51
|
Identification of a chitin-induced small RNA that regulates translation of the tfoX gene, encoding a positive regulator of natural competence in Vibrio cholerae. J Bacteriol 2011; 193:1953-65. [PMID: 21317321 DOI: 10.1128/jb.01340-10] [Citation(s) in RCA: 62] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
The tfoX (also called sxy) gene product is the central regulator of DNA uptake in the naturally competent bacteria Haemophilus influenzae and Vibrio cholerae. However, the mechanisms regulating tfoX gene expression in both organisms are poorly understood. Our previous studies revealed that in V. cholerae, chitin disaccharide (GlcNAc)₂ is needed to activate the transcription and translation of V. cholerae tfoX (tfoX(VC)) to induce natural competence. In this study, we screened a multicopy library of V. cholerae DNA fragments necessary for translational regulation of tfoX(VC). A clone carrying the VC2078-VC2079 intergenic region, designated tfoR, increased the expression of a tfoX(VC)::lacZ translational fusion constructed in Escherichia coli. Using a tfoX(VC)::lacZ reporter system in V. cholerae, we confirmed that tfoR positively regulated tfoX(VC) expression at the translational level. Deletion of tfoR abolished competence for exogenous DNA even when (GlcNAc)₂ was provided. The introduction of a plasmid clone carrying the tfoR(+) gene into the tfoR deletion mutant complemented the competence deficiency. We also found that the tfoR gene encodes a 102-nucleotide small RNA (sRNA), which was transcriptionally activated in the presence of (GlcNAc)₂. Finally, we showed that this sRNA activated translation from tfoX(VC) mRNA in a highly purified in vitro translation system. Taking these results together, we propose that in the presence of (GlcNAc)₂, TfoR sRNA is expressed to activate the translation of tfoX(VC), which leads to the induction of natural competence.
Collapse
|
52
|
De Souza Silva O, Blokesch M. Genetic manipulation of Vibrio cholerae by combining natural transformation with FLP recombination. Plasmid 2010; 64:186-95. [PMID: 20709100 DOI: 10.1016/j.plasmid.2010.08.001] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2010] [Revised: 08/05/2010] [Accepted: 08/06/2010] [Indexed: 01/09/2023]
Abstract
Even though Vibrio cholerae is a well-known human pathogen, it is also a normal member of aquatic habitats. Within this environment it often forms biofilms on the chitin-containing exoskeleton of crustaceans and their molts. Chitin not only serves as nutrient source but also induces a developmental program called natural competence. Naturally competent bacteria take up free DNA and integrate it into their genome by homologous recombination, thereby becoming naturally transformed. In this study, we made use of the knowledge on the environmental lifestyle of V. cholerae to genetically manipulate its genome. We achieved this by combining the methods of chitin-induced natural transformation and Flp recombination. Using this approach, we disrupted several genes by insertion of FRT-site-flanked antibiotic-resistance cassettes. The cassettes were subsequently excised by induction of the Flp recombinase, which acts on the FRT sites. This method represents a simplified and faster alternative to standard gene deletion techniques, which often depend on bacterial conjugation and the availability of suicide vectors.
Collapse
Affiliation(s)
- Olga De Souza Silva
- Global Health Institute, Ecole Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
| | | |
Collapse
|
53
|
Comparative genomics of the family Vibrionaceae reveals the wide distribution of genes encoding virulence-associated proteins. BMC Genomics 2010; 11:369. [PMID: 20537180 PMCID: PMC2890568 DOI: 10.1186/1471-2164-11-369] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2010] [Accepted: 06/10/2010] [Indexed: 11/17/2022] Open
Abstract
Background Species of the family Vibrionaceae are ubiquitous in marine environments. Several of these species are important pathogens of humans and marine species. Evidence indicates that genetic exchange plays an important role in the emergence of new pathogenic strains within this family. Data from the sequenced genomes of strains in this family could show how the genes encoded by all these strains, known as the pangenome, are distributed. Information about the core, accessory and panproteome of this family can show how, for example, genes encoding virulence-associated proteins are distributed and help us understand how virulence emerges. Results We deduced the complete set of orthologs for eleven strains from this family. The core proteome consists of 1,882 orthologous groups, which is 28% of the 6,629 orthologous groups in this family. There were 4,411 accessory orthologous groups (i.e., proteins that occurred in from 2 to 10 proteomes) and 5,584 unique proteins (encoded once on only one of the eleven genomes). Proteins that have been associated with virulence in V. cholerae were widely distributed across the eleven genomes, but the majority was found only on the genomes of the two V. cholerae strains examined. Conclusions The proteomes are reflective of the differing evolutionary trajectories followed by different strains to similar phenotypes. The composition of the proteomes supports the notion that genetic exchange among species of the Vibrionaceae is widespread and that this exchange aids these species in adapting to their environments.
