51
|
Liang JJ, Rasmusson AM. Overview of the Molecular Steps in Steroidogenesis of the GABAergic Neurosteroids Allopregnanolone and Pregnanolone. CHRONIC STRESS (THOUSAND OAKS, CALIF.) 2018; 2:2470547018818555. [PMID: 32440589 PMCID: PMC7219929 DOI: 10.1177/2470547018818555] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/14/2018] [Accepted: 11/19/2018] [Indexed: 12/23/2022]
Abstract
Allopregnanolone and pregnanolone-neurosteroids synthesized from progesterone in the brain, adrenal gland, ovary and testis-have been implicated in a range of neuropsychiatric conditions including seizure disorders, post-traumatic stress disorder, major depression, post-partum depression, pre-menstrual dysphoric disorder, chronic pain, Parkinson's disease, Alzheimer's disease, neurotrauma, and stroke. Allopregnanolone and pregnanolone equipotently facilitate the effects of gamma-amino-butyric acid (GABA) at GABAA receptors, and when sulfated, antagonize N-methyl-D-aspartate receptors. They play myriad roles in neurophysiological homeostasis and adaptation to stress while exerting anxiolytic, antidepressant, anti-nociceptive, anticonvulsant, anti-inflammatory, sleep promoting, memory stabilizing, neuroprotective, pro-myelinating, and neurogenic effects. Given that these neurosteroids are synthesized de novo on demand, this review details the molecular steps involved in the biochemical conversion of cholesterol to allopregnanolone and pregnanolone within steroidogenic cells. Although much is known about the early steps in neurosteroidogenesis, less is known about transcriptional, translational, and post-translational processes in allopregnanolone- and pregnanolone-specific synthesis. Further research to elucidate these mechanisms as well as to optimize the timing and dose of interventions aimed at altering the synthesis or levels of these neurosteroids is much needed. This should include the development of novel therapeutics for the many neuropsychiatric conditions to which dysregulation of these neurosteroids contributes.
Collapse
Affiliation(s)
| | - Ann M. Rasmusson
- Boston
University School of Medicine, Boston, MA,
USA
- National Center for PTSD, Women’s Health
Science Division, Department of Veterans Affairs, Boston, MA, USA
- VA Boston Healthcare System, Boston, MA,
USA
| |
Collapse
|
52
|
Ishikawa M, Yoshitomi T, Covey DF, Zorumski CF, Izumi Y. Neurosteroids and oxysterols as potential therapeutic agents for glaucoma and Alzheimer's disease. ACTA ACUST UNITED AC 2018; 8:344-359. [PMID: 30774720 DOI: 10.4172/neuropsychiatry.1000356] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Glaucoma is one of the most frequent causes of visual impairment worldwide and involves selective damage to retinal ganglion cells (RGCs) resulting in degeneration of neural pathways connecting retina to visual cortex. It is of interest that similarities in pathological changes have been described in Alzheimer's disease (AD), the most common cause of progressive memory loss and dementia in older people. Accumulation of amyloid-beta (Abeta) and hyperphosphorylated tau is thought to contribute to apoptotic neuronal death in Alzheimer's disease, and similar changes have been linked to apoptotic RGC death in glaucoma. Both glaucoma and Alzheimer's disease also suffer from a lack of effective treatments prompting a search for novel therapeutic interventions. Neurosteroids (NSs) (including oxysterols) are endogenous molecules synthesized in the nervous system from cholesterol that can modulate glutamate and GABA receptors, the primary mediators of fast excitatory and inhibitory neurotransmission in the brain, respectively. Because changes in the glutamate and GABA neurotransmitter systems contribute to the pathogenesis of AD and glaucoma, NSs are possible therapeutic targets for these disorders. In this review, we present recent evidence supporting pathological links between Alzheimer's disease and glaucoma, and focus on the possible role of NSs in these diseases and how NSs might be developed for therapeutic purposes.
Collapse
Affiliation(s)
- Makoto Ishikawa
- Department of Ophthalmology, Akita University Graduate School of Medicine, Akita, Japan
| | - Takeshi Yoshitomi
- Department of Ophthalmology, Akita University Graduate School of Medicine, Akita, Japan
| | - Douglas F Covey
- Department of Developmental Biology, Akita University Graduate School of Medicine, Akita, Japan.,Taylor Family Institute for Innovative Psychiatric Research, Akita University Graduate School of Medicine, Akita, Japan
| | - Charles F Zorumski
- Taylor Family Institute for Innovative Psychiatric Research, Akita University Graduate School of Medicine, Akita, Japan.,Center for Brain Research in Mood Disorders, Akita University Graduate School of Medicine, Akita, Japan.,Department of Psychiatry, Washington University School of Medicine, St. Louis, M.O, USA
| | - Yukitoshi Izumi
- Taylor Family Institute for Innovative Psychiatric Research, Akita University Graduate School of Medicine, Akita, Japan.,Center for Brain Research in Mood Disorders, Akita University Graduate School of Medicine, Akita, Japan.,Department of Psychiatry, Washington University School of Medicine, St. Louis, M.O, USA
| |
Collapse
|
53
|
Tuem KB, Atey TM. Neuroactive Steroids: Receptor Interactions and Responses. Front Neurol 2017; 8:442. [PMID: 28894435 PMCID: PMC5581316 DOI: 10.3389/fneur.2017.00442] [Citation(s) in RCA: 53] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2017] [Accepted: 08/11/2017] [Indexed: 12/21/2022] Open
Abstract
Neuroactive steroids (NASs) are naturally occurring steroids, which are synthesized centrally as de novo from cholesterol and are classified as pregnane, androstane, and sulfated neurosteroids (NSs). NASs modulate many processes via interacting with gamma-aminobutyric acid (GABA), N-methyl-d-aspartate, serotonin, voltage-gated calcium channels, voltage-dependent anion channels, α-adrenoreceptors, X-receptors of the liver, transient receptor potential channels, microtubule-associated protein 2, neurotrophin nerve growth factor, and σ1 receptors. Among these, NSs (especially allopregnanolone) have high potency and extensive GABA-A receptors and hence demonstrate anticonvulsant, anesthetic, central cytoprotectant, and baroreflex inhibitory effects. NSs are also involved in mood and learning via serotonin and anti-nociceptive activity via T-type voltage-gated Ca2+ channels. Moreover, they are modulators of mitochondrial function, synaptic plasticity, or regulators of apoptosis, which have a role in neuroprotective via voltage-dependent anion channels receptors. For proper functioning, NASs need to be in their normal level, whereas excess and deficiency may lead to abnormalities. When they are below the normal, NSs could have a part in development of depression, neuro-inflammation, multiple sclerosis, experimental autoimmune encephalitis, epilepsy, and schizophrenia. On the other hand, stress and attention deficit disorder could occur during excessive level. Overall, NASs are very important molecules with major neuropsychiatric activity.
Collapse
Affiliation(s)
- Kald Beshir Tuem
- Department of Pharmacology, School of Pharmacy, College of Health Sciences, Mekelle University, Mekelle, Ethiopia
| | - Tesfay Mehari Atey
- Clinical Pharmacy Unit, School of Pharmacy, College of Health Sciences, Mekelle University, Mekelle, Ethiopia
| |
Collapse
|
54
|
Effects of Refined Xiaoyaosan on Depressive-Like Behaviors in Rats with Chronic Unpredictable Mild Stress through Neurosteroids, Their Synthesis and Metabolic Enzymes. Molecules 2017; 22:molecules22081386. [PMID: 28825678 PMCID: PMC6152155 DOI: 10.3390/molecules22081386] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2017] [Revised: 08/16/2017] [Accepted: 08/20/2017] [Indexed: 11/29/2022] Open
Abstract
To observe the effects of refined Xiaoyaosan (XYS) on the depressive-like behaviors in rats with chronic unpredictable mild stress (CUMS), and to explore the relationship between the changes of neurosteroids and mRNA expressions of their synthesis and metabolic enzymes, and the mechanism of XYS in the treatment of depression. Methods: Eighty-four healthy male Sprague-Dawley rats were randomly divided into normal group, model group, XYS group and fluoxetine group. The latter three groups were subjected to 21 days of CUMS to prepare the stress depression model. Rats in the XYS group, and fluoxetine group were given intragastric administration with refined XYS and fluoxetine, respectively. The behavioral changes of the rats were observed after 21 days. The contents of pregnenolone (PREG), progesterone (PROG) and alloprognanolone (ALLO) in the plasma of rats were measured by ELISA. The levels of PREG, PROG and ALLO in the hippocampus and amygdala tissues were measured by LC-MS/MS. The mRNA expressions of 3α-hydroxysteroid dehydrogenase (3α-HSD), 3β-hydroxysteroid dehydrogenase (3β-HSD), cholesterol side-chain cleavage enzyme (P450scc) and 5α-reductase (5a-R) in the hippocampus and amygdala were detected by RT-qPCR methods. Results: There were changes in the model rats. The contents of PREG, PROG and ALLO changed similarly, which reflected in the decrease of PROG and ALLO, and the increase of PREG. The mRNA expression of P450scc was increased, and the mRNA expressions of 3α-HSD, 3β-HSD and 5a-R were decreased. Refined XYS could improve the behaviors of rats and the biological indicators. Conclusions: There is a neurosteroid dysfunction in the brain region of depression rat model animals, and the mechanism of refined XYS depression treatment may be related to the regulation of the control of mRNA expression of related synthesis and metabolic enzymes in the hippocampus and amygdala, further affecting the contents of neurosteroids.
Collapse
|
55
|
Shen X, Chen F, Chen L, Su Y, Huang P, Ge RS. Effects of Fungicides on Rat's Neurosteroid Synthetic Enzymes. BIOMED RESEARCH INTERNATIONAL 2017; 2017:5829756. [PMID: 28812018 PMCID: PMC5546122 DOI: 10.1155/2017/5829756] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/16/2017] [Revised: 05/21/2017] [Accepted: 06/04/2017] [Indexed: 01/09/2023]
Abstract
Exposure to environmental endocrine disruptors may interfere with nervous system's activity. Fungicides such as tebuconazole, triadimefon, and vinclozolin have antifungal activities and are used to prevent fungal infections in agricultural plants. In the present study, we studied effects of tebuconazole, triadimefon, and vinclozolin on rat's neurosteroidogenic 5α-reductase 1 (5α-Red1), 3α-hydroxysteroid dehydrogenase (3α-HSD), and retinol dehydrogenase 2 (RDH2). Rat's 5α-Red1, 3α-HSD, and RDH2 were cloned and expressed in COS-1 cells, and effects of these fungicides on them were measured. Tebuconazole and triadimefon competitively inhibited 5α-Red1, with IC50 values of 8.670 ± 0.771 × 10-6 M and 17.390 ± 0.079 × 10-6 M, respectively, while vinclozolin did not inhibit the enzyme at 100 × 10-6 M. Triadimefon competitively inhibited 3α-HSD, with IC50 value of 26.493 ± 0.076 × 10-6 M. Tebuconazole and vinclozolin weakly inhibited 3α-HSD, with IC50 values about 100 × 10-6 M, while vinclozolin did not inhibit the enzyme even at 100 × 10-6 M. Tebuconazole and triadimefon weakly inhibited RDH2 with IC50 values over 100 × 10-6 M and vinclozolin did not inhibit this enzyme at 100 × 10-6 M. Docking study showed that tebuconazole, triadimefon, and vinclozolin bound to the steroid-binding pocket of 3α-HSD. In conclusion, triadimefon potently inhibited rat's neurosteroidogenic enzymes, 5α-Red1 and 3α-HSD.
Collapse
Affiliation(s)
- Xiuwei Shen
- Department of Pharmacy, The Third Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325200, China
| | - Fan Chen
- Department of Pharmacy, The Third Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325200, China
| | - Lanlan Chen
- Department of Anesthesiology, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325027, China
| | - Ying Su
- Department of Anesthesiology, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325027, China
| | - Ping Huang
- Department of Pharmacy, Zhejiang Cancer Hospital, Hangzhou, Zhejiang 310022, China
| | - Ren-Shan Ge
- Department of Anesthesiology, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325027, China
| |
Collapse
|
56
|
Locci A, Pinna G. Neurosteroid biosynthesis down-regulation and changes in GABA A receptor subunit composition: a biomarker axis in stress-induced cognitive and emotional impairment. Br J Pharmacol 2017; 174:3226-3241. [PMID: 28456011 DOI: 10.1111/bph.13843] [Citation(s) in RCA: 95] [Impact Index Per Article: 11.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2016] [Revised: 04/05/2017] [Accepted: 04/12/2017] [Indexed: 12/26/2022] Open
Abstract
By rapidly modulating neuronal excitability, neurosteroids regulate physiological processes, such as responses to stress and development. Excessive stress affects their biosynthesis and causes an imbalance in cognition and emotions. The progesterone derivative, allopregnanolone (Allo) enhances extrasynaptic and postsynaptic inhibition by directly binding at GABAA receptors, and thus, positively and allosterically modulates the function of GABA. Allo levels are decreased in stress-induced psychiatric disorders, including depression and post-traumatic stress disorder (PTSD), and elevating Allo levels may be a valid therapeutic approach to counteract behavioural dysfunction. While benzodiazepines are inefficient, selective serotonin reuptake inhibitors (SSRIs) represent the first choice treatment for depression and PTSD. Their mechanisms to improve behaviour in preclinical studies include neurosteroidogenic effects at low non-serotonergic doses. Unfortunately, half of PTSD and depressed patients are resistant to current prescribed 'high' dosage of these drugs that engage serotonergic mechanisms. Unveiling novel biomarkers to develop more efficient treatment strategies is in high demand. Stress-induced down-regulation of neurosteroid biosynthesis and changes in GABAA receptor subunit expression offer a putative biomarker axis to develop new PTSD treatments. The advantage of stimulating Allo biosynthesis relies on the variety of neurosteroidogenic receptors to be targeted, including TSPO and endocannabinoid receptors. Furthermore, stress favours a GABAA receptor subunit composition with higher sensitivity for Allo. The use of synthetic analogues of Allo is a valuable alternative. Pregnenolone or drugs that stimulate its levels increase Allo but also sulphated steroids, including pregnanolone sulphate which, by inhibiting NMDA tonic neurotransmission, provides neuroprotection and cognitive benefits. In this review, we describe current knowledge on the effects of stress on neurosteroid biosynthesis and GABAA receptor neurotransmission and summarize available pharmacological strategies that by enhancing neurosteroidogenesis are relevant for the treatment of SSRI-resistant patients. Linked Articles This article is part of a themed section on Pharmacology of Cognition: a Panacea for Neuropsychiatric Disease? To view the other articles in this section visit http://onlinelibrary.wiley.com/doi/10.1111/bph.v174.19/issuetoc.
