec
- Department of Neurobiology and Behavior, Stony Brook University, Stony Brook, NY 11794, USA; Genetics Gradate Program Stony Brook University, Stony Brook, NY 11794, USA
| | - Edward Li
- Department of Neurobiology and Behavior, Stony Brook University, Stony Brook, NY 11794, USA
| | | | - Mary F Kritzer
- Department of Neurobiology and Behavior, Stony Brook University, Stony Brook, NY 11794, USA
| | - Wei Weng
- xyZfish, 2200 Smithtown Ave, Ronkonkoma, NY 11779, USA
| | - Howard I Sirotkin
- Department of Neurobiology and Behavior, Stony Brook University, Stony Brook, NY 11794, USA; Genetics Gradate Program Stony Brook University, Stony Brook, NY 11794, USA.
| |
Collapse
|
64
|
Johnston J, Ding H, Seibel SH, Esposti F, Lagnado L. Rapid mapping of visual receptive fields by filtered back projection: application to multi-neuronal electrophysiology and imaging. J Physiol 2014; 592:4839-54. [PMID: 25172952 PMCID: PMC4259530 DOI: 10.1113/jphysiol.2014.276642] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Neurons in the visual system vary widely in the spatiotemporal properties of their receptive fields (RFs), and understanding these variations is key to elucidating how visual information is processed. We present a new approach for mapping RFs based on the filtered back projection (FBP), an algorithm used for tomographic reconstructions. To estimate RFs, a series of bars were flashed across the retina at pseudo-random positions and at a minimum of five orientations. We apply this method to retinal neurons and show that it can accurately recover the spatial RF and impulse response of ganglion cells recorded on a multi-electrode array. We also demonstrate its utility for in vivo imaging by mapping the RFs of an array of bipolar cell synapses expressing a genetically encoded Ca2+ indicator. We find that FBP offers several advantages over the commonly used spike-triggered average (STA): (i) ON and OFF components of a RF can be separated; (ii) the impulse response can be reconstructed at sample rates of 125 Hz, rather than the refresh rate of a monitor; (iii) FBP reveals the response properties of neurons that are not evident using STA, including those that display orientation selectivity, or fire at low mean spike rates; and (iv) the FBP method is fast, allowing the RFs of all the bipolar cell synaptic terminals in a field of view to be reconstructed in under 4 min. Use of the FBP will benefit investigations of the visual system that employ electrophysiology or optical reporters to measure activity across populations of neurons.
Collapse
Affiliation(s)
- Jamie Johnston
- MRC Laboratory of Molecular Biology, Francis Crick Avenue, Cambridge, CB2 0QH, UK Sussex Neuroscience, School of Life Sciences, University of Sussex, Brighton, BN1 9QG, UK
| | - Huayu Ding
- MRC Laboratory of Molecular Biology, Francis Crick Avenue, Cambridge, CB2 0QH, UK
| | - Sofie H Seibel
- MRC Laboratory of Molecular Biology, Francis Crick Avenue, Cambridge, CB2 0QH, UK Sussex Neuroscience, School of Life Sciences, University of Sussex, Brighton, BN1 9QG, UK
| | - Federico Esposti
- MRC Laboratory of Molecular Biology, Francis Crick Avenue, Cambridge, CB2 0QH, UK
| | - Leon Lagnado
- MRC Laboratory of Molecular Biology, Francis Crick Avenue, Cambridge, CB2 0QH, UK Sussex Neuroscience, School of Life Sciences, University of Sussex, Brighton, BN1 9QG, UK
| |
Collapse
|
65
|
Robles E, Laurell E, Baier H. The retinal projectome reveals brain-area-specific visual representations generated by ganglion cell diversity. Curr Biol 2014; 24:2085-2096. [PMID: 25155513 DOI: 10.1016/j.cub.2014.07.080] [Citation(s) in RCA: 118] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2014] [Revised: 07/29/2014] [Accepted: 07/31/2014] [Indexed: 11/29/2022]
Abstract
BACKGROUND Visual information is transmitted to the vertebrate brain exclusively via the axons of retinal ganglion cells (RGCs). The functional diversity of RGCs generates multiple representations of the visual environment that are transmitted to several brain areas. However, in no vertebrate species has a complete wiring diagram of RGC axonal projections been constructed. We employed sparse genetic labeling and in vivo imaging of the larval zebrafish to generate a cellular-resolution map of projections from the retina to the brain. RESULTS Our data define 20 stereotyped axonal projection patterns, the majority of which innervate multiple brain areas. Morphometric analysis of pre- and postsynaptic RGC structure revealed more than 50 structural RGC types with unique combinations of dendritic and axonal morphologies, exceeding current estimates of RGC diversity in vertebrates. These single-cell projection mapping data indicate that specific projection patterns are nonuniformly specified in the retina to generate retinotopically biased visual maps throughout the brain. The retinal projectome also successfully predicted a functional subdivision of the pretectum. CONCLUSIONS Our data indicate that RGC projection patterns are precisely coordinated to generate brain-area-specific visual representations originating from RGCs with distinct dendritic morphologies and topographic distributions.
Collapse
Affiliation(s)
- Estuardo Robles
- Max Planck Institute of Neurobiology, Am Klopferspitz 18, 82152 Martinsried, Germany.
| | - Eva Laurell
- Max Planck Institute of Neurobiology, Am Klopferspitz 18, 82152 Martinsried, Germany
| | - Herwig Baier
- Max Planck Institute of Neurobiology, Am Klopferspitz 18, 82152 Martinsried, Germany
| |
Collapse
|
66
|
Bruni G, Lakhani P, Kokel D. Discovering novel neuroactive drugs through high-throughput behavior-based chemical screening in the zebrafish. Front Pharmacol 2014; 5:153. [PMID: 25104936 PMCID: PMC4109429 DOI: 10.3389/fphar.2014.00153] [Citation(s) in RCA: 66] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2014] [Accepted: 06/11/2014] [Indexed: 01/11/2023] Open
Abstract
Most neuroactive drugs were discovered through unexpected behavioral observations. Systematic behavioral screening is inefficient in most model organisms. But, automated technologies are enabling a new phase of discovery-based research in central nervous system (CNS) pharmacology. Researchers are using large-scale behavior-based chemical screens in zebrafish to discover compounds with new structures, targets, and functions. These compounds are powerful tools for understanding CNS signaling pathways. Substantial differences between human and zebrafish biology will make it difficult to translate these discoveries to clinical medicine. However, given the molecular genetic similarities between humans and zebrafish, it is likely that some of these compounds will have translational utility. We predict that the greatest new successes in CNS drug discovery will leverage many model systems, including in vitro assays, cells, rodents, and zebrafish.