Collapse
|
54
|
Pollack-Berti A, Wollenberg MS, Ruby EG. Natural transformation of Vibrio fischeri requires tfoX and tfoY. Environ Microbiol 2010; 12:2302-11. [PMID: 21966921 DOI: 10.1111/j.1462-2920.2010.02250.x] [Citation(s) in RCA: 76] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Recent evidence has indicated that natural genetic transformation occurs in Vibrio cholerae, and that it requires both induction by chitin oligosaccharides, like chitohexaose, and expression of a putative regulatory gene designated tfoX. Using sequence and phylogenetic analyses we have found two tfoX paralogues in all sequenced genomes of the genus Vibrio. Like V. cholerae, when grown in chitohexaose, cells of V. fischeri are able to take up and incorporate exogenous DNA. Chitohexaose-independent transformation by V. fischeri was observed when tfoX was present in multicopy. The second tfoX paralogue, designated tfoY, is also required for efficient transformation in V. fischeri, but is not functionally identical to tfoX. Natural transformation of V. fischeri facilitates rapid transfer of mutations across strains, and provides a highly useful tool for experimental genetic manipulation in this species. The presence of chitin-induced competence in several vibrios highlights the potential for a conserved mechanism of genetic exchange across this family of environmentally important marine bacteria.
Collapse
Affiliation(s)
- Amber Pollack-Berti
- University of Wisconsin - Madison, Department of Medical Microbiology and Immunology, 1550 Linden Drive, Madison, WI 53706-1521, USA
| | | | | |
Collapse
|
55
|
Morita M, Ohnishi M, Arakawa E, Yamamoto S, Nair GB, Matsushita S, Yokoyama K, Kai A, Seto K, Watanabe H, Izumiya H. Emergence and genetic diversity of El Tor Vibrio cholerae O1 that possess classical biotype ctxB among travel-associated cases of cholera in Japan. J Med Microbiol 2010; 59:708-712. [DOI: 10.1099/jmm.0.017624-0] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Vibrio cholerae O1 are classified into two biotypes, classical and El Tor, each encoding a biotype-specific cholera toxin. However, El Tor strains have recently emerged with a classical cholera-toxin genotype (El Tor variant). We characterized El Tor strains of V. cholerae O1 from travel-associated cases of cholera in Japan isolated from 1991 to 2006 by cholera toxin B subunit gene (ctxB) typing and by molecular epidemiological methods. ctxB in the biotype El Tor shifted from the El Tor-specific type to the classical-specific type around 1993, and this type fully dominated the later half of the 1990s. Based on the results of PFGE and multilocus variable-number tandem repeat analysis, strains of the classical biotype remained diverse from those of El Tor biotype. The El Tor biotype strains formed multiple minor clusters and intermingled with each other irrespective of their origins and toxin types. El Tor variant strains are widespread in Asian countries and show significant genetic diversity, indicating that their spread is a result of multiclonal expansion rather than spread from a single clone.