Collapse
Affiliation(s)
- Andrea Locci
- The Psychiatric Institute, Department of Psychiatry, College of Medicine, University of Illinois at Chicago, Chicago, IL, USA
| | - Graziano Pinna
- The Psychiatric Institute, Department of Psychiatry, College of Medicine, University of Illinois at Chicago, Chicago, IL, USA
| |
Collapse
|
57
|
Protective effects of gabapentin against the seizure susceptibility and comorbid behavioral abnormalities in the early socially isolated mice. Eur J Pharmacol 2017; 797:106-114. [PMID: 28115172 DOI: 10.1016/j.ejphar.2017.01.024] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2016] [Revised: 01/19/2017] [Accepted: 01/19/2017] [Indexed: 02/01/2023]
Abstract
Adolescence is a pivotal period of brain development during lifespan, which is sensitive to stress exposure. Early social isolation stress (SIS) is known to provoke a variety of psychiatric comorbidities as well as seizure risk. Psychiatric comorbidities present challenging dilemmas for treatment and management in people with seizure disorders. In this study, we aimed to investigate whether gabapentin (GBP) as an anti-epileptic drug is able to alleviate the seizure activity as well as comorbid behavioral abnormalities in socially isolated mice. Results showed that early SIS induced proconvulsant effects along with depressive, aggressive and anxiety-like behaviors. Whereas the administration of both acute and chronic GBP at sub-effective doses produced no alterations in the behavioral profile of socially conditioned counterparts the same treatments effectively reversed the seizure susceptibility to pentylenetetrazole and behavioral deficits in isolated mice. Results of the study indicate that 1) Early SIS could be considered as an animal model of psychosocial stress to investigate the psychiatric comorbidities in seizure disorders, 2) Chronic administration of low dose GBP prevented the shaping of behavioral abnormalities in adulthood, 3) Chronic administration of low dose GBP produced no negative behavioral effects in socially conditioned mice suggesting the safety of the drug, 4) Gabapentin at low doses may be considered as an agent for management of epilepsy in individuals with psychiatric comorbidities.
Collapse
|
58
|
Walther A, Penz M, Ijacic D, Rice TR. Bipolar Spectrum Disorders in Male Youth: The Interplay between Symptom Severity, Inflammation, Steroid Secretion, and Body Composition. Front Psychiatry 2017; 8:207. [PMID: 29093685 PMCID: PMC5651281 DOI: 10.3389/fpsyt.2017.00207] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/12/2017] [Accepted: 10/03/2017] [Indexed: 12/27/2022] Open
Abstract
The morbidity and societal burden of youth bipolar spectrum disorders (BSD) are high. These disorders are multisystemic in that adult populations there are clear interactions with inflammatory processes and steroidal physiological systems. There are much less data concerning these areas of study in youth populations with BSD. This is surprising given the association of youth-onset BSD with puberty and its associated physiological changes. In this mini-review, we overview the theoretical role of inflammatory processes and steroidal physiological systems in youth BSD, describe the greater literature in adult populations, detail the literature in youth populations when available, and overview current proposed molecular mechanistic pathways and interaction effects based on the available data. We also attend to the interplay of this complex system with body composition and weight gain, an especially important consideration in relation to the role of second generation antipsychotics as the first line treatment for youth with BSD in major clinical guidelines. A developmental model of early onset BSD for boys is hypothesized with pubertal hormonal changes increasing risk for first (hypo-)manic/depressive episode. The dramatic androgen rise during puberty might be relevant for first onset of BSD in boys. A shift from general hypercortisolism driven by glucocorticoid resistance to hypocortisolism with further disease progression is assumed, while increased levels of inflammation are functionally associated with endocrine dysregulation. The interacting role of overweight body habitus and obesity in youth with BSD further indicates leptin resistance to be a central moderator of the dynamic neurobiology of BSD in youth. The intent of this mini-review is to advance our knowledge of youth BSD as multisystemic disorders with important contributions from endocrinology and immunology based on a developmental perspective. This knowledge can influence current clinical care and more importantly inform future research.
Collapse
Affiliation(s)
- Andreas Walther
- Department of Biological Psychology, Technische Universität Dresden, Dresden, Germany.,Department of Clinical Psychology and Psychotherapy, University of Zurich, Zurich, Switzerland
| | - Marlene Penz
- Department of Biological Psychology, Technische Universität Dresden, Dresden, Germany
| | - Daniela Ijacic
- Department of Child and Adolescent Psychiatry and Psychotherapy, Psychiatric University Clinic Zurich, Zurich, Switzerland
| | - Timothy R Rice
- Department of Psychiatry - Child and Adolescent Inpatient Service, Icahn School of Medicine at Mount Sinai, New York, NY, United States
| |
Collapse
|
59
|
Quintana L, Zubizarreta L, Jalabert C, Batista G, Perrone R, Silva A. Building the case for a novel teleost model of non-breeding aggression and its neuroendocrine control. ACTA ACUST UNITED AC 2016; 110:224-232. [PMID: 27915075 DOI: 10.1016/j.jphysparis.2016.11.009] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2016] [Revised: 09/16/2016] [Accepted: 11/23/2016] [Indexed: 10/20/2022]
Abstract
In vertebrates, aggression has been traditionally associated with high levels of circulating androgens in breeding males. Nevertheless, the centrality of androgens as primary modulators of aggression is being reconsidered in at least in two particular cases: (1) territorial aggression outside the breeding season, and (2) aggression by females. We are developing the weakly electric fish, Gymnotus omarorum, as a novel, advantageous model system to address these two alternative forms of aggression. This species displays a short, escalated contest, after which a clear hierarchical status emerges. Subordination of individuals involves three sequential decisions: interruptions of their electric discharges, retreats, and chirps. These decisions are influenced by both size asymmetry between contenders and aggression levels of dominants. Both females and males are aggressive, and do not differ in fighting ability nor in the value placed on the resource. Aggression is completely independent of gonadal hormones: dominance status is unrelated to circulating androgen and estrogen levels, and gonadectomy in males does not affect aggression. Nevertheless, estrogenic pathways participate in the modulation of this non-breeding aggression. Our results parallel those put forth in other taxa, heightening the value of G. omarorum as a model to identify commonalities in neuroendrocrine strategies of vertebrate aggression control.
Collapse
Affiliation(s)
- Laura Quintana
- Unidad Bases Neurales de la Conducta, Departamento de Neurofisiología Celular y Molecular, Instituto de Investigaciones Biológicas Clemente Estable, Avda. Italia 3318, 11600 Montevideo, Uruguay.
| | - Lucía Zubizarreta
- Unidad Bases Neurales de la Conducta, Departamento de Neurofisiología Celular y Molecular, Instituto de Investigaciones Biológicas Clemente Estable, Avda. Italia 3318, 11600 Montevideo, Uruguay; Laboratorio de Neurofisiología Celular y Sináptica, Departamento de Fisiología, Facultad de Medicina, Universidad de la República, General Flores 2125, Montevideo, Uruguay.
| | - Cecilia Jalabert
- Unidad Bases Neurales de la Conducta, Departamento de Neurofisiología Celular y Molecular, Instituto de Investigaciones Biológicas Clemente Estable, Avda. Italia 3318, 11600 Montevideo, Uruguay.
| | - Gervasio Batista
- Unidad Bases Neurales de la Conducta, Departamento de Neurofisiología Celular y Molecular, Instituto de Investigaciones Biológicas Clemente Estable, Avda. Italia 3318, 11600 Montevideo, Uruguay.
| | - Rossana Perrone
- Unidad Bases Neurales de la Conducta, Departamento de Neurofisiología Celular y Molecular, Instituto de Investigaciones Biológicas Clemente Estable, Avda. Italia 3318, 11600 Montevideo, Uruguay.
| | - Ana Silva
- Unidad Bases Neurales de la Conducta, Departamento de Neurofisiología Celular y Molecular, Instituto de Investigaciones Biológicas Clemente Estable, Avda. Italia 3318, 11600 Montevideo, Uruguay; Laboratorio de Neurociencias, Departamento de Biología Celular y Molecular, Facultad de Ciencias, Universidad de la República, Iguá 4225, Montevideo, Uruguay.
| |
Collapse
|
60
|
Zhang LM, Wang YL, Liu YQ, Xue R, Zhang YZ, Yang RF, Li YF. Antidepressant-like effects of YL-IPA08, a potent ligand for the translocator protein (18 kDa) in chronically stressed rats. Neuropharmacology 2016; 113:567-575. [PMID: 27845056 DOI: 10.1016/j.neuropharm.2016.11.004] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2016] [Revised: 10/19/2016] [Accepted: 11/02/2016] [Indexed: 10/20/2022]
Abstract
The present study aimed to examine the molecular and cellular mechanisms underlying the antidepressant-like effect of YL-IPA08, a novel TSPO ligand designed and synthesized at our institute. We firstly used the chronic unpredictable stress (CUS) procedure of rats, a well validated stress-related animal model of depression, to further determine the antidepressant-like of YL-IPA08. And we found that YL-IPA08 caused significant suppression of inhibiting of locomotor activity, reducing the sucrose preference and increasing the latency to eat induced by CUS. In addition, YL-IPA08 treatment increased the levels of progesterone and allopregnanolone in the hippocampus and prefrontal cortex of post- CUS rats. Furthermore, long-term YL-IPA08 administration reversed dendritic shrinkage, down-regulation of neurotrophic signaling pathway within the hippocampus, as well as HPA dysfunctions simultaneously observed in the CUS rats. Collectively, the evidence presented above supports the notion that binding to TSPO and the subsequent synthesis of neurosteroid, maintenance of hippocampal morphologic and functional plasticity, and preventing HPA axis dysfunction, may account for the profound molecular and cellular mechanism underlying the antidepressant-like effect of YL-IPA08.
Collapse
Affiliation(s)
- Li-Ming Zhang
- Department of New Drug Evaluation, Beijing Institute of Pharmacology and Toxicology, Beijing 100850, China
| | - Yu-Lu Wang
- Department of New Drug Evaluation, Beijing Institute of Pharmacology and Toxicology, Beijing 100850, China; College of Pharmacy, Fujian University of Traditional Chinese Medicine, Fuzhou 350122, China
| | - Yan-Qin Liu
- Department of New Drug Evaluation, Beijing Institute of Pharmacology and Toxicology, Beijing 100850, China
| | - Rui Xue
- Department of New Drug Evaluation, Beijing Institute of Pharmacology and Toxicology, Beijing 100850, China
| | - You-Zhi Zhang
- Department of New Drug Evaluation, Beijing Institute of Pharmacology and Toxicology, Beijing 100850, China
| | - Ri-Fang Yang
- Department of Medicinal Chemistry, Beijing Institute of Pharmacology and Toxicology, Beijing 100850, China.
| | - Yun-Feng Li
- Department of New Drug Evaluation, Beijing Institute of Pharmacology and Toxicology, Beijing 100850, China.
| |
Collapse
|
61
|
Qiu ZK, Liu CH, Gao ZW, He JL, Liu X, Wei QL, Chen JS. The inulin-type oligosaccharides extract from morinda officinalis, a traditional Chinese herb, ameliorated behavioral deficits in an animal model of post-traumatic stress disorder. Metab Brain Dis 2016; 31:1143-9. [PMID: 27311612 DOI: 10.1007/s11011-016-9853-7] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/14/2015] [Accepted: 06/05/2016] [Indexed: 12/08/2022]
Abstract
Post-traumatic stress disorder (PTSD) is a severe psychiatric condition. The allopregnanolone biosynthesis has been implicated as one of the possible contributors to PTSD. Inulin-type oligosaccharides of morinda officinalis (IOMO) had been shown to be effective in the therapy of depression. However, few studies concern the anti-PTSD-like effects of IOMO. To evaluate this, the single prolonged stress (SPS) model was used in the present study. It had been shown that the behavioral deficits of SPS-treated rats were reversed by IOMO (25.0 and 50.0 mg/kg, i.p.), which reversed the increased freezing time in contextual fear paradigm (CFP) and the decreased time and entries in open arms in the elevated plus maze (EPM) test without affecting the locomotor activity in the open field (OF) test. In addition, the decreased allopregnanolone in the prefrontal cortex, hippocampus, and amygdala was reversed by IOMO (25.0 and 50.0 mg/kg, i.p.), respectively. In summary, the present study indicated that the IOMO exert anti-PTSD-like behaviors, which maybe associated with the brain allopregnanolone biosynthesis.
Collapse
Affiliation(s)
- Zhi-Kun Qiu
- Pharmaceutical Department of The First Affiliated Hospital of Guangdong Pharmaceutical University, Clinical Pharmacy Department of Guangdong Pharmaceutical University, Guangzhou, 510080, China
| | - Chun-Hui Liu
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, 100050, China
| | - Zhuo-Wei Gao
- Department of ICU, Shunde TCM Hospital Affiliated to Guangzhou University of Traditional Chinese Medicine, Foshan, 528333, China
| | - Jia-Li He
- Department of Endocrinology, Guangdong Provincial Hospital of Chinese Medicine, Guangzhou, 510120, China.
| | - Xu Liu
- Pharmacy Department of General Hospital of Chinese People's Armed Police Forces, Beijing, 100039, China
| | - Qing-Lan Wei
- Department of ICU, Shunde TCM Hospital Affiliated to Guangzhou University of Traditional Chinese Medicine, Foshan, 528333, China.
| | - Ji-Sheng Chen
- Pharmaceutical Department of The First Affiliated Hospital of Guangdong Pharmaceutical University, Clinical Pharmacy Department of Guangdong Pharmaceutical University, Guangzhou, 510080, China.
| |
Collapse
|
62
|
Ishikawa M, Yoshitomi T, Covey DF, Zorumski CF, Izumi Y. TSPO activation modulates the effects of high pressure in a rat ex vivo glaucoma model. Neuropharmacology 2016; 111:142-159. [PMID: 27596950 DOI: 10.1016/j.neuropharm.2016.09.001] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2016] [Revised: 08/12/2016] [Accepted: 09/01/2016] [Indexed: 01/02/2023]
Abstract
We previously reported that elevated pressure induces axonal swelling and facilitates the synthesis of the neurosteroid, allopregnanolone (AlloP), in the ex vivo rat retina. Exogenously applied AlloP attenuates the axonal swelling, suggesting that the neurosteroid plays a neuroprotective role against glaucomatous pressure-induced injuries, although mechanisms underlying neurosteroidogenesis have not been clarified. The aim of this study was to determine whether AlloP synthesis involves activation of translocator protein 18 kD (TSPO) and whether TSPO modulates pressure-induced retinal injury. Ex vivo rat retinas were exposed to various pressures (10, 35, or 75 mmHg) for 24 h. Expression of TSPO, 5α-reductase (5aRD), and AlloP was examined by quantitative real-time RT-PCR, ELISA, immunohistochemistry, and LC-MS/MS. We also examined the effects of TSPO ligands on AlloP synthesis and retinal damage. In this acute model, quantitative real-time RT-PCR and ELISA analyses revealed that elevated pressure facilitated TSPO expression. Similarly, these methods also detected enhanced 5aRD (mostly type II), which was observed in retinal ganglion cells (RGC) and the inner nuclear layer (INL). Atriol, a TSPO antagonist, suppressed pressure mediated AlloP synthesis and induced more severe histological changes in the inner retina when combined with elevated pressure. PK11195, a TSPO ligand that facilitates AlloP synthesis by itself, remarkably diminished pressure-mediated retinal degeneration. These results suggest that AlloP synthesis is induced by sequential activation of TSPO and 5aRD in an ex vivo glaucoma model, and that TSPO agonists may serve as potential therapeutic agents for the prevention of pressure-induced retinal damage.