Collapse
Affiliation(s)
- Giancarlo Bruni
- Cardiovascular Research Center, Massachusetts General Hospital and Harvard Medical School Charlestown, MA, USA
| | - Parth Lakhani
- Cardiovascular Research Center, Massachusetts General Hospital and Harvard Medical School Charlestown, MA, USA
| | - David Kokel
- Cardiovascular Research Center, Massachusetts General Hospital and Harvard Medical School Charlestown, MA, USA
| |
Collapse
|
67
|
Gao Y, Chan RHM, Chow TWS, Zhang L, Bonilla S, Pang CP, Zhang M, Leung YF. A High-Throughput Zebrafish Screening Method for Visual Mutants by Light-Induced Locomotor Response. IEEE/ACM TRANSACTIONS ON COMPUTATIONAL BIOLOGY AND BIOINFORMATICS 2014; 11:693-701. [PMID: 26356340 DOI: 10.1109/tcbb.2014.2306829] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
Normal and visually-impaired zebrafish larvae have differentiable light-induced locomotor response (LLR), which is composed of visual and non-visual components. It is recently demonstrated that differences in the acute phase of the LLR, also known as the visual motor response (VMR), can be utilized to evaluate new eye drugs. However, most of the previous studies focused on the average LLR activity of a particular genotype, which left information that could address differences in individual zebrafish development unattended. In this study, machine learning techniques were employed to distinguish not only zebrafish larvae of different genotypes, but also different batches, based on their response to light stimuli. This approach allows us to perform efficient high-throughput zebrafish screening with relatively simple preparations. Following the general machine learning framework, some discriminative features were first extracted from the behavioral data. Both unsupervised and supervised learning algorithms were implemented for the classification of zebrafish of different genotypes and batches. The accuracy of the classification in genotype was over 80 percent and could achieve up to 95 percent in some cases. The results obtained shed light on the potential of using machine learning techniques for analyzing behavioral data of zebrafish, which may enhance the reliability of high-throughput drug screening.
Collapse
|
68
|
Chhetri J, Jacobson G, Gueven N. Zebrafish--on the move towards ophthalmological research. Eye (Lond) 2014; 28:367-80. [PMID: 24503724 PMCID: PMC3983641 DOI: 10.1038/eye.2014.19] [Citation(s) in RCA: 115] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2013] [Accepted: 01/15/2014] [Indexed: 12/15/2022] Open
Abstract
Millions of people are affected by visual impairment and blindness globally, and the prevalence of vision loss is likely to increase as we are living longer. However, many ocular diseases remain poorly controlled due to lack of proper understanding of the pathogenesis and the corresponding lack of effective therapies. Consequently, there is a major need for animal models that closely mirror the human eye pathology and at the same time allow higher-throughput drug screening approaches. In this context, zebrafish as an animal model organism not only address these needs but can in many respects reflect the human situation better than the current rodent models. Over the past decade, zebrafish have become an established model to study a variety of human diseases and are more recently becoming a valuable tool for the study of human ophthalmological disorders. Many human ocular diseases such as cataract, glaucoma, diabetic retinopathy, and age-related macular degeneration have already been modelled in zebrafish. In addition, zebrafish have become an attractive model for pre-clinical drug toxicity testing and are now increasingly used by scientists worldwide for the discovery of novel treatment approaches. This review presents the advantages and uses of zebrafish for ophthalmological research.
Collapse
Affiliation(s)
- J Chhetri
- School of Pharmacy, University of Tasmania, Hobart, TAS, Australia
| | - G Jacobson
- School of Pharmacy, University of Tasmania, Hobart, TAS, Australia
| | - N Gueven
- School of Pharmacy, University of Tasmania, Hobart, TAS, Australia
| |
Collapse
|
69
|
Antinociceptive effects of buprenorphine in zebrafish larvae: An alternative for rodent models to study pain and nociception? Appl Anim Behav Sci 2014. [DOI: 10.1016/j.applanim.2013.12.001] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
70
|
Zhao J, Xu T, Yin DQ. Locomotor activity changes on zebrafish larvae with different 2,2',4,4'-tetrabromodiphenyl ether (PBDE-47) embryonic exposure modes. CHEMOSPHERE 2014; 94:53-61. [PMID: 24080000 DOI: 10.1016/j.chemosphere.2013.09.010] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/30/2012] [Revised: 08/22/2013] [Accepted: 09/02/2013] [Indexed: 06/02/2023]
Abstract
Polybrominated diphenyl ethers (PBDEs) are widely used flame retardants and are banned around the world as potent environmental contaminants. PBDE-47 is the most concerned PBDE with its environmental prevalence and various toxicity characteristics including neurotoxicity. In this paper, we studied larval zebrafish behavioral alterations caused by PBDE-47 neurotoxicity. The light-dark cycle stimulation was used to investigate the locomotor changes of zebrafish larvae at different ages (4-6 day post-fertilization, dpf) after PBDE-47 exposure (5, 50, 500 μg L(-1)). Three exposure modes, namely continuous exposure, early pulse exposure and interval exposure, were adopted to assess and compare the impacts of exposure modes on larval zebrafish locomotion. Our results showed that locomotor effects upon PBDE exposure depended on the specific exposure mode studied. In the early pulse exposure mode, the locomotion of zebrafish larvae did not change significantly at all PBDE-47 concentrations tested. In contrast, for both the continuous exposure and interval exposure modes, the highest dose of PBDE-47 (500 μg L(-1)) elicited pronounced hypoactivity at 5 dpf during dark periods except for the initial one. However, at 6 dpf, hypoactivity was only observed in the continuously exposed zebrafish larvae (to an even higher degree compared to 5 dpf), but not in the interval exposure treatment group. Our results suggested that the conventional, continuous exposure mode might not be enough to evaluate the toxicity of chemicals in the real environments.