Collapse
Affiliation(s)
- Masatomo Morita
- Department of Bacteriology, National Institute of Infectious Diseases, 1-23-1 Toyama, Shinjuku-ku, Tokyo 162-8640, Japan
| | - Makoto Ohnishi
- Department of Bacteriology, National Institute of Infectious Diseases, 1-23-1 Toyama, Shinjuku-ku, Tokyo 162-8640, Japan
| | - Eiji Arakawa
- Department of Bacteriology, National Institute of Infectious Diseases, 1-23-1 Toyama, Shinjuku-ku, Tokyo 162-8640, Japan
| | - Shouji Yamamoto
- Department of Bacteriology, National Institute of Infectious Diseases, 1-23-1 Toyama, Shinjuku-ku, Tokyo 162-8640, Japan
| | | | | | - Keiko Yokoyama
- Tokyo Metropolitan Institute of Public Health, Tokyo, Japan
| | - Akemi Kai
- Tokyo Metropolitan Institute of Public Health, Tokyo, Japan
| | - Kazuko Seto
- Osaka Prefectural Institute of Public Health, Osaka, Japan
| | - Haruo Watanabe
- Department of Bacteriology, National Institute of Infectious Diseases, 1-23-1 Toyama, Shinjuku-ku, Tokyo 162-8640, Japan
| | - Hidemasa Izumiya
- Department of Bacteriology, National Institute of Infectious Diseases, 1-23-1 Toyama, Shinjuku-ku, Tokyo 162-8640, Japan
| |
Collapse
|
56
|
Marvig RL, Blokesch M. Natural transformation of Vibrio cholerae as a tool--optimizing the procedure. BMC Microbiol 2010; 10:155. [PMID: 20509862 PMCID: PMC2890613 DOI: 10.1186/1471-2180-10-155] [Citation(s) in RCA: 63] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2009] [Accepted: 05/28/2010] [Indexed: 11/17/2022] Open
Abstract
Background Vibrio cholerae gains natural competence upon growth on chitin. This allows the organism to take up free DNA from the environment and to incorporate it into its genome by homologous recombination. Results Making use of this developmental program in order to use it as a tool to genetically manipulate V. cholerae and potentially also others Vibrio species was envisaged. Therefore, we re-investigated the experimental design for natural transformation of V. cholerae and tested different donor DNA fragments with respect to their source (genomic versus PCR-derived), quantity, and homologous flanking regions. Furthermore, we simplified the procedure in terms of the chitin source used as inducer of natural competence and the composition of the growth medium. Conclusions The current study allows us to recommend a standard protocol to genetically manipulate V. cholerae using commercially available sources of chitin and minimal medium, respectively, as well as PCR-derived donor DNA as transforming material.
Collapse
Affiliation(s)
- Rasmus L Marvig
- Global Health Institute, Ecole Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
| | | |
Collapse
|
57
|
The cyclic AMP (cAMP)-cAMP receptor protein signaling system mediates resistance of Vibrio cholerae O1 strains to multiple environmental bacteriophages. Appl Environ Microbiol 2010; 76:4233-40. [PMID: 20472740 DOI: 10.1128/aem.00008-10] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Toxigenic Vibrio cholerae, the causative agent of the epidemic diarrheal disease cholera, interacts with diverse environmental bacteriophages. These interactions promote genetic diversity or cause selective enrichment of phage-resistant bacterial clones. To identify bacterial genes involved in mediating the phage-resistant phenotype, we screened a transposon insertion library of V. cholerae O1 El Tor biotype strain C6706 to identify mutants showing altered susceptibility to a panel of phages isolated from surface waters in Bangladesh. Mutants with insertion in cyaA or crp genes encoding adenylate cyclase or cyclic AMP (cAMP) receptor protein (CRP), respectively, were susceptible to a phage designated JSF9 to which the parent strain was completely resistant. Application of the cyaA mutant as an indicator strain in environmental phage monitoring enhanced phage detection, and we identified 3 additional phages to which the parent strain was resistant. Incorporation of the cyaA or crp mutations into other V. cholerae O1 strains caused similar alterations in their phage susceptibility patterns, and the susceptibility correlated with the ability of the bacteria to adsorb these phages. Our results suggest that cAMP-CRP-mediated downregulation of phage adsorption may contribute to a mechanism for the V. cholerae O1 strains to survive predation by multiple environmental phages. Furthermore, the cyaA or crp mutant strains may be used as suitable indicators in monitoring cholera phages in the water.