Collapse
Affiliation(s)
- Makoto Ishikawa
- Department of Ophthalmology, Akita Graduate University School of Medicine, Akita, Japan.
| | - Takeshi Yoshitomi
- Department of Ophthalmology, Akita Graduate University School of Medicine, Akita, Japan
| | - Douglas F Covey
- Department of Developmental Biology, Washington University School of Medicine, St. Louis, M.O, USA; The Taylor Family Institute for Innovative Psychiatric Research, Washington University School of Medicine, St. Louis, M.O, USA
| | - Charles F Zorumski
- The Taylor Family Institute for Innovative Psychiatric Research, Washington University School of Medicine, St. Louis, M.O, USA; Center for Brain Research in Mood Disorders, Washington University School of Medicine, St. Louis, M.O, USA; Department of Psychiatry, Washington University School of Medicine, St. Louis, M.O, USA
| | - Yukitoshi Izumi
- The Taylor Family Institute for Innovative Psychiatric Research, Washington University School of Medicine, St. Louis, M.O, USA; Center for Brain Research in Mood Disorders, Washington University School of Medicine, St. Louis, M.O, USA; Department of Psychiatry, Washington University School of Medicine, St. Louis, M.O, USA
| |
Collapse
|
63
|
Talani G, Biggio F, Licheri V, Locci V, Biggio G, Sanna E. Isolation Rearing Reduces Neuronal Excitability in Dentate Gyrus Granule Cells of Adolescent C57BL/6J Mice: Role of GABAergic Tonic Currents and Neurosteroids. Front Cell Neurosci 2016; 10:158. [PMID: 27378855 PMCID: PMC4904037 DOI: 10.3389/fncel.2016.00158] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2015] [Accepted: 05/30/2016] [Indexed: 01/03/2023] Open
Abstract
Early-life exposure to stress, by impacting on a brain still under development, is considered a critical factor for the increased vulnerability to psychiatric disorders and abuse of psychotropic substances during adulthood. As previously reported, rearing C57BL/6J weanling mice in social isolation (SI) from their peers for several weeks, a model of prolonged stress, is associated with a decreased plasma and brain levels of neuroactive steroids such as 3α,5α-THP, with a parallel up-regulation of extrasynaptic GABAA receptors (GABAAR) in dentate gyrus (DG) granule cells compared to group-housed (GH) mice. In the present study, together with the SI-induced decrease in plasma concentration of both progesterone and 3α,5α-THP, and an increase in THIP-stimulated GABAergic tonic currents, patch-clamp analysis of DG granule cells revealed a significant decrease in membrane input resistance and action potential (AP) firing rate, in SI compared to GH mice, suggesting that SI exerts an inhibitory action on neuronal excitability of these neurons. Voltage-clamp recordings of glutamatergic spontaneous excitatory postsynaptic currents (sEPSCs) revealed a SI-associated decrease in frequency as well as a shift from paired-pulse (PP) depression to PP facilitation (PPF) of evoked EPSCs, indicative of a reduced probability of glutamate release. Daily administration of progesterone during isolation reverted the changes in plasma 3α,5α-THP as well as in GABAergic tonic currents and neuronal excitability caused by SI, but it had only a limited effect on the changes in the probability of presynaptic glutamate release. Overall, the results obtained in this work, together with those previously published, indicate that exposure of mice to SI during adolescence reduces neuronal excitability of DG granule cells, an effect that may be linked to the increased GABAergic tonic currents as a consequence of the sustained decrease in plasma and hippocampal levels of neurosteroids. All these changes may be consistent with cognitive deficits observed in animals exposed to such type of prolonged stress.
Collapse
Affiliation(s)
- Giuseppe Talani
- Institute of Neuroscience, National Research Council of Italy Monserrato, Cagliari, Italy
| | - Francesca Biggio
- Department of Life and Environmental Sciences, Section of Neuroscience and Anthropology, University of Cagliari, Monserrato Italy
| | - Valentina Licheri
- Department of Life and Environmental Sciences, Section of Neuroscience and Anthropology, University of Cagliari, Monserrato Italy
| | - Valentina Locci
- Department of Biomedical Science, University of Sassari Sassari, Italy
| | - Giovanni Biggio
- Institute of Neuroscience, National Research Council of ItalyMonserrato, Cagliari, Italy; Department of Life and Environmental Sciences, Section of Neuroscience and Anthropology, University of Cagliari, MonserratoItaly
| | - Enrico Sanna
- Institute of Neuroscience, National Research Council of ItalyMonserrato, Cagliari, Italy; Department of Life and Environmental Sciences, Section of Neuroscience and Anthropology, University of Cagliari, MonserratoItaly
| |
Collapse
|
64
|
Social Isolation During Postweaning Development Causes Hypoactivity of Neurons in the Medial Nucleus of the Male Rat Amygdala. Neuropsychopharmacology 2016; 41:1929-40. [PMID: 26677945 PMCID: PMC4869062 DOI: 10.1038/npp.2015.364] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/05/2015] [Revised: 12/04/2015] [Accepted: 12/11/2015] [Indexed: 12/28/2022]
Abstract
Children exposed to neglect or social deprivation are at heightened risk for psychiatric disorders and abnormal social patterns as adults. There is also evidence that prepubertal neglect in children causes abnormal metabolic activity in several brain regions, including the amygdala area. The medial nucleus of the amygdala (MeA) is a key region for performance of social behaviors and still undergoes maturation during the periadolescent period. As such, the normal development of this region may be disrupted by social deprivation. In rodents, postweaning social isolation causes a range of deficits in sexual and agonistic behaviors that normally rely on the posterior MeA (MeAp). However, little is known about the effects of social isolation on the function of MeA neurons. In this study, we tested whether postweaning social isolation caused abnormal activity of MeA neurons. We found that postweaning social isolation caused a decrease of in vivo firing activity of MeAp neurons, and reduced drive from excitatory afferents. In vitro electrophysiological studies found that postweaning social isolation caused a presynaptic impairment of excitatory input to the dorsal MeAp, but a progressive postsynaptic reduction of membrane excitability in the ventral MeAp. These results demonstrate discrete, subnucleus-specific effects of social deprivation on the physiology of MeAp neurons. This pathophysiology may contribute to the disruption of social behavior after developmental social deprivation, and may be a novel target to facilitate the treatment of social disorders.
Collapse
|
65
|
Brunton PJ. Neuroactive steroids and stress axis regulation: Pregnancy and beyond. J Steroid Biochem Mol Biol 2016; 160:160-8. [PMID: 26259885 DOI: 10.1016/j.jsbmb.2015.08.003] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/26/2015] [Revised: 07/31/2015] [Accepted: 08/03/2015] [Indexed: 01/09/2023]
Abstract
The hypothalamo-pituitary-adrenal (HPA) axis plays a critical role in regulating responses to stress and long term dysregulation of the HPA axis is associated with higher rates of mood disorders. There are circumstances where the HPA axis is more or less responsive to stress. For example, during late pregnancy ACTH and corticosterone responses to stress are markedly suppressed, whereas in offspring born to mothers that experienced repeated stress during pregnancy, the HPA axis is hyper-responsive to stress. Neuroactive steroids such as allopregnanolone, tetrahydrodeoxycorticosterone (THDOC) and androstanediol can modulate HPA axis activity and concentrations of some neuroactive steroids in the brain are altered during pregnancy and following stress. Thus, here altered neurosteroidogenesis is proposed as a mechanism that could underpin the dynamic changes in HPA axis regulation typically observed in late pregnant and in prenatally stressed individuals. In support of this hypothesis, evidence in rats demonstrates that elevated levels of allopregnanolone in pregnancy induce a central inhibitory opioid mechanism that serves to minimize stress-induced HPA axis activity. Conversely, in prenatally stressed rodents, where HPA axis stress responses are enhanced, evidence indicates the capacity of the brain for neurosteroidogenesis is reduced. Understanding the mechanisms involved in adaptations in HPA axis regulation may provide insights for manipulating stress sensitivity and for developing therapies for stress-related disorders in humans.
Collapse
Affiliation(s)
- Paula J Brunton
- Division of Neurobiology, The Roslin Institute & R(D)SVS, University of Edinburgh, Easter Bush Campus, Midlothian EH25 9RG, Scotland, UK.
| |
Collapse
|
66
|
Tang Y, Benusiglio D, Grinevich V, Lin L. Distinct Types of Feeding Related Neurons in Mouse Hypothalamus. Front Behav Neurosci 2016; 10:91. [PMID: 27242460 PMCID: PMC4870269 DOI: 10.3389/fnbeh.2016.00091] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2016] [Accepted: 04/28/2016] [Indexed: 12/20/2022] Open
Abstract
The last two decades of research provided evidence for a substantial heterogeneity among feeding-related neurons (FRNs) in the hypothalamus. However, it remains unclear how FRNs differ in their firing patterns during food intake. Here, we investigated the relationship between the activity of neurons in mouse hypothalamus and their feeding behavior. Using tetrode-based in vivo recording technique, we identified various firing patterns of hypothalamic FRNs, which, after the initiation of food intake, can be sorted into four types: sharp increase (type I), slow increase (type II), sharp decrease (type III), and sustained decrease (type IV) of firing rates. The feeding-related firing response of FRNs was rigidly related to the duration of food intake and, to a less extent, associated with the type of food. The majority of these FRNs responded to glucose and leptin and exhibited electrophysiological characteristics of putative GABAergic neurons. In conclusion, our study demonstrated the diversity of neurons in the complex hypothalamic network coordinating food intake.
Collapse
Affiliation(s)
- Yan Tang
- Key Laboratory of Brain Functional Genomics (Ministry of Education and Shanghai), School of Life Science and the Collaborative Innovation Center for Brain Science, Institute of Brain Functional Genomics, East China Normal UniversityShanghai, China; Schaller Research Group on Neuropeptides at German Cancer Research Center, Central Institute of Mental Health, and Cell Networks Cluster of Excellence at the University of HeidelbergHeidelberg, Germany
| | - Diego Benusiglio
- Schaller Research Group on Neuropeptides at German Cancer Research Center, Central Institute of Mental Health, and Cell Networks Cluster of Excellence at the University of Heidelberg Heidelberg, Germany
| | - Valery Grinevich
- Schaller Research Group on Neuropeptides at German Cancer Research Center, Central Institute of Mental Health, and Cell Networks Cluster of Excellence at the University of Heidelberg Heidelberg, Germany
| | - Longnian Lin
- Key Laboratory of Brain Functional Genomics (Ministry of Education and Shanghai), School of Life Science and the Collaborative Innovation Center for Brain Science, Institute of Brain Functional Genomics, East China Normal University Shanghai, China
| |
Collapse
|
67
|
Sato W, Kochiyama T, Kubota Y, Uono S, Sawada R, Yoshimura S, Toichi M. The association between perceived social support and amygdala structure. Neuropsychologia 2016; 85:237-44. [PMID: 27039164 DOI: 10.1016/j.neuropsychologia.2016.03.036] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2015] [Revised: 03/10/2016] [Accepted: 03/29/2016] [Indexed: 01/17/2023]
Abstract
The subjective perception of social support plays a crucial role in human well-being. However, its structural neural substrates remain unknown. We hypothesized that the amygdala, specifically its laterobasal and superficial subregions, which have been suggested to serve social functions, could be associated with the level of perceived social support. To test this hypothesis, we assessed perceived social support using the Multidimensional Scale of Perceived Social Support. In addition, we measured the volume and shape of the amygdala using structural magnetic resonance imaging in 49 healthy participants. Global amygdala volume in the left hemisphere was positively associated with the perceived social support score after adjusting for total cerebral volume, sex, age, intelligence, and five-factor personality domains. The local shape of the laterobasal and superficial subregions of the left amygdala showed the same association with perceived social support. These data suggest that the social subregions of the left amygdala are associated with the implementation of perceived social support.