Collapse
Affiliation(s)
- Jing Zhao
- Key Laboratory of Yangtze River Water Environment, Ministry of Education, College of Environmental Science and Technology, Tongji University, Shanghai 200092, China
| | | | | |
Collapse
|
71
|
Emran F, Dowling JE. Circadian Rhythms and Vision in Zebrafish. THE RETINA AND CIRCADIAN RHYTHMS 2014:171-193. [DOI: 10.1007/978-1-4614-9613-7_9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/01/2023]
|
72
|
Shi Q, Stell WK. Die Fledermaus: regarding optokinetic contrast sensitivity and light-adaptation, chicks are mice with wings. PLoS One 2013; 8:e75375. [PMID: 24098693 PMCID: PMC3787091 DOI: 10.1371/journal.pone.0075375] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2013] [Accepted: 08/14/2013] [Indexed: 01/27/2023] Open
Abstract
BACKGROUND Through adaptation, animals can function visually under an extremely broad range of light intensities. Light adaptation starts in the retina, through shifts in photoreceptor sensitivity and kinetics plus modulation of visual processing in retinal circuits. Although considerable research has been conducted on retinal adaptation in nocturnal species with rod-dominated retinas, such as the mouse, little is known about how cone-dominated avian retinas adapt to changes in mean light intensity. METHODOLOGY/PRINCIPAL FINDINGS We used the optokinetic response to characterize contrast sensitivity (CS) in the chick retina as a function of spatial frequency and temporal frequency at different mean light intensities. We found that: 1) daytime, cone-driven CS was tuned to spatial frequency; 2) nighttime, presumably rod-driven CS was tuned to temporal frequency and spatial frequency; 3) daytime, presumably cone-driven CS at threshold intensity was invariant with temporal and spatial frequency; and 4) daytime photopic CS was invariant with clock time. CONCLUSION/SIGNIFICANCE Light- and dark-adaptational changes in CS were investigated comprehensively for the first time in the cone-dominated retina of an avian, diurnal species. The chick retina, like the mouse retina, adapts by using a "day/night" or "cone/rod" switch in tuning preference during changes in lighting conditions. The chick optokinetic response is an attractive model for noninvasive, behavioral studies of adaptation in retinal circuitry in health and disease.
Collapse
Affiliation(s)
- Qing Shi
- Neuroscience Graduate Program, University of Calgary Faculty of Medicine, Calgary, Alberta, Canada
| | - William K. Stell
- Department of Cell Biology and Anatomy, and Department of Surgery, and Hotchkiss Brain Institute and Alberta Children’s Hospital Research Institute; University of Calgary Faculty of Medicine, Calgary, Alberta, Canada
| |
Collapse
|
73
|
Nikolaev A, Leung KM, Odermatt B, Lagnado L. Synaptic mechanisms of adaptation and sensitization in the retina. Nat Neurosci 2013; 16:934-41. [PMID: 23685718 PMCID: PMC3924174 DOI: 10.1038/nn.3408] [Citation(s) in RCA: 62] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2013] [Accepted: 04/24/2013] [Indexed: 12/30/2022]
Abstract
Sensory systems continually adjust the way stimuli are processed. What are the circuit mechanisms underlying this plasticity? We investigated how synapses in the retina of zebrafish adjust to changes in the temporal contrast of a visual stimulus by imaging activity in vivo. Following an increase in contrast, bipolar cell synapses with strong initial responses depressed, whereas synapses with weak initial responses facilitated. Depression and facilitation predominated in different strata of the inner retina, where bipolar cell output was anticorrelated with the activity of amacrine cell synapses providing inhibitory feedback. Pharmacological block of GABAergic feedback converted facilitating bipolar cell synapses into depressing ones. These results indicate that depression intrinsic to bipolar cell synapses causes adaptation of the ganglion cell response to contrast, whereas depression in amacrine cell synapses causes sensitization. Distinct microcircuits segregating to different layers of the retina can cause simultaneous increases or decreases in the gain of neural responses.
Collapse
Affiliation(s)
- Anton Nikolaev
- Medical Research Council Laboratory of Molecular Biology, Cambridge, UK
| | | | | | | |
Collapse
|
74
|
Abstract
Acetylcholine is present in and released from starburst amacrine cells in the inner plexiform layer (IPL), but its role in retinal function except, perhaps, in early development, is unclear. Nicotinic acetylcholine receptors are thought to be present on ganglion, amacrine, and bipolar cell processes in the IPL, and it is known that acetylcholine increases the spontaneous and light-evoked responses of retinal ganglion cells. The effects of acetylcholine on bipolar cells are not known, and here we report the effects of nicotine on the b-wave of the electroretinogram in larval zebrafish. The b-wave originates mainly from ON-bipolar cells, and the larval zebrafish retina is cone-dominated. Only small rod responses can be elicited with dim lights in wild-type larval zebrafish retinas, but rod responses can be recorded over a range of intensities in a mutant ( n o optokinetic response f ) fi sh that has no cone function. We fi nd that nicotine strongly enhances cone-driven b-wave response amplitudes but depresses rod driven b-wave response amplitudes without, however, affecting rod- or cone-driven b-wave light sensitivity.
Collapse
|
75
|
Abstract
Nonvisual photosensation enables animals to sense light without sight. However, the cellular and molecular mechanisms of nonvisual photobehaviors are poorly understood, especially in vertebrate animals. Here, we describe the photomotor response (PMR), a robust and reproducible series of motor behaviors in zebrafish that is elicited by visual wavelengths of light but does not require the eyes, pineal gland, or other canonical deep-brain photoreceptive organs. Unlike the relatively slow effects of canonical nonvisual pathways, motor circuits are strongly and quickly (seconds) recruited during the PMR behavior. We find that the hindbrain is both necessary and sufficient to drive these behaviors. Using in vivo calcium imaging, we identify a discrete set of neurons within the hindbrain whose responses to light mirror the PMR behavior. Pharmacological inhibition of the visual cycle blocks PMR behaviors, suggesting that opsin-based photoreceptors control this behavior. These data represent the first known light-sensing circuit in the vertebrate hindbrain.