Collapse
|
58
|
Efficiency and specificity of CTXphi chromosomal integration: dif makes all the difference. Proc Natl Acad Sci U S A 2010; 107:3951-2. [PMID: 20197438 DOI: 10.1073/pnas.1000310107] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
|
59
|
Yamamoto S, Morita M, Izumiya H, Watanabe H. Chitin disaccharide (GlcNAc)2 induces natural competence in Vibrio cholerae through transcriptional and translational activation of a positive regulatory gene tfoXVC. Gene 2010; 457:42-9. [PMID: 20302923 DOI: 10.1016/j.gene.2010.03.003] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2009] [Revised: 03/04/2010] [Accepted: 03/04/2010] [Indexed: 01/28/2023]
Abstract
A pathogenic marine bacterium Vibrio cholerae shows natural competence for genetic transformation in the presence of chitin, a polymer of N-acetylglucosamine (GlcNAc). In this study, we extensively analyzed the regulatory mechanisms of tfoX(VC), encoding an activator protein for the chitin-induced competence. Using a chromosomal tfoX(VC)-lacZ reporter system, we showed that a disaccharide of chitin, (GlcNAc)(2), at least was needed to activate both the transcription and translation of tfoX(VC). This activation was moderate at the transcriptional level but was strong at the translational level. We also identified two sequence elements, one for transcription and another for translation. The transcriptional control element (TCE) included a 34-bp potential transcriptional operator overlapped by the tfoX(VC) promoter, while the translational control element (TLE) consisted of a 42-bp sequence located within the 5'-untranslated region. Deletion of either TCE or TLE still resulted in (GlcNAc)(2)-dependent competence for exogenous DNA. However, the deletion in both elements induced competence for transformation at high efficiency regardless of the presence or absence of (GlcNAc)(2). These results suggested the dual activation of tfoX(VC) expression to be essential to induce competence. The highly transformable strain created here should aid the study of natural competence in V. cholerae.
Collapse
Affiliation(s)
- Shouji Yamamoto
- Department of Bacteriology I, National Institute of Infectious Diseases, Toyama 1-23-1, Shinjuku-ku, Tokyo 162-8640, Japan.
| | | | | | | |
Collapse
|
60
|
Lee JH, Choi SY, Jeon YS, Lee HR, Kim EJ, Nguyen BM, Hien NT, Ansaruzzaman M, Islam MS, Bhuiyan NA, Niyogi SK, Sarkar BL, Nair GB, Kim DS, Lopez AL, Czerkinsky C, Clemens JD, Chun J, Kim DW. Classification of hybrid and altered Vibrio cholerae strains by CTX prophage and RS1 element structure. J Microbiol 2010; 47:783-8. [PMID: 20127474 DOI: 10.1007/s12275-009-0292-6] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2009] [Accepted: 10/05/2009] [Indexed: 01/08/2023]
Abstract
Analysis of the CTX prophage and RS1 element in hybrid and altered Vibrio cholera O1 strains showed two classifiable groups. Group I strains contain a tandem repeat of classical CTX prophage on the small chromosome. Strains in this group either contain no element(s) or an additional CTX prophage or RS1 element(s) on the large chromosome. Group II strains harbor RS1 and CTX prophage, which has an E1 Tor type rstR and classical ctxB on the large chromosome.
Collapse
Affiliation(s)
- Je Hee Lee
- International Vaccine Institute, Seoul 151-919, Republic of Korea
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
61
|
Molecular keys of the tropism of integration of the cholera toxin phage. Proc Natl Acad Sci U S A 2010; 107:4377-82. [PMID: 20133778 DOI: 10.1073/pnas.0910212107] [Citation(s) in RCA: 56] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
Cholera toxin is encoded in the genome of CTXvarphi, a lysogenic filamentous phage of Vibrio cholerae. CTXvarphi variants contribute to the genetic diversity of cholera epidemic strains. It has been shown that the El Tor variant of CTXvarphi hijacks XerC and XerD, two host-encoded tyrosine recombinases that normally function to resolve chromosome dimers, to integrate at dif1, the dimer resolution site of the larger of the two V. cholerae chromosomes. However, the exact mechanism of integration of CTXvarphi and the rules governing its integration remained puzzling, with phage variants integrated at either or both dimer resolution sites of the two V. cholerae chromosomes. We designed a genetic system to determine experimentally the tropism of integration of CTXvarphi and thus define rules of compatibility between phage variants and dimer resolution sites. We then showed in vitro how these rules are explained by the direct integration of the single-stranded phage genome into the double-stranded bacterial genome. Finally, we showed how the evolution of phage attachment and chromosome dimer resolution sites contributes to the generation of genetic diversity among cholera epidemic strains.