Collapse
Affiliation(s)
- Wataru Sato
- Department of Neurodevelopmental Psychiatry, Habilitation and Rehabilitation, Graduate School of Medicine, Kyoto University, 53 Shogoin-Kawaharacho, Sakyo, Kyoto 606-8507, Japan.
| | - Takanori Kochiyama
- Brain Activity Imaging Center, Advanced Telecommunications Research Institute International, 2-2-2 Hikaridai, Seika-cho, Soraku-gun, Kyoto 619-0288, Japan
| | - Yasutaka Kubota
- Health and Medical Services Center, Shiga University, 1-1-1, Baba, Hikone, Shiga 522-8522, Japan
| | - Shota Uono
- Department of Neurodevelopmental Psychiatry, Habilitation and Rehabilitation, Graduate School of Medicine, Kyoto University, 53 Shogoin-Kawaharacho, Sakyo, Kyoto 606-8507, Japan
| | - Reiko Sawada
- Department of Neurodevelopmental Psychiatry, Habilitation and Rehabilitation, Graduate School of Medicine, Kyoto University, 53 Shogoin-Kawaharacho, Sakyo, Kyoto 606-8507, Japan
| | - Sayaka Yoshimura
- Department of Neurodevelopmental Psychiatry, Habilitation and Rehabilitation, Graduate School of Medicine, Kyoto University, 53 Shogoin-Kawaharacho, Sakyo, Kyoto 606-8507, Japan
| | - Motomi Toichi
- Faculty of Human Health Science, Graduate School of Medicine, Kyoto University, 53 Shogoin-Kawaharacho, Sakyo-ku, Kyoto 606-8507, Japan; The Organization for Promoting Neurodevelopmental Disorder Research, 40 Shogoin-Sannocho, Sakyo, Kyoto 606-8392, Japan
| |
Collapse
|
68
|
Mad men, women and steroid cocktails: a review of the impact of sex and other factors on anabolic androgenic steroids effects on affective behaviors. Psychopharmacology (Berl) 2016; 233:549-69. [PMID: 26758282 PMCID: PMC4751878 DOI: 10.1007/s00213-015-4193-6] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/02/2015] [Accepted: 12/11/2015] [Indexed: 12/26/2022]
Abstract
RATIONALE For several decades, elite athletes and a growing number of recreational consumers have used anabolic androgenic steroids (AAS) as performance enhancing drugs. Despite mounting evidence that illicit use of these synthetic steroids has detrimental effects on affective states, information available on sex-specific actions of these drugs is lacking. OBJECTIVES The focus of this review is to assess information to date on the importance of sex and its interaction with other environmental factors on affective behaviors, with an emphasis on data derived from non-human studies. METHODS The PubMed database was searched for relevant studies in both sexes. RESULTS Studies examining AAS use in females are limited, reflecting the lower prevalence of use in this sex. Data, however, indicate significant sex-specific differences in AAS effects on anxiety-like and aggressive behaviors, interactions with other drugs of abuse, and the interplay of AAS with other environmental factors such as diet and exercise. CONCLUSIONS Current methods for assessing AAS use have limitations that suggest biases of both under- and over-reporting, which may be amplified for females who are poorly represented in self-report studies of human subjects and are rarely used in animal studies. Data from animal literature suggest that there are significant sex-specific differences in the impact of AAS on aggression, anxiety, and concomitant use of other abused substances. These results have relevance for human females who take these drugs as performance-enhancing substances and for transgender XX individuals who may illicitly self-administer AAS as they transition to a male gender identity.
Collapse
|
69
|
Frau R, Abbiati F, Bini V, Casti A, Caruso D, Devoto P, Bortolato M. Targeting neurosteroid synthesis as a therapy for schizophrenia-related alterations induced by early psychosocial stress. Schizophr Res 2015; 168:640-8. [PMID: 25999042 PMCID: PMC4628592 DOI: 10.1016/j.schres.2015.04.044] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/29/2015] [Revised: 04/29/2015] [Accepted: 04/29/2015] [Indexed: 12/11/2022]
Abstract
BACKGROUND Cogent evidence has shown that schizophrenia vulnerability is enhanced by psychosocial stress in adolescence, yet the underpinnings of this phenomenon remain elusive. One of the animal models that best capture the relationship between juvenile stress and schizophrenia is isolation rearing (IR). This manipulation, which consists in subjecting rats to social isolation from weaning through adulthood, results in neurobehavioral alterations akin to those observed in schizophrenia patients. In particular, IR-subjected rats display a marked reduction of the prepulse inhibition (PPI) of the startle reflex, which are posited to reflect imbalances in dopamine neurotransmission in the nucleus accumbens (NAcc). We recently documented that the key neurosteroidogenic enzyme 5α-reductase (5αR) plays an important role in the dopaminergic regulation of PPI; given that IR leads to a marked down-regulation of this enzyme in the NAcc, the present study was designed to further elucidate the functional role of 5αR in the regulation of PPI of IR-subjected rats. METHODS We studied the impact of the prototypical 5αR inhibitor finasteride (FIN) on the PPI deficits and NAcc steroid profile of IR-subjected male rats, in comparison with socially reared (SR) controls. RESULTS FIN (25-100 mg/kg, i.p.) dose-dependently countered IR-induced PPI reduction, without affecting gating integrity in SR rats. The NAcc and striatum of IR-subjected rats displayed several changes in neuroactive steroid profile, including a reduction in pregnenolone in both SR and IR-subjected groups, as well as a decrease in allopregnanolone content in the latter group; both effects were significantly opposed by FIN. CONCLUSIONS These results show that 5αR inhibition counters the PPI deficits induced by IR, possibly through limbic changes in pregnenolone and/or allopregnanolone concentrations.
Collapse
Affiliation(s)
- Roberto Frau
- “Guy Everett” Laboratory, Department of Biomedical Sciences, Section of Neuroscience and Clinical Pharmacology, University of Cagliari, Cagliari, Italy,Tourette Syndrome Center, University of Cagliari, Cagliari, Italy
| | - Federico Abbiati
- Department of Pharmacological and Biomolecular Sciences, Center of Excellence on Neurodegenerative Diseases; University of Milan, Milan, Italy
| | - Valentina Bini
- “Guy Everett” Laboratory, Department of Biomedical Sciences, Section of Neuroscience and Clinical Pharmacology, University of Cagliari, Cagliari, Italy,Tourette Syndrome Center, University of Cagliari, Cagliari, Italy
| | - Alberto Casti
- “Guy Everett” Laboratory, Department of Biomedical Sciences, Section of Neuroscience and Clinical Pharmacology, University of Cagliari, Cagliari, Italy
| | - Donatella Caruso
- Department of Pharmacological and Biomolecular Sciences, Center of Excellence on Neurodegenerative Diseases; University of Milan, Milan, Italy
| | - Paola Devoto
- “Guy Everett” Laboratory, Department of Biomedical Sciences, Section of Neuroscience and Clinical Pharmacology, University of Cagliari, Cagliari, Italy,Tourette Syndrome Center, University of Cagliari, Cagliari, Italy
| | - Marco Bortolato
- Tourette Syndrome Center, University of Cagliari, Cagliari, Italy; Department of Pharmacology and Toxicology, School of Pharmacy, University of Kansas, Lawrence, KS, USA; Consortium for Translational Research on Aggression and Drug Abuse (ConTRADA), University of Kansas, Lawrence, KS, USA; Problem Gambling Research Studies (ProGResS) Network, University of Kansas, Lawrence, KS, USA.
| |
Collapse
|
70
|
Schumacher M, Guennoun R, Mattern C, Oudinet JP, Labombarda F, De Nicola AF, Liere P. Analytical challenges for measuring steroid responses to stress, neurodegeneration and injury in the central nervous system. Steroids 2015; 103:42-57. [PMID: 26301525 DOI: 10.1016/j.steroids.2015.08.013] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/18/2015] [Revised: 08/17/2015] [Accepted: 08/19/2015] [Indexed: 12/22/2022]
Abstract
Levels of steroids in the adult central nervous system (CNS) show marked changes in response to stress, degenerative disorders and injury. However, their analysis in complex matrices such as fatty brain and spinal cord tissues, and even in plasma, requires accurate and precise analytical methods. Radioimmunoassays (RIA) and enzyme-linked immunosorbent assays, even with prepurification steps, do not provide sufficient specificity, and they are at the origin of many inconsistent results in the literature. The analysis of steroids by mass spectrometric methods has become the gold standard for accurate and sensitive steroid analysis. However, these technologies involve multiple purification steps prone to errors, and they only provide accurate reference values when combined with careful sample workup. In addition, the interpretation of changes in CNS steroid levels is not an easy task because of their multiple sources: the endocrine glands and the local synthesis by neural cells. In the CNS, decreased steroid levels may reflect alterations of their biosynthesis, as observed in the case of chronic stress, post-traumatic stress disorders or depressive episodes. In such cases, return to normalization by administering exogenous hormones or by stimulating their endogenous production may have beneficial effects. On the other hand, increases in CNS steroids in response to acute stress, degenerative processes or injury may be part of endogenous protective or rescue programs, contributing to the resistance of neural cells to stress and insults. The aim of this review is to encourage a more critical reading of the literature reporting steroid measures, and to draw attention to the absolute need for well-validated methods. We discuss reported findings concerning changing steroid levels in the nervous system by insisting on methodological issues. An important message is that even recent mass spectrometric methods have their limits, and they only become reliable tools if combined with careful sample preparation.
Collapse
Affiliation(s)
| | | | | | | | - Florencia Labombarda
- Instituto de Biologia y Medicina Experimental and University of Buenos Aires, Argentina
| | - Alejandro F De Nicola
- Instituto de Biologia y Medicina Experimental and University of Buenos Aires, Argentina
| | - Philippe Liere
- U1195 Inserm and University Paris-Sud, Kremlin-Bicêtre, France
| |
Collapse
|
71
|
Araki R, Nishida S, Hiraki Y, Matsumoto K, Yabe T. DNA methylation of the GC box in the promoter region mediates isolation rearing-induced suppression of srd5a1 transcription in the prefrontal cortex. Neurosci Lett 2015; 606:135-9. [DOI: 10.1016/j.neulet.2015.08.031] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2015] [Revised: 07/30/2015] [Accepted: 08/19/2015] [Indexed: 01/01/2023]
|
72
|
Why may allopregnanolone help alleviate loneliness? Med Hypotheses 2015; 85:947-52. [PMID: 26365247 DOI: 10.1016/j.mehy.2015.09.004] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2015] [Revised: 08/03/2015] [Accepted: 09/04/2015] [Indexed: 01/21/2023]
Abstract
Impaired biosynthesis of Allopregnanolone (ALLO), a brain endogenous neurosteroid, has been associated with numerous behavioral dysfunctions, which range from anxiety- and depressive-like behaviors to aggressive behavior and changes in responses to contextual fear conditioning in rodent models of emotional dysfunction. Recent animal research also demonstrates a critical role of ALLO in social isolation. Although there are likely aspects of perceived social isolation that are uniquely human, there is also continuity across species. Both human and animal research show that perceived social isolation (which can be defined behaviorally in animals and humans) has detrimental effects on physical health, such as increased hypothalamic pituitary adrenal (HPA) activity, decreased brain-derived neurotrophic factor (BDNF) expression, and increased depressive behavior. The similarities between animal and human research suggest that perceived social isolation (loneliness) may also be associated with a reduction in the synthesis of ALLO, potentially by reducing BDNF regulation and increasing HPA activity through the hippocampus, amygdala, and bed nucleus of the stria terminalis (BNST), especially during social threat processing. Accordingly, exogenous administration of ALLO (or ALLO precursor, such as pregnenolone), in humans may help alleviate loneliness. Congruent with our hypothesis, exogenous administration of ALLO (or ALLO precursors) in humans has been shown to improve various stress-related disorders that show similarities between animals and humans i.e., post-traumatic stress disorders, traumatic brain injuries. Because a growing body of evidence demonstrates the benefits of ALLO in socially isolated animals, we believe our ALLO hypothesis can be applied to loneliness in humans, as well.
Collapse
|
73
|
Rossetti MF, Varayoud J, Moreno-Piovano GS, Luque EH, Ramos JG. Environmental enrichment attenuates the age-related decline in the mRNA expression of steroidogenic enzymes and reduces the methylation state of the steroid 5α-reductase type 1 gene in the rat hippocampus. Mol Cell Endocrinol 2015; 412:330-8. [PMID: 26021641 DOI: 10.1016/j.mce.2015.05.024] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/04/2015] [Revised: 05/20/2015] [Accepted: 05/20/2015] [Indexed: 12/16/2022]
Abstract
We analyzed the effects of aging and environmental enrichment on the mRNA expression and DNA methylation state of steroidogenic enzymes in the hippocampus. The effects of aging were evaluated by comparing young adult (90-day-old) and middle-aged (450-day-old) female Wistar rats. To elucidate the effects of environmental enrichment, a subgroup of middle-aged rats exposed to sensory and social stimulation for 105 days was compared to rats housed under standard laboratory conditions. Aging decreased the transcription of neurosteroidogenic-related genes and increased the promoter methylation state of cytochrome P450 side chain cleavage, 3α-hydroxysteroid dehydrogenase (3α-HSD) and 5α-reductase-1. Exposure of middle-aged rats to environmental enrichment increased mRNA levels of 5α-reductase-1, 3α-HSD and cytochrome P450 17α-hydroxylase/c17,20-lyase and decreased the methylation state of the 5α-reductase-1 gene. Thus, sensory and social stimulation attenuate the age-related decline in the mRNA expression of hippocampal steroidogenic enzymes. Epigenetic mechanisms associated with differential promoter methylation could be involved.
Collapse
Affiliation(s)
- María F Rossetti
- Departamento de Bioquímica Clínica y Cuantitativa, Facultad de Bioquímica y Ciencias Biológicas, Universidad Nacional del Litoral, Santa Fe, Argentina; Instituto de Salud y Ambiente del Litoral (ISAL), Facultad de Bioquímica y Ciencias Biológicas, Universidad Nacional del Litoral-CONICET, Santa Fe, Argentina
| | - Jorgelina Varayoud
- Instituto de Salud y Ambiente del Litoral (ISAL), Facultad de Bioquímica y Ciencias Biológicas, Universidad Nacional del Litoral-CONICET, Santa Fe, Argentina
| | - Guillermo S Moreno-Piovano
- Instituto de Salud y Ambiente del Litoral (ISAL), Facultad de Bioquímica y Ciencias Biológicas, Universidad Nacional del Litoral-CONICET, Santa Fe, Argentina
| | - Enrique H Luque
- Instituto de Salud y Ambiente del Litoral (ISAL), Facultad de Bioquímica y Ciencias Biológicas, Universidad Nacional del Litoral-CONICET, Santa Fe, Argentina
| | - Jorge G Ramos
- Departamento de Bioquímica Clínica y Cuantitativa, Facultad de Bioquímica y Ciencias Biológicas, Universidad Nacional del Litoral, Santa Fe, Argentina; Instituto de Salud y Ambiente del Litoral (ISAL), Facultad de Bioquímica y Ciencias Biológicas, Universidad Nacional del Litoral-CONICET, Santa Fe, Argentina.
| |
Collapse
|
74
|
The Impact of the 5α-Reductase Inhibitors (5α-RIs) on Male Sexual Function and Psychological Well-Being. CURRENT SEXUAL HEALTH REPORTS 2015. [DOI: 10.1007/s11930-015-0061-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|
75
|
Qiu ZK, Zhang GH, He JL, Ma JC, Zeng J, Shen D, Shen YG, Chen JS, Liu CY. Free and Easy Wanderer Plus (FEWP) improves behavioral deficits in an animal model of post-traumatic stress disorder by stimulating allopregnanolone biosynthesis. Neurosci Lett 2015; 602:162-6. [PMID: 26160034 DOI: 10.1016/j.neulet.2015.06.055] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2014] [Revised: 05/08/2015] [Accepted: 06/29/2015] [Indexed: 11/11/2022]
Abstract
Post-traumatic stress disorder (PTSD) is a severe psychiatric condition defined as a "trauma and stress-related disorder". Dampened allopregnanolone biosynthesis has been implicated as a possible contributor to PTSD aetiology. Free and Easy Wanderer Plus (FEWP) is a traditional Chinese medicine previously shown to be effective in PTSD treatment. However, little is known about the role of allopregnanolone in the anti-PTSD effects of FEWP. To evaluate this, the single prolonged stress (SPS) model was used in the present study. SPS-induced rats were administered FEWP (at doses of 2.5, 5.0 and 10.0 mg/kg, p.o.) after induction of SPS from days 2 through 15. After exposure to SPS, behavioral assessments were determined, including the open-field test, the contextual fear paradigm, and the elevated plus-maze test. The experimental model rats were decapitated at the end of the behavioral tests and the level of allopregnanolone in the prefrontal cortex, hippocampus and amygdala was measured by enzyme linked immunosorbent assay (ELISA). The behavioral deficits of the SPS-induced rats were significantly reversed by FEWP (at doses of 5.0 and 10.0 mg/kg, p.o.). The level of allopregnanolone was increased by administration of FEWP. In summary, this study indicated that the anti-PTSD effects of FEWP were associated with allopregnanolone biosynthesis.