Collapse
|
76
|
Fajardo O, Zhu P, Friedrich RW. Control of a specific motor program by a small brain area in zebrafish. Front Neural Circuits 2013; 7:67. [PMID: 23641200 PMCID: PMC3640207 DOI: 10.3389/fncir.2013.00067] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2013] [Accepted: 03/30/2013] [Indexed: 11/13/2022] Open
Abstract
Complex motor behaviors are thought to be coordinated by networks of brain nuclei that may control different elementary motor programs. Transparent zebrafish larvae offer the opportunity to analyze the functional organization of motor control networks by optical manipulations of neuronal activity during behavior. We examined motor behavior in transgenic larvae expressing channelrhodopsin-2 throughout many neurons in the brain. Wide-field optical stimulation triggered backward and rotating movements caused by the repeated execution of J-turns, a specific motor program that normally occurs during prey capture. Although optically-evoked activity was widespread, behavioral responses were highly coordinated and lateralized. 3-D mapping of behavioral responses to local optical stimuli revealed that J-turns can be triggered specifically in the anterior-ventral optic tectum (avOT) and/or the adjacent pretectum. These results suggest that the execution of J-turns is controlled by a small group of neurons in the midbrain that may act as a command center. The identification of a brain area controlling a defined motor program involved in prey capture is a step toward a comprehensive analysis of neuronal circuits mediating sensorimotor behaviors of zebrafish.
Collapse
Affiliation(s)
- Otto Fajardo
- Friedrich Miescher Institute for Biomedical Research Basel, Switzerland
| | | | | |
Collapse
|
77
|
Li YN, Tsujimura T, Kawamura S, Dowling JE. Bipolar cell-photoreceptor connectivity in the zebrafish (Danio rerio) retina. J Comp Neurol 2013; 520:3786-802. [PMID: 22907678 DOI: 10.1002/cne.23168] [Citation(s) in RCA: 55] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Bipolar cells convey luminance, spatial, and color information from photoreceptors to amacrine and ganglion cells. We studied the photoreceptor connectivity of 321 bipolar cells in the adult zebrafish retina. 1,1'-Dioctadecyl-3,3,3',3'-tetramethylindocarbocyanine perchlorate (DiI) was inserted into whole-mounted transgenic zebrafish retinas to label bipolar cells. The photoreceptors that connect to these DiI-labeled cells were identified by transgenic fluorescence or their positions relative to the fluorescent cones, as cones are arranged in a highly ordered mosaic: rows of alternating blue- (B) and ultraviolet-sensitive (UV) single cones alternate with rows of red-(R) and green-sensitive (G) double cones. Rod terminals intersperse among cone terminals. As many as 18 connectivity subtypes were observed, 9 of which-G, GBUV, RG, RGB, RGBUV, RGRod, RGBRod, RGBUVRod, and RRod bipolar cells-accounted for 96% of the population. Based on their axon terminal stratification, these bipolar cells could be further subdivided into ON, OFF, and ON-OFF cells. The dendritic spread size, soma depth and size, and photoreceptor connections of the 308 bipolar cells within the nine common connectivity subtypes were determined, and their dendritic tree morphologies and axonal stratification patterns compared. We found that bipolar cells with the same axonal stratification patterns could have heterogeneous photoreceptor connectivity whereas bipolar cells with the same dendritic tree morphology usually had the same photoreceptor connectivity, although their axons might stratify on different levels.
Collapse
Affiliation(s)
- Yong N Li
- Department of Molecular and Cellular Biology, Harvard University, Cambridge, MA 02138, USA.
| | | | | | | |
Collapse
|
78
|
Severity of infantile nystagmus syndrome-like ocular motor phenotype is linked to the extent of the underlying optic nerve projection defect in zebrafish belladonna mutant. J Neurosci 2013; 32:18079-86. [PMID: 23238723 DOI: 10.1523/jneurosci.4378-12.2012] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Infantile nystagmus syndrome (INS), formerly known as congenital nystagmus, is an ocular motor disorder in humans characterized by spontaneous eye oscillations (SOs) and, in several cases, reversed optokinetic response (OKR). Its etiology and pathomechanism is largely unknown, but misrouting of the optic nerve has been observed in some patients. Likewise, optic nerve misrouting, a reversed OKR and SOs with INS-like waveforms are observed in zebrafish belladonna (bel) mutants. We aimed to investigate whether and how misrouting of the optic nerve correlates with the ocular motor behaviors in bel larvae. OKR and SOs were quantified and subsequently the optic nerve fibers were stained with fluorescent lipophilic dyes. Eye velocity during OKR was reduced in larvae with few misprojecting optic nerve fibers and reversed in larvae with a substantial fraction of misprojecting fibers. All larvae with reversed OKR also displayed SOs. A stronger reversed OKR correlated with more frequent SOs. Since we did not find a correlation between additional retinal defects and ocular motor behavior, we suggest that axon misrouting is in fact origin of INS in the zebrafish animal model. Depending on the ratio between misprojecting ipsilateral and correctly projecting contralateral fibers, the negative feedback loop normally regulating OKR can turn into a positive loop, resulting in an increase in retinal slip. Our data not only give new insights into the etiology of INS but may also be of interest for studies on how the brain deals with and adapts to conflicting inputs.
Collapse
|
79
|
Abstract
Vitamin A deficiency causes impaired vision and blindness in millions of children around the world. Previous studies in zebrafish have demonstrated that retinoic acid (RA), the acid form of vitamin A, plays a vital role in early eye development. The objective of this study was to describe the effects of early RA deficiency by treating zebrafish with diethylaminobenzaldehyde (DEAB), a potent inhibitor of the enzyme retinaldehyde dehydrogenase (RALDH) that converts retinal to RA. Zebrafish embryos were treated for 2 h beginning at 9 h postfertilization. Gross morphology and retinal development were examined at regular intervals for 5 days after treatment. The optokinetic reflex (OKR) test, visual background adaptation (VBA) test, and the electroretinogram (ERG) were performed to assess visual function and behavior. Early treatment of zebrafish embryos with 100 μM DEAB (9 h) resulted in reduced eye size, and this microphthalmia persisted through larval development. Retinal histology revealed that DEAB eyes had significant developmental abnormalities but had relatively normal retinal lamination by 5.5 days postfertilization. However, the fish showed neither an OKR nor a VBA response. Further, the retina did not respond to light as measured by the ERG. We conclude that early deficiency of RA during eye development causes microphthalmia as well as other visual defects, and that timing of the RA deficiency is critical to the developmental outcome.