Collapse
|
62
|
Halder K, Das B, Nair GB, Bhadra RK. Molecular evidence favouring step-wise evolution of Mozambique Vibrio cholerae O1 El Tor hybrid strain. Microbiology (Reading) 2010; 156:99-107. [DOI: 10.1099/mic.0.032458-0] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The ctxAB operon, encoding cholera toxin (CT) in Vibrio cholerae, is carried by the genome of a filamentous phage, CTXΦ. Usually, specific CTXΦ infect each of the two important biotypes, classical and El Tor, of epidemic V. cholerae strains belonging to serogroup O1, and are called CTXclassΦ and CTXETΦ, respectively. However, an unusual hybrid El Tor strain carrying CTXclassΦ caused the cholera epidemic in Mozambique in 2004. To understand the evolution of that strain, we have further analysed some representative hybrid El Tor strains isolated in Kolkata, India, in 1992, and the results indicate that both the Mozambique and the Indian strains are infected with a unique CTXclassΦ having only four copies of the tandem heptamer repeat sequence 5′-TTTTGAT-3′ present in the ctxAB promoter (P
ctxAB
) region, like in CTXETΦ. Usually, the P
ctxAB
of the classical biotype contains seven to eight copies of such sequences. However, sequence analyses of the P
ctxAB
regions of several classical strains indicated that the copy number of heptamer repeat sequences might vary from four to eight copies, which was previously unknown. Since the hybrid strains analysed in this study carry four copies of the heptamer sequences, it may thus serve as a marker to trace the strain in future. Interestingly, while the Mozambique strain is devoid of an El Tor-specific free RS1 element or pre-CTX prophage, the Indian hybrid strains carry such elements. The free RS1 has been mapped, cloned and sequenced. As in pre-CTX and CTX prophages, multiple copies of free RS1 elements were found to be integrated in tandem in the large chromosomal dif site. Since Indian hybrid El Tor strains carry either free RS1 or pre-CTX prophage in their large chromosomes, it is possible that the Mozambique hybrid El Tor strain has evolved from these progenitor strains by step-wise deletion of CTX genetic elements from their large chromosomes.
Collapse
Affiliation(s)
- Kalpataru Halder
- Indian Institute of Chemical Biology (CSIR), Kolkata 700 032, India
| | - Bhabatosh Das
- Indian Institute of Chemical Biology (CSIR), Kolkata 700 032, India
| | - G. Balakrish Nair
- National Institute of Cholera and Enteric Diseases (ICMR), Kolkata 700 010, India
| | - Rupak K. Bhadra
- Indian Institute of Chemical Biology (CSIR), Kolkata 700 032, India
| |
Collapse
|
63
|
Safa A, Nair GB, Kong RYC. Evolution of new variants of Vibrio cholerae O1. Trends Microbiol 2009; 18:46-54. [PMID: 19942436 DOI: 10.1016/j.tim.2009.10.003] [Citation(s) in RCA: 186] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2009] [Revised: 10/27/2009] [Accepted: 10/28/2009] [Indexed: 12/17/2022]
Abstract
Vibrio cholerae typically contains a prophage that carries the genes encoding the cholera toxin, which is responsible for the major clinical symptoms of the disease. In recent years, new pathogenic variants of V. cholerae have emerged and spread throughout many Asian and African countries. These variants display a mixture of phenotypic and genotypic traits from the two main biotypes (known as 'classical' and 'El Tor'), suggesting that they are genetic hybrids. Classical and El Tor biotypes have been the most epidemiologically successful cholera strains during the past century, and it is believed that the new variants (which we call here 'atypical El Tor') are likely to develop successfully in a manner similar to these biotypes. Here, we describe recent advances in our understanding of the epidemiology and evolution of the atypical El Tor strains.