Collapse
Affiliation(s)
- Zhi-Kun Qiu
- Pharmaceutical Department of the First Affiliated Hospital of Guangdong Pharmaceutical University, Clinical Pharmacy Department of Guangdong Pharmaceutical University, Guangzhou 510080, PR China
| | - Guan-Hua Zhang
- Neurosurgery Department of the Third Affiliated Hospital of Southern Medical University, Guangzhou 510630, PR China
| | - Jia-Li He
- Department of Endocrinology, Guangdong Provincial Hospital of Chinese Medicine, Guangzhou 510120, PR China
| | - Jian-Chun Ma
- Pharmaceutical Department of the First Affiliated Hospital of Guangdong Pharmaceutical University, Clinical Pharmacy Department of Guangdong Pharmaceutical University, Guangzhou 510080, PR China
| | - Jia Zeng
- Pharmaceutical Department of the First Affiliated Hospital of Guangdong Pharmaceutical University, Clinical Pharmacy Department of Guangdong Pharmaceutical University, Guangzhou 510080, PR China
| | - Dong Shen
- Department of Oncology, The Affiliated Jiangyin Hospital of Southeast University Medical College, Jiangyin 214400, PR China
| | - Yong-Gang Shen
- Pharmaceutical Department of the First Affiliated Hospital of Guangdong Pharmaceutical University, Clinical Pharmacy Department of Guangdong Pharmaceutical University, Guangzhou 510080, PR China
| | - Ji-Sheng Chen
- Pharmaceutical Department of the First Affiliated Hospital of Guangdong Pharmaceutical University, Clinical Pharmacy Department of Guangdong Pharmaceutical University, Guangzhou 510080, PR China.
| | - Cheng-Yong Liu
- Neurosurgery Department of the Third Affiliated Hospital of Southern Medical University, Guangzhou 510630, PR China.
| |
Collapse
|
76
|
Brunton PJ. Programming the brain and behaviour by early-life stress: a focus on neuroactive steroids. J Neuroendocrinol 2015; 27:468-80. [PMID: 25688636 DOI: 10.1111/jne.12265] [Citation(s) in RCA: 61] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/26/2014] [Revised: 02/11/2015] [Accepted: 02/11/2015] [Indexed: 01/09/2023]
Abstract
Animal studies have amply demonstrated that stress exposure during pregnancy or in early postnatal life can adversely influence brain development and have long-term 'programming' effects on future brain function and behaviour. Furthermore, a growing body of evidence from human studies supports the hypothesis that some psychiatric disorders may have developmental origins. Here, the focus is on three adverse consequences of early-life stress: dysregulation of the hypothalamic-pituitary-adrenal (HPA) axis, heightened anxiety behaviour and cognitive impairments, with review of what is known about the underlying central mechanisms. Neuroactive steroids modulate neuronal activity and play a key role in neurodevelopment. Moreover they can negatively modulate activity of the HPA axis, exert anxiolytic actions and influence cognitive performance. Thus, neuroactive steroids may provide a link between early-life stress and the resultant adverse effects on the brain and behaviour. Here, a role for neuroactive steroids, in particular the 5α-reduced/3α-hydroxylated metabolites of progesterone, testosterone and deoxycorticosterone, is discussed in the context of early-life stress. Furthermore, the impact of early-life stress on the brain's capacity to generate neurosteroids is considered and the evidence for an ability of neuroactive steroids to over-write the negative effects of early-life stress on the brain and behaviour is examined. An enhanced understanding of the influence of early-life stress on brain neurosteroid systems could aid the identification of new targets for developing treatments for stress-related conditions in humans.
Collapse
Affiliation(s)
- P J Brunton
- Division of Neurobiology, The Roslin Institute & R(D)SVS, University of Edinburgh, Midlothian, UK
| |
Collapse
|
77
|
Yamaguchi K. Evaluation for roles of neurosteroids in modulating forebrain mechanisms controlling vasopressin secretion and related phenomena in conscious rats. Neurosci Res 2015; 95:38-50. [PMID: 25598212 DOI: 10.1016/j.neures.2015.01.002] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2014] [Revised: 11/20/2014] [Accepted: 01/08/2015] [Indexed: 11/28/2022]
Abstract
Anteroventral third ventricular region (AV3V) that regulates autonomic functions through a GABAergic mechanism possesses neuroactive steroid (NS)-synthesizing ability. Although NS can exert effects by acting on a certain type of GABAA-receptor (R), it is not clear whether NS may operate to modulate AV3V GABAergic activity for controlling autonomic functions. This study aimed to investigate the issue. AV3V infusion with a GABAA antagonist bicuculline increased plasma vasopressin (AVP), glucose, blood pressure (BP), and heart rate in rats. These events were abolished by preinjecting its agonist muscimol, whereas the infusion with allopregnanolone, a NS capable of potentiating GABAA-R function, affected none of the variables in the absence or presence of such bicuculline actions. Similarly, AV3V infusion with pregnanolone sulfate, a NS capable of antagonizing GABAA-R, produced no effect on those variables. AV3V infusion with muscimol was effective in inhibiting the responses of plasma AVP or glucose, or BP to an osmotic loading or bleeding. However, AV3V infusion with aminoglutethimide, a NS synthesis inhibitor, did not affect any of the variables in the absence or presence of those stimuli. These results suggest that NS may not cause acute effects on the AV3V GABAergic mechanism involved in regulating AVP release and other autonomic function.
Collapse
Affiliation(s)
- Ken'ichi Yamaguchi
- Department of Homeostatic Regulation and Development, Niigata University Graduate School of Medical and Dental Sciences, Niigata City 951-8510, Japan.
| |
Collapse
|
78
|
Soma KK, Rendon NM, Boonstra R, Albers HE, Demas GE. DHEA effects on brain and behavior: insights from comparative studies of aggression. J Steroid Biochem Mol Biol 2015; 145:261-72. [PMID: 24928552 DOI: 10.1016/j.jsbmb.2014.05.011] [Citation(s) in RCA: 86] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/27/2014] [Revised: 05/09/2014] [Accepted: 05/15/2014] [Indexed: 12/24/2022]
Abstract
Historically, research on the neuroendocrinology of aggression has been dominated by the paradigm that the brain receives sex steroid hormones, such as testosterone (T), from the gonads, and then these gonadal hormones modulate behaviorally relevant neural circuits. While this paradigm has been extremely useful for advancing the field, recent studies reveal important alternatives. For example, most vertebrate species are seasonal breeders, and many species show aggression outside of the breeding season, when the gonads are regressed and circulating levels of gonadal steroids are relatively low. Studies in diverse avian and mammalian species suggest that adrenal dehydroepiandrosterone (DHEA), an androgen precursor and prohormone, is important for the expression of aggression when gonadal T synthesis is low. Circulating DHEA can be converted into active sex steroids within the brain. In addition, the brain can synthesize sex steroids de novo from cholesterol, thereby uncoupling brain steroid levels from circulating steroid levels. These alternative mechanisms to provide sex steroids to specific neural circuits may have evolved to avoid the costs of high circulating T levels during the non-breeding season. Physiological indicators of season (e.g., melatonin) may allow animals to switch from one neuroendocrine mechanism to another across the year. DHEA and neurosteroids are likely to be important for the control of multiple behaviors in many species, including humans. These studies yield fundamental insights into the regulation of DHEA secretion, the mechanisms by which DHEA affects behavior, and the brain regions and neural processes that are modulated by DHEA. It is clear that the brain is an important site of DHEA synthesis and action. This article is part of a Special Issue entitled 'Essential role of DHEA'.
Collapse
Affiliation(s)
- Kiran K Soma
- Departments of Psychology and Zoology, Graduate Program in Neuroscience, and the Brain Research Centre, University of British Columbia, Vancouver, BC, Canada V6T 1Z4.
| | - Nikki M Rendon
- Department of Biology, Program in Neuroscience, and Center for the Integrative Study of Animal Behavior, Indiana University, Bloomington, IN 47405, USA
| | - Rudy Boonstra
- Centre for Neurobiology of Stress, Department of Biological Sciences, University of Toronto Scarborough, Toronto, ON, Canada M1C 1A4
| | - H Elliott Albers
- Neuroscience Institute, and Center for Behavioral Neuroscience, Georgia State University, Atlanta, GA 30303, USA
| | - Gregory E Demas
- Department of Biology, Program in Neuroscience, and Center for the Integrative Study of Animal Behavior, Indiana University, Bloomington, IN 47405, USA
| |
Collapse
|
79
|
Abstract
Social isolation has been recognized as a major risk factor for morbidity and mortality in humans for more than a quarter century. The brain is the key organ of social connections and processes, however, and the same objective social relationship can be experienced as caring and protective or as exploitive and isolating. We review evidence that the perception of social isolation (i.e., loneliness) impacts brain and behavior and is a risk factor for broad-based morbidity and mortality. However, the causal role of loneliness on neural mechanisms and mortality is difficult to test conclusively in humans. Mechanistic animal studies provide a lens through which to evaluate the neurological effects of a member of a social species living chronically on the social perimeter. Experimental studies show that social isolation produces significant changes in brain structures and processes in adult social animals. These effects are not uniform across the brain or across species but instead are most evident in brain regions that reflect differences in the functional demands of solitary versus social living for a particular species. The human and animal literatures have developed independently, however, and significant gaps also exist. The current review underscores the importance of integrating human and animal research to delineate the mechanisms through which social relationships impact the brain, health, and well-being.
Collapse
Affiliation(s)
- Stephanie Cacioppo
- High Performance Electrical NeuroImaging (HPEN) Laboratory of the Center for Cognitive and Social Neuroscience, and Department of Psychiatry and Behavioral Neuroscience, University of Chicago
| | - John P Capitanio
- California National Primate Research Center and Department of Psychology, University of California-Davis
| | - John T Cacioppo
- High Performance Electrical NeuroImaging (HPEN) Laboratory of the Center for Cognitive and Social Neuroscience, and Department of Psychiatry and Behavioral Neuroscience, University of Chicago
| |
Collapse
|
80
|
Pinna G, Rasmusson AM. Ganaxolone improves behavioral deficits in a mouse model of post-traumatic stress disorder. Front Cell Neurosci 2014; 8:256. [PMID: 25309317 PMCID: PMC4161165 DOI: 10.3389/fncel.2014.00256] [Citation(s) in RCA: 68] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2014] [Accepted: 08/11/2014] [Indexed: 12/14/2022] Open
Abstract
Allopregnanolone and its equipotent stereoisomer, pregnanolone (together termed ALLO), are neuroactive steroids that positively and allosterically modulate the action of gamma-amino-butyric acid (GABA) at GABAA receptors. Levels of ALLO are reduced in the cerebrospinal fluid of female premenopausal patients with post-traumatic stress disorder (PTSD), a severe, neuropsychiatric condition that affects millions, yet is without a consistently effective therapy. This suggests that restoring downregulated brain ALLO levels in PTSD may be beneficial. ALLO biosynthesis is also decreased in association with the emergence of PTSD-like behaviors in socially isolated (SI) mice. Similar to PTSD patients, SI mice also exhibit changes in the frontocortical and hippocampal expression of GABAA receptor subunits, resulting in resistance to benzodiazepine-mediated sedation and anxiolysis. ALLO acts at a larger spectrum of GABAA receptor subunits than benzodiazepines, and increasing corticolimbic ALLO levels in SI mice by injecting ALLO or stimulating ALLO biosynthesis with a selective brain steroidogenic stimulant, such as S-norfluoxetine, at doses far below those that block serotonin reuptake, reduces PTSD-like behavior in these mice. This suggests that synthetic analogs of ALLO, such as ganaxolone, may also improve anxiety, aggression, and other PTSD-like behaviors in the SI mouse model. Consistent with this hypothesis, ganaxolone (3.75–30 mg/kg, s.c.) injected 60 min before testing of SI mice, induced a dose-dependent reduction in aggression toward a same-sex intruder and anxiety-like behavior in an elevated plus maze. The EC50 dose of ganaxolone used in these tests also normalized exaggerated contextual fear conditioning and, remarkably, enhanced fear extinction retention in SI mice. At these doses, ganaxolone failed to change locomotion in an open field test. Therefore, unlike benzodiazepines, ganaxolone at non-sedating concentrations appears to improve dysfunctional emotional behavior associated with deficits in ALLO in mice and may provide an alternative treatment for PTSD patients with deficits in the synthesis of ALLO. Selective serotonin reuptake inhibitors (SSRIs) are the only medications currently approved by the FDA for treatment of PTSD, although they are ineffective in a substantial proportion of PTSD patients. Hence, an ALLO analog such as ganaxolone may offer a therapeutic GABAergic alternative to SSRIs for the treatment of PTSD or other disorders in which ALLO biosynthesis may be impaired.