Collapse
|
80
|
Zhang L, Chong L, Cho J, Liao PC, Shen F, Leung YF. Drug Screening to Treat Early-Onset Eye Diseases: Can Zebrafish Expedite the Discovery? ASIA-PACIFIC JOURNAL OF OPHTHALMOLOGY (PHILADELPHIA, PA.) 2012; 1:374-83. [PMID: 26107731 DOI: 10.1097/apo.0b013e31827a9969] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
The molecular basis of many early-onset eye diseases has been uncovered, but the number of available drug treatments for improving deteriorated vision is still scarce. Consequently, there is a high demand for new drugs to treat these diseases. This review first provides a brief synopsis of the use of zebrafish model for screening drugs with vision benefits. In particular, visual-motor response, the activity response of larvae to a change in light stimuli, is proposed to serve as a simple and efficient tool for screening drugs that may improve vision in various zebrafish visual mutants. The second part of the review discusses the identification of novel drug candidates, with particular emphasis on naturally derived chemicals including traditional Chinese medicines and nutritional therapies on retinal degenerative diseases. Many of these chemicals have been used in neuroprotection and/or have been consumed by many populations for good health and vision; thus, the screening of these chemicals with various zebrafish visual mutants would expedite the development of novel drugs for treating early-onset eye diseases.
Collapse
Affiliation(s)
- Liyun Zhang
- From the *Department of Biological Sciences, Purdue University; and †Department of Biochemistry and Molecular Biology, Indiana University School of Medicine Lafayette, West Lafayette, IN
| | | | | | | | | | | |
Collapse
|
81
|
Abstract
The larval zebrafish has emerged asa vertebrate model system amenable to small molecule screens for probing diverse biological pathways. Two large-scale small molecule screens examined the effects of thousands of drugs on larval zebrafish sleep/wake and photomotor response behaviors. Both screens identified hundreds of molecules that altered zebrafish behavior in distinct ways. The behavioral profiles induced by these small molecules enabled the clustering of compounds according to shared phenotypes. This approach identified regulators of sleep/wake behavior and revealed the biological targets for poorly characterized compounds. Behavioral screening for neuroactive small molecules in zebrafish is an attractive complement to in vitro screening efforts, because the complex interactions in the vertebrate brain can only be revealed in vivo.
Collapse
Affiliation(s)
- Jason Rihel
- Department of Molecular and Cellular Biology, Harvard University, Cambridge, MA 02138, USA.
| | | |
Collapse
|
82
|
Fernandes AM, Fero K, Arrenberg AB, Bergeron SA, Driever W, Burgess HA. Deep brain photoreceptors control light-seeking behavior in zebrafish larvae. Curr Biol 2012; 22:2042-7. [PMID: 23000151 DOI: 10.1016/j.cub.2012.08.016] [Citation(s) in RCA: 202] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2012] [Revised: 07/02/2012] [Accepted: 08/07/2012] [Indexed: 01/10/2023]
Abstract
Most vertebrates process visual information using elaborately structured photosensory tissues, including the eyes and pineal. However, there is strong evidence that other tissues can detect and respond to photic stimuli. Many reports suggest that photosensitive elements exist within the brain itself and influence physiology and behavior; however, a long-standing puzzle has been the identity of the neurons and photoreceptor molecules involved. We tested whether light cues influence behavior in zebrafish larvae through deep brain photosensors. We found that larvae lacking eyes and pineal perform a simple light-seeking behavior triggered by loss of illumination ("dark photokinesis"). Neuroanatomical considerations prompted us to test orthopedia (otpa)-deficient fish, which show a profound reduction in dark photokinesis. Using targeted genetic ablations, we narrowed the photosensitive region to neurons in the preoptic area. Neurons in this region express several photoreceptive molecules, but expression of the melanopsin opn4a is selectively lost in otpa mutants, suggesting that opn4a mediates dark photokinesis. Our findings shed light on the identity and function of deep brain photoreceptors and suggest that otpa specifies an ancient population of sensory neurons that mediate behavioral responses to light.
Collapse
Affiliation(s)
- António M Fernandes
- Developmental Biology Unit, Faculty of Biology, BIOSS Centre for Biological Signalling Studies and FRIAS Freiburg Institute for Advanced Studies, University of Freiburg, 79104 Freiburg, Germany
| | | | | | | | | | | |
Collapse
|
83
|
Spoida K, Distler C, Trampe AK, Hoffmann KP. Blocking retinal chloride co-transporters KCC2 and NKCC: impact on direction selective ON and OFF responses in the rat's nucleus of the optic tract. PLoS One 2012; 7:e44724. [PMID: 22970298 PMCID: PMC3435285 DOI: 10.1371/journal.pone.0044724] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2012] [Accepted: 08/09/2012] [Indexed: 11/27/2022] Open
Abstract
In the present study we investigated in vivo the effects of pharmacological manipulation of retinal processing on the response properties of direction selective retinal slip cells in the nucleus of the optic tract and dorsal terminal nucleus (NOT-DTN), the key visuomotor interface in the pathway underlying the optokinetic reflex. Employing a moving visual stimulus consisting of either a large dark or light edge we could differentiate direction selective ON and OFF responses in retinal slip cells. To disclose the origin of the retinal slip cells' unexpected OFF response we selectively blocked the retinal ON channels and inactivated the visual cortex by cooling. Cortical cooling had no effect on the direction selectivity of the ON or the OFF response in NOT-DTN retinal slip cells. Blockade of the retinal ON channel with APB led to a loss of the ON and, to a lesser degree, of the OFF response and a reduction in direction selectivity. Subsequent blocking of GABA receptors in the retina with picrotoxin unmasked a vigorous albeit direction unselective OFF response in the NOT-DTN. Disturbing the retinal chloride homeostasis by intraocular injections of bumetanide or furosemide led to a loss of direction selectivity in both the NOT-DTN's ON and the OFF response due to a reduced response in the neuron's preferred direction under bumetanide as well as under furosemide and a slightly increased response in the null direction under bumetanide. Our results indicate that the direction specificity of retinal slip cells in the NOT-DTN of the rat strongly depends on direction selective retinal input which depends on intraretinal chloride homeostasis. On top of the well established input from ON center direction selective ganglion cells we could demonstrate an equally effective input from the retinal OFF system to the NOT-DTN.