Collapse
Affiliation(s)
- Ashrafus Safa
- Department of Biology and Chemistry and MERIT, City University of Hong Kong, 83, Tat Chee Avenue, Kowloon Tong, Kowloon, Hong Kong SAR
| | | | | |
Collapse
|
64
|
Nelson EJ, Harris JB, Morris JG, Calderwood SB, Camilli A. Cholera transmission: the host, pathogen and bacteriophage dynamic. Nat Rev Microbiol 2009; 7:693-702. [PMID: 19756008 PMCID: PMC3842031 DOI: 10.1038/nrmicro2204] [Citation(s) in RCA: 343] [Impact Index Per Article: 21.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Zimbabwe offers the most recent example of the tragedy that befalls a country and its people when cholera strikes. The 2008-2009 outbreak rapidly spread across every province and brought rates of mortality similar to those witnessed as a consequence of cholera infections a hundred years ago. In this Review we highlight the advances that will help to unravel how interactions between the host, the bacterial pathogen and the lytic bacteriophage might propel and quench cholera outbreaks in endemic settings and in emergent epidemic regions such as Zimbabwe.
Collapse
Affiliation(s)
- Eric J Nelson
- Howard Hughes Medical Institute, Department of Molecular Biology and Microbiology, Tufts University School of Medicine, Boston, Massachusetts 02111, USA
| | | | | | | | | |
Collapse
|
65
|
Comparative genomics reveals mechanism for short-term and long-term clonal transitions in pandemic Vibrio cholerae. Proc Natl Acad Sci U S A 2009; 106:15442-7. [PMID: 19720995 DOI: 10.1073/pnas.0907787106] [Citation(s) in RCA: 292] [Impact Index Per Article: 18.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
Vibrio cholerae, the causative agent of cholera, is a bacterium autochthonous to the aquatic environment, and a serious public health threat. V. cholerae serogroup O1 is responsible for the previous two cholera pandemics, in which classical and El Tor biotypes were dominant in the sixth and the current seventh pandemics, respectively. Cholera researchers continually face newly emerging and reemerging pathogenic clones carrying diverse combinations of phenotypic and genotypic properties, which significantly hampered control of the disease. To elucidate evolutionary mechanisms governing genetic diversity of pandemic V. cholerae, we compared the genome sequences of 23 V. cholerae strains isolated from a variety of sources over the past 98 years. The genome-based phylogeny revealed 12 distinct V. cholerae lineages, of which one comprises both O1 classical and El Tor biotypes. All seventh pandemic clones share nearly identical gene content. Using analogy to influenza virology, we define the transition from sixth to seventh pandemic strains as a "shift" between pathogenic clones belonging to the same O1 serogroup, but from significantly different phyletic lineages. In contrast, transition among clones during the present pandemic period is characterized as a "drift" between clones, differentiated mainly by varying composition of laterally transferred genomic islands, resulting in emergence of variants, exemplified by V. cholerae O139 and V. cholerae O1 El Tor hybrid clones. Based on the comparative genomics it is concluded that V. cholerae undergoes extensive genetic recombination via lateral gene transfer, and, therefore, genome assortment, not serogroup, should be used to define pathogenic V. cholerae clones.
Collapse
|
66
|
A comparative genomics, network-based approach to understanding virulence in Vibrio cholerae. J Bacteriol 2009; 191:6262-72. [PMID: 19666715 DOI: 10.1128/jb.00475-09] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Our views of the genes that drive phenotypes have generally been built up one locus or operon at a time. However, a given phenotype, such as virulence, is a multilocus phenomenon. To gain a more comprehensive view of the genes and interactions underlying a phenotype, we propose an approach that incorporates information from comparative genomics and network biology and illustrate it by examining the virulence phenotype of Vibrio cholerae O1 El Tor N16961. We assessed the associations among the virulence-associated proteins from Vibrio cholerae and all the other proteins from this bacterium using a functional-association network map. In the context of this map, we were able to identify 262 proteins that are functionally linked to the virulence-associated genes more closely than is typical of the proteins in this strain and 240 proteins that are functionally linked to the virulence-associated proteins with a confidence score greater than 0.9. The roles of these genes were investigated using functional information from online data sources, comparative genomics, and the relationships shown by the protein association map. We also incorporated core proteome data from the family Vibrionaceae; 35% of the virulence-associated proteins have orthologs among the 1,822 orthologous groups of proteins in the core proteome, indicating that they may be dual-role virulence genes or encode functions that have value outside the human host. This approach is a valuable tool in searching for novel functional associations and in investigating the relationship between genotype and phenotype.
Collapse
|