Collapse
Affiliation(s)
- Graziano Pinna
- The Psychiatric Institute, College of Medicine, University of Illinois at Chicago Chicago, IL, USA
| | - Ann M Rasmusson
- VA Boston Healthcare System, Women's Health Science Division of the VA National Center for PTSD, and Boston University School of Medicine Boston, MA, USA
| |
Collapse
|
81
|
Involvement of pregnane xenobiotic receptor in mating-induced allopregnanolone formation in the midbrain and hippocampus and brain-derived neurotrophic factor in the hippocampus among female rats. Psychopharmacology (Berl) 2014; 231:3375-90. [PMID: 24781516 PMCID: PMC4135012 DOI: 10.1007/s00213-014-3569-3] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/30/2013] [Accepted: 03/31/2014] [Indexed: 12/30/2022]
Abstract
RATIONALE Given that the pregnane neurosteroid, 5α-pregnan-3α-ol-20-one (3α,5α-THP), is increased following behavioral challenges (e.g., mating), and that there is behavioral-induced biosynthesis of 3α,5α-THP in midbrain and mesocorticolimbic structures, 3α,5α-THP likely has a role in homeostasis and motivated reproduction and reproduction-related behaviors (e.g., affect, affiliation). The role of pregnane xenobiotic receptor (PXR), involved in cholesterol metabolism, for these effects is of continued interest. OBJECTIVES We hypothesized that there would be differences in brain levels of 3α,5α-THP following varied behavioral experiences, an effect abrogated by knockdown of PXR in the midbrain. METHODS Proestrous rats were infused with PXR antisense oligonucleotides (AS-ODNs) or vehicle to the ventral tegmental area before different behavioral manipulations and assessments. Endpoints were expression levels of PXR in the midbrain, 3α,5α-THP, and ovarian steroids (estradiol, progesterone, dihydroprogesterone) in the midbrain, striatum, hippocampus, hypothalamus, prefrontal cortex, and plasma. RESULTS Across experiments, knocking down PXR reduced PXR expression and 3α,5α-THP levels in the midbrain and hippocampus. There were differences in terms of the behavioral manipulations, such that paced mating had the most robust effects to increase 3α,5α-THP levels and reduce open field exploration and social interaction. An additional question that was addressed is whether brain-derived neurotrophic factor (BDNF) is a downstream factor for regulating effects of behavioral-induced 3α,5α-THP biosynthesis. Rats infused with PXR AS-ODNs had lower levels of BDNF in the hippocampus. CONCLUSION Thus, PXR may be a regulator of mating-induced 3α,5α-THP formation and behavioral changes and neural plasticity, such as BDNF.
Collapse
|
82
|
Maldonado-Devincci AM, Beattie MC, Morrow DH, McKinley RE, Cook JB, O’Buckley TK, Morrow AL. Reduction of circulating and selective limbic brain levels of (3α,5α)-3-hydroxy-pregnan-20-one (3α,5α-THP) following forced swim stress in C57BL/6J mice. Psychopharmacology (Berl) 2014; 231:3281-92. [PMID: 24744202 PMCID: PMC4335654 DOI: 10.1007/s00213-014-3552-z] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/24/2014] [Accepted: 03/16/2014] [Indexed: 01/12/2023]
Abstract
RATIONALE Stress activates the hypothalamic-pituitary-adrenal (HPA) axis, and GABAergic neuroactive steroids contribute to homeostatic regulation of this circuitry. Acute forced swim stress (FSS) increases plasma, cortical, and hypothalamic (3α,5α)-3-hydroxy-pregnan-20-one (3α,5α-THP) levels in rats. However, there have not been systemic investigations of acute stress on changes in plasma and brain levels of 3α,5α-THP in mouse models. OBJECTIVES The present experiments aimed to assess circulating and local brain levels of 3α,5α-THP following acute FSS in C57BL/6J mice. METHODS Mice were exposed to FSS (10 min), and 50 min later, blood and brains were collected. Circulating pregnenolone and 3α,5α-THP levels were assessed in serum. Free-floating brain sections (40 μm, four to five sections/region) were immunostained and analyzed in cortical and limbic brain structures. RESULTS FSS decreased circulating 3α,5α-THP (-41.6 ± 10.4 %) and reduced 3α,5α-THP immunolabeling in the paraventricular nucleus of the hypothalamus (-15.2 ± 5.7 %), lateral amygdala (LA, -31.1 ± 13.4 %), and nucleus accumbens (NAcc) shell (-31.9 ± 14.6). Within the LA, vesicular glutamate transporter 1 (VGLUT1) and vesicular GABA transporter were localized in 3α,5α-THP-positively stained cells, while in the NAcc shell, only VGLUT1 was localized in 3α,5α-THP-positively stained cells, suggesting that both glutamatergic and GABAergic cells within the LA are 3α,5α-THP-positive, while in the NAcc shell, 3α,5α-THP only localizes to glutamatergic cells. CONCLUSIONS The decrease in circulating and brain levels of 3α,5α-THP may be due to alterations in the biosynthesis/metabolism or changes in the regulation of the HPA axis following FSS. Changes in GABAergic neuroactive steroids in response to stress likely mediate functional adaptations in neuronal activity. This may provide a potential targeted therapeutic avenue to address maladaptive stress responsivity.
Collapse
Affiliation(s)
- Antoniette M. Maldonado-Devincci
- Bowles Center for Alcohol Studies, University of North Carolina at Chapel Hill, 3027 Thurston Bowles Building, CB 7178, Chapel Hill, NC 27599, USA,Curriculum in Toxicology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Matthew C. Beattie
- Bowles Center for Alcohol Studies, University of North Carolina at Chapel Hill, 3027 Thurston Bowles Building, CB 7178, Chapel Hill, NC 27599, USA
| | - Danielle H. Morrow
- Bowles Center for Alcohol Studies, University of North Carolina at Chapel Hill, 3027 Thurston Bowles Building, CB 7178, Chapel Hill, NC 27599, USA
| | - Raechel E. McKinley
- Bowles Center for Alcohol Studies, University of North Carolina at Chapel Hill, 3027 Thurston Bowles Building, CB 7178, Chapel Hill, NC 27599, USA
| | - Jason B. Cook
- Bowles Center for Alcohol Studies, University of North Carolina at Chapel Hill, 3027 Thurston Bowles Building, CB 7178, Chapel Hill, NC 27599, USA,Curriculum in Neurobiology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Todd K. O’Buckley
- Bowles Center for Alcohol Studies, University of North Carolina at Chapel Hill, 3027 Thurston Bowles Building, CB 7178, Chapel Hill, NC 27599, USA
| | - A. Leslie Morrow
- Bowles Center for Alcohol Studies, University of North Carolina at Chapel Hill, 3027 Thurston Bowles Building, CB 7178, Chapel Hill, NC 27599, USA,Curriculum in Toxicology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA,Curriculum in Neurobiology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA,Department of Psychiatry, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA,Department of Pharmacology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| |
Collapse
|
83
|
5α-reductase type I expression is downregulated in the prefrontal cortex/Brodmann's area 9 (BA9) of depressed patients. Psychopharmacology (Berl) 2014; 231:3569-80. [PMID: 24781515 PMCID: PMC6223254 DOI: 10.1007/s00213-014-3567-5] [Citation(s) in RCA: 73] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/07/2013] [Accepted: 03/28/2014] [Indexed: 12/27/2022]
Abstract
RATIONALE The implications of the neurosteroid 3α-hydroxy-5α-pregnan-20-one [allopregnanolone (Allo)] in neuropsychiatric disorders have been highlighted in several recent clinical investigations. For instance, Allo levels are decreased in the cerebrospinal fluid (CSF) of patients with posttraumatic stress disorder (PTSD) and major unipolar depression. Neurosteroidogenic antidepressants [i.e., selective brain steroidogenic stimulants (SBSSs)], including fluoxetine and analogs, correct this decrease in a manner that correlates with improved depressive symptoms. Allo positively and allosterically modulates GABA action at postsynaptic and extrasynaptic GABAA receptors. It is synthesized in both the human and rodent brain cortices by principal glutamatergic pyramidal neurons from progesterone by the sequential action of 5α-reductase type I (5α-RI), which is the rate-limiting step enzyme in Allo biosynthesis, and 3α-hydroxysteroid dehydrogenase (3α-HSD), which converts 5α-dehydroprogesterone into Allo. HYPOTHESIS We thus hypothesized that decreased CSF levels of Allo in depressed patients could reflect a brain dysfunction of 5α-RI. METHODS In a pilot study of samples from six patients per group [six depressed patients and six nonpsychiatric subjects (NPS)], we studied the expression of 5α-RI messenger RNA (mRNA) in prefrontal cortex Brodmann's area 9 (BA9) and cerebellum from depressed patients obtained from the Maryland Brain Collection at the Maryland Psychiatric Research Center (Baltimore, MD) that were age-matched with NPS. RESULTS The levels of 5α-RI mRNA were decreased from 25 ± 5.8 in NPS to 9.1 ± 3.1 fmol/pmol neuronal specific enolase (NSE) (t1,10 = 2.7, P = 0.02) in depressed patients. These differences are absent in the cerebellum of the same patients. The levels of neurosteroids were determined in the prefrontal cortex BA9 of depressed patients obtained from the Stanley Foundation Brain Bank Neuropathology Consortium, Bethesda (MD). The BA9 levels of Allo in male depressed patients failed to reach statistical difference from the levels of NPS (1.63 ± 1.01 pg/mg, n = 8, in NPS and 0.82 ± 0.33 pg/mg, n = 5, in nontreated depressed patients). However, depressed patients who had received antidepressant treatment (three patients SSRI and one TCA) exhibited increased BA9 Allo levels (6.16 ± 2.5 pg/mg, n = 4, t1,9 = 2.4, P = 0.047) when compared with nontreated depressed patients. CONCLUSIONS Although in a small number of patients, this finding is in-line with previous reports in the field that have observed an increase of Allo levels in CSF and plasma of depressed patients following antidepressant treatment. Hence, the molecular mechanisms underlying major depression may include a GABAergic neurotransmission deficit caused by a brain Allo biosynthesis downregulation, which can be normalized by SBSSs.
Collapse
|
84
|
Neurosteroid, GABAergic and hypothalamic pituitary adrenal (HPA) axis regulation: what is the current state of knowledge in humans? Psychopharmacology (Berl) 2014; 231:3619-34. [PMID: 24756763 PMCID: PMC4135030 DOI: 10.1007/s00213-014-3572-8] [Citation(s) in RCA: 73] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/15/2013] [Accepted: 04/06/2014] [Indexed: 11/25/2022]
Abstract
RATIONALE A robust epidemiological literature suggests an association between chronic stress and the development of affective disorders. However, the precise biological underpinnings of this relationship remain elusive. Central to the human response and adaptation to stress, activation and inhibition of the hypothalamic pituitary adrenal (HPA) axis involves a multi-level, multi-system, neurobiological stress response which is as comprehensive in its complexity as it is precarious. Dysregulation in this complex system has implications for human stress related illness. OBJECTIVES The pioneering research of Robert Purdy and colleagues has laid the groundwork for advancing our understanding of HPA axis regulation by stress-derived steroid hormones and their neuroactive metabolites (termed neurosteroids), which are potent allosteric modulators of GABAA receptor function in the central nervous system. This review will describe what is known about neurosteroid modulation of the HPA axis in response to both acute and chronic stress, particularly with respect to the current state of our knowledge of this process in humans. RESULTS Implications of this research to the development of human stress-related illness are discussed in the context of two human stress-related psychiatric disorders - major depressive disorder and premenstrual dysphoric disorder. CONCLUSIONS Neurosteroid-mediated HPA axis dysregulation is a potential pathophysiologic mechanism which may cross traditional psychiatric diagnostic classifications. Future research directions are identified.
Collapse
|
85
|
Shannonhouse JL, Fong LA, Clossen BL, Hairgrove RE, York DC, Walker BB, Hercules GW, Mertesdorf LM, Patel M, Morgan C. Female-biased anorexia and anxiety in the Syrian hamster. Physiol Behav 2014; 133:141-51. [DOI: 10.1016/j.physbeh.2014.05.019] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2014] [Revised: 05/07/2014] [Accepted: 05/16/2014] [Indexed: 01/26/2023]
|
86
|
Tsutsui K, Haraguchi S. Biosynthesis and biological action of pineal allopregnanolone. Front Cell Neurosci 2014; 8:118. [PMID: 24834027 PMCID: PMC4017145 DOI: 10.3389/fncel.2014.00118] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2014] [Accepted: 04/14/2014] [Indexed: 12/02/2022] Open
Abstract
The pineal gland transduces photoperiodic changes to the neuroendocrine system by rhythmic secretion of melatonin. We recently provided new evidence that the pineal gland is a major neurosteroidogenic organ and actively produces a variety of neurosteroids de novo from cholesterol in birds. Notably, allopregnanolone is a major pineal neurosteroid that is far more actively produced in the pineal gland than the brain and secreted by the pineal gland in juvenile birds. Subsequently, we have demonstrated the biological action of pineal allopregnanolone on Purkinje cells in the cerebellum during development in juvenile birds. Pinealectomy (Px) induces apoptosis of Purkinje cells, whereas allopregnanolone administration to Px chicks prevents cell death. Furthermore, Px increases the number of Purkinje cells that express active caspase-3, a crucial mediator of apoptosis, and allopregnanolone administration to Px chicks decreases the number of Purkinje cells expressing active caspase-3. It thus appears that pineal allopregnanolone prevents cell death of Purkinje cells by suppressing the activity of caspase-3 during development. This paper highlights new aspects of the biosynthesis and biological action of pineal allopregnanolone.
Collapse
Affiliation(s)
- Kazuyoshi Tsutsui
- Laboratory of Integrative Brain Sciences, Department of Biology and Center for Medical Life Science, Waseda University Tokyo, Japan
| | - Shogo Haraguchi
- Laboratory of Integrative Brain Sciences, Department of Biology and Center for Medical Life Science, Waseda University Tokyo, Japan
| |
Collapse
|
87
|
Frye CA, Koonce CJ, Walf AA. The pregnane xenobiotic receptor, a prominent liver factor, has actions in the midbrain for neurosteroid synthesis and behavioral/neural plasticity of female rats. Front Syst Neurosci 2014; 8:60. [PMID: 24795576 PMCID: PMC4001026 DOI: 10.3389/fnsys.2014.00060] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2014] [Accepted: 03/31/2014] [Indexed: 11/13/2022] Open
Abstract
A novel factor of interest for growth/plasticity in the brain is pregnane xenobiotic receptor (PXR). PXR is a liver factor known for its role in xenobiotic clearance and cholesterol metabolism. It is expressed in the brain, suggesting a potential role for plasticity, particularly involving cholesterol-based steroids and neurosteroids. Mating induces synthesis of neurosteroids in the midbrain Ventral Tegmental Area (VTA) of female rodents, as well as other “plastic” regions of the brain, including the hippocampus, that may be involved in the consolidation of the mating experience. Reducing PXR in the VTA attenuates mating-induced biosynthesis of the neurosteroid, 5α-pregnan-3α-ol-20-one (3α,5α-THP). The 18 kDA translocator protein (TSPO) is one rate-limiting factor for 3α,5α-THP neurosteroidogenesis. The hypothesis tested was that PXR is an upstream factor of TSPO for neurosteroidogenesis of 3α,5α-THP in the VTA for lordosis, independent of peripheral glands. First, proestrous rats were administered a TSPO blocker (PK11195) and/or 3α,5α-THP following infusions of PXR antisense oligonucleotides (AS-ODNs) or vehicle to the VTA. Inhibiting TSPO with PK11195 reduced 3α,5α-THP levels in the midbrain and lordosis, an effect that could be reversed with 3α,5α-THP administration, but not AS-ODN+3α,5α-THP. Second, proestrous, ovariectomized (OVX), or ovariectomized/adrenalectomized (OVX/ADX) rats were infused with a TSPO enhancer (FGIN 1-27) subsequent to AS-ODNs or vehicle to the VTA. PXR AS-ODNs blocked actions of FGIN 1–27 for lordosis and 3α,5α-THP levels among proestrous > OVX > OVX/ADX rats. Thus, PXR may be upstream of TSPO, involved in neurosteroidogenesis of 3α,5α-THP in the brain for plasticity. This novel finding of a liver factor involved in behavioral/neural plasticity substantiates future studies investigating factors known for their prominent actions in the peripheral organs, such as the liver, for modulating brain function and its augmentation.