Collapse
Affiliation(s)
- Katharina Spoida
- Allgemeine Zoologie and Neurobiologie, Ruhr-Universität Bochum, Bochum, Germany
| | - Claudia Distler
- Allgemeine Zoologie and Neurobiologie, Ruhr-Universität Bochum, Bochum, Germany
| | - Anne-Kathrin Trampe
- Allgemeine Zoologie and Neurobiologie, Ruhr-Universität Bochum, Bochum, Germany
| | | |
Collapse
|
84
|
Zebrafish inner retina: local signals for spatial position, luminance, and color contrast. Vis Neurosci 2012; 29:229-36. [PMID: 22877609 DOI: 10.1017/s0952523812000259] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
The retina of the zebrafish (Danio rerio) provides an unusually favorable preparation for genetic and developmental studies of the retina. Although the retina has been studied extensively for two decades, the neuronal response of the inner retina is largely unknown. This report describes a prominent local field potential of the inner retina, the Proximal Negative Response (PNR). It is best evoked by small (100 μm) precisely positioned spots of light and is exceedingly sensitive to negative luminance contrast. The polarity, waveform, and other properties of the PNR suggest that it arises primarily from ON-OFF neurons of the proximal retina. The dominant response to negative contrast and its enhancement by light adaptation is believed due to a dominant presynaptic input from OFF bipolar cells. Color contrast was investigated by analyzing responses to a green bar moving on green versus red backgrounds. Over an intermediate range of irradiance, the response to green on red was larger than the response to green on green, thereby providing evidence for the encoding of color contrast. The present findings complement the classic principle of color contrast for human vision known as Kirschmann's third law and bring to mind the view of Walls that color contrast may have been the driving force for the evolution of color vision in lower vertebrates. In sum, the PNR of zebrafish provides clear evidence for the encoding of color and luminance contrast in the inner retina. It exhibits the defining properties common to many other vertebrates, reinforcing the view that the zebrafish may further serve as a model for retinal function and that the PNR may provide a new approach for studies of development, genetics, and retinal degeneration in zebrafish.
Collapse
|
85
|
Zebrafish responds differentially to a robotic fish of varying aspect ratio, tail beat frequency, noise, and color. Behav Brain Res 2012; 233:545-53. [DOI: 10.1016/j.bbr.2012.05.047] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2012] [Revised: 05/22/2012] [Accepted: 05/25/2012] [Indexed: 10/28/2022]
|
86
|
de Esch C, van der Linde H, Slieker R, Willemsen R, Wolterbeek A, Woutersen R, De Groot D. Locomotor activity assay in zebrafish larvae: Influence of age, strain and ethanol. Neurotoxicol Teratol 2012; 34:425-33. [DOI: 10.1016/j.ntt.2012.03.002] [Citation(s) in RCA: 72] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2011] [Revised: 02/16/2012] [Accepted: 03/19/2012] [Indexed: 10/28/2022]
|
87
|
Abstract
Free swimming zebrafish larvae depend mainly on their sense of vision to evade predation and to catch prey. Hence, there is strong selective pressure on the fast maturation of visual function and indeed the visual system already supports a number of visually driven behaviors in the newly hatched larvae.The ability to exploit the genetic and embryonic accessibility of the zebrafish in combination with a behavioral assessment of visual system function has made the zebrafish a popular model to study vision and its diseases.Here, we review the anatomy, physiology, and development of the zebrafish eye as the basis to relate the contributions of the zebrafish to our understanding of human ocular diseases.
Collapse
Affiliation(s)
- Gaia Gestri
- Department of Cell and Developmental Biology, University College London, London WC1E 6BT, United Kingdom
| | - Brian A Link
- Department of Cell Biology, Neurobiology and Anatomy, Medical College of Wisconsin, Milwaukee, WI 53226, USA
| | - Stephan CF Neuhauss
- Institute of Molecular Life Sciences, University of Zurich, CH-8057 Zurich, Switzerland
| |
Collapse
|
88
|
Dowling JE. What can a zebrafish see with only an off-pathway and other fish stories? J Ophthalmic Vis Res 2012; 7:97-9. [PMID: 22737396 PMCID: PMC3381117] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/30/2022] Open
|
89
|
Tegelenbosch RA, Noldus LP, Richardson MK, Ahmad F. Zebrafish embryos and larvae in behavioural assays. BEHAVIOUR 2012. [DOI: 10.1163/1568539x-00003020] [Citation(s) in RCA: 84] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
90
|
Tang J, Tang S, Haldi M, Seng WL. Zebrafish Assays for Identifying Potential Muscular Dystrophy Drug Candidates. Zebrafish 2011. [DOI: 10.1002/9781118102138.ch18] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
|
91
|
Padilla S, Hunter DL, Padnos B, Frady S, MacPhail RC. Assessing locomotor activity in larval zebrafish: Influence of extrinsic and intrinsic variables. Neurotoxicol Teratol 2011; 33:624-30. [PMID: 21871562 DOI: 10.1016/j.ntt.2011.08.005] [Citation(s) in RCA: 160] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2011] [Revised: 08/07/2011] [Accepted: 08/08/2011] [Indexed: 10/17/2022]
Abstract
The U.S. Environmental Protection Agency is evaluating methods to screen and prioritize large numbers of chemicals for developmental toxicity. We are exploring methods to detect developmentally neurotoxic chemicals using zebrafish behavior at 6 days of age. The behavioral paradigm simultaneously tests individual larval zebrafish under both light and dark conditions in a 96-well plate using a video tracking system. We have found that many variables affect the level or pattern of locomotor activity, including age of the larvae, size of the well, and the presence of malformations. Some other variables, however, do not appear to affect larval behavior including type of rearing solution (10% Hank's vs. 1:3 Danieau vs 60 mg/kg Instant Ocean vs 1× and 1:10× EPA Moderately Hard Water). Zebrafish larval behavior using a microtiter plate format may be an ideal endpoint for screening developmentally neurotoxic chemicals, but it is imperative that many test variables be carefully specified and controlled.