Collapse
Affiliation(s)
- Cheryl A Frye
- Department of Psychology, The University at Albany-SUNY Albany, NY, USA ; Department of Biological Sciences, The University at Albany-SUNY Albany, NY, USA ; The Center for Neuroscience Research, The University at Albany-SUNY Albany, NY, USA ; The Center for Life Sciences Research, The University at Albany-SUNY Albany, NY, USA ; Department of Chemistry and Biochemistry, The University of Alaska-Fairbanks Fairbanks, AK, USA ; Institute of Arctic Biology, The University of Alaska-Fairbanks Fairbanks, AK, USA ; IDeA Network of Biomedical Excellence (INBRE), The University of Alaska-Fairbanks Fairbanks, AK, USA
| | - Carolyn J Koonce
- Department of Psychology, The University at Albany-SUNY Albany, NY, USA ; Institute of Arctic Biology, The University of Alaska-Fairbanks Fairbanks, AK, USA ; IDeA Network of Biomedical Excellence (INBRE), The University of Alaska-Fairbanks Fairbanks, AK, USA
| | - Alicia A Walf
- Department of Psychology, The University at Albany-SUNY Albany, NY, USA ; Institute of Arctic Biology, The University of Alaska-Fairbanks Fairbanks, AK, USA ; IDeA Network of Biomedical Excellence (INBRE), The University of Alaska-Fairbanks Fairbanks, AK, USA
| |
Collapse
|
88
|
Frye CA, Koonce CJ, Walf AA. Novel receptor targets for production and action of allopregnanolone in the central nervous system: a focus on pregnane xenobiotic receptor. Front Cell Neurosci 2014; 8:106. [PMID: 24782710 PMCID: PMC3988369 DOI: 10.3389/fncel.2014.00106] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2014] [Accepted: 03/25/2014] [Indexed: 12/05/2022] Open
Abstract
Neurosteroids are cholesterol-based hormones that can be produced in the brain, independent of secretion from peripheral endocrine glands, such as the gonads and adrenals. A focus in our laboratory for over 25 years has been how production of the pregnane neurosteroid, allopregnanolone, is regulated and the novel (i.e., non steroid receptor) targets for steroid action for behavior. One endpoint of interest has been lordosis, the mating posture of female rodents. Allopregnanolone is necessary and sufficient for lordosis, and the brain circuitry underlying it, such as actions in the midbrain ventral tegmental area (VTA), has been well-characterized. Published and recent findings supporting a dynamic role of allopregnanolone are included in this review. First, contributions of ovarian and adrenal sources of precursors of allopregnanolone, and the requisite enzymatic actions for de novo production in the central nervous system will be discussed. Second, how allopregnanolone produced in the brain has actions on behavioral processes that are independent of binding to steroid receptors, but instead involve rapid modulatory actions via neurotransmitter targets (e.g., γ-amino butyric acid-GABA, N-methyl-D-aspartate- NMDA) will be reviewed. Third, a recent focus on characterizing the role of a promiscuous nuclear receptor, pregnane xenobiotic receptor (PXR), involved in cholesterol metabolism and expressed in the VTA, as a target for allopregnanolone and how this relates to both actions and production of allopregnanolone will be addressed. For example, allopregnanolone can bind PXR and knocking down expression of PXR in the midbrain VTA attenuates actions of allopregnanolone via NMDA and/or GABAA for lordosis. Our understanding of allopregnanolone’s actions in the VTA for lordosis has been extended to reveal the role of allopregnanolone for broader, clinically-relevant questions, such as neurodevelopmental processes, neuropsychiatric disorders, epilepsy, and aging.
Collapse
Affiliation(s)
- Cheryl A Frye
- Department of Psychology, The University at Albany-SUNY Albany, NY, USA ; Department of Biological Sciences, The University at Albany-SUNY Albany, NY, USA ; The Centers for Neuroscience, The University at Albany-SUNY Albany, NY, USA ; Life Sciences Research, The University at Albany-SUNY Albany, NY, USA ; Department of Chemistry and Biochemistry, The University of Alaska-Fairbanks Fairbanks, AK, USA ; Institute of Arctic Biology, The University of Alaska-Fairbanks Fairbanks, AK, USA ; IDeA Network of Biomedical Excellence (INBRE), The University of Alaska-Fairbanks Fairbanks, AK, USA
| | - Carolyn J Koonce
- Department of Psychology, The University at Albany-SUNY Albany, NY, USA ; Institute of Arctic Biology, The University of Alaska-Fairbanks Fairbanks, AK, USA ; IDeA Network of Biomedical Excellence (INBRE), The University of Alaska-Fairbanks Fairbanks, AK, USA
| | - Alicia A Walf
- Department of Psychology, The University at Albany-SUNY Albany, NY, USA ; Institute of Arctic Biology, The University of Alaska-Fairbanks Fairbanks, AK, USA ; IDeA Network of Biomedical Excellence (INBRE), The University of Alaska-Fairbanks Fairbanks, AK, USA
| |
Collapse
|
89
|
Koonce CJ, Frye CA. Female mice with deletion of Type One 5α-reductase have reduced reproductive responding during proestrus and after hormone-priming. Pharmacol Biochem Behav 2014; 122:20-9. [PMID: 24650589 DOI: 10.1016/j.pbb.2014.03.010] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/13/2013] [Revised: 03/06/2014] [Accepted: 03/12/2014] [Indexed: 12/24/2022]
Abstract
The capacity to form progesterone (P₄)'s 5α-reduced metabolite, 5α-pregnan-3α-ol-20-one (3α,5α-THP; a.k.a. allopregnanolone), in the brain may be related to facilitation of lordosis among estrogen-primed (E₂) mice. We investigated this idea further by comparing effects of endogenous and exogenous progestogens in mice that are deficient in the Type One 5α-reductase enzyme (5α-reductase knockout mice; 5α-RKO), and their wildtype counterparts for sexual behavior. Comparisons were made following administration of progestogens that are expected to increase 3α,5α-THP or not. Sexual receptivity of 5α-RKO mice and their wildtype counterparts was examined when mice were naturally-cycling (Experiment 1); ovariectomized (OVX), E₂-primed (10 μg, subcutaneous; SC) and administered P₄ (0, 125, 250, or 500 μg SC; Experiment 2); and OVX, E₂-primed and administered P₄, medroxyprogesterone acetate (MPA, 4 mg/kg, SC, which does not convert to 3α,5α-THP) or 3α,5α-THP (4 mg/kg, SC; Experiment 3). The percentage of mounts that elicited lordosis (lordosis quotient) or aggression/rejection behavior (aggression quotient), as well as the quality of lordosis (lordosis rating), was scored. Wildtype, but not 5α-RKO, mice in behavioral estrus demonstrated significantly greater lordosis quotients and lordosis ratings, but similar aggression quotients, compared to their diestrous counterparts. Among OVX and E₂-primed mice, P₄ facilitated lordosis of wildtype, but not 5α-RKO, mice. MPA neither facilitated lordosis of wildtype, nor 5α-RKO mice. 3α,5α-THP administered to wildtype or 5α-RKO mice increased lordosis quotients and lordosis ratings and decreased aggression quotients. 3α,5α-THP levels in the midbrain, one brain region important for sexual behavior, were increased during behavioral estrus, with P4 administered to WT, but not 5α-RKO mice, and 3α,5α-THP administered to WT and 5α-RKO mice. MPA did not increase 3α,5α-THP. Thus, deletion of Type One 5α-reductase among female mice may attenuate reproductive responding during the estrous cycle and after hormone-priming.
Collapse
Affiliation(s)
- Carolyn J Koonce
- Department of Psychology, University at Albany-SUNY, Albany, NY, United States; Institute of Arctic Biology, University of Alaska-Fairbanks, Fairbanks, AK, United States; IDeA Network of Biomedical Excellence (INBRE), University of Alaska-Fairbanks, Fairbanks, AK, United States
| | - Cheryl A Frye
- Department of Psychology, University at Albany-SUNY, Albany, NY, United States; Department of Biological Sciences, University at Albany-SUNY, Albany, NY, United States; The Centers for Neuroscience and Life Sciences Research, University at Albany-SUNY, Albany, NY, United States; Department of Chemistry & Biochemistry, University of Alaska-Fairbanks, Fairbanks, AK, United States; Institute of Arctic Biology, University of Alaska-Fairbanks, Fairbanks, AK, United States; IDeA Network of Biomedical Excellence (INBRE), University of Alaska-Fairbanks, Fairbanks, AK, United States.
| |
Collapse
|
90
|
Pinna G. Targeting neurosteroidogenesis as therapy for PTSD. Front Pharmacol 2014; 4:166. [PMID: 24432002 PMCID: PMC3880842 DOI: 10.3389/fphar.2013.00166] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2013] [Accepted: 12/14/2013] [Indexed: 01/21/2023] Open
Affiliation(s)
- Graziano Pinna
- Psychiatric Institute, Department of Psychiatry, University of Illinois at Chicago Chicago, IL, USA
| |
Collapse
|
91
|
Bali A, Jaggi AS. Multifunctional aspects of allopregnanolone in stress and related disorders. Prog Neuropsychopharmacol Biol Psychiatry 2014; 48:64-78. [PMID: 24044974 DOI: 10.1016/j.pnpbp.2013.09.005] [Citation(s) in RCA: 55] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/20/2013] [Revised: 09/05/2013] [Accepted: 09/05/2013] [Indexed: 12/22/2022]
Abstract
Allopregnanolone (3α-hydroxy-5α-pregnan-20-one) is a major cholesterol-derived neurosteroid in the central nervous system and is synthesized from progesterone by steroidogenic enzymes, 5α-reductase (the rate-limiting enzyme) and 3α-hydroxysteroid dehydrogenase. The pathophysiological role of allopregnanolone in neuropsychiatric disorders has been highlighted in several investigations. The changes in neuroactive steroid levels are detected in stress and stress-related disorders including anxiety, panic and depression. The changes in allopregnanolone in response to acute stressor tend to restore the homeostasis by dampening the hyper-activated HPA axis. However, long standing stressors leading to development of neuropsychiatric disorders including depression and anxiety are associated with decrease in the allopregnanolone levels. GABAA receptor complex has been considered as the primary target of allopregnanolone and majority of its inhibitory actions are mediated through GABA potentiation or direct activation of GABA currents. The role of progesterone receptors in producing the late actions of allopregnanolone particularly in lordosis facilitation has also been described. Moreover, recent studies have also described the involvement of other multiple targets including brain-derived neurotrophic factor (BDNF), glutamate, dopamine, opioids, oxytocin, and calcium channels. The present review discusses the various aspects of allopregnanolone in stress and stress-related disorders including anxiety, depression and panic.
Collapse
Affiliation(s)
- Anjana Bali
- Department of Pharmaceutical Sciences and Drug Research, Punjabi University Patiala, 147002, India
| | | |
Collapse
|
92
|
Talani G, Licheri V, Masala N, Follesa P, Mostallino MC, Biggio G, Sanna E. Increased voluntary ethanol consumption and changes in hippocampal synaptic plasticity in isolated C57BL/6J mice. Neurochem Res 2013; 39:997-1004. [PMID: 24343529 DOI: 10.1007/s11064-013-1216-8] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2013] [Revised: 12/02/2013] [Accepted: 12/05/2013] [Indexed: 11/29/2022]
Abstract
Social isolation (SI) is a notable model of prolonged mild stress, characterized by multiple neurochemical and behavioral alterations, that appears particularly suitable for studying different aspects of the interplay between stress and ethanol (EtOH) consumption in order to characterize potential molecular mechanisms, including changes in the function of inhibitory GABAergic synapses, underlying such interaction. In C57BL/6J mice, SI is associated with an altered hippocampal concentration of the neuroactive steroids 3α-hydroxy-5α-pregnan-20-one (3α-5α-THP), an increased expression of the α4 and δ subunit of γ-aminobutyric acid type A receptors (GABAARs) in the dentate gyrus (DG), and a parallel enhancement of the stimulatory action of 4,5,6,7-tetrahydroisoxazolo[5,4-c] pyridin-3-ol (THIP) on GABAergic tonic currents recorded in voltage-clamped DG granule cells (DGGCs). In addition, SI in C57BL/6J mice determines an increase in voluntary EtOH consumption and EtOH preference when compared to group-housed (GH) control animals. Furthermore, in hippocampal slices of SI mice we also observed a marked reduction of both cellular excitability and long term potentiation (LTP) in pyramidal neurons of the CA1 hippocampal sub-region, effects that were prevented by the long term treatment of SI mice with the neuroactive steroid precursor progesterone. In this article, we summarize some of our recent findings on the effects of SI in C57BL/6J mice on voluntary EtOH intake, regulation of GABAARs gene expression and function and hippocampal long term synaptic plasticity.
Collapse
Affiliation(s)
- Giuseppe Talani
- Institute of Neuroscience, National Research Council, 09042, Monserrato, Cagliari, Italy,
| | | | | | | | | | | | | |
Collapse
|
93
|
The role of allopregnanolone in depression and anxiety. Prog Neurobiol 2013; 113:79-87. [PMID: 24215796 DOI: 10.1016/j.pneurobio.2013.09.003] [Citation(s) in RCA: 210] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2013] [Revised: 09/21/2013] [Accepted: 09/21/2013] [Indexed: 12/22/2022]
Abstract
Neuroactive steroids such as allopregnanolone do not only act as transcriptional factors in the regulation of gene expression after intracellular back-oxidation into the 5-α pregnane steroids but may also alter neuronal excitability through interactions with specific neurotransmitter receptors. In particular, certain 3α-reduced metabolites of progesterone such as 3α,5α-tetrahydroprogesterone (allopregnanolone) and 3α,5β-tetrahydroprogesterone (pregnanolone) are potent positive allosteric modulators of the GABA(A) receptor complex. During the last years, the downregulation of neurosteroid biosynthesis has been intensively discussed to be a possible contributor to the development of anxiety and depressive disorder. Reduced levels of allopregnanolone in the peripheral blood or cerebrospinal fluid were found to be associated with major depression, anxiety disorders, premenstrual dysphoric disorder, negative symptoms in schizophrenia, or impulsive aggression. The importance of allopregnanolone for the regulation of emotion and its therapeutical use in depression and anxiety may not only involve GABAergic mechanisms, but probably also includes enhancement of neurogenesis, myelination, neuroprotection, and regulatory effects on HPA axis function. Certain pharmacokinetic obstacles limit the therapeutic use of natural neurosteroids (low bioavailability, oxidation to the ketone). Until now synthetic neuroactive steroids could not be established in the treatment of anxiety disorders or depression. However, the translocator protein (18 kDa) (TSPO) which is important for neurosteroidogenesis has been identified as a potential novel target. TSPO ligands such as XBD 173 increase neurosteroidogenesis and have anxiolytic effects with a favorable side effect profile.
Collapse
|
94
|
Frye CA, Koonce CJ, Walf AA. Pregnane xenobiotic receptors and membrane progestin receptors: role in neurosteroid-mediated motivated behaviours. J Neuroendocrinol 2013; 25:1002-11. [PMID: 24028379 PMCID: PMC3943623 DOI: 10.1111/jne.12105] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/13/2013] [Revised: 08/23/2013] [Accepted: 09/05/2013] [Indexed: 10/26/2022]
Abstract
Progestogens have actions in the midbrain ventral tegmental area (VTA) to mediate motivated behaviours, such as those involved in reproductive processes, among female rodents. In the VTA, the formation and actions of one progestogen, 5α-pregnan-3α-ol-20-one (3α,5α-THP), are necessary and sufficient to facilitate sexual responding (measured by lordosis) of female rodents. Although 3α,5α-THP can be produced after metabolism of ovarian progesterone, 3α,5α-THP is also a neurosteroid produced de novo in brain regions, such as the VTA. There can be dynamic changes in 3α,5α-THP production associated with behavioural experience, such as mating. Questions of interest are the sources and targets of 3α,5α-THP. Regarding sources, the pregnane xenobiotic receptor (PXR) may be a novel factor involved in 3α,5α-THP metabolism in the VTA (as well as a direct target of 3α,5α-THP). We have identified PXR in the midbrain of female rats, and manipulating PXR in this region reduces 3α,5α-THP synthesis and alters lordosis, as well as affective and social behaviours. Regarding targets, recent studies have focused on the role of membrane progestin receptors (mPRs). We have analysed the expression of two of the common forms of these receptors (mPRα/paqr7 and mPRβ/paqr8) in female rats. The expression of mPRα was observed in peripheral tissues and brain areas, including the hypothalamus and midbrain. The expression of mPRβ was only observed in brain tissues and was abundant in the midbrain and hypothalamus. To our knowledge, studies of these receptors in mammalian models have been limited to expression and regulation, instead of function. One question that was addressed was the functional effects of progestogens via mPRα and mPRβ in the midbrain of hormone-primed rats for lordosis. Studies to date suggest that mPRβ may be an important target of progestogens in the VTA for lordosis. Taken together, the result of these studies demonstrate that PXR is involved in the production of 3α,5α-THP in the midbrain VTA. Moreover, mPRs may be a target for the actions of progestogens in the VTA for lordosis.
Collapse
Affiliation(s)
- C A Frye
- Department of Chemistry, The University of Alaska-Fairbanks, Fairbanks, AK, USA; Institute of Artic Biology, The University of Alaska-Fairbanks, Fairbanks, AK, USA; IDeA Network of Biomedical Excellence (INBRE), The University of Alaska-Fairbanks, Fairbanks, AK, USA
| | | | | |
Collapse
|
95
|
Changes in neuroactive steroid secretion associated with CO2-induced panic attacks in normal individuals. Psychoneuroendocrinology 2013; 38:2234-42. [PMID: 23702252 DOI: 10.1016/j.psyneuen.2013.04.008] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/29/2013] [Revised: 04/10/2013] [Accepted: 04/11/2013] [Indexed: 11/24/2022]
Abstract
Neuroactive steroids modulate anxiety in experimental animals and possibly in humans. The secretion of these compounds has been found to be altered in panic disorder (PD), with such alterations having been suggested to be a possible cause or effect of panic symptomatology. Panic-like attacks can be induced in healthy individuals by administration of panicogenic agents or by physical procedures, and we have now measured the plasma concentrations of neuroactive steroids in such individuals before, during, and after panicogenic inhalation of CO2 in order to investigate whether abnormalities of neuroactive steroid secretion might contribute to the pathogenesis of PD. Fifty-nine psychologically and physically healthy subjects, including 42 women (11 in the follicular phase of the menstrual cycle, 14 in the luteal phase, and 17 taking contraceptive pills) and 17 men, who experienced a panic-like attack on previous exposure to 7% CO2 were again administered 7% CO2 for 20min. Thirty-three of these individuals (responders) again experienced a panic-like attack, whereas the remaining 26 subjects did not (nonresponders). All subjects were examined with the VAS-A and PSL-III-R scales for anxiety and panic symptomatology before and after CO2 inhalation. The plasma concentrations of progesterone, 3α,5α-tetrahydroprogesterone (3α,5α-THPROG=allopregnanolone), 3α,5α-tetrahydrodesoxycorticosterone (3α,5α-THDOC), dehydroepiandrosterone (DHEA), and cortisol were measured 15min and immediately before the onset of CO2 administration as well as immediately, 10, 30, and 50min after the end of CO2 inhalation. Neuroactive steroids were measured in the laboratory of Prof. Biggio in Cagliari, Sardinia, Italy. Neurosteroid levels did not change significantly in both responders and nonresponders before, during, or after CO2 inhalation. These data suggest that neuroactive steroid concentrations before, during, or after CO2 inhalation do not seem to correlate with panic symptomatology during panic-like attacks in subjects not affected by PD, and they therefore do not support the notion that abnormalities in neuroactive steroid secretion are either a cause or an effect of such attacks.
Collapse
|
96
|
Stevenson PA, Rillich J. Isolation associated aggression--a consequence of recovery from defeat in a territorial animal. PLoS One 2013; 8:e74965. [PMID: 24040368 PMCID: PMC3765410 DOI: 10.1371/journal.pone.0074965] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2013] [Accepted: 08/12/2013] [Indexed: 01/05/2023] Open
Abstract
Population density has profound influences on the physiology and behaviour of many animal species. Social isolation is generally reported to lead to increased aggressiveness, while grouping lowers it. We evaluated the effects of varying degrees of isolation and grouping on aggression in a territorial insect, the Mediterranean field cricket, Gryllusbimaculatus. Substantiating early observations, we show that dyadic contests between weight-matched, adult male crickets taken from groups rarely escalate beyond threat displays, whereas interactions between pairs of previously isolated crickets typically escalate to physical fights lasting several seconds. No significant differences were found between 1, 2 and 6-day isolates, or between individuals grouped for a few hours or lifelong. Unexpectedly, crickets grouped in immediate proximity within individual mesh cages that precluded fighting while permitting visual, olfactory and mechanical, antennal contact, were as aggressive as free isolates. This suggests that reduced aggression of grouped animals may be an acquired result of fighting. Supporting this notion, isolated crickets initially engage in vigorous fights when first grouped, but fighting intensity and duration rapidly decline to the level of life-long grouped crickets within only 10 min. Furthermore, grouped crickets become as aggressive as life-long isolates after only 3 hours of isolation, and on the same time course required for crickets to regain their aggressiveness after social defeat. We conclude that the reduced aggressiveness of grouped crickets is a manifestation of the loser effect resulting from social subjugation, while isolation allows recovery to a state of heightened aggressiveness, which in crickets can be considered as the default condition. Given the widespread occurrence of the loser effect in the Animal Kingdom, many effects generally attributed to social isolation are likely to be a consequence of recovery from social subjugation.
Collapse
Affiliation(s)
- Paul A. Stevenson
- Institute for Biology, Leipzig University, Leipzig, Germany
- * E-mail:
| | - Jan Rillich
- Institute for Neurobiology, Free University of Berlin, Berlin, Germany
| |
Collapse
|
97
|
Koonce CJ, Frye CA. Progesterone facilitates exploration, affective and social behaviors among wildtype, but not 5α-reductase Type 1 mutant, mice. Behav Brain Res 2013; 253:232-9. [PMID: 23886595 DOI: 10.1016/j.bbr.2013.07.025] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2013] [Revised: 07/10/2013] [Accepted: 07/15/2013] [Indexed: 12/24/2022]
Abstract
Progesterone (P4) facilitates exploration, anxiety and social behaviors in estrogen (E2)-primed mice. Some of these effects may be due to actions of its 5α-reduced metabolite, 5α-pregnan-3α-ol-20-one (3α,5α-THP). In order to address the role of P4 and its metabolite, 3α,5α-THP, a mouse model was utilized. We hypothesized that if P4's metabolism to 3α,5α-THP is essential to facilitate exploratory, anti-anxiety and social behaviors of mice, then wildtype, but not 5α-reductase knockout (5α-RKO), mice will have greater expression of these behaviors. Experiment 1: Mice were ovariectomized (ovx), E2-primed and administered P4 (0, 125, 250, or 500μg) subcutaneously and then tested 4h later in a battery of tasks: open field, elevated plus maze, and social interaction. Experiment 2: Ovx, E2-primed mice were administered P4 (4mg/kg), 3α,5α-THP (4mg/kg), medroxyprogesterone acetate (MPA, which does not convert to 3α,5α-THP; 4mg/kg), or vehicle subcutaneously and tested 4h later. There was a dose-dependent effect of P4 to wildtype, but not 5α-RKO, mice. Neither wildtype, nor 5α-RKO, mice had increased exploration, anti-anxiety or pro-social behavior with MPA administration. Progesterone only exerted effects on anti-anxiety behavior, and increased 3α,5α-THP in the prefrontal cortex and hippocampus, when administered to wildtype mice. 3α,5α-THP to both WT and 5α-RKO mice increased exploration, anti-anxiety and social interaction and 3α,5α-THP levels in the hippocampus and prefrontal cortex. Thus, metabolism of P4 by the 5α-reductase enzyme may be essential for enhancement of these behaviors.
Collapse
Affiliation(s)
- Carolyn J Koonce
- Department of Psychology, The University at Albany-SUNY, Albany, NY 12222, USA
| | | |
Collapse
|
98
|
Regional distribution of 5α-reductase type 2 in the adult rat brain: an immunohistochemical analysis. Psychoneuroendocrinology 2013; 38:281-93. [PMID: 22776423 PMCID: PMC3762250 DOI: 10.1016/j.psyneuen.2012.06.008] [Citation(s) in RCA: 58] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/09/2012] [Revised: 06/18/2012] [Accepted: 06/18/2012] [Indexed: 11/20/2022]
Abstract
The enzyme 5α-reductase (5αR) catalyzes the conversion of testosterone and other Δ(4)-3-ketosteroids into their 5α-reduced metabolites. Of the five members of the 5αR family, the type 2 enzyme (5αR2) plays a key role in androgen metabolism, and is abundantly distributed in the urogenital system. Although 5αR2 has been reported to be highly expressed in the brain during early developmental stages, little is currently known on its anatomical and cellular distribution in the adult brain. Thus, the present study was designed to determine the detailed localization of 5αR2 in the adult rat brain, using a highly specific polyclonal antibody against this isoform. Parasagittal and coronal sections revealed 5αR2 immunoreactivity throughout most brain regions, with strong immunolabeling in the layers III and VI of the prefrontal and somatosensory cortex, olfactory bulb, thalamic nuclei, CA3 field of hippocampus, basolateral amygdala and Purkinje cell layer of cerebellum. Lower 5αR2 levels were detected in the hypothalamus and midbrain. Moreover, double labeling fluorescence with confocal laser scanning microscopy (CLSM) revealed that 5αR2 is localized in neurons, but not in glial cells. Specifically, the enzyme was documented in the pyramidal neurons of the cortex by CLSM analysis of simultaneous Golgi-Cox and immunofluorescent staining. Finally, low levels of 5αR2 expression were identified in GABAergic cells across the cortex, hippocampus and striatum. These findings show that, in the adult brain, 5αR2 is distributed in critical regions for behavioral regulation, suggesting that the functional role of this isoform is present throughout the entire lifespan of the individual.
Collapse
|
99
|
Post-weaning social isolation impairs observational fear conditioning. Behav Brain Res 2013; 242:142-9. [PMID: 23295398 DOI: 10.1016/j.bbr.2012.12.050] [Citation(s) in RCA: 56] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2012] [Revised: 12/19/2012] [Accepted: 12/27/2012] [Indexed: 10/27/2022]
Abstract
Many mammals can utilize social information to learn by observation of conspecifics (social learning). Social learning of fear is expected to be especially advantageous for survival. However, disruption of social development in early life can impair social cognition and might also be expected to disrupt social learning. Social isolation during a critical period of adolescence disrupts social development. The purpose of this study was to determine whether disruption of social development through post-weaning social isolation leads to impairments of social fear learning. Rats were reared in isolation or pair-housed from immediately post-weaning, for 3 weeks. Social fear learning in rats was acquired by observation of tone-footshock pairings administered to a conspecific. Isolation-reared rats displayed less conditioned freezing than pair-housed rats when tested the next day. This reduction of conditioned freezing was correlated with conspecific-oriented behaviors during conditioning, was measured despite similarities in demonstrator behaviors, and occurred despite a manipulation that equalized freezing during conditioning between the pair-housed and isolation-reared rats. The results could not be explained by abnormal sensitization to a repeated tone or deficits in freezing or direct fear conditioning. These results demonstrate that observational fear conditioning is impaired by social isolation, and provide a model to study impaired social affective learning. Impaired social cognition, manifested as inability to recognize or appropriately interpret social cues, is a symptom of several psychiatric disorders. Better understanding of the mechanisms of impaired social fear learning can lead to novel treatments for social cognition symptoms of psychiatric disorders.
Collapse
|
100
|
|