Collapse
Affiliation(s)
- S Padilla
- Integrated Systems Toxicology Division, National Health and Environmental Effects Research Laboratory, Office of Research and Development, U. S. Environmental Protection Agency, Research Triangle Park, NC 27711, United States.
| | | | | | | | | |
Collapse
|
92
|
Lewis A, Wilson N, Stearns G, Johnson N, Nelson R, Brockerhoff SE. Celsr3 is required for normal development of GABA circuits in the inner retina. PLoS Genet 2011; 7:e1002239. [PMID: 21852962 PMCID: PMC3154962 DOI: 10.1371/journal.pgen.1002239] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2011] [Accepted: 06/28/2011] [Indexed: 12/30/2022] Open
Abstract
The identity of the specific molecules required for the process of retinal circuitry formation is largely unknown. Here we report a newly identified zebrafish mutant in which the absence of the atypical cadherin, Celsr3, leads to a specific defect in the development of GABAergic signaling in the inner retina. This mutant lacks an optokinetic response (OKR), the ability to visually track rotating illuminated stripes, and develops a super-normal b-wave in the electroretinogram (ERG). We find that celsr3 mRNA is abundant in the amacrine and ganglion cells of the retina, however its loss does not affect synaptic lamination within the inner plexiform layer (IPL) or amacrine cell number. We localize the ERG defect pharmacologically to a late-stage disruption in GABAergic modulation of ON-bipolar cell pathway and find that the DNQX-sensitive fast b1 component of the ERG is specifically affected in this mutant. Consistently, we find an increase in GABA receptors on mutant ON-bipolar terminals, providing a direct link between the observed physiological changes and alterations in GABA signaling components. Finally, using blastula transplantation, we show that the lack of an OKR is due, at least partially, to Celsr3-mediated defects within the brain. These findings support the previously postulated inner retina origin for the b1 component and reveal a new role for Celsr3 in the normal development of ON visual pathway circuitry in the inner retina. Visual information is transmitted through the retina from photoreceptors to bipolars to ganglion cells, the output neurons connecting to the brain. This vertical transmission of information is modulated by inhibitory lateral interneurons. Normal vision requires the proper transmission and processing of these neuronal signals. In the inner retina, amacrine cells are the main class of inhibitory interneurons. They modulate the information from bipolar to ganglion cells and are functionally responsible for adjusting image brightness and for detecting motion. Physiological studies have revealed important aspects of the mechanisms of inhibitory modulation, and anatomical studies have identified the many amacrine subclasses and their non-random arrangement within the retina. Although cell–cell interactions are thought to be critical for establishing the important physiological and morphological features of this cell class, the precise molecules and their functions are mostly unknown. In this paper we report the discovery of a mutant that identifies the atypical cell adhesion molecule, Celsr3, as critical for proper development of GABA-signaling pathways in the inner retina.
Collapse
Affiliation(s)
- Alaron Lewis
- Department of Biochemistry, University of Washington, Seattle, Washington, United States of America
| | - Neil Wilson
- Department of Biochemistry, University of Washington, Seattle, Washington, United States of America
| | - George Stearns
- Department of Biochemistry, University of Washington, Seattle, Washington, United States of America
| | - Nicolas Johnson
- Department of Biochemistry, University of Washington, Seattle, Washington, United States of America
| | - Ralph Nelson
- Basic Neurosciences Program, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Rockville, Maryland, United States of America
| | - Susan E. Brockerhoff
- Department of Biochemistry, University of Washington, Seattle, Washington, United States of America
- * E-mail:
| |
Collapse
|
93
|
Emran F, Dowling JE. Larval zebrafish turn off their photoreceptors at night. Commun Integr Biol 2011; 3:430-2. [PMID: 21057632 DOI: 10.4161/cib.3.5.12158] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2010] [Accepted: 04/24/2010] [Indexed: 11/19/2022] Open
Abstract
Studies in several vertebrate species have shown that visual sensitivity and a number of other retinal phenomena are regulated by circadian mechanisms. For example, ultra-structural studies of 5 day old zebrafish larvae have shown that synaptic ribbons in photoreceptor terminals undergo dramatic diurnal alterations. These synaptic ribbons are very prominent during the day, but are almost completely absent at night. The implications of this circadian driven process on visual function are not well understood. We recently showed that larval zebrafish essentially lose visual responsiveness at night. This shut-down of retinal function at night is regulated by at least two mechanisms: the disassembly of synaptic ribbons in cone pedicles and a decrease of outer segment activity. Here, we summarize our recently reported observations and further discuss our hypothesis on how this phenomenon of shutting-down retinal function at night may provide a means for zebrafish larvae to conserve energy.
Collapse
Affiliation(s)
- Farida Emran
- Department of Molecular and Cellular Biology; Harvard University; Cambridge, MA USA
| | | |
Collapse
|
94
|
|
95
|
Abstract
AbstractZebrafish are an existing model for genetic and developmental studies due to their rapid external development and transparent embryos, which allow easy manipulation and observation of early developmental stages. The application of the zebrafish model to vision research has allowed for examination of retinal development and the characteristics of different retinal cell types, including bipolar cells. In particular, bipolar cell development, including differentiation, maturation, and gene expression, has been documented, as has physiological properties, such as voltage- and ligand-gated currents, and neurotransmitter receptor and ion channel expression. Mutant strains and transgenic lines have been used to document how bipolar cell connections and/or development may be altered, and toxicological studies examining how environmental factors may impact bipolar cell activity have been performed. The purpose of this paper was to review the existing literature on zebrafish bipolar cells, to provide a comprehensive overview of current information pertaining to this retinal cell type.
Collapse
|
96
|
Abstract
In the retina, several parallel channels originate that extract different attributes from the visual scene. This review describes how these channels arise and what their functions are. Following the introduction four sections deal with these channels. The first discusses the "ON" and "OFF" channels that have arisen for the purpose of rapidly processing images in the visual scene that become visible by virtue of either light increment or light decrement; the ON channel processes images that become visible by virtue of light increment and the OFF channel processes images that become visible by virtue of light decrement. The second section examines the midget and parasol channels. The midget channel processes fine detail, wavelength information, and stereoscopic depth cues; the parasol channel plays a central role in processing motion and flicker as well as motion parallax cues for depth perception. Both these channels have ON and OFF subdivisions. The third section describes the accessory optic system that receives input from the retinal ganglion cells of Dogiel; these cells play a central role, in concert with the vestibular system, in stabilizing images on the retina to prevent the blurring of images that would otherwise occur when an organism is in motion. The last section provides a brief overview of several additional channels that originate in the retina.
Collapse
|
97
|
Zhang RW, Wei HP, Xia YM, Du JL. Development of light response and GABAergic excitation-to-inhibition switch in zebrafish retinal ganglion cells. J Physiol 2010; 588:2557-69. [PMID: 20498234 PMCID: PMC2916988 DOI: 10.1113/jphysiol.2010.187088] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2010] [Accepted: 05/17/2010] [Indexed: 01/02/2023] Open
Abstract
The zebrafish retina has been an important model for studying morphological development of neural circuits in vivo. However, its functional development is not yet well understood. To investigate the functional development of zebrafish retina, we developed an in vivo patch-clamp whole-cell recording technique in intact zebrafish larvae. We first examined the developmental profile of light-evoked responses (LERs) in retinal ganglion cells (RGCs) from 2 to 9 days post-fertilization (dpf). Unstable LERs were first observed at 2.5 dpf. By 4 dpf, RGCs exhibited reliable light responses. As the GABAergic system is critical for retinal development, we then performed in vivo gramicidin perforated-patch whole-cell recording to characterize the developmental change of GABAergic action in RGCs. The reversal potential of GABA-induced currents (E(GABA)) in RGCs gradually shifted from depolarized to hyperpolarized levels during 2-4 dpf and the excitation-to-inhibition (E-I) switch of GABAergic action occurred at around 2.5 dpf when RGCs became light sensitive. Meanwhile, GABAergic transmission upstream to RGCs also became inhibitory by 2.5 dpf. Furthermore, down-regulation of the K(+)/Cl() co-transporter (KCC2) by the morpholino oligonucleotide-based knockdown approach, which shifted RGC E(GABA) towards a more depolarized level and thus delayed the E-I switch by one day, postponed the appearance of RGC LERs by one day. In addition, RGCs exhibited correlated giant inward current (GICs) during 2.5-3.5 dpf. The period of GICs was shifted to 3-4.5 dpf by KCC2 knockdown. Taken together, the GABAergic E-I switch occurs coincidently with the emergence of light responses and GICs in zebrafish RGCs, and may contribute to the functional development of retinal circuits.
Collapse
Affiliation(s)
- Rong-wei Zhang
- Institute of Neuroscience and State Key Laboratory of Neuroscience, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, 320 Yue-yang Road, Shanghai 200031, China
| | | | | | | |
Collapse
|
98
|
Jin M, Zhang Y, Ye J, Huang C, Zhao M, Liu W. Dual enantioselective effect of the insecticide bifenthrin on locomotor behavior and development in embryonic-larval zebrafish. ENVIRONMENTAL TOXICOLOGY AND CHEMISTRY 2010; 29:1561-1567. [PMID: 20821606 DOI: 10.1002/etc.190] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/29/2023]
Abstract
Bifenthrin (BF) is a synthetic pyrethroid that targets the nervous system of insects and may have adverse effects on the behavior and development of nontarget organisms. However, no reports have been issued on the effects of different enantiomers on locomotor behavior for synthetic pyrethroids (SPs) in zebrafish, and whether locomotor activity is associated with the developmental toxicities remains unclear. In this study, enantioselectivity of BF (1S and 1R) on the acute locomotor activity and developmental toxicities of embryonic-larval zebrafish were first evaluated. The results indicated that 1R-BF was more toxic, causing morphological impairments, with a 96-h median effective concentration (EC50) of 226 microg/L for pericardial edema and 145 microg/L for curved body axis. Administration of 20 microg/L of one enantiomer of BF had differential effects on the locomotor activity of zebrafish larvae at 4 d postfertilization (dpf) under alternating light and dark conditions. Larvae treated with 1R-BF were not sensitive to the alteration of light to dark, and the locomotor activities were reduced to a level similar to that observed in light, which otherwise increased rapidly and markedly. However, 1S-BF did not alter the general pattern of zebrafish response to the light or dark compared with the control. The results demonstrated that the differential effects on development might have contributed to the enantioselectivity in the locomotor activity. The consistency of enantioselectivity with insecticidal activity may also indicate a common mode of action. Furthermore, 1R-BF accelerated the spontaneous movement and hatching process, whereas 1S-BF seemed to be inhibitory. The results suggest the need to link behavioral changes to developmental toxicities in order to achieve more comprehensive health risk assessments of chiral pesticides.
Collapse
Affiliation(s)
- Meiqing Jin
- MOE Key Laboratory of Environmental Remediation and Ecosystem Health, Zhejiang University, Hangzhou 310027, People's Republic of China
| | | | | | | | | | | |
Collapse
|
99
|
Abstract
Darkness serves as a stimulus for vertebrate photoreceptors; they are actively depolarized in the dark and hyperpolarize in the light. Here, we show that larval zebrafish essentially turn off their visual system at night when they are not active. Electroretinograms recorded from larval zebrafish show large differences between day and night; the responses are normal in amplitude throughout the day but are almost absent after several hours of darkness at night. Behavioral testing also shows that larval zebrafish become unresponsive to visual stimuli at night. This phenomenon is largely circadian driven as fish show similar dramatic changes in visual responsiveness when maintained in continuous darkness, although light exposure at night partially restores the responses. Visual responsiveness is decreased at night by at least two mechanisms: photoreceptor outer segment activity decreases and synaptic ribbons in cone pedicles disassemble.
Collapse
|
100
|
Burgess HA, Schoch H, Granato M. Distinct retinal pathways drive spatial orientation behaviors in zebrafish navigation. Curr Biol 2010; 20:381-6. [PMID: 20153194 PMCID: PMC3412192 DOI: 10.1016/j.cub.2010.01.022] [Citation(s) in RCA: 82] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2009] [Revised: 01/05/2010] [Accepted: 01/06/2010] [Indexed: 11/30/2022]
Abstract
Navigation requires animals to adjust ongoing movements in response to pertinent features of the environment and select between competing target cues. The neurobiological basis of navigational behavior in vertebrates is hard to analyze, partly because underlying neural circuits are experience dependent. Phototaxis in zebrafish is a hardwired navigational behavior, performed at a stage when larvae swim by using a small repertoire of stereotyped movements. We established conditions to elicit robust phototaxis behavior and found that zebrafish larvae deploy directional orienting maneuvers and regulate forward swimming speed to navigate toward a target light. Using genetic analysis and targeted laser ablations, we show that retinal ON and OFF pathways play distinct roles during phototaxis. The retinal OFF pathway controls turn movements via retinotectal projections and establishes correct orientation by causing larvae to turn away from nontarget areas. In contrast, the retinal ON pathway activates the serotonergic system to trigger rapid forward swimming toward the target. Computational simulation of phototaxis with an OFF-turn, ON-approach algorithm verifies that our model accounts for key features of phototaxis and provides a simple and robust mechanism for behavioral choice between competing targets.
Collapse
Affiliation(s)
| | - Hannah Schoch
- Department of Cell and Developmental Biology, University of Pennsylvania School of Medicine, Philadelphia, PA 19104-6058
| | - Michael Granato
- Department of Cell and Developmental Biology, University of Pennsylvania School of Medicine, Philadelphia, PA 19104-6058
| |
Collapse